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Abstract— In recent years, economic Nonlinear Model Pre-
dictive Control (eNMPC) has emerged as a viable alternative for
distributed control systems. Because eNMPC involves the solu-
tion of a dynamic optimization problem, it provides the control
actions that lead the system to the most economical transient
operations, which may be periodic instead of converging to a
steady state[1]. Since eNMPC has been typically used for stand-
alone unit operations instead of plantwide control, an unsteady
operation of a unit may lead to undesirable operations of
downstream units. This work proposes a self-stabilizing eNMPC
formulation, in which a pre-calculated steady-state condition
is not required. Lyapunov functions with embedded steady-
state optimal conditions are employed as additional constraints
of the eNMPC formulation, so that the asymptotically stable
behavior can be achieved. The performance of the proposed
eNMPC is demonstrated with two case studies of a membrane
reactor for natural gas utilization. In the first case study, the
proposed eNMPC can effectively bring the system toward the
feasible steady-state optimal operation. In the second case study,
a cost-optimal steady-state does not exist due to the time-
varying disturbance, and the closed-loop behavior is shown to
be bounded if the disturbance is also bounded.

I. INTRODUCTION

In most industrial process control implementations, a
distributed control system decouples the operation into a
multilayer hierarchical architecture. The upper levels, such
as the real-time optimizer and the scheduler, find the best
steady-state conditions (or setpoints) with respect to an
economic objective given a set of constraints (e.g., for safety,
sustainability, or physical limitations), and these layers are
often formulated as steady-state nonlinear programming
problems. The lower levels, such as supervisory and regula-
tory controllers, receive the economically optimal setpoints
and find a suitable sequence of dynamic control actions that
steer the plant toward the desired steady-state conditions.
Model Predictive Control (MPC) has been increasingly more
popular for setpoint tracking at the lower level because of
its ability to handle multiple-input-multiple-output dynamic
systems and satisfy constraints during transient operations.
Economic Nonlinear Model Predictive Control (eNMPC)
is an extension of MPC that uses the nonlinear dynamic
model to formulate the constraints and replaces the tracking
performance objective with an economic cost objective.

When eNMPC is implemented in a stable process, the

closed-loop process can exhibit periodic behavior[1]. This
is caused by the existence of a more cost-effective transient
closed path around the steady-state optimal solution, and eN-
MPC prioritizes the solution path with a lower operating cost.
Regardless of the economic benefits, operating a process in
an unsteady manner may be undesirable since it can lead
to higher equipment degradation, higher operational risks,
or even higher operating cost for downstream units. Thus,
eNMPC is often augmented with a stabilizing constraint to
drive the process toward a steady state if needed[2].

Typically, the stabilizing constraint takes the form of a
Lyapunov function to guarantee asymptotic stability. To the
extent of the reported literature[3], the available formulations
of the Lyapunov constraints require a pre-calculated steady
state, which is given by an upper layer of a distributed control
system. Since the upper control layers are solved less often
than the eNMPC at a regulatory control level, the provided
optimal steady state might turn suboptimal when the op-
erating conditions are shifted by the process disturbances.
Motivated by this challenge, a self-stabilizing eNMPC that
is independent of an external steady-state optimization is
proposed in this work.

The remaining sections of this work are organized as fol-
lows. First, a review of a conventional eNMPC formulation
and the basics of the Lyapunov stability theorem are provided
in Section II. Then, the proposed eNMPC is formulated in
Section III. Later, a case study of an implementation of the
eNMPC on a modular membrane reactor is shown in Section
IV. Finally, Section V presents the paper’s conclusions.

II. PRELIMINARIES

A. Notation

In this work, the following notations are considered. A
function α(x) : R≥0 → R≥0 is a class K function if it is
continuous, strictly increasing, and α(0) = 0. A function α
belongs to the class K∞ if it belongs to the class K and is
unbounded. The L2-norm of a vector is denoted by ∥ · ∥.
The distance of a point x ∈ Rnx from the set A ⊂ Rnx is
defined as ∥x∥A := infz∈A ∥x − z∥. If the set A = {x∗}
only contains a single point, then ∥x∥A := ∥x − x∗∥ and
limx→x∗ ∥x∥A = 0.
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B. System Description

In this work, the dynamic system considered is represented
by the following state-space nonlinear dynamic model:

ẋ(t) = f(x(t), u(t)) (1a)
g(x(t), u(t)) ≤ 0 (1b)

in which at every time instance t, x(t) ∈ Rnx is the vector
of states, ẋ(t) ∈ Rnx is the vector of derivatives of the states
with respect to t, u(t) ∈ Rnu is the vector of manipulated
variables. f : Rnx+nu → Rnx is a set of rate of change
equations that represent the process dynamics. The inequality
constraints g : Rnx+nu → Rng represent the imposed
limitations on the dynamic system, such as input and output
bounds.

