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Abstract—Ransomware, an extortion type of malware, contin-
ues to create havoc targeting critical infrastructure and orga-
nizations at large, causing an estimated $20 Billion in direct
and collateral damages in 2022. While significant efforts from
both academia and industry are being pledged to address this
debilitating and disrupting phenomena, the ransomware pandemic
continues to expand rapidly in frequency, spread and stealthiness.
To this end, in this work, we propose RPM, a Ransomware
Prevention and Mitigation scheme. RPM is rooted in the proactive
analysis of operating systems’ API artifacts through the exploita-
tion of a neat observation related to ransomware behavior, namely,
activities generated prior to the actual execution of the malicious
payloads. RPM employs OS-centric process hooking tactics to
develop an offensive approach leveraging such sensing activities.
To demonstrate the effectiveness of RPM, we empirically evaluated
it using 100 of the most prominent ransomware samples. The
results demonstrate very motivating accuracy metrics with low
system footprint, asserting the rationale of the proposed scheme.
We posture RPM as a strong step towards proactive mitigation,
which aims at complimenting ongoing ransomware thwarting
efforts.

Index Terms—Ransomware, Operating systems, Host-based,
Cyber Forensics

I. INTRODUCTION

MALWARE, short for malicious software, has always
been a key enabler to conduct many of today’s malicious

activities. While malware could manifest in various types
including self-propagating worms, backdoors, spyware, trojans
and others [1], a very specific type dubbed as ransomware
started to re-gain traction in May 2017 with the eminent
WannaCry attack [2]. While ransomware’s history goes back
to 1989 when a Harvard-trained evolutionary biologist Joseph
Popp sent 20K infected diskettes labeled “AIDS Information:
Introductory Diskettes” to attendees of the World Health Or-
ganization’s international AIDS conference, encrypting their
hard drives, ransomware’s threat landscape has significantly
evolved and intensified since 2013. Though such ransomware
could be classified based on several criteria, including their
functionality (i.e., locker-ransomware, which lock the screen
of the victim to prevent access to data/system resources vs
crypto-ransomware, which encrypt the data), their encryption
routine, their underlying cyber-crime economic model, or their

target hosts (i.e., OS type, mobile, IoT, etc.), the intended
end-goal is quite the same, which is to prevent access to
local and networked data and computing/processing resources
for illicit financial gains. Indeed, the past two years have
witnessed a momentous, unprecedented surge in ransomware
attacks targeting highly diverse infrastructure.

For instance, very recently in 2022, Cisco systems fell
victim to a foreign state-sponsored ransomware attack in which
more than 50GB of classified documents, technical schematics,
and source code were published to the dark web. Taiwanese
computer manufacturer Acer was a victim of the REvil
ransomware attack in the last quarter of 2021. This attack
was particularly noteworthy due to its demand of $50M; the
largest known ransom to date. Further, the Colonial Pipeline
attack was arguably the most high-profile ransomware event of
2021. Colonial Pipeline is responsible for transporting nearly
half of the U.S. East Coast’s fuel. The ransomware attack
was the largest cyber attack to target a critical infrastructure
in U.S’s history. Also in the U.S., in May of 2021, JBS, the
world’s largest meat processing plant, was hit by a ransomware
attack that forced the company to stop the operations of
all its beef plants. The cyber attack significantly impacted
the food supply chain and highlighted the manufacturing and
agricultural sectors’ vulnerability to disruptions of this nature.
Broadly, ransomware attacks hit more than 40% of fortune 500
companies in the past two years, including recent attacks on
Garmin by state-sponsored actors, which paralyzed the avionics
of several airlines, costing the company a postulated $10M.

While the direct cost of such attacks could be defined by
the amount of ransom that the victims initially pay out, the
corresponding collateral damage related to downtime, data
recovery, lost of revenue, improvements to cyber defenses, and
reputational damages is estimated to be close to $20B in 2022,
with a predicted $40B by 2024. Thus, in face of such wor-
risome information and the ongoing global threat, it becomes
intuitive, timely and highly imperative to devise, develop and
evaluate empirically-driven methods and techniques to address
the problem of ransomware.

