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1 Introduction

The purpose of this paper is to generalize the results obtained by the authors in [10],
where the rigorous analysis of the homogenization of a particulate flow consisting
of a non-dilute suspension of a viscous Newtonian fluid with magnetizable particles
was developed. Here, the fluid is assumed to be described by the Stokes flow
and the particles are either paramagnetic or diamagnetic. The coefficients of the
corresponding partial differential equations are locally periodic and a one-way
coupling between the fluid domain and the particles is also assumed. Such one-
way coupling has been observed in nature, see [11, Chapter 1]. For details and
information about the applications and literature on the magnetic suspension, we
turn to [10] and the references cited therein; however, the mathematical formulation
of the considered problem is given in Sect. 2.2 below. References on the effective
viscosity of a suspension without the coupling with magnetic field include [5, 6, 12—
16, 18, 21, 23, 25, 31, 33].

In [10], a restrictive assumption about the magnetic permeability of the suspen-
sion, denoted by a, was made. Here, the function a(-) is locally periodic and elliptic,
where the latter means that AI < a(x) and ||a||,~ < A, for all x € €, with the
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suspension domain 2 C R, d = 2,3, including both the ambient fluid and the
particles, and A, A > 0 given in (A2)—(A3) below. The assumption on the function
a made in [10] is as follows: for a given s € (4, 6], there exists a small number
8 =8(A,d, Q) > 0, for which the magnetic permeability a satisfies the following
condition:

esssupa — essinfa < §. (D)

As a consequence of (1), in [10] we obtained the following gradient estimate for the
magnetic potential ¢°:

/ |Vt |" dx < c/ Ik|® dx, )
Q Q

where the constant C > 0 is independent of ¢, ¢° and k; with 0 < ¢ < 1 the scale
of the microstructure, k € H'(Q, R?) divergence-free, satisfying the compatibility

condition / k- nyq ds = 0, and appearing in the Neumann boundary condition on

aQ
02, the boundary of the domain €2, given by:
(aVe®) -mpg = k- myq, 3)

where nyq is the outward-pointing unit normal vector to 9€2. The regularity
result (2) was then used in the derivation of the effective (or homogenized) response
of the given suspension that was rigorously justified in [10].

The main goal of this paper is to relax the assumption (1) on the magnetic
permeability a. To achieve this, we consider the Dirichlet boundary condition given
in (4b) below, rather than one given in (3), and obtain the Lipschitz estimate (5),
instead of (2), for the gradient of the magnetic potential ¢*, see Theorem 1 below.
In this paper, we are able to remove the condition (1) and have a only required to
be piecewise Holder continuous. Such relaxation will be based on the following
observations:

* The De Giorgi-Nash-Moser estimate [20, Theorem 8.24] states that the solutions
of scalar equations are Holder continuous.

e If1 > & > g, for some g9 > 0, the uniform gradient bound (5) can be obtained
by the result of Li and Vogelius [29]. The case when &g > & > 0 is resolved by
the compactness method, which is discussed below.

* Provided a is also symmetric (this assumption is only necessary for the corrector
results in Theorem 2), the gradients of the solutions of the cell problems are in
L*°(Y).

The main tools used in the proof of this theorem are (i) the regularity results
of Li and Vogelius [29], and (ii) the celebrated compactness method, which was
first used in homogenization in the seminal works of Avellaneda and Lin [3, 4]. Its
machinery and applications in homogenization are carefully explained in [34]. In
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the context of homogenization, this method utilizes compactness in order to gain
an improved regularity from a limiting equation via a proof by contradiction. This
improvement of regularity is iterated and then used in a blow-up argument. Usually,
the implementation of this method follows three steps, coined by Avellaneda and
Lin [3, 4] as (i) “improvement,” (ii) “iteration,” and (iii) “blowup.”

The main contribution of this improved regularity result is that it will allow us to
significantly widen the range of applicability of the results obtained in [10].

The outline of the paper is as follows. In Sect. 2, the main notations are
introduced and the formulation of the fine-scale problem is discussed. Theorem 1,
which provides an improved gradient estimate for the magnetic potential, is stated
and discussed in Sect. 3. In Sect. 4, we obtain the interior Lipschitz and Holder
estimates, which provide the foundation for the boundary and corrector estimates
discussed in Sect. 5. With all the results at hand, we then present the proof of our
main theorem, also in Sect. 5. In Sect. 6, the homogenization results are obtained
and summarized in Theorem 2. The conclusions are given in Sect. 7. The classical
Schauder estimate is recalled in Appendix.

2 Formulation

2.1 Notation

For a measurable set A and a measurable function f: A — R, we define by |A| the
measure of A and][ f(x)dx = |A| / f(x)dx.

Throughout this paper, the scalar-valued functions, such as the pressure p, are
written in usual typefaces, while vector-valued or tensor-valued functions, such
as the velocity u and the Cauchy stress tensor o, are written in bold. Sequences
are indexed by numeric superscripts (¢'), while elements of vectors or tensors are
indexed by numeric subscripts (x;). Finally, the Einstein summation convention is
used whenever applicable.