The following conversion is used for the time indexes:

tk = k∆t (2)

and the discrete-time states are defined as xk = x(tk), the
discrete-time manipulated variables are defined as uk =
u(tk) with a zero order hold. The resulting discrete-time
model of (1) is:

xk+1 = f̄(xk, uk) = xk +

∫ tk+1

tk

f(x(t), u(t)) (3a)

g(xk, uk) ≤ 0 (3b)

in which f̄ is the discretization of the dynamic model (1) in
time with a zero-order hold on the manipulated variables. The
discretized-time difference, ∆t, is assumed to be sufficiently
small for the discrete-time model to accurately approximate
the continuous-time model. f̄ is obtained by implicitly solv-
ing the continuous model (1).

C. Economic Nonlinear Model Predictive Control Formula-
tion

At each time instance tk, the full state information x(tk) is
obtained from the measurements, and the following eNMPC
subproblem is formulated as:

min
N−1∑
k=0

Ψ(zk, vk) (4a)

s.t. zk+1 = f̄ (zk, vk) , k = 0, . . . N − 1 (4b)
z0 = x(tk) (4c)
g(zk, vk) ≤ 0 (4d)

in which at the predictive time step k, zk ∈ Rnx is the vector
of predictive states, and vk ∈ Rnu is the vector of predictive
manipulated variables. The control horizon is denoted as N ,
and Ψ is the stage cost that represents its operating cost.

The continuous-time dynamic model (1) is the closed
form of the first-principles model since the modeling equa-
tions are directly derived from physics-based phenomena,
such as equations of states or mass balances. However,
in the implementation of the aforementioned eNMPC, the
manipulated variables are held constant in the plant, which
corresponds to a zero-order hold assumption, while the

dynamic optimization problem (4) is solved online, so a
discrete-time dynamic model is more suitable for the eNMPC
formulation. Additionally, the discrete-time Lyapunov-based
stabilizing constraints do not require time derivatives, so
they are simpler to implement than their continuous-time
counterparts. For these reasons, the proposed eNMPC is for-
mulated as a hybrid between continuous-time and discrete-
time dynamics. In particular, the dynamic programming
problem of the eNMPC is discretized into even partitions
of the time domain, and stabilizing Lyapunov constraints are
constructed from the steady-state model derived from the
continuous-time dynamic model (1).

When the solution to the optimization problem (4) is
available, the first stage solution of the manipulated variables,
v0, is injected into the manipulated variables, u(t). For a
closed-loop system, the eNMPC feedback control law is
referred to as u(t) = κ(x(t)), and the stability analysis of the
given dynamic model (1) is performed as the stability of an
autonomous system of differential equations in the following
subsection.

D. Asymptotically Stable Condition of Closed-Loop Systems

In this subsection, the existence of Lyapunov functions is
employed to determine the asymptotic stability of a dynamic
system. A brief overview of the Lyapunov stability is pro-
vided as the basis for developing the proposed stabilizing
constraints in the following section.

Definition 1: A closed set A is a positive invariant set for
a closed-loop system xk+1 = f̄(xk, uk) = f̄(xk, κ(xk)) if
xk ∈ A implies xk+1 ∈ A.

Definition 2: A value function V : Rnx → R≥0 is said to
be a Lyapunov function for the discrete-time dynamic system
xk+1 = f̄(xk, κ(xk)) and a set A if f̄ is locally bounded,
A is positive invariant, and there exist functions α1, α2 of
class K∞, and a positive definite function ϕd that satisfy the
following:

α1(∥x∥A) ≤ V (x) ≤ α2(∥x∥A) (5)

V (f̄(x, κ(x)))− V (x) ≤ −ϕd(∥x∥A) (6)
An intuitive interpretation of the Lyapunov function, V (x),

is the pseudo-potential energy of a dynamic system. The
constraints in (5) force the potential energy to be zero when
x is in A, and the potential energy increases indefinitely as
the distance between x and set A is longer. The inequality
(6) ensures that when the state x is not in the set A, the state
in the following time step will approach closer to the set A.
Additionally, after the states reach a point in set A, inequality
(6) keeps the difference in V (x) at zero and prevents the
dynamic process from moving out of the positive invariant
set A. Thus, the existence of a Lyapunov function implies
the asymptotic convergence to a set A. Lyapunov stability is
indicated by the following well-known theorem[4]:

Theorem 1: Given a positive invariant set A for xk+1 =
f̄(xk, κ(xk)) and a locally bounded function f̄ , if a Lya-
punov function V for f̄ and the set A exist, then the dynamic
system asymptotically converges to a stable steady state in
A.
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III. SELF-STABILIZING ECONOMIC MODEL
PREDICTIVE CONTROL FORMULATION

A. Steady-state Optimal Conditions

The steady-state optimization is formulated by combining
the steady-state model derived from the dynamic model (1)
and the economic objective of the eNMPC in (11a). Formally,
it is defined as below:

(x∗, u∗) := argmin
x,u

Ψ(x, u) (7a)

s.t. f(x, u) = 0 (7b)
g(x, u) ≤ 0 (7c)

in which x∗ and u∗ are respectively the optimal steady-state
solutions of the states and manipulated variables, f and g
are respectively the rates of change and the model constraints
given in (1). An equivalent steady-state optimization problem
is formulated by translating the inequality constraints to
barrier terms in the objective function:

min
x,u

ϕ(x, u) := Ψ (x, u) + µ

ng∑
j=1

ln (−gj(x, u)) (8a)

s.t. f(x, u) = 0 (8b)

in which µ > 0 is the barrier parameter, and ng is the
number of inequality constraints. The KKT conditions for
the reformulated steady-state optimization in (8) are given
as follows:

−∇uf(x, u) (∇xf(x, u))
−1 ∇xϕ(x, u)

+∇uϕ(x, u) = 0
(9a)

f(x, u) = 0 (9b)

In addition to the KKT conditions, the second-order suffi-
cient conditions for optimality are assumed to always hold.
Additionally, the matrix ∇xf is assumed to always be non-
singular, and the linear independence constraint qualification
is satisfied.

For ease of notation in the following subsections, the
left-hand side of the equation (9a) is referred to as the
reduced gradient that is denoted as Z(x, u)⊤∇ϕ(x, u) with
Z(x, u)⊤ = [−∇uf(x, u) (∇xf(x, u))

−1 | I].
In the above KKT conditions, the matrix inverse of the

term (∇xf(x, u))
−1 can be performed by a symbolic tool-

box. However, the explicit form is difficult to compute for a
large-scale dynamic system. To address this challenge, the
KKT constraint (9a) can be replaced by (10), where the
quantity M is defined in (10b) so that (10a) is equivalent
to (9a).

Z(x, u)⊤∇ϕ(x, u) = −∇uf(x, u)M+∇uϕ(x, u)

= 0
(10a)

∇xϕ(x, u) = (∇xf(x, u))M (10b)

B. Self-stabilizing Lyapunov Constraints

Conventionally, the distance from an asymptotically stable
set, ∥x∥A, is defined as the L2-norm of the difference,
∥x − x∗∥, from a steady-state optimal solution, x∗, of (7).

However, this implies that (7) is required to be solved before
solving the optimization of the eNMPC. To avoid solving two
separate optimization problems, the optimality conditions of
(7) are derived and used for the formulation of the additional
stabilizing constraint of the eNMPC.

From the definitions and properties of the Lyapunov func-
tions, the following modification of the eNMPC is proposed
for the self-stabilizing eNMPC:

min
N−1∑
k=0

Ψ(zk, vk) + βΦ (zN−1, zN , vN−1) (11a)

s.t. zk+1 = f̄ (zk, vk) , k = 0, . . . N − 1 (11b)
z0 = x(tk) (11c)
V (xk)− V (xk−1) ≤ −δϕd(xk−1), δ ∈ (0, 1] (11d)
g(zk, vk) ≤ 0 (11e)

in which the parameter δ determines the speed of con-
vergence to the steady-state optimal point, and Φ is the
additional terminal cost. Also, β is a sufficiently large
weighting of the terminal cost to ensure asymptotic stability
of an eNMPC with short horizon N .

Since an eNMPC with Lyapunov stabilizing constraint is
formulated to maintain the process at the most economic
steady state, x∗, with respect to an objective function in
the form of (11a), a set A of all achievable steady-state
economically optimized states is positive invariant.