Along this vein, research and development efforts addressing
the ransomware phenomena have circulated around binary
analysis, measurements and characterization, and network- and
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host-based detection (see Section II). While such endeavors
are very significant to comprehend and defend against the
ransomware threat, efforts which offer proactive prevention
methodologies seem to be quite limited. Indeed, while detection
methods might be effective, nevertheless, in the context of
ransomware, they might not be well-suited as they are reactive
in nature, and typically have to maintain some sort of detection
signatures. In this context, one should be aware that addressing
the ransomware problem is quite different than addressing the
broader malware issue. A core reason behind this could be
illustrated when a ransomware lands at a host operating within
a critical infrastructure such as a health entity. Here, a success-
ful attack that was detected late would have already caused
critical damage to the healthcare operations (e.g., threatening
the survivability of critical patients on ventilators) and would
have violated imperative compliance acts and regulations such
as HIPAA (especially when the encrypted data is published
in raw formats on the dark web to pressure the attacked
entity to pay the ransom). In such context, detection would
be unacceptably reactive, given that the tolerance for such a
delay within this specific operating environment is nil.

This and related scenarios demonstrate the utmost need
for proactive prevention methodologies in contrast to only
detection. Furthermore, an effective ransomware solution ought
to leverage notions and artifacts that do not require major and
continuous updates, such as those generic malware solutions,
which often carry (and have to maintain) a large set of detection
signatures that are known to be easily circumvented with
evolving malware.

Therefore, motivated by the severity of such ransomware
attacks while realizing the gap related to the lack of proactive
and prompt preventative measures, we propose herein RPM, a
Ransomware Prevention and Mitigation scheme. Building upon
our previous work [3], RPM is a host-based solution, given
the momentous impact of the “last mile” on the success of
the attack, and is postured as a complementary1 (rather than a
replacement) approach to already-available network- and host-
based detection schemes. In this context, this work makes the
following contributions:

1) We introduce RPM, a unique scheme which addresses the
problem of ransomware prevention at the host. RPM de-
viates from the reactive process of detection, endeavoring
to perform instantaneous halting of ransomware-affiliated
processes, prior to any malicious payload execution.
RPM is designed to operate in the background of an
Operating System (OS), requiring very low footprint in
terms of space and time complexities, while being easily
deployable.

2) We exploit a very neat observation related to how ran-
somware probe its target host, prior to launching any
malicious misdemeanors. We refer to these events as

1We are not per say interested to compare RPM vis-à-vis against other host-
based approaches, but rather make it operational along them to fill a gap.

“paranoia”, in which the ransomware assesses, using a
manic/aggressive manner, if the host OS and related
processes represent ideal grounds for execution. RPM
embeds such rationale within its methodology to turn
these paranoiac activities against the ransomware for
prompt inference, prevention and thus mitigation. Partic-
ularly, RPM leverages OS process hooking techniques,
intercepting, analyzing and accordingly reacting to the
generated ransomware-sensing APIs.

3) We prototype RPM and empirically evaluate its effec-
tiveness using recent ransomware samples. While we
demonstrate that the obtained accuracy metrics are quite
motivating, we also show that RPM possesses the ca-
pability to be lightweight and portable, given that it (i)
does not require any modifications to the OS, (ii) does
not depend on auxiliary software or specialized hardware
support, and (iii) does not provision any signature detec-
tion models.

The rest of this paper is organized as follows. In the next
section, we elaborate on the related work. In Section III, we
detail RPM’s embedded approach and rationale. In Section IV,
we prototype RPM and empirically evaluate it using recent
ransomware binary samples, while reporting on its effectiveness
and accuracy metrics. Lastly, in Section V, we summarize the
contributions of this work while pinpointing a few endeavors
which aim at paving the way for future work.

II. RELATED WORK

Herein, we provide a review of recent and the most
representative research endeavors addressing multidimensional
aspects of the ransomware phenomena.