2.2 Setup of the Problem

Consider 2 C Rd, for d > 2, a simply connected and bounded domain of class
C'" 0 <a < I,and let Y := (0, 1) be the unit cell in R?. The unit cell Y is
decomposed into:

Y =Y,UY;UT,

where Y, representing the magnetic inclusion, and Y, representing the fluid
domain, are open sets in R?, and T is the closed C1¥ interface that separates them.
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Leti = (i1,...,iq) € Z¢ be a vector of indices and {e', ..., e?} be the canonical
basis of RY. For a fixed small & > 0, we define the dilated sets:

Y= oY +i), Y =e(Ys+i), Yi,=e(Yy+i), I =0

Typically, in homogenization theory, the positive number ¢ < 1 is referred to as
the size of the microstructure. The effective (or homogenized) response of the given
suspension corresponds to the case ¢ = 0.

We denote by n;, nr, and nyq the unit normal vectors to Ff pointing outward
st, to I pointing outward Y, and to <2 pointing outward, respectively; and also,
we denote by dH4! the (d — 1)-dimensional Hausdorff measure. In addition, we
define the sets:

IF=fiezh: vy cQl Q=] @ =a\Q. rf=|[Jr
iel® iel®
see Fig. 1.

The magnetic permeability a is a d x d matrix satisfying the following condi-
tions:

(A1) Y-periodicity: for all z € R?, for all m € Z, and for all k € {1,...,d} we
have:

v

(n

L~
O’

.‘-'-"\-: [i"

L~
O’

v il"

Fig. 1 Reference cell Y and domain 2
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a(z +meb) = a(z).

(A2) Boundedness and measurability: there exists A > 0 such that:
||a||LOC(Rd> <A.

(A3) Ellipticity: there exists A > 0 such that for all £ € RY, for all x € RY, we
have:

a(x)E-& > A lE[.

Denote by M(A, A) the set of matrices that satisfy (A2)—(A3) and Mper (A, A)
the subset of matrices in M (A, A) that also satisfy (Al).

3 Statement and Discussion of the Main Result

The main result of this paper is summarized in the following theorem:

Theorem 1 (Global Lipschitz Estimate) Let Q be a bounded C'* domain, g €
Cl'“/(BSZ), and f € L*(Q), where 0 < o’ < a < 1. Suppose that a € Mper (X, A)
is piecewise C*-continuous. There exists C = C(a, o', A, A, d, Q) > 0 such that,
for all ¢ > 0, the (unique) solution ¢¢ of:

—div|a (%) ve*] = . in G2 “a)
¢° =g, on 9% (4b)

satisfies:
”V(pe HLOO(Q) <C <||g||cl.a'(39) + ”f”Loc(Q)) . (5)

Remark 1 For each ¢ > 0, let N, be the number of subdomains inside €2 such
that in each of them the function a is C*-continuous. Denote those subdomains by

D,,, 1 <m < N,. Then, for 0 < o < min Hoz, @+)d}’ by Li and Vogelius [29,
Corollary 1.3], one has:

196 | ey = € (I8ller ooy + 1 v ©)

where C depends on ,d, o, o', A, A, ||| , and the C1%-modulus of

CO‘, (Fm,RdXd)
UZ; 19 Dy (defined in page 92 [29]). As & — 0, the number N, increases, while the
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sizes of the subdomains decrease, which leads to the blowup of the C L.¢_modulus.
Therefore, estimate (6) is not uniform in .

However, if &g < ¢ < 1 for some constant &y > 0, then one can control the
number, size, distance, and C'-*-modulus of the subdomains in €, uniformly with
respect to €. Note that the upper and lower bounds of those quantities are positive
and independent of ¢. Thus, by Li and Vogelius [29, Corollary 1.3], there exists C
independent of ¢ such that (5) holds when ¢y < ¢ < 1. Therefore, Theorem 1 will
be proven, if one can specify a constant &g > 0 such that (5) holds for 0 < ¢ < &g.

Our proof of Theorem 1 follows the classical steps in regularity theory: (i) derive
an interior Lipschitz estimate, (ii) derive a boundary Lipschitz estimate, and finally
(iii) combine the estimates in (i) and (ii) to obtain the global Lipschitz estimate.
Step (i) is obtained via the compactness method. For step (ii), we additionally need
to establish the following preliminary results:

 Interior and boundary Holder estimates, see Propositions 1-3.

» Estimates for the Green’s function, which are obtained using the Holder bounds
above, see Proposition 5. The existence of the Green’s function for scalar
uniformly elliptic equations is established in [22, 26, 30].

» Estimates for the Dirichlet boundary corrector, see Proposition 6.

If the coefficient a is not Holder continuous, then the classical results in [3, 34,
37] cannot be applied directly. Nevertheless, some of their proofs can be adapted
for the case at hand. In those situations, we will explicitly point out what needs
to be modified in their proofs, in order to relax the continuity assumption on the
coefficient matrix a.

4 Interior Estimates

We start with an estimate for homogenized equations, i.e., the equations with
constant coefficients, which are limits of some fine-scale problems.