The terminal cost Φ, the Lyapunov function V and the
Lyapunov stage cost ϕd in (11d) are chosen as below:

Φ (zN−1, zN , vN−1) := ∥(zN − zN−1)∥2

+
∥∥∥Z (zN , vN−1)

⊤ ∇ϕ (zN , vN−1)
∥∥∥2

(12)

ϕd(xk−1) :=∥xk − xk−1∥2

+
∥∥Z(xk−1, uk−1)

⊤∇ϕ(xk−1, uk−1)
∥∥2 (13)

V (xk) :=

N−1∑
l=0

(ϕd(zl)) + Φ (zN−1, zN , vN−1) (14)

At a fixed discrete-time instance k, the state vector xk

is given by the measurements, the previous state vector,
xk−1, and previous manipulated variables, uk−1, which are
available from the process data historian. Thus, the preceding
time ϕd(xk−1) is constant at time k. In equation (14), the
Lyapunov function is defined with respect to the prediction
of the eNMPC. Therefore, at time k, the term V (xk−1) in
the constraint (11d) is determined by the solution of the
eNMPC in the previous time step and has a constant value.
As a result, the only term in (11d) that contains independent
variables of the dynamic optimization (11) is V (xk), and the
remaining terms of (11d) are updated after a new solution of
the eNMPC is achieved.

In equations (12) to (13), the self-stabilizing eNMPC
replaces the ∥x− x∗∥ of the conventional eNMPC with the
square of the deviation from the KKT conditions given in (9).
Additionally, V (xk) approaches zero as xk approaches x∗, so
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the process is moved toward the steady-state optimal solution
without knowing the pre-computed value of x∗. Moreover,
the asymptotic stability is proven as below.

By definition, V (xk) is a sum of squares, so it is positive
definite. The following inequality and equation are true for
any feasible states:

V (x0) ≥ V (x0)− V (xM+1) (15)

V (x0)− V (xM+1) =
M∑
k=0

(V (xk)− V (xk+1)) (16)

By combining (15) and (16), and letting M approach ∞, the
manipulation gives:

V (x0) ≥
∞∑
k=0

(V (xk)− V (xk+1)) (17)

The inequality (17) and the constraint (11d) lead to the
following inequality:

V (x0) ≥
∞∑
k=0

δϕd(xk) (18)

The right-hand side of the inequality (18) is a monotoni-
cally non-decreasing function that is bounded above, which
implies that:

lim
k→∞

ϕd(xk)

= ∥xk+1 − xk∥2 +
∥∥Z(xk, uk)

T∇ϕ(xk, uk)
∥∥2

= 0

(19)

Therefore, the closed-loop process with the self-stabilizing
eNMPC asymptotically approaches the steady-state optimal
condition of (7), as long as the system described by (1) has
a steady state. In the next section, we will demonstrate this
property and consider input disturbances for which the cost-
optimal steady state does not exist.

IV. APPLICATION TO MODULAR MEMBRANE
REACTOR

In this section, the proposed eNMPC formulation is
demonstrated via an application to a cocurrent membrane
reactor for direct methane aromatization (DMA-MR). The
schematic of the considered DMA-MR is shown in Figure
1. The main function of this membrane reactor is to convert
methane from natural gas feed to benzene and hydrogen[5].

Fig. 1: Schematic of DMA-MR with inputs, outputs, and
reactions

In the shell-and-tube DMA-MR, the reactions take place
in the tube, and the membrane layer, which is placed on the

surface of the tube wall, is highly selective toward hydro-
gen permeation. The reaction equilibrium shifts toward the
products when hydrogen is removed from the reactive tube,
which leads to higher methane conversion when compared
to a stand-alone reactor system.

The detailed dynamic model of the DMA-MR is provided
in the reference[6], and the DMA-MR is controlled by
manipulating the tube flow rate and the shell flow rate. It
is assumed that the dynamic model also has temperature
and pressure controlled, so the DMA-MR is considered to
be isothermal and isobaric. Flow rates are presumed to be
driven by pressure profiles in the tube and shell, and pressure
drops are negligible. The DMA-MR is assumed to have radial
and angular symmetry, and it is considered only to change
states along its length. The resulting dynamic model of the
DMA-MR is a system of partial differential equations with
differential independent variables as the operational time and
the length of the DMA-MR. The method of lines is applied
to discretize the DMA-MR length into equal differential
length partitions in order to solve this model. Consequently,
the dynamic model of the DMA-MR can be defined as
a nonlinear state-space model of the system of ordinary
differential equations that represents a system of nonlinear
state-space dynamics.