Forensic Analysis and Characterization. A plethora of ran-
somware investigative studies have relied on static or dynamic
analyses. To this end, Nunes et al. [4] have recently performed
dynamic analysis of contemporary ransomware to provide a
longitudinal study of their evasive behaviors. They also mo-
tivated the need for more malware simulators for large-scale
system calls’ analysis. Alternatively, Zhang et al. [5] exploited
opcode instructions from ransomware samples and applied
a probabilistic language model rooted in N-gram analysis
to convert them into sequences. A statistical technique was
then applied on such sequences to generate feature vectors,
which were fed to shallow learning techniques to enable the
classification of ransomware families. From a network forensics
perspective, Kurniawan et al. [6] investigated the Cerber
ransomware, to highlight its modus operandi, while Quinkert
et al. [7] proposed a network forensic approach to predict
the identity of ransomware by exploring the domain names
that they employ. In the area of ransomware characterization,
Huang et al. [8] presented a 2-year measurement study of ran-
somware’s threat landscape by focusing on payments, victims
and operators. By combining an array of data sources, the
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Figure 1. RPM: System Architecture and Components

authors demonstrated the burgeoning ecosystem and associated
third-party infrastructure.
Network-based Detection Approaches. Given that ran-
somware traverse and exploit networks to propagate and reach
the intended targets (i.e., via drive-by downloads, backdoor
droppers, email attachments, etc.), a number of studies have
been conducted to provide network-based resiliency. In this
context, Almashhadani et al. [9] performed dynamic analysis
of a large corpus of ransomware data to then introduce a flow-
based fusion classifier to perform the network detection. The
same authors in [10] have analyzed the network behaviors of
the Locky ransomware, proposing several heuristics which
work in-tandem to achieve the detection. In contrast, Kim et al.
[11] leveraged network programmability capabilities, includ-
ing Software-Defined Networking (SDN) and programmable
forwarding engines, to devise and deploy adaptable network-
based, learning detection algorithms. Additionally, Roy et al.
[12] captured the network activities of legitimate users in
an organizational network, while developing deep learning
methodologies to detect ransomware-generated, network-wide
encryption activities.
Host-based Detection Approaches. Arguably, the most ef-
fective approaches to ultimately mitigating the threat of ran-
somware are those which reside and operate at the targeted
end-hosts. To this end, a number of noteworthy approaches
have emerged. For instance, Kharaz et al. [13] presented a
seminal work which monitors file systems’ activities, namely,
I/O requests of Writes and Deletes. By initially capturing
distinctive I/O patterns generated by unique ransomware fam-
ilies and subsequently computing an entropy-based metric, the
approach is able to distinguish between malicious and benign
activities. Alternatively, Kolodenker et al. [14] designed and
developed a system which tracks the use of symmetric session
keys at the victim’s machine. By employing crypto-function
hooking techniques, the proposed approach was able to infil-
trate the encryption session and hold the keys in an escrow,
thus decrypting files that would otherwise only be recoverable
by paying the ransom. In another context, Alam et al. [15]
leveraged hardware performance counters to dynamically ob-
serve the hardware-related activities of a system. By capturing

such low-level instructions and developing an autoencoder,
the proposed approach was capable of fingerprinting benign
activities while alerting about ransomware malicious activities.

In this work, we introduce RPM, which we posit as a
complementary host-based solution. In contrast to the above-
mentioned literature, RPM is unique (1) as it addresses the
problem of ransomware prevention as opposed to detection,
(2) does not require any complex (performance-impeding) API
modeling schemes, without necessitating any modifications to
the underlying OS or obtaining aid from auxiliary (or third-
party) software or hardware. Additionally, (3) its underlying
premise is distinctive, exploiting ransomware “paranoia”, a
set of fingerprinting activities that the ransomware conducts
prior to executing its malicious payload, to offer a significantly
proactive, lightweight solution while being highly portable
between Linux variants and Windows OSs.

III. RPM: PROPOSED APPROACH

In this section, we present RPM and its related components,
while elaborating on its inner machinery. Figure 1 holistically
illustrates RPM, which depicts two core subsystems operating
in an offline and online fashions, respectively.