Lemmal LetA >0, A >0y >0and0 < u < % be fixed. For each constant
matrixb € M, A), h € L7 (B(xo, 1)), with |||l pa+y (gexy.1)) < 1. there exists
0 =0y, u, A, A,d) > 0suchthatif p € HY(B(xp, 1) satisfies:

—div (bV¢) = h in B(xo, 1),

then the following estimate holds:

sup  |p(x) — ¢ (x0) — (x — xo) - Ve (z)dz| < o1F3m/4, (7

|x—xg| <6 B(x0,0)
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Proof By the classical Schauder estimate for the scalar equation with constant
coefficients (Theorem 3), we have ¢ € C1* (B (xg, 1/4)) and:

”¢”C‘»N(B(x0,1/4)) =< C(Va M, k, A, d) (||h||Ld+V(B(x0,3/g)) + ||¢||H1(B(x0,3/8)))
< Cy, ps Ay A, d) 1Kl Laty (B(xo. 1)
SCy, i, A AL d). 3

For0 <6 < 4_1‘ and |x — xg| < 6, there exist z, such that:

‘(ﬁ(X) — ¢ (x0) — (x — xp) - Vo (z)dz
B(x0,0)
X — Xo
=|— Vo(zy) =V d
B0, 0)| /B(xo,e)( ¢ (zx) d(y) y‘

< Cy, o h, A, d) x — xo| T

< C(y, A, A, d)o' A,

Choosing 0 small enough so that C(y, i, A, A, d)0'TH < 911314/4 we obtain (7).
O

The fact that 6 does not depend on the matrix b or the source term / is crucial
for the contradiction argument in Proposition 1 below. We now state the interior
Lipschitz estimate. Note that, here, a is not necessarily Holder continuous in the
domain 2.

Proposition 1 (Interior Lipschitz Estimate I) Suppose that a € Mper (X, A) and
f € L®(Q). Fix xo € Q and R > 0, so that B(xg, R) C Q. There exist &g =
eo(A, A, R,d) > 0and C = C(A, A, R,d) > 0 such that, for all 0 < ¢ < g9 and
for every weak solution ¢° € H'(B(xo, R)) of the equation — div [a (;—‘) V(pg] =f
in B(xg, R), the following estimate holds:

HV(pg ||L°°(B(x0,R/2)) =C (“‘pg ||L°°(B(x0,R)) + ”f”LO"(B(xo,R))) : ©)

Proof By dilation, we may assume that R = 1. Fix 0 < ¢ < % We prove, by the
compactness method, that there exists eg = go(A, A, d, i) so that (9) holds for all
0 < ¢ < gg. To do this, we only need to show that there exists C > 0, independent
of &, such that:

max [ ”‘/’8 ||L°°(B(x0,1)) ) ||f”L°°(B(XO,1))} < 1 implies ”V‘pe HLDO(B(xO,1/2)) =C.
(10)
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Let w = (wl, e, a)d), where o' € leer(Y)/R, 1 < i < d, is the solution of the
cell problem:

— div, [a(y) (e" + V0 (y))] —0inY. (11)

1. Improvement.  In this step, we prove by contradiction that:
For fixed 0 < u < % there exist 8 and ¢*, with 0 < 6 < %, 0 <e* <1,
depending on X, A, d, and p, such that if a € Myer(A, L), f € L¥(B(xp, 1)),
¢° € H'(B(xp, 1)) satisfy:

— div [a (f) wg] — fin B(xo, 1), (12a)
&
max{”(pg ||L°°(B(x0,l)) ’ ”f”L“(B(xo,l))} =1 (12b)
then, for all 0 < ¢ < &*, we have:

sup < 91+M/2’

|x—x0| <6

o' -g e -[r-wtew(P)]f e
X0,

&

13)

where @ solves (11).
Take 6 as in (7) of Lemma 1. By contradiction, suppose there exist sequences:

en — 0, a, € Mper(A, L), f € L (B(xo, 1)), and ¢, € H' (B(xp, 1))

satisfying:
. X .
—div |:a,, (—) V(pn} = f, in B(xp, 1), (14)
&n
maX{”‘Pn”LOO(B(xO,])) ) ||fn||L00(B(x0,1))} <1, (15)
such that:

> glHH/2,

sup @ (x) — @p(xo) — |:x — X0+ &n@ <£>:| ][ Von(z)dz
B(x0,6)

|x—x0| <6 &n

(16)

Let A, € M(A, A) denote the effective matrix corresponding to a,. By the
Banach—Alaoglu theorem, the Caccioppoli inequality, the Rellich—Kondrachov
theorem, and the Schauder theorem (see, e.g., [19, Theorem 4.4] and [7, Theorem
3.16, 6.4 and 9.16]), there exist functions ¢y € L2(B(xo, 1)), fo € L®(B(xo, 1))
and a constant matrix ag € M (X, A) such that, up to subsequences, we have:
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¢n = o in L*(B(xo, 1))
fu = foin L®(B(xo, 1)
¢n — o in H'(B(x0, 1/2))
fo = foin H™'(B(x, 1)
A, = ap.
By [9, Theorem 13.4 (iii)] or [37, Theorem 2.3.2], we have ¢y is the solution of:
—div (agVep) = fo in B(xo, 1/2). a7

Fix x € B(xg,1) and let U C B(xp, 1) be an open neighborhood of x. By
the De Giorgi-Nash-Moser Theorem [20, Theorem 8.24], there exists 0 < 8 =
B(d,rA/A) < 1 such that:

lenllcs @y = € (Ilgnll oo (Bxg.1y) + I fall Lo (B(xg.1y)) < 2C.