Due to the nature of the dynamic model being a first-
principles model, only the continuous-time formulation of
the model is explicitly available, and the discrete-time dy-
namic model has to be implicitly solved with the eNMPC
dynamic programming problem. In such situations, the pro-
posed continuous-discrete hybrid formulation of the self-
stabilizing eNMPC is directly applicable to any modeling
language that has fixed-time step discretization. In this
work, the Pyomo modeling tool[7] is used to construct the
dynamic model, and the dynamic optimization problem of
the controller is solved with the Ipopt solver[8].

The economic stage cost for the eNMPC implementation
of the DMA-MR is based on the price of the products
(benzene and hydrogen) and the separation cost of the
permeate and the retentate streams, which are assumed
to be proportional to the respective flow rates. Formally,
the economic stage cost at time k, Ψk, is defined as the
following:

Ψk =− (30CC6H6,k − 0.5)Qtube,k

− (2CH2,k − 0.5)Qshell,k

(20)

in which at a fixed discrete-time value k, Qtube,k is the
tube flow rate, Qshell,k is the shell flow rate, CC6H6,k is
the concentration of benzene in the retentate, and CH2,k

is the concentration of hydrogen in the permeate. In this
case study, the weights of benzene, hydrogen, and separa-
tion cost in (20) do not reflect the actual monetary values
for a techno-economic analysis. Instead, they suggest the
relative differences between the prices of all elements in the
economic objective. Thus, Ψk and the subsequently defined
average profit in (21), P̄ , have the unit in the domain of
currency over time, and their numerical values are best used
for comparisons between different eNMPC formulations.
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In the first case study, the proposed self-stabilizing eN-
MPC in (11) and the conventional eNMPC (4) are imple-
mented as feedback controllers for the DMA-MR, and their
performances are compared to demonstrate the advantage of
the proposed framework. Both eNMPC formulations have
the predictive horizon of 10 minutes, which is discretized
with even time differences of 1 minute into 10 predictive
time steps. Their closed-loop simulations are initialized at
a suboptimal steady state with a tube flow rate of 700
dm3/minute and a shell flow rate of 15000 dm3/minute.
The weighting parameter, β, of the terminal cost of the self-
stabilizing eNMPC is chosen to be 105, and the Lyapunov
parameter, δ, is chosen to be 0.1 for all of the following
simulations.
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Fig. 2: Comparison of the manipulated variable profiles of the
DMA-MR under different closed-loop eNMPC formulations

The resulting solutions of the manipulated variables under
the different eNMPC feedback laws are depicted in Figure 2,
and the closed-loop product concentration of the outlets of
the DMA-MR are illustrated in Figure 3. Since the predictive
horizon of both eNMPC formulations is intentionally chosen
to be insufficiently short, the conventional eNMPC fails to
reach the steady-state optimum. However, the sufficiently
large terminal cost of the self-stabilizing eNMPC is able
to bring the DMA-MR to the steady-state optimum without
separately solving the steady-state optimization to obtain a
pre-calculated setpoint for the terminal cost.

The average profit, P̄ , of each closed-loop profile is the
negative of the mean of the average stage cost Ψk for all k in
the simulated horizon, Nsim. Mathematically, P̄ is defined
as:

P̄ =
−1

Nsim

Nsim∑
k=0

Ψk (21)

From the simulation results, the average profit of the
conventional eNMPC is 3.55, while the average profit of
the self-stabilizing eNMPC is 3.59. In the case of the DMA-
MR, the average profit is highest at an optimal steady-state
operation instead of a periodic operation, so an eNMPC that
brings the system closer to the steady-state optimal solution
has a higher average profit. It is important to note that the
main driving force of the system to the cost-optimal steady
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Fig. 3: Comparison of the output variable profiles of the
DMA-MR under different closed-loop eNMPC formulations

state is the terminal cost in (12), and the Lyapunov constraint
(11d) is not active during the transient process to reach a new
steady state. The main function of the Lyapunov constraint
here is to promote convergence to a steady state if the closed-
loop process is otherwise not asymptotically stable. On the
other hand, the closed-loop system of the DMA-MR with a
terminal penalty appears to be asymptotically stable, so an
active Lyapunov constraint holds but may remain inactive
when reaching a new steady state. To prevent the Lyapunov
constraints from forcing the system to rapidly approach the
cost-optimal steady state, the Lyapunov parameter, δ, is
chosen to be small in this case study, which results in a
more cost-effective transient operation.

