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ABSTRACT: Periporomechanics is a strong nonlocal framework for modeling the mechanics and physics of variably saturated 
porous media with evolving discontinuities. In this article, as a new contribution we formulate a Cosserat periporomechanics 
paradigm for modeling dynamic shear banding and crack branching in porous media incorporating a micro-structure based length 
scale. In this micro-periporomechanics framework, each material point has translational and rotational degrees of freedom fol-
lowing the Cosserat continuum. A stabilized Cosserat constitutive correspondence principle is used to incorporate classical vis-
cous elastic and plastic material models for porous media in the proposed Cosserat periporomechanics. We have numerically 
implemented the micro-periporomechanics paradigm through an explicit algorithm in time and a Lagrangian meshfree method 
in space. Numerical examples are presented to demonstrate the efficacy and robustness of the micro-periporomechanics for 
modeling shear banding and crack branching in single-phase porous media under dynamic loads.  
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1 INTRODUCTION 

Periporomechanmics is a strong nonlocal framework for 
modeling the mechanics and physics of variably satu-
rated porous media with evolving discontinuities (Song 
and Silling, 2020, Menon and Song, 2021a and b). In 
periporomechanics, it is postulated that material points 
within a finite distance called the horizon have direct 
mechanical and physical interactions. The horizon plays 
the role of a spatial length scale in the framework. How-
ever, it lacks a clear physical meaning. In this article, as 
a new contribution, we formulate a Cosserat peripo-
romechanics paradigm in which a micro-polar length 
scale is incorporated through the Cosserat continuum 
(Sulem and Vardoulakis, 1995).   

The micro-polar periporomechanics paradigm formu-
lated in this study is based on the total Lagrangian for-
mulation. The updated Lagrangian formulation of peri-
poromechanics for large deformation with and without 
discontinuities (e.g., cracks) can be found in the litera-
ture (e.g., Menon and Song, 2022b, Menon and Song, 
2023). In this micro-polar periporomechanics paradigm, 
each material point has both translational and rotational 
degrees of freedom following the Cosserat continuum. 
The governing equations consist of the balance equa-
tions of the linear momentum and moment. For model-
ing fracture propagation, the energy-based crack crite-
rion through the effective force state concept for 
unsaturated porous media (Menon and Song, 2022a) 
was reformulated by considering both the displacement 
and rotation degrees of freedom.  

In the proposed Cosserat periporomechanics, a stabi-
lized Cosserat constitutive correspondence principle is 
used to incorporate classical viscous elastic and plastic 
material models for porous media. We refer to the liter-
ature for the non-polar multiphase constitutive corre-
spondence principle and its stabilization (Song and Sil-
ling, 2020, Menon and Song, 2021a and b). A micro-
polar viscoplastic constitutive model for the solid skele-
ton is implemented to simulate the time-dependent be-
havior of geomaterials. An energy-based damage model 
is utilized to model the bond breakage. In this study, the 
meshless method in space and an explicit Newmark 
scheme in time are used to solve the governing equa-
tions. Two numerical examples are presented to demon-
strate the robustness and efficacy of the proposed Cosse-
rat periporomechanics paradigm for modeling shear 
bands and crack branching in dry porous media. Exam-
ple 1 deals with shear banding under high loading rates 
and the effect of material parameters on the shear band 
formation. Example 2 deals with the crack branching 
under high loading rates.  

2 MATHEMATICAL FORMULATION 

This section presents the governing equations of the mi-
cro-polar periporomechanics paradigm for porous me-
dia under dry conditions (e.g., single phase), which con-
sist of the balance equations of force and moment. For 
notation, the variable with no prime is associated with 
the material point 𝒙 and the variable with a prime is 
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associated with the material point 𝒙′ (Menon and Song, 
2021a, b). First, the force balance equation is written as 

    