By the Arzela—Ascoli Theorem, up to a subsequence, ¢, uniformly converges
to ¢* in C(U) for some ¢*. Since ¢, — o in L?(B(xg, 1)), we conclude that
©* = @p a.e. in U. Therefore, lim,,_, o0 ¢, (x) = @o(x) a.e. in B(xg, 1). Letting
n — oo in (15), the argument above and [7, Theorem 3.13] yield:

max {[|@oll (B 1)) » | foll Lo (Bx.1y | < 1

which, together with (17), implies that (7) still holds for ¢ = ¢ (observe
that, from (8), shrinking the domain from B(xg, 1) to B(xp, 1/2) does not affect
estimates), that is:

sup <@!3rA (1)

|x—x0| <6

o (x) — @o(xp) — (x — x0) - Veo(z) dz
B(x0,0)

On the other hand, letting n — o0 in (16) and since [|@|| ;o (y) < 00, we obtain:

sup > 91-‘1—#/2’

[x—xq| <6

@o(x) — @o(xo) — (x — xo) - Voo(z) dz
B(x0,0)

which contradicts (18), since 0 < 6 < JT.
2. Iteration Let0 < & < &*. Direct evaluation yields that:

1
PA) = {w(ex) — 9" (0x0)
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Ox
—|:9(x—x0)+8w (—)} ][ V(pe(z)dz}
€ B(xo,0)

solves the following equation:
. Ox e z.
—divfal — ) VP*(x) | = f in B(xp, 1), (19)
&
where f = 91=1/2 £ (6x). Moreover, by (13) and (12b), we have:
| P#] L 8,1y = 1 and HfH =1

L®(B(xo,1)) —

so by using (13) again, we obtain:

0
sup |P*(x) = P*(xo) — [x X0+ o (—x)} ][ VP (z)dz < 0112,
|x—xo|<6 0 e B(x0.0)

(20)
From (20) and scaling down, we have:

sup | (x) — ¢ (x0) — (x — xq) - @ + eb| < O HH/D,
|x—x0| <62

where

as ::][ Vo®(z)dz + 9“/2][ VP:(z)dz,
B(x0,0) B(x0,0)
X
b3(y) =@ (y) - (f Vo' (z)dz + 9“/2][ VPe(z) dz)  fory="= €Y.
B(x0,0) B(x0,0) £
21

By the De Giorgi-Nash-Moser estimate and Caccioppoli inequality [2,
Lemma C.2], there exists a constant C, depending only on A, A, and d, such
that:

<C/o,

lollp=y) < C, < (/6.

][ Vef(z)dz ][ VPe(z)dz
B(x0,0) B(x0,6)

Therefore, (21) implies that:
las] = (/o) (1+0"7),

[l = (€03 (14 692
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Reiterating this process, we obtain that there exists C = C(y, A, A,d, n) > 0
such that:

|al§| <(C/9) (1 + 9”’/2 4+t g(kfl)u/2 ’

(22)
[0 cery = (€0 (140772 4 0D02)
and:
sup  |o° (x) — ¢ (x0) — (x — x0) - af + ebf| < OFIFH/) (23)
[x—xq| <6k
— mi * 1
3. Blowup Let gy := min [8 s sﬁ] and 0 < ¢ < &g.

Choose k such that g%+1 < 48\/3 < 6k Then from (23), there exists C =
C(0,d) > 0so that:

sup  |@f (x) — ¢ (x0) — (x — xq) - af + ebf| < Ce!TH/2, (24)
|x7x0\<4e\/3

which, together with (22), leads to:
H‘/’S - (pg(XO)HLOO(B(xOAS\/J)) = Ce. (25
Denote by z;; the center of the cell Y;° containing xo, and define:
& 1 & &€ & &
vE(x) = - [¢°(ex +2) — °(exo +2))]. x €.
Then, Vv (x) = V¢° (sx + zf)) and, moreover, v® solves:
: ZS & &€ :
—div|a(x+2) Ver() | =efex+zp) inB (0, 3@) . (26)
Observe that:
1 &
g (B (XO» 8@) - Zo> C B <0, 2\/3)
1 &€
c B(0,3Vd) - (B (w0, 4eva) - z5).

27)

Applying [29, Theorem 1.1] to (26), we obtain that there exists a constant C > 0,
independent of ¢ and xy, such that:
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Vo o 1 (50 v2) 1)

< [vo ||Loo(3(0’2\/3))
| (28)
<C||» “Lw(B(O.S\/E)) + BZ:)]I;/J) |ef (ex + 2|

= (1t * i o)) |

Scaling down (28) and using (25), we obtain:

|Ve® ||LOO(B(XO’Eﬁ))

l & &
S L L P SR ) BT

where C > 0 is independent of xo and ¢.

