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ABSTRACT: Periporomechanics is a strong nonlocal framework for modeling the mechanics and physics of variably saturated
porous media with evolving discontinuities. In this article, as a new contribution we formulate a Cosserat periporomechanics
paradigm for modeling dynamic shear banding and crack branching in porous media incorporating a micro-structure based length
scale. In this micro-periporomechanics framework, each material point has translational and rotational degrees of freedom fol-
lowing the Cosserat continuum. A stabilized Cosserat constitutive correspondence principle is used to incorporate classical vis-
cous elastic and plastic material models for porous media in the proposed Cosserat periporomechanics. We have numerically
implemented the micro-periporomechanics paradigm through an explicit algorithm in time and a Lagrangian meshfree method
in space. Numerical examples are presented to demonstrate the efficacy and robustness of the micro-periporomechanics for

modeling shear banding and crack branching in single-phase porous media under dynamic loads.
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1 INTRODUCTION

Periporomechanmics is a strong nonlocal framework for
modeling the mechanics and physics of variably satu-
rated porous media with evolving discontinuities (Song
and Silling, 2020, Menon and Song, 2021a and b). In
periporomechanics, it is postulated that material points
within a finite distance called the horizon have direct
mechanical and physical interactions. The horizon plays
the role of a spatial length scale in the framework. How-
ever, it lacks a clear physical meaning. In this article, as
a new contribution, we formulate a Cosserat peripo-
romechanics paradigm in which a micro-polar length
scale is incorporated through the Cosserat continuum
(Sulem and Vardoulakis, 1995).

The micro-polar periporomechanics paradigm formu-
lated in this study is based on the total Lagrangian for-
mulation. The updated Lagrangian formulation of peri-
poromechanics for large deformation with and without
discontinuities (e.g., cracks) can be found in the litera-
ture (e.g., Menon and Song, 2022b, Menon and Song,
2023). In this micro-polar periporomechanics paradigm,
each material point has both translational and rotational
degrees of freedom following the Cosserat continuum.
The governing equations consist of the balance equa-
tions of the linear momentum and moment. For model-
ing fracture propagation, the energy-based crack crite-
rion through the effective force state concept for
unsaturated porous media (Menon and Song, 2022a)
was reformulated by considering both the displacement
and rotation degrees of freedom.

In the proposed Cosserat periporomechanics, a stabi-
lized Cosserat constitutive correspondence principle is
used to incorporate classical viscous elastic and plastic
material models for porous media. We refer to the liter-
ature for the non-polar multiphase constitutive corre-
spondence principle and its stabilization (Song and Sil-
ling, 2020, Menon and Song, 2021a and b). A micro-
polar viscoplastic constitutive model for the solid skele-
ton is implemented to simulate the time-dependent be-
havior of geomaterials. An energy-based damage model
is utilized to model the bond breakage. In this study, the
meshless method in space and an explicit Newmark
scheme in time are used to solve the governing equa-
tions. Two numerical examples are presented to demon-
strate the robustness and efficacy of the proposed Cosse-
rat periporomechanics paradigm for modeling shear
bands and crack branching in dry porous media. Exam-
ple 1 deals with shear banding under high loading rates
and the effect of material parameters on the shear band
formation. Example 2 deals with the crack branching
under high loading rates.

2 MATHEMATICAL FORMULATION

This section presents the governing equations of the mi-
cro-polar periporomechanics paradigm for porous me-
dia under dry conditions (e.g., single phase), which con-
sist of the balance equations of force and moment. For
notation, the variable with no prime is associated with
the material point x and the variable with a prime is
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associated with the material point x’ (Menon and Song,
2021a, b). First, the force balance equation is written as

pii= [, (T-T)dV'+p°g (1)

where H is a neighborhood of material point x, and it is
the acceleration, g is gravitational acceleration, p° is
the partial density of the solid skeleton, and T is the ef-
fective force state. The partial density of solid p* (Song
and Borja, 2014, and Song et al., 2017) is written as

p° = ¢°ps (2)

where py is the intrinsic density of the solid skeleton and
¢S is the volume fraction of the solid. Assuming an in-
compressible solid phase, ¢° can be written as

¢ =2 3)

where | = det(F), ¢35 is the initial volume fraction,
and F is the nonlocal approximate deformation gradient
(Silling et al., 2007). F is defined as

F=[f,0¥®§dv]K™" )

where w is the influence function, K~1 is the shape ten-
sor, Y is the deformation vector state, § = x’' — x, and
x" and x are the spatial locations of two material points
in the initial configuration (Song and Silling, 2020).
Second, the moment balance equation for the micro-po-
lar periporomechanics is written as

Pa=[,(M-M)dv' +-f ¥x(T-
T)dv' +1 (5)

where I and I° denote body couple density and micro-
inertia of solid, respectively, @ is micro-rotation vector,
@ is angular acceleration, and M is the moment state.