𝜌𝑠𝒖̈ = ∫  ℋ (𝑻̅ − 𝑻̅′) 𝑑𝑉′ + 𝜌𝑠𝒈 (1) 

 
where ℋ is a neighborhood of material point 𝒙, and 𝒖̈ is 
the acceleration, 𝒈  is gravitational acceleration, 𝜌𝑠  is 
the partial density of the solid skeleton, and 𝑻̅ is the ef-

fective force state. The partial density of solid 𝜌𝑠 (Song 
and Borja, 2014, and Song et al., 2017) is written as 

 

𝜌𝑠 = 𝜙𝑠𝜌𝑠 (2) 
 

where 𝜌𝑠 is the intrinsic density of the solid skeleton and 
𝜙𝑠 is the volume fraction of the solid. Assuming an in-
compressible solid phase, 𝜙𝑠 can be written as 

 

𝜙𝑠 = 𝜙0
𝑠

𝐽
               (3) 

 
where 𝐽 = 𝑑𝑒𝑡(𝑭̅),  𝜙0

𝑠  is the initial volume fraction, 
and 𝑭̅ is the nonlocal approximate deformation gradient 
(Silling et al., 2007). 𝑭̅ is defined as 

    

𝑭̅ = [∫ 𝜔ℋ (𝒀 ⊗ 𝝃)𝑑𝑉′]𝑲̅−1          (4) 

 
where 𝜔 is the influence function,  𝑲̅−1 is the shape ten-

sor,  𝒀  is the deformation vector state, 𝝃 = 𝒙′ − 𝒙, and 

𝑥′ and 𝑥 are the spatial locations of two material points 
in the initial configuration (Song and Silling, 2020). 
Second, the moment balance equation for the micro-po-
lar periporomechanics is written as 

 

𝐼𝑠𝝎̈ = ∫ (𝑴 − 𝑴′)ℋ  𝑑𝑉′ + 1
2 ∫  ℋ 𝒀 × (𝑻 −

𝑻′) 𝑑𝑉′ + 𝒍 (5) 

 
where 𝒍 and 𝐼𝑠 denote body couple density and micro-
inertia of solid, respectively,  𝝎 is micro-rotation vector, 
𝝎̈ is angular acceleration, and 𝑴 is the moment state.  

For geomaterials, 𝐼𝑠 is the momentum of inertia for 
the solid skeleton. By considering the mean grain size in 
porous media as the micro-polar length scale 𝑙  , the mo-
ment of inertia (Sulem and Vardoulakis, 1995) can be 
written as  

 

𝐼𝑠 = 1
2
𝜋𝜙𝑠𝜌𝑠 𝑙 2 (6) 

2.1 Constitutive correspondence principle 
In this study, the periporomechanics constitutive corre-
spondence principle (Menon and Song 2021a) is aug-
mented to determine the effective force state and mo-
ment state from the effective stress and couple stress as 
 

𝑻̅ = 𝜔𝝈𝑲̅−𝟏𝝃 (7) 
 

𝑴 = 𝜔𝒎𝑲̅−𝟏𝝃 (8) 
 
where 𝝈 is the stress and 𝒎 is the couple stress, which 
are energy conjugates to the strain tensor 𝜺 and wryness 
tensor 𝜿. The non-local approximations to the strain ten-
sor 𝜺 and wryness tensor 𝜿 can be written as   

 

𝜺 = [∫ 𝜔𝓗 (𝑼𝜴̃ ⊗ 𝝃)𝑑𝑉′] 𝑲̅−1 (9) 

     

𝜿 = [∫ 𝜔ℋ (𝜴 ⊗ 𝝃)𝑑𝑉′]𝑲̅−1 (10) 

 
where 𝑼𝜴̃  and 𝜴  are composite and relative rotation 

states, which are written as 
 

𝑼𝜴̃ = (𝒖′ − 𝒖) + 1
2
(𝝎′ + 𝝎) × (𝒙′ − 𝒙)  

                                                               (11) 
 
𝜴 = 𝝎′ − 𝝎 (12) 

2.2 Micro-polar constitutive models 
In this part, we first introduce the classical micro-pola 
visco-plasticity model cast in the classical Cosserat 
continuum framework. Then, we present a micro-polar 
damage model with an energy criterion incorporating 
translational and micro-rotation deformation energy. 