Remark 2 Under stronger smoothness assumptions on the coefficient a, similar
estimates to (6) are proved in the literature. In particular, if a is in VMO(Rd),
the real-variable method of L. Caffarelli and I. Peral [8] yields an uniform
WP _estimate; on the other hand, if a is Holder continuous, then one has the
uniform Lipschitz estimate. Those results hold also for elliptic systems and even
for Neumann boundary condition. We refer the reader to [3, 4, 27, 28, 34-37] and
the references cited therein.

However, in this paper, we focus on the case when a is only piecewise Holder
continuous. A similar argument as in the papers cited above together with the
regularity theorem of Li and Vogelius [29, Theorem 1.1] yield the interior Lipschitz
estimate as showed in Proposition 1. Moreover, some additional care is needed to
ensure that the constant C in (28) is independent of both ¢ and x¢. In the Blow-up
step of the proof above, one may try to let

1
s8(x) = E‘PS (ex + x0) (29)
so that
—div [a (x) Vss(x)] = ef (sx + x0), (30)

then by applying [29, Theorem 1.1], one obtains

A L e ]
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Dy
/

A

Fig. 2 As the center x¢ of the ball B (xo, %) slides on the line d to the right, the subdomain D;

shrinks to 0, which makes the C1*¢ modulus to become unbounded [29, page 93]. Moreover, in
some cases, it is possible that a cusp also appears at some points (point A on the zoomed in figure
above)

However, C’ indeed depends on xg. The reason is that, when one shifts x( in the
scaling (29), one also changes the C!®-modulus of the subdomains, where the
latter, in the context of our problem, are generated by taking intersections of the ball
centered at xo and the heterogenous domain. In short, we do not have the uniform
control of the subdomains when using the scaling (29) for arbitrary xo, see Fig. 2. In
order to circumvent the dependence on xo, we use a different scaling and combine
with a geometric argument, as demonstrated in the proof of Proposition 1.

The following result follows from Proposition 1, the De Giorgi-Nash-Moser
estimate and a change of variable.

Proposition 2 (Interior Lipschitz Estimate II) Suppose that a € Mper (A, A) and
f € L*®(Q). Fix xg € Q and R > 0 so that B(xg, R) C Q. There exist gy =
eo(A, A,d) > 0and C = C(A, A,d) > 0 such that, for all 0 < & < g, the weak
solution ¢° € H'(B(xg, R)) of the equation — div [a (f) V(p"‘"] = f in B(xg, R)
satisfies:

1
|V¢€<xo>|50’[(][ |W(Z)|2dz>z+R sup If(x)l] (31)
B(x0,R)

XEB(X(),R)
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Proof Without loss of generality, we assume xo = 0. By Proposition 1, with R =
1 and considering ¢° — 5 |, ¢°(2) dz, which solves —div[a (%) V] = f in
B(0, 1), we have that there exist &g > 0 and C’ > 0, depending only on A, A, d,
such that:

|Ve® (0)] < | Ve ||L°°(B(O,1/4))

<’ ( ¢° —][ ¢°(2)dz
B(0,1)

SC/< <p8—][ 9°(z)dz
B(0,1)

= C’ (vas “LZ(B(O,I)) + ”f”LOO(B((),l)))

1
2
SC’[(][ Iw"f(z)lzdz) + sup If(x)l],
B(0,1) xeB(0,1)

where we have used the De Giorgi-Nash-Moser estimate and Poincaré’s inequality.
For R > 0 and x € B(0, 1), let v (x) := R~ '¢?(Rx), then Vv¢(x) = V@t (Rx)
and:

+ ||f||L00(B(0,1/2))>

L*°(B(0.1/2))

+ ||f||L°°(B(0,1))> (32)

L2(B(0,1))

— div [b (g) Vve(x)] — Rf(Rx),

where b(z) := a(Rz). We have b € M(x, A) is R~'Y —periodic. Note that the
proof of Proposition 1 does not depend on the period, hence, (32) holds for v® in
particular:

[Ve© (0] = [Vv* (0

1
2
< <][ |Vv8(x)|2dx> TR sup |f(Rx)|
B(0,1) x€B(0,1) (33)
%
= <][ |V¢)8(Rx)|2dx> +R sup |f(Rx)|].
B(0,1) x€B(0,1)
By a change of variable in (33), we obtain (31). O

We recall the interior Holder estimate, adapted from [34, Proposition 1] (or [3,
Lemma 9]) that will be used to obtain the boundary Holder estimate in the next
section.

Proposition 3 (Interior Holder Estimate) Suppose that a € Mper(A, A) and f €
L4tY(Q), for some y > 0. Fix xog € Q2 and R > 0 such that B(xy, R) C Q. Let
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0<p:= ﬁ < 1. There exists C = C(y, A, A, p, R,d) > 0 such that, for all

e > 0, the weak solution ¢° € H'(B(xg, R)) of the equation — div [a ()8—‘) Vgog] =
f in B(xq, R) satisfies:

[q)g]cov#(B(xO,R/Z)) =C (”‘/’8 ||L2(B(XO,R)) + ||f||Ld+V(B<xo,R))) ’ (34)

) =h(y)|

where [h]co.u(ay = SUPy£yca TR

The proof of Proposition 3 is similar to [34, Proposition 1]. Indeed, a closer look
at the proof of [34, Proposition 1] reveals that the Holder continuity assumption on
a is needed only for the classical Schauder estimate for elliptic systems to hold.
However, this paper is devoted to the scalar case, and we use the De Giorgi-Nash-
Moser Theorem [20, Theorem 8.24], for which the assumption a is bounded is

sufficient.