For geomaterials, I is the momentum of inertia for
the solid skeleton. By considering the mean grain size in
porous media as the micro-polar length scale [, the mo-
ment of inertia (Sulem and Vardoulakis, 1995) can be
written as

IS = Zmepsps 12 (6)

2.1 Constitutive correspondence principle

In this study, the periporomechanics constitutive corre-
spondence principle (Menon and Song 2021a) is aug-
mented to determine the effective force state and mo-
ment state from the effective stress and couple stress as

T = woK 1§ (7)
M = womK1§ (8)

where o is the stress and m is the couple stress, which
are energy conjugates to the strain tensor € and wryness
tensor k. The non-local approximations to the strain ten-
sor € and wryness tensor k can be written as

e=|f,0(Us®¢)av|R" ©)

k=[f,0(@®¢§)av']K? (10)
where Ug and £ are composite and relative rotation
states, which are written as

ng(u’—u)+%(w’+w)x(x’—x)

(11)

D=w-w (12)

2.2 Micro-polar constitutive models

In this part, we first introduce the classical micro-pola
visco-plasticity model cast in the classical Cosserat
continuum framework. Then, we present a micro-polar
damage model with an energy criterion incorporating
translational and micro-rotation deformation energy.

2.2.1 Micro-polar viscoplastic constitutive model

The strain tensor € and the wryness tensor k are addi-
tively decomposed into elastic and viscoplastic parts as

g =g+ &P (13)

K = K° + K"P (14)

where £° and €"P are the elastic and viscoplastic strain
tensors, respectively, and k¢ and kP are the elastic and
viscoplastic wryness tensors, respecteively. The stress ¢
and the couple stress m are written as
T
o =Atr(e)1+ (u+u)e® + (u—p)es
(15)

m = atr(k€)1 + a,k€ + 0(3KeT (16)
where A, u, K, A1, Q and a3 are material

parameters. In three dimensions, the stress and the cou-
ple stress can be written in a vector form as

~ _ T
6 = {011, 022,033,012,021,013, 031, 023, 032}
(17)
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m = {mqy/l,my;/l,m33/l,mq3/l,myy/
l,my3/l,m31/l,my3/l, m3, /13" (18)

In this study, we adopt the generalized Drucker-
Prager yield function which is written as

f=q+V34yp+B (19)

where q is the deviatoric stress and p is the effective
mean stress, which are defined as

q =\/§(6T1’ﬁa+ﬁﬂf§ﬁz) (20)
p = T @1
In (20)
— [P o
p - [0 @,,] 22)
12 -1 -1
Pr=|-1 2 —1] (23)
-1 -1 2
3/2 3/2
3/2 3/2
P = 3/2 3/2 (24)
3/2 3/2 372 3,2
3/2 3/2
and
P = 3loyo (25)

The variables Agand B in (19) are defined as

2sin¢

Ap = V3(3-sin ¢) (26)
__ —6ccosd
T V3(3-cos¢) 27)

where ¢ is the frictional angle and c is the cohesion. In
this study, a linear hardening law is adopted, which is
defined as

c=cy+ he (28)
where h is the linear hardening modulus and € is the in-
ternal hardening variable. For the non-associative plas-
ticity, the plastic potential is written as

g=q+V34,p+B (29)

_ 2siny
Al/’ T V3(3-siny) (30)
where 1 is the dilatancy angle. The viscoplastic strain
and wryness tensors can be defined as

(f)dg

vp — Y1209
£ " 90 3D

(f) ag

vp — Y1 %9
K o om (32)

where 1’ is the viscosity and the angle bracket is the
Macaulay bracket. The plastic internal variable is
defined as