2.2.1  Micro-polar viscoplastic constitutive model 

The strain tensor 𝜺 and the wryness tensor 𝜿 are addi-
tively decomposed into elastic and viscoplastic parts as 
 

𝜺 = 𝜺𝒆 + 𝜺𝒗𝒑 (13) 
 
𝜿 = 𝜿𝒆 + 𝜿𝒗𝒑 (14) 

 
where 𝜺𝒆 and 𝜺𝒗𝒑 are the elastic and viscoplastic strain 
tensors, respectively, and 𝜿𝒆 and 𝜿𝒗𝒑 are the elastic and 
viscoplastic wryness tensors, respecteively. The stress 𝛔 
and the couple stress 𝒎 are written as 

𝝈 = 𝜆𝑡𝑟(𝜺𝒆)1 + (𝜇 + 𝜇𝑐)𝜺𝒆 + (𝜇 − 𝜇𝑐)𝜺𝑒𝑇
  

                                                               (15) 
 

𝒎 = 𝛼1𝑡𝑟(𝜿𝒆)1 + 𝛼2𝜿𝒆 + 𝛼3𝜿𝑒𝑇
 (16) 

where 𝜆 , 𝜇 , 𝜇𝑐 , 𝛼1 , 𝛼2  and 𝛼3 are material 
parameters. In three dimensions, the stress and the cou-
ple stress can be written in a vector form as 
 

𝛔̃ = {𝛔𝟏𝟏, 𝛔𝟐𝟐, 𝛔𝟑𝟑, 𝛔𝟏𝟐, 𝛔𝟐𝟏, 𝛔𝟏𝟑, 𝛔𝟑𝟏, 𝛔𝟐𝟑, 𝛔𝟑𝟐}𝐓 
 (17) 
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𝒎̃ = {𝒎𝟏𝟏/𝑙 ,𝒎𝟐𝟐/𝑙 ,𝒎𝟑𝟑/𝑙 ,𝒎𝟏𝟐/𝑙 ,𝒎𝟐𝟏/
𝑙 ,𝒎𝟏𝟑/𝑙 ,𝒎𝟑𝟏/𝑙 ,𝒎𝟐𝟑/𝑙 ,𝒎𝟑𝟐/𝑙 }   𝑇  (18) 
 

In this study, we adopt the generalized Drucker-
Prager yield function which is written as 
 

𝒇 = 𝑞 + √3𝐴𝜙𝑝 + 𝐵 (19) 
 
where 𝑞  is the deviatoric stress and 𝑝 is the effective 
mean stress, which are defined as 
   

𝑞 = √1
2
(𝛔̃𝑇ℙ̃ 𝛔̃ + 𝒎̃𝑇ℙ̃ ̃𝒎̃) (20) 

 

 𝑝 = 𝛔𝟏̃+𝛔𝟐̃+𝛔𝟑̃
3

 (21) 

   
In (20) 

 

ℙ ̃ = [ℙ̃ 
𝐼 0

0 ℙ̃ 
𝐼𝐼]             (22) 

 
 

ℙ̃ 
𝐼 = [

2 −1 −1
−1 2 −1
−1 −1 2

]           (23) 

 

ℙ̃ 
𝐼𝐼 =

[
 
 
 
 
3/2 3/2     
3/2 3/2     

 
   
 

 
  
 

3/2
3/2 
 

3/2
3/2 
 

 
 

3/2
3/2

 
 

3/2
3/2]

 
 
 
 

(24) 

 
 and 
 

ℙ̃ ̃ = 3𝐼9×9 (25) 
 

The variables 𝐴ϕand 𝐵 in (19) are defined as 

 

𝐴𝜙 = 2𝑠𝑖𝑛 𝜙
√3(3−𝑠𝑖𝑛 𝜙)

 (26) 

 

𝐵 = −6𝑐 𝑐𝑜𝑠 𝜙
√3(3−cos𝜙)