A. RPM’s Offline Component

The intuition behind RPM is to use ransomware’s
environment-sensing activities against them to perform prompt
inference and mitigation. Recall that these activities are induced
by almost all contemporary ransomware to avoid executing
their malicious payloads in non-suitable environments (such
as on virtualized systems or on erroneous architectures). These
tactics, while they contribute to the efficiency and effectiveness
of the attack, they are also typically referred to as evasion
tactics as they ultimately aid the ransomware in remaining
dormant and stealthy. For instance, a ransomware can sense a
system’s registry for any indicator of an installed anti-malware
solution (to avoid it), or it can sense virtualized network
interface cards to realize that it is running in a virtual setup
(circumventing dynamic analysis).

To this end, the malware research literature [1] has amalga-
mated a large set of evolving sensing/evasion activities, most
of which could be categorized as summarized in Table I. For
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example, generic OS queries will verify if the total RAM is
low, the number of processors is low, or if the host name is
specific. Additionally, network-specific queries will examine
whether the MAC address or adapter names are particular,
or whether the network that the sample is running within
belongs to some security container. Further, hardware-related
queries will check whether the HDD has specific name or if
the HDD Vendor ID has specific value, or if the audio device
is absent. Indeed, such artifacts would return identifying and
distinguishing output (between a suitable and an unsuitable
execution environment) that the ransomware would typically
leverage to sense a suitable environment for execution. Readers
that are interested in more elaborative details related to these
activities and their categories, along with their related modus
operandi are kindly referred to [1]. In this vein, RPM exploits
such pre-attack, ransomware-generated activities to fingerprint
and proactively kill the system process forking the sensing
activities, ultimately thwarting the ransomware.

Initially, offline, as depicted in Figure 1, RPM performs
large-scale API monitoring (using old and recent ransomware
samples) to extract and vet the list of monitored paranoiac ac-
tivities based on the categories of Table I. This instrumentation
procedure is achieved by running the ransomware samples in
open-source and propriety sandboxing tools such as the Cuckoo
sandbox and VIPRE’s ThreatAnalyzer. Now given that each
ransomware sample is expected to generate a large number
of such API calls, there is a need to reduce the output to
obtain the most generalizable and frequent sets. This would
allow RPM to avoid carrying a large repository of repetitive
and/or possibly obsolete API calls. To this end, RPM leverages
all the previously extracted sensing APIs to build and parse a
Frequent Pattern (FP) tree. In such a tree, each node after the
root will represent a captured sensing API, which will be shared
by the sub-trees beneath. Each path in the tree will represent
sets of APIs that co-occur, in non-increasing order of frequency
of occurrences. Thus, two samples that have several frequent
APIs in common and are different just on infrequent APIs will
share a common path on the tree. In this context, the FP tree-
based mining algorithm, FP-growth, is employed by RPM for
mining the complete set of generated frequent API patterns, in
linear time [16].

For efficiency and practicality purposes, RPM also executes
fuzzy hashing on each of the captured patterns, generating
unique strings that provide similarity scores (rather than a
binary output) when used in comparison operations. Herein,
the capturing of the APIs, modeling and parsing the FP-tree as
well as the hashing of the generated patterns will be executed
offline. RPM also employs an update frequency mechanism
which would be used to update such hashes (if needed) as new
(raw) ransomware are harvested and analyzed.

B. RPM’s Online Component
When deployed at the host, RPM aims at leveraging the

previously generated paranoiac API patterns (namely, the com-

Table I
RANSOMWARE SENSING CATEGORIES.