- _

. A
&= (+sign(p) ) (33)

2.2.2 Damage model

For the Cosserat periporomechanics paradigm, the bond
breakage between material points is modeled through an
energy criterion that accounts for translational displace-
ment and micro-rotation. The effective force state and
the moment state, which are the energy conjugates to the
composite state and the relative rotation state, are used
to determine the deformation energy. In this case, the
energy density in the bond § reads

t t
Z =L(T—f')'7dt+fo(M—M’)9dt
(34)

where =W —u) + 0.5(w + w) X (x' —x) and
0 = ' — w and t is the total loading time. The bond
breakage is tracked through the influence function at
material points. The influence function is written as

{1 if wg<wg

0 if we=wg, (35)

w =

where w,, is the critical bond energy. The bond-break-
age criterion depends on the deformation energy stored
in a bond. Based on this criterion, the energy density
stored in a bond, Wg, 1s recoverable until it exceeds a
critical value, w,. Finally, a local damage variable at
each material point, which is used for tracking crack
propagation, can be defined as

Jypw av’

D=1-220

(36)
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2.3 Numerical implementation

We have implemented the proposed Cosserat peripo-
romechanics paradigm through a Lagrangian meshfree
method in space and an explicit Newmark scheme in
time. In this method, a porous material body is discre-
tized into a finite number of uniform material points.
Each material point is endowed with two types of de-
grees of freedom, i.e., translational displacement and
micro-rotation. The boundary conditions are applied to
the boundary layers (Menon and Song, 2022b). For
more details on the numerical implementation, we refer
to the literature (Menon and Song, 2022b and 2023).

3 NUMERICAL EXAMPLES

3.1 Dynamic shear banding

This example deals with dynamic shear banding. Fig-
ure 1 plots the model set up for this example. The spec-
imen’s length, width, and thickness are 200 mm, 100
mm, and 10 mm, respectively. A vertical displacement
of u,, = 4.5 mm s applied on the top and bottom bound-
aries with a rate of u,, = 0.05 m/s. The constant lateral
confining pressure of g, = (0.1 MPa is applied on the
left and right boundaries. The material parameters
adopted are density p$ = 2000 kg/m 3, 1 = 13.9 MPa,
u =20.8 MPa, . = 2u, a3 =83.3 kN, a; = a, =0,
initial volume fraction ¢§ =0.65, the micro-polar length
scalel =2 mm, ¢y =0.35 MPa, h =-1 MPa, andn =
0.01 MPa.s. The specimen is discretized into 40 X 80
material points with a uniform grid Ax = 2.5 mm and
the horizon § = 2.05 Ax. The total simulation time t =
0.1 s with At =7 ps.

Uy
¥ v ¥y ovoyy

y L L L
[

X
Figure 1. Schematic of the model setup for example 1

We present the results from the simulations assuming
three frictional angles, i.e., ¢ = 25°,35°, and 45°, and
the same dilatation angle 1) = 15°. Figure 2 plots the
loading curves from the three simulations. The results in
Figure 2 show that the friction angle affects the peak
loads and the post-localization stage. Figure 3 plots the
contours of the equivalent plastic shear strain
superimposed on the deformed configurations for the

three simulations. The results show that the two
conjugate shear bands have formed in the three
simulations. The inclination anlge of shear bands are
similar for the three simulations, although the friction
angles are different. Figure 4 plots the contours of the
micro-rotation on the deformed configuration. The
results show that the micro rotation of material points is
localized around the shear band, as shown in the
experimental testing results (Sulem and Vardoulakis,
1995).
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Figure 2. Loading curves from the simulations with ¢ =
25° 35° and 45°
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Figure 3. Contours of the eqmvalentplastlc shear strain from
the simulations: (a) ¢, = 25°, (b)¢p, = 35°, and (c) p5 =

N7 N/ \/!05

NN /\I"”
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Figure 4. Contours of the micro rotation (rad) from the simu-

lations: (a) ¢, = 25° , (b) ¢p, = 35°, and (c) p3 = 45°

Next, we present the simulations with three dilatation
angles, i.e., 3 = 0°,15° and 30°, and ¢ = 35°. Figure 5
plots the loading curves from the three simulations,
which show that the dilatation angle only slightly affects
loading curves. Figure 6 plots the contours of the equiv-
alent plastic shear strain (the shear band angle shown in
the bracket). The results show that the dilation angle af-
fects the inclination angle of shear bands. Figure 7 plots
the contours of micro rotations of material points. The
results are consistent with the simulations assuming dif-
ferent friction angles, as shown in Figure 4.
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Figure 5. Loading curves from the simulations with 1 =