 (27) 

where 𝜙 is the frictional angle and 𝑐 is the cohesion. In 
this study, a linear hardening law is adopted, which is 
defined as 
    

𝑐 = 𝑐0 + ℎε̅  (28) 
       
where ℎ is the linear hardening modulus and ε̅  is the in-
ternal hardening variable. For the non-associative plas-
ticity, the plastic potential is written as 
 

𝑔 = 𝑞 + √3𝐴𝜓𝑝 + 𝐵 (29) 

 

𝐴𝜓 = 2𝑠𝑖𝑛 𝜓
√3(3−𝑠𝑖𝑛𝜓)

 (30) 

 
where 𝜓 is the dilatancy angle. The viscoplastic strain 
and wryness tensors can be defined as 
 

𝜺𝒗𝒑 = 〈𝑓〉
𝜂′

𝜕𝑔
𝜕𝝈

 (31) 

 

𝜿𝒗𝒑 = 〈𝑓〉
𝜂′

𝜕𝑔
𝜕𝒎

 (32) 

 
where 𝜂′ is the viscosity and the angle bracket is the 
Macaulay bracket. The plastic internal variable is 
defined as 

 

𝜀 ̅ = 〈𝑓〉
𝜂′

(1 + 𝑠𝑖𝑔𝑛(𝑝) 𝐴𝜓

√3
) (33)  

2.2.2 Damage model 

For the Cosserat periporomechanics paradigm, the bond 
breakage between material points is modeled through an 
energy criterion that accounts for translational displace-
ment and micro-rotation. The effective force state and 
the moment state, which are the energy conjugates to the 
composite state and the relative rotation state, are used 
to determine the deformation energy. In this case, the 
energy density in the bond 𝝃 reads 
     

𝑤𝝃 = ∫ (𝑻̅ − 𝑻̅′)𝜼̇
t

0
𝑑𝑡 + ∫ (𝑴 − 𝑴′)𝜽̇

t

0
𝑑𝑡 

                                                               (34) 
     
where 𝜼 = (𝒖′ − 𝒖) + 0.5(𝝎′ + 𝝎) × (𝒙′ − 𝒙)  and 
𝜽 = 𝝎′ − 𝝎 and 𝑡 is the total loading time. The bond 
breakage is tracked through the influence function at 
material points. The influence function is written as 

 

𝜔 = {
1                𝑖𝑓   𝑤𝜉 < 𝑤𝑐𝑟
0                𝑖𝑓   𝑤𝜉 ≥ 𝑤𝑐𝑟

 (35) 

 
where 𝑤𝑐𝑟 is the critical bond energy. The bond-break-
age criterion depends on the deformation energy stored 
in a bond. Based on this criterion, the energy density 
stored in a bond, 𝑤𝝃, is recoverable until it exceeds a 

critical value, 𝑤𝑐𝑟. Finally, a local damage variable at 
each material point, which is used for tracking crack 
propagation, can be defined as 

 

𝐷 = 1 − ∫ 𝜔 
ℋ  𝑑𝑉′

∫ 𝑑𝑉′ 
ℋ

 (36) 
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2.3 Numerical implementation 
We have implemented the proposed Cosserat peripo-
romechanics paradigm through a Lagrangian meshfree 
method in space and an explicit Newmark scheme in 
time. In this method, a porous material body is discre-
tized into a finite number of uniform material points. 
Each material point is endowed with two types of de-
grees of freedom, i.e., translational displacement and 
micro-rotation. The boundary conditions are applied to 
the boundary layers (Menon and Song, 2022b). For 
more details on the numerical implementation, we refer 
to the literature (Menon and Song, 2022b and 2023). 