Remark 3 For the case of elliptic systems, the De Giorgi-Nash-Moser Theorem
does not hold, see counterexamples by De Giorgi, Giusti and Miranda, and others,
cf. [19, Section 9.1], and the references cited therein. Because of that, this paper is
concerned with the scalar case only.

5 Boundary Estimates, Green Functions, Dirichlet
Correctors, and Proof of Main Theorem

The following result is adapted from [3, Section 2.3] and [37, Section 5.2].

Proposition 4 (Boundary Holder Estimate) Suppose that a € Nper (X, A), and
Q is a Cl-domain. Fix xo € 902, 0 < r < diam(), and 0 < pu < 1.
Let g € C%'(B(xp,r)NOQ). There exist &g = eo(u, A, A,d) > 0 and
C = c(u,h,A,d) > 0 such that, for all 0 < & < &gy, every weak solution
@¢ € H'(B(xo, 1)) of the equation:

i X
—div [a (—) V(p‘s] =0in B(xg,r) N2,
€
¢°® = g on B(xg,r) N IR

satisfies:

£
[90 ]cw(B(xo,r/Z)m)
1

_ 2. \2
<cr |:<][ 0°(2)| dZ) + lg(x0)l +r ||g||c0-l(3(x0,r)mag):| .
B(xg,r)NQ

(35)
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The proof of Proposition 4 follows the proof of [37, Theorem 5.2.1] with minor
modifications. In [37, Theorem 5.2.1], the assumption that a € VMO(R") is used
only in two places: (1) when ¢ > g, which is beyond the scope of this particular
theorem, and (2) to obtain the interior Holder estimate, which we already relaxed in
Proposition 3.

Thanks to Propositions 3 and 4, we can drop the assumption that a € VMO(R?)
of Theorem 5.4.1-2 and Lemma 5.4.5 in [37]. The results are summarized in the
following proposition.

Proposition 5 (Green’s Functions) Suppose that a € Mper(A, A) and Qis a cl-
domain. Fix 0 < u, 0,01 < 1 and let §(x) := dist(x, 02). Then, there exist &g =
go(, A, A,d) > 0and C = C(A, A, 0,01, 2) > 0 such that, for all 0 < ¢ < &,
the Green’s functions G (x, y) exist and satisfy the following:

C—— ifd =3,
[RETER S / (362)
cli+m ()] wa=2
ot i) < g lx — 5l
G <\ S 80 <zl -yl
C3(x)78(»)°1 : 1 1
e () < v =yl or8(y) < zlx =yl
(36b)
[ 19,65l 57 ay < ooy (360)
Q

where x,y € Q,x # y and ro ‘= diam(£2).

As a consequence, for 0 < ¢ < 1 and g € CY%Y(Q), there exists C =
C(h,A,d) > O such that, for any xo € 0%, for any ¢ satisfying ce <
min{ceg, r} < r < ro = diam(£2), and for any solution ¢ of the Dirichlet problem
—div [a ()EC) V(pg] =0inQ, ¢* = g on 3R, the following estimate holds:

1
2\? _
(][ Ve*| ) <C [||Vg||L°<>(sz) +e! ||g||Loc(sz)]- (37)
B(x0,r)NQ

We now define the boundary Dirichlet corrector: For 1 < i < d, let e ¢
H'(Q) be the solution of the problem:

— div [a (f) Vd)i‘g(x)] — Oforx € Q,
€ (38)
d"¢(7) = z; for z € Q.

The following proposition provides a bound on the boundary Dirichlet corrector.
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Proposition 6 Let Q be a bounded C'*-domain. Suppose that a € Mper(, L) is
piecewise C*-continuous. Then, for all ¢ > 0, the solution ®"¢ of (38) satisfies:

oo

where constant C depends only on A, A and 2.

<C, 39
L) ~ 69

The proof is similar to [37, Theorem 5.4.4]. One only needs to use three observa-
tions:

e The case ce > min{ceg, r} follows from [29, Theorem 1.2], by the same
argument used in Remark 1.

e Letw = (0!, @?, ..., »%) be the solutions of the cell problems (11). Given only
that a is piecewise C%-continuous, then Ve is bounded in L*°(Y, ]Rdx‘l), see the
first paragraph in the proof of [17, Theorem 3.2] or [38, Corollary 3.5].

e The interior Lipschitz estimate in Proposition 2 only requires a is piecewise
Holder continuous.

We now combine Propositions 6, 2, and [29, Theorem 1.2] to obtain a discontinuous
coefficient-version of [37, Theorem 5.5.1].