0°, 15° and 30°, respectively
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Figure 6. Contours of the equivalent plastic shear strain from

(a) (b)
the simulations: (a)y,; = 0°(41.3°), (b) Y, = 15° (48.9°),
and (c¢) P; = 30°(56.4°).
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Figure 7. Contours of the micro rotation (rad) from the simu-
lations: (a) P, = 0°, (b) Y, = 15°, and (c) Y5 = 30°

3.2 Crack branching under high strain rates

This example deals with the crack branching in a linear
elastic porous media. Figure 8 plots the dimensions of
the specimen with an initial crack and the loading con-
ditions. The stress applied on the top and bottom bound-
aries is defined as

t .
Iymax® if t<tg
o, =4 to . (37)
UJ’max if t= tO

where ty = 6.25 us and 0, = 8 MPa. A stable time

step At = 0.025 us is chosen. The specimen is discre-
tized into 200x80 material points with a uniform grid
(Ax = 0.5 mm). The horizon § = 4.05Ax. The material
parameters for this example are density p® = 2650
kg/m 3, initial volume fraction ¢, =0.95, 1 = 14 x 103
MPa, u = 14 x 103 MPa, u, = u/3, a3 =56 x 103
kN, a; = a, = 0, the micro-polar length scale [ =2
mm, and the critical energy release rate G = 160 N/m
for the energy-based bond breakage criterion.
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Figure 8. Schematic of the model setup for example 2

Figure 9 plots the loading curve versus the time on
which four points are chosen to present the following
results. Figure 10 plots the crack growth and branching
on the deformed configuration. The crack path in Figure
10 is in red (damaged variable greater than 0.35). The
results show that the crack grows at point 1, and the
branching begins at point 2.

Pressure (MPa)

o [S° I P N w

0 20 40 60
Time (p25)

Figure 9. Loading curve for example 2

(b)

(d)
Figures 10. Crack growth and branching at t = (a) 12.75 s,
(b) 29.75 ps, (c) 42.5 ps, and (d) 55.5 ps

Next, we present the simulations with three loading
rates to demonstrate the loading rate effect on crack
growth and branching. The different loading rates are
realized by assuming t, = 2.5 us, 6.25 us, and 12.5 us,
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respectively. The material parameters remain the same,
except that ¢, = 0.85. Table 1 summarizes the timing
of the crack growth and branching. The results show that
decreasing the loading rate delays the timing of crack
growth and branching. Figure 11 plots the contours of
the damage variable at t = 45 ps. Figure 12 plots the
contours of the micro rotation at t = 37.5 ps. The re-
sults show that loading rates can significantly affect
crack branching and micro-rotation.

Table 1. Summary of the timing of cracking process

to(us) Start(us) Branching(us) End (us)
2.5 7.5 23.75 47.5
6.25 9.75 25.5 50
12.5 12.75 28.75 52.5

0

Figure 12. Contours of the damage variable att = 45 us
from the simulations: (a) ty, = 12.5 us, (b) ty, = 6.25 us,
and (c) ty3 = 2.5 us
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Figure 13. Contours of the micro rotation (0.001 rad) at t =
37.5 us from the simulations: (a) ty; = 12.5 us, (b) ty, =

6.25 s, and (c) to3 = 2.5 us

4

4 CONCLUSIONS

We have reformulated the periporomechanics through
the Cosserat continuum for modeling shear banding and
crack branching in porous media. The governing equa-
tions consist of the balance equations of linear momen-
tum and moment. The Cosserat constitutive

correspondence principle is used to incorporate the clas-
sical micro-polar elastoplastic constitutive model into
the proposed framework. The damage and cracking are
modeled through an energy-based bond breakage crite-
rion. Numerical examples are presented to show the ro-
bustness of the Cosserat periporomechanics paradigm
for modeling shear banding and crack branching in po-
rous media under dynamic loads (e.g., high loading
rates).
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