In the second case study, dynamic disturbances are con-
sidered to further understand the specific stabilizing features
of the proposed eNMPC. An important note on the self-
stabilizing eNMPC is that the constraint (11d) only stabilizes
the self-imposed fluctuations by the closed-loop eNMPC.
When the process is under the effect of external disturbances,
the self-stabilizing eNMPC by itself is unable to bring the
process to a steady state. To illustrate the disturbance effects
on the self-stabilizing eNMPC, a sinusoidal wave is added
to the inlet concentration of methane to mimic changes in
the process feed coming from an upstream process. Two
self-stabilizing eNMPC formulations are considered for the
disturbance effect analysis. The first self-stabilizing eNMPC
is a feedback controller that only updates the value of the
disturbance in the dynamic programming problem after a
new state information is available. The second self-stabilizing
eNMPC is a feedforward controller with an accurate distur-
bance predictive model augmented to the dynamic model.

Both eNMPC formulations have the same tuning of the
Lyapunov parameters δ = 1, and the prediction horizons
are set to 10 minutes, which is discretized with even time
differences of 1 minute into 10 predictive time steps. The
simulations of the closed-loop system with different eNMPC
formulations are initialized at the same steady state, that is
the steady-state solution of the DMA-MR with the inlet tube
flow rate of 800 dm3/min and the inlet shell flow rate of

2625



9000 dm3/min.
The resulting solutions of the manipulated variables of

both feedback and feedforward eNMPC formulations are
shown in Figure 4, and the closed-loop product concentration
of the outlets of the DMA-MR are illustrated in Figure
5. Since the feedforward eNMPC receives the information
on the disturbance ahead of time, the controller adjusts the
manipulated variables to compensate for the effects before
the disturbance further upsets the system. The feedback
eNMPC only receives the disturbance information after the
DMA-MR system is already affected. For this reason, while
both feedback and feedforward eNMPC follow a similar
trend, the trend of the feedforward eNMPC is one time-step
ahead of the trend of the feedback eNMPC, and this behavior
can be observed in Figures 4 and 5.
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Fig. 4: Feedback and feedforward manipulated variables of
self-stabilizing eNMPC under disturbances
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Fig. 5: Feedback and feedforward output variables of self-
stabilizing eNMPC under disturbances

From the simulation results, the average profit of the
feedback eNMPC is 1.27, and the average profit of the
feedforward eNMPC is 1.41. In the case of the DMA-
MR, the average profit is highest at an optimal steady-state
operation instead of a periodic operation, so an eNMPC that
brings the system closer to the steady-state optimum has a
higher average profit. Thus, for DMA-MR with disturbance
scenarios, feedforward eNMPC is more cost-effective than
the feedback eNMPC.

For the disturbance effect case study, the Lyapunov pa-
rameter (δ = 1) is chosen at a significantly higher value
when compared to the previous case study. As a result, the
Lyapunov constraint (11d) is sometimes active in the sim-
ulations. However, as shown in Figures 4 and 5, sinusoidal
disturbances do not lead to a steady state for the dynamic
system, and asymptotic stability does not hold, as the optimal
solution is constantly changing at every time step. Because

the Lyapunov constraint follows this time-varying steady-
state optimal solution, the closed-loop behavior is bounded
according to the disturbance realization.

V. CONCLUSIONS

In this work, a self-stabilizing eNMPC is proposed to
prevent the self-imposed unsteady operation of a closed-
loop system. The proposed eNMPC can be independently
implemented without a pre-calculated steady-state condition
for the Lyapunov stabilizing constraint. By reformulating
the Lyapunov functions using the KKT conditions of the
respective steady-state economic optimization, the closed-
loop asymptotic stability is achieved at the steady-state
optimal solution.

An eNMPC framework for the modular DMA-MR is
proposed using the self-stabilizing eNMPC, and the frame-
work is demonstrated to be an effective control system for
nonlinear dynamic systems that admit steady states. In the
first case study, the proposed eNMPC is able to reach the
cost-optimal steady state, so it outperforms the conventional
eNMPC without a pre-calculated steady-state optimum. In
the second case study, a cost-optimal steady state does not
exist in the presence of bounded time-varying disturbances.
Nevertheless, the closed-loop behavior of the proposed eN-
MPC is still bounded instead of becoming unstable. The
robust behavior for eNMPC will be analyzed further in future
work.
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