3 NUMERICAL EXAMPLES  

3.1 Dynamic shear banding 
This example deals with dynamic shear banding. Fig-

ure 1 plots the model set up for this example. The spec-
imen’s length, width, and thickness are 200 mm, 100 
mm, and 10 mm, respectively. A vertical displacement 
of 𝑢𝑦 = 4.5 mm is applied on the top and bottom bound-

aries with a rate of 𝑢̇  𝑦
 = 0.05 m/s. The constant lateral 

confining pressure of  𝜎0 = 0.1 MPa is applied on the 
left and right boundaries. The material parameters 
adopted are density 𝜌𝑠 = 2000 kg/m 3, 𝜆 = 13.9 MPa,  

𝜇 = 20.8 MPa, 𝜇𝑐 = 2𝜇, 𝛼3 =83.3 kN, 𝛼1 = 𝛼2 = 0, 
initial volume fraction 𝜙0

𝑠 =0.65, the micro-polar length 
scale 𝑙 = 2 mm, 𝑐0 = 0.35 MPa, ℎ = -1 MPa, and 𝜂 = 
0.01 MPa.s. The specimen is discretized into 40 × 80 
material points with a uniform grid Δ𝑥 = 2.5 mm and 
the horizon δ = 2.05 Δ𝑥. The total simulation time 𝑡 =
 0.1 s with Δ𝑡 = 7 μs. 

 

 
Figure 1. Schematic of the model setup for example 1  

We present the results from the simulations assuming 
three frictional angles, i.e., 𝜙 = 25°,35°, and 45°, and 
the same dilatation angle 𝜓 = 15∘. Figure 2 plots the 
loading curves from the three simulations. The results in 
Figure 2 show that the friction angle affects the peak 
loads and the post-localization stage. Figure 3 plots the 
contours of the equivalent plastic shear strain 
superimposed on the deformed configurations for the 

three simulations. The results show that the two 
conjugate shear bands have formed in the three 
simulations. The inclination anlge of shear bands are 
similar for the three simulations, although the friction 
angles are different. Figure 4 plots the contours of the 
micro-rotation on the deformed configuration. The 
results show that the micro rotation of material points is 
localized around the shear band, as shown in the 
experimental testing results (Sulem and Vardoulakis, 
1995).  

 
Figure 2. Loading curves from the simulations with  𝜙 =
25°, 35° and 45°  

 
Figure 3. Contours of the equivalent plastic shear strain from 
the simulations: (a) 𝜙1 = 25° ,  (b)𝜙2 = 35° , and (c) 𝜙3 =
45°  
 

 
Figure 4. Contours of the micro rotation (rad) from the simu-
lations: (a) 𝜙1 = 25°  , (b) 𝜙2 = 35°, and (c) 𝜙3 = 45° 

Next, we present the simulations with three dilatation 
angles, i.e., 𝜓 = 0°,15° and 30°, and 𝜙 = 35∘. Figure 5 
plots the loading curves from the three simulations, 
which show that the dilatation angle only slightly affects 
loading curves. Figure 6 plots the contours of the equiv-
alent plastic shear strain (the shear band angle shown in 
the bracket). The results show that the dilation angle af-
fects the inclination angle of shear bands. Figure 7 plots 
the contours of micro rotations of material points. The 
results are consistent with the simulations assuming dif-
ferent friction angles, as shown in Figure 4. 
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Figure 5. Loading curves from the simulations with  𝜓 =
0°, 15° and 30°, respectively 

 
Figure 6. Contours of the equivalent plastic shear strain from 
the simulations: (a) 𝜓1 = 0°(41.3°), (b)  𝜓2 = 15° (48.9°) , 
and (c)  𝜓3 = 30°(56.4°).  