APIs Sensing Category Synopsis
File System Checks files and directories

Registry Queries registry keys
Generic OS queries Verifies target functions
Global OS objects Checks mutexes and virtual pipes

UI artifacts Validates open applets
OS Features Checks stack and debug manners

Processes Validates modules and libraries
Network Queries network functions

CPU Verifies processor instructions
Hardware Checks emulated hardware devices

Firmware Tables Checks memory areas

puted hashes) to perform proactive inference of such activities
to instantaneously halt the process initiating such activities.
To enable such procedure in real-time, as illustrated in Figure
1, RPM exploits OS API hooking techniques (i.e., a set of
methods to intercept and modify process behaviors). Specially,
hooks are created for each of the ransomware-generated sensing
APIs. Consequently, the memory addresses of such hooks
are obtained, where RPM employs DLL injection to target
possibly malicious, newly forked processes, by leveraging
multi-threading. The latter procedure will enable RPM to
capture all the generated APIs from (suspicious) processes.
Once the APIs are captured, RPM computes their fuzzy hashes
and compares them to those previously obtained from the
offline module. If the similarity metric is beyond a pre-defined
threshold, the process generating such APIs is deemed to be
executing sensing activities, thus inducing RPM to execute a
TerminateProcess() towards it, proactively halting the
(ransomware) process.
Assumptions and Considerations. We assume that RPM,
when operating in an online fashion on the host, is deployed
on vanilla OSs (i.e., freshly installed software and hardware
drivers). Additionally, we also assume that RPM has knowledge
about additional software/hardware modifications, which are
part of the organizational policies (i.e., additional documents’
processing software, specialized hardware drivers, etc.). These
steps guarantee that RPM creates and employs a safelist of
benign I/O- and CPU-bounded processes, thus reducing (or
eliminating) the generation of false positives during real-time
operations. We also assume that RPM has elevated privileges
on the OS, which allows the usage of hooking techniques while
accessing memory addresses.

Further, we also take into consideration the fact that some
ransomware for one reason or another would not generate
sensing activities, and thus will possibly circumvent RPM
(leading to false negatives). We consider that such ransomware,
which directly execute their malicious payloads, would have
already been detected by complementary (typical) anti-viral
or endpoint solutions, as they would have been successfully
previously analyzed, say, through dynamic analysis, generating
their attack signatures, which in turn would be used for their
detection. Along this vein, it is important to note that RPM
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is designed with a pluggable functionality, which generates
attack signatures automatically when specific processes have
been halted. Such signatures are envisioned to be fed to typical
anti-virus solutions to aid in the mitigation of similar threats.

In relation to the offline module, particularly its update
mechanism dealing with newly identified sensing activities, we
notice that such sensing activities are relatively consistent be-
tween various contemporary ransomware. Having said that, and
assuming we have a near real-time feed of ransomware samples
(from publicly available sources or through collaborations with
anti-virus companies running large-scale honeypots), the update
mechanism could be quite frequent, thus reacting rather quickly
to any evolving “in-the-wild” ransomware threat.

Lastly, we consider that the similarity matching threshold of
the sensing API patterns (retrieved from the offline module and
used in an online manner) to be a configurable parameter, set by
the administrator of the OS whose deploying RPM. Here, one
should balance between having a very loose threshold, thus
informing RPM to generate a large number of alerts related
to the terminated processes (as an indicator of ransomware
activities) and between a very strict threshold, which would
induce RPM only if almost an exact match has been observed.

While the former threshold will guarantee that all suspicious
processes are terminated, it could generate a lot of noise
that would overwhelm system administrators (who are already
flooded with other alerts from Security Information and Event
Management (SEIM) systems). Conversely, the latter threshold
could be too rigid, possibly causing false negatives. A rule-
of-thumb here is for system administrators to take into con-
sideration the intrinsic natures of their realms when tuning the
threshold, including the risk tolerance level, the criticality of the
sector that their systems are operating within, and the resources
available to perform post threat analysis.