Proposition 7 (Boundary Lipschitz Estimate) Suppose that a € Mper(X, L) is
piecewise C*-continuous and Q is a C"%-domain. Fix xo € 99, 0 < r <
diam(Q2) and 0 < u < 1. Let g € cle (B(x0,7r) N 02) . There exist &g =
go(u, A, A,d, Q) >0and C = C(u, A, A, d, Q) > 0such that, forall0 < ¢ < g,
the weak solution ¢t € H'(B(xo, r)) of the equation:

. x
—div [a (—) V(ps] = 0in B(xg,r) N L2,
e
¢ = g on B(xg,r) NI

satisfies:

H Ve* || Lo(B(xg,r/2)N3S2)
1

2
S C r71 <f (pg 2) + rDt ”V[ g” 0 o
|: B(xp,r)NQ | | and e (B (xo,r)Ns2) (40)

-1
+ IViang ll Lo (B(xg, o) T 7 ”g||L°°(B(x0,r)ﬁ3§2)j| .

The estimate (5) of Theorem 1 is a consequence of Propositions 2 and 7, by an
argument similar to [37, Theorem 5.6.2].
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6 Application to Magnetic Suspensions

In this section, we apply the regularity results obtained above to the rigorous
homogenization procedure discussed in [10]. For that, we first recap the formulation
of the fine-scale problem and the homogenization result itself. We begin by
introducing the definition of two-scale convergence, which will be used below.

Definition 1 A sequence {v®}.~¢ in L2() is said to two-scale converge to v =
v(x, y), withv € L2(Q x Y), if and only if:

lim | v )w (x,f) dx = if / v(x, VY (x, y)dydx,
Q 2 Y| QJy

e—0

for any test function ¢ = ¥ (x, y), with v € D(R2, C35.(Y)), see [1, 9, 32]. In this

per

. 2
case, we write v& — v.

Let the kinematic viscosity be denoted by v = %, where n > O and py > 0 are

the fluid viscosity and the fluid density, respectively. The dimensionless quantities
that appear in this problem are the (hydrodynamic) Reynolds number R, = UL /v ,

the Froude number F, = U /~/FL, and the coupling parameter S = pf%z(ﬂ’ where
L,U, B, and F are the characteristic scales corresponding to length, fluid velocity,
magnetic field, and body density force, respectively. Moreover, A > 0 is defined
in (A2).

From now on, we suppose 2 is C>%, which is needed for the corrector result
below. Suppose further that g € H'(Q,RY), k € CH¥(Q), and f € L®(RQ).
Let u® and p? be the fluid velocity and the fluid pressure, respectively. Also, in a
space free of current, the magnetic field strength is given by H® = V¢?, for some
magnetic potential ¢°(x). Let u® € HJ (Q,R?), p® € L*(Q)/R, and ¢° € H'(Q)
be the solution of the following boundary value problem:

1

—div[o @’ p°) + 7(¢")] = 2% in Q% (41a)
r
divu® =0, in Q% (41b)
D(uf) = 0, in Q¢ (41c)
. X el 1
dlv[a(8>v<ﬂ ]—f in €2, (@41d)

together with the balance equations:

/ [o®, p*) + T(p")]m dH " =0, (42a)
FS

i
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/ ([o@®, p°) + T(¢*)]m;) x m; dH4 ' =0, (42b)
I

and boundary conditions:

u® =0, onag, (43a)
¢° =k, on 9L, (43b)
where
2
o(’, p°) = —D(@®) — p°I, (44a)
R.
. Vuté + V' uf
D(u) = (44b)
1
7(¢°) == Sa (f) (wf ® Vot — = |V¢€|21> (44c)
e 2

are the rate of strain, the Cauchy stress, and the Maxwell stress tensors, respectively.
For the detailed derivation and the physical meaning of the equations above, we refer
the readers to [10] and the references therein. Observe that, in the context of this
paper, we consider the Dirichlet boundary condition (43b), instead of a Neumann
boundary condition (3) in [10], to relax the regularity assumption on the magnetic
permeability needed in [10]. Then, the weak formulation for (41d) and (43b) is given
by:

&

/Qa(f)v(gog—k)-vgdx
N 1 (45)
:_/Qa(;)Vk.vgder/Qfsdx, VE € HL (D).

One immediately has that ||(p8||H1(Q) < C (”k”Hl/Z(asz) + ||f||Lq(Q)), which
implies that ¢° is two-scale convergent (up to a subsequence). Choosing a test
function as in [10, Lemma 3.7], we obtain the cell problem (46) and the first two
effective equations defined in (50) below.