 
Figure 7. Contours of the micro rotation (rad) from the simu-
lations: (a)  𝜓1 = 0° , (b)  𝜓2 = 15° , and (c)  𝜓3 = 30° 

3.2 Crack branching under high strain rates 
This example deals with the crack branching in a linear 
elastic porous media. Figure 8 plots the dimensions of 
the specimen with an initial crack and the loading con-
ditions. The stress applied on the top and bottom bound-
aries is defined as 
 

𝜎y = {
𝜎𝑦𝑚𝑎𝑥𝑡

𝑡0
            if   𝑡 <  𝑡0

𝜎𝑦𝑚𝑎𝑥             if   𝑡 ≥ 𝑡0
 (37) 

 
where 𝑡0 = 6.25 𝜇s and σ𝑦𝑚𝑎𝑥= 8 MPa. A stable time 

step Δ𝑡 = 0.025 𝜇s is chosen. The specimen is discre-
tized into 200×80 material points with a uniform grid 
(Δ𝑥 = 0.5 mm). The horizon δ = 4.05Δ𝑥. The material 
parameters for this example are density ρ𝑠 = 2650 
kg/m 3, initial volume fraction 𝜙0 =0.95, 𝜆 = 14 × 103 

MPa, 𝜇 = 14 × 103  MPa, 𝜇𝑐 = 𝜇/3 , 𝛼3 = 56× 103 
kN, 𝛼1 = 𝛼2 = 0, the micro-polar length scale 𝑙 = 2 
mm, and the critical energy release rate 𝐺𝑐𝑟 = 160 N/m 
for the energy-based bond breakage criterion. 

 

 
Figure 8. Schematic of the model setup for example 2 

Figure 9 plots the loading curve versus the time on 
which four points are chosen to present the following 
results. Figure 10 plots the crack growth and branching 
on the deformed configuration. The crack path in Figure 
10 is in red (damaged variable greater than 0.35). The 
results show that the crack grows at point 1, and the 
branching begins at point 2. 

 
Figure 9. Loading curve for example 2 

 
Figures 10. Crack growth and branching at  t = (a) 12.75 μs, 
(b) 29.75 μs, (c) 42.5 μs, and (d) 55.5 μs 

Next, we present the simulations with three loading 
rates to demonstrate the loading rate effect on crack 
growth and branching. The different loading rates are 
realized by assuming 𝑡0 = 2.5 𝜇s, 6.25 𝜇s, and 12.5 𝜇s, 
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respectively. The material parameters remain the same, 

except that 𝜙0 = 0.85. Table 1 summarizes the timing 
of the crack growth and branching. The results show that 
decreasing the loading rate delays the timing of crack 
growth and branching. Figure 11 plots the contours of 
the damage variable at 𝑡 = 45 μs. Figure 12 plots the 
contours of the micro rotation at 𝑡 = 37.5 μs. The re-
sults show that loading rates can significantly affect 
crack branching and micro-rotation. 

Table 1. Summary of the timing of cracking process 

𝒕𝟎(𝝁𝒔) Start(𝝁𝒔) Branching(𝝁𝒔) End (𝝁𝒔) 

2.5 7.5 23.75 47.5 

6.25 9.75 25.5 50 

12.5 12.75 28.75 52.5 

 

 
Figure 12. Contours of the damage variable at 𝑡 = 45 𝜇s 
from the simulations: (a) 𝑡0,1

 = 12.5 𝜇𝑠, (b) 𝑡0,2
 = 6.25 𝜇𝑠, 

and (c) 𝑡0,3
 = 2.5 𝜇𝑠 

 
Figure 13. Contours of the micro rotation (0.001 rad) at 𝑡 =
37.5 𝜇𝑠 from the simulations: (a) 𝑡0,1

 = 12.5 𝜇𝑠, (b) 𝑡0,2
 =

6.25 𝜇𝑠, and (c) 𝑡0,3
 = 2.5 𝜇𝑠 

 

4 CONCLUSIONS 

We have reformulated the periporomechanics through 
the Cosserat continuum for modeling shear banding and 
crack branching in porous media. The governing equa-
tions consist of the balance equations of linear momen-
tum and moment. The Cosserat constitutive 

correspondence principle is used to incorporate the clas-
sical micro-polar elastoplastic constitutive model into 
the proposed framework. The damage and cracking are 
modeled through an energy-based bond breakage crite-
rion. Numerical examples are presented to show the ro-
bustness of the Cosserat periporomechanics paradigm 
for modeling shear banding and crack branching in po-
rous media under dynamic loads (e.g., high loading 
rates). 
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