Moreover, Theorem 1 ensures that V¢ is uniformly bounded in L*°(€2, Rd),
with respect to ¢ € (0, gp). Therefore, we obtain the existence, uniqueness and a
priori bounds for u® and p? as in [10, Corollary 3.11]. Here, we have relaxed the
restrictive assumption (1) made in [10] and we can use our results in the case when

the constant magnetic permeability is anisotropic, namely when a is a matrix.
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To carry on with the hom_ogenization formulation, for 1 < i, j < d, denote by
U the vector defined by U}/ := y;8;. Consider o’ € leer(Y) /R, the solution of:

— div, [a(y) (ei +Vyw (y))] —0inY. (46)
Also, consider "/ € Hp, (Y, RY)/R and ¢"/ € L*(Y)/R, solving:
div, [D, (U7 = x7) + 41| =0in vy,
divy x/ =0in Y,

D, (Ul’f' — X"f') —0inY,,

47)
/F [Dy (Uij _ x"f) _ q"f'l] nrdH4! =0,
/F [Dy (Uij — Xij> — qijI] nr x np dH"! =0,
and consider £/ € H!, (Y. R?)/R and r'/ € L*(Y)/R, solving:
divy [Dy (§7) + 171+ 77] = 0in v,
divy £/ = 0in Y,
ij\ _n;
D, <£ ) =0in Y, 48)

/ [Dy (.g"f') L4 rif'] npdHe! =0,
r
/ []Dy (E”) + T+ rij] nr x nrdH4 = 0.
r
We also define:
1 . .
A=) /Y a) (& + Vor (5) - ¢/ + Vol (1)) dy,
. 1 i, .
erri/n — m / Dy(UU _ Xl]) :Dy(Umn _ an)dy,
Y

Tl =a(y) [(el +Vyo') ® (¢! + Vyo!) — E(e’ + Vyo') - (¢! + Vyw")I] ,y€eY,

» 1 . .
Bl = m/Y(Imy(g’f)ﬂ’f)dy,
(49)
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where A is the effective magnetic permeability, which is symmetric and elliptic.
The tensor N = [N,l,{,,} is the effective viscosity, and it is a fourth rank

1<i,j,m,n<d
tensor. Moreover, \ is symmetric, i.e., Ny, = Nt = N = N3, and it satisfies
the Legendre-Hadamard condition (or strong ellipticity condition), i.e., there exist

B > 0 such that, for all ¢, n € R?, one has Nm,,{,{mn]nn > B1¢)? In|*. The matrix
Tref 18 the Maxwell stress tensor on Y, and B is the effective coupling matrix.

By the same argument as in Theorem 3.5, Lemma 3.9, and Lemma 3.14 of [10],
the following result holds:

Theorem 2 Let (9%, uf, p°) € HY(Q) x H}(Q,RY) x LA(Q) be the solution
of (41). Then

¢ = ¢ in H' (),

v’ — u’in H} (2, RY),

p = 7%in L3(Q),
where 90, u°, and 7° are solutions of:

—div (AV(p()) =f in Q,

" =k on 992,
2 dg? 8<p
—N”D( 0) s 2820 inQ, (50)
1V|:Rg " ij ot dx; o F2g "
divu® =0 in Q2
=0 on 092,

with A, N'U | Bl 1 <i, Jj < d, defined in (49). Moreover, the first-order correctors
satisfy:

2@RY

)

lim | Ve () = V') = V0! (- 2|
£—

lim HD(ug)( ) = D)) - Dy(u )( )‘

2. Ra’xd) -
where

900
o' (x,y) = w’(y)aim,
Xi

9 0
ul(ry) = =D (w') 10+ 55 055 ( ).
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7 Conclusions

This paper concerns a homogenized description of a non-dilute suspension of
magnetic particles in a viscous flow. The results demonstrated in this paper
generalize the ones obtained by the authors in [10], where a more restrictive
assumption on the magnetic permeability (1) was used and a Neumann boundary
condition (3) was imposed instead of the Dirichlet condition (4b). Theorem 2
above demonstrates the effective response of a viscous fluid with a locally periodic
array of paramagnetic/diamagnetic particles suspended in it, given by the system
of equations (41). The effective equations are described by (50), with the effective
coefficients given in (49). These effective quantities depend only on the instanta-
neous position of the particles, their geometry, and the magnetic and flow properties
of the original suspension described by (41). Using the tools introduced in [29]
and the compactness method, an improved regularity estimate for the gradient of
the magnetic potential of the original fine-scale problem (41) was obtained, see
Theorem 1. This theorem allows us to drop the restrictive assumption (1) mentioned
above. Comparing to the classical results on regularity of this type, we do require the
coefficient matrix belongs to a VMO-space, see, e.g., [3, 34, 37]. Recently, in [17,
Proposition 3.1], the authors obtained an L?-bound of the gradient of the solution
of the scalar divergence equation, uniform with respect to &, for ¢ < oo. Our result,
in Theorem 1, shows that the gradient bound actually holds for the case g = oo.
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Appendix

Theorem 3 (Interior Schauder Estimates [20, 24]) Let b € ML, A) be a
constant matrix and w € H' () be a weak solution of:

d
bijDiDjw = f—i—Zle,
i=1

For every a € (0, 1), there exists a uniform constant C = C(«, d, A, A) such that if
Q' cC @, with § = dist(Q', 9Q), then the following estimates hold:
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(i) f f € LP(Q), fi e LY anda =13 =2-9 € (0, 1), thenw € C* ()

and:

d
—dy_
lwliceqy < C672F “(||f||LP(9)+Z||fJ||Lq<m+||w||H1(sz>>~

i=1

(it) If f e LP(Q),a =1 — % € (0, 1) and f; € C¥(2), then Vw € C*(Q') and:

d

v —3 :
IVwllce(ey < C8 I lzrey + D I fillcagy + lwl o
i=1
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