IV. IMPLEMENTATION AND EVALUATION

We developed RPM’s offline component in Python where
a Redis in-memory database is used to store the generated
hashes. RPM’s online component is implemented in C and
leverages a dictionary data structure as the safelist APIs. All the
prototyped code, the leveraged techniques and the generated
artifacts are native to any contemporary OSs, making RPM
highly portable, without depending on auxiliary third party
software or hardware support.
Complexity. Modeling and parsing the APIs occur in linear
time, and the FP tree requires less than 50 MB of data to be
stored, for every 20 various ransomware samples. For fuzzy
hashing, RPM leverages the ssDeep tool. Further, the DLL
injection procedure occurs in constant time, per thread.
Effectiveness. We initially executed various controlled tests to
verify the effectiveness of RPM when deployed on real OSs. To
this end, we collected and utilized 100 recent samples/variants
from 5 currently “in-the-wild” ransomware families, including
Reveton, Locky, Teslacrypt, Yakes, and Cerber.
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[+] Call to user32.dll!GetSystemMetrics( Ret Addr: 0x696c215c(N/A) no of Args 1) 
[+] Call to user32.dll!GetSystemMetrics( Ret Addr: 0x69713be7(N/A) no of Args 1) 
[+] Call to user32.dll!GetSystemMetrics( Ret Addr: 0x69713b4e(N/A) no of Args 1) 
[+] Call to user32.dll!GetSystemMetrics( Ret Addr: 0x697150fb(N/A) no of Args 1) 
Process (pid 4798) was halted! 

(b) Halted attack using RPM

Figure 2. Execution of the Cerber ransomware

These samples cover both crypto- and locker-ransomware.
Windows 10 was used in these tests, given that it is currently
the most targeted OS. Figure 2a shows how the Cerber ran-
somware attack was successful when RPM was not deployed
while Figure 2b reveals the effectiveness of RPM in mitigating
the ransomware process. We also experimented with the other
ransomware families, but we omit the depiction of their similar
results due to space limitations.

This demonstrates that RPM can be easily deployed and
highly effective on real OSs. Furthermore, we ran additional
experiments to capture how RPM behaves on vanilla OSs,
without having access to any supplementary knowledge (i.e.,
by omitting the safelist APIs). Such experiments could be
considered as stress testing for RPM, given that typically
it operates using a safelist, as noted in Section III-B. We
employed the 100 ransomware samples in conjunction with
20 applications (representing common organizational software,
including browsers, file compression, office suit, media players,
etc.) and executed them on the Windows OS while RPM was
operating in an online fashion. We ran 5 iterations of this
experiment, by using randomly-selected, different ransomware
and benign applications each time and averaged the results.
Figure 3 demonstrates the obtained key performance metrics,
revealing that RPM successfully mitigated all 100 ransomware
samples, while generating only a single false positive.

Upon further inspection, it was discovered that the false
positive was related to how the compression software WinRaR
operates, which apparently generates a number of sensing
tactics, before it actually conducts its unzipping procedure.
Nevertheless, on production systems, this could be easily
remediated by either safe-listing WinRaR or just fine-tuning the
similarity threshold. From this experiment, it can be deduced
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Figure 3. Generated accuracy metrics without a safelist
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Figure 4. Impact of similarity threshold on the accuracy metric

that RPM, without auxiliary knowledge about its operating
environment, is quite effective in distinguishing between benign
and ransomware processes. This attests the unique rationale of
employing OS sensing tactics as a key premise within RPM,
to perform proactive mitigation of ransomware attacks, without
relying on the typical (and specific) attack payload signatures.
Similarity threshold. We were also interested in exploring
how the similarity threshold affects the accuracy metric. To
this end, based on the previous 5 experimental iterations using
random ransomware samples and benign applications, Figure
4 illustrates how the accuracy score fluctuates by modifying
the similarity threshold, on average. It can be inferred that a
reasonably strict threshold of around 0.8 yields the overall best
accuracy. Nevertheless, as noted earlier in this article, system
administrators have to take the final decision related to this
threshold based on their intrinsic network dynamics and their
risk tolerance levels, balancing false positives/negatives.

V. CONCLUDING REMARKS

In this paper, we introduced RPM as a complementary
host-based ransomware preventative solution. RPM is based
on the rationale that we can proactively prevent ransomware
attacks by turning innate ransomware activities against them.
RPM is based on two components, which work in-tandem to
accomplish the intended goals. While we discussed a number of
consideration and assumptions related to RPM and its modus
operandi, we also empirically demonstrated its effectiveness
and low system footprint on a real OS using an iteration of

its prototype. As for future work, we are currently enhancing
RPM’s implementation to make it fully automated, increase its
scalability and render it resilient to targeted service attacks.
We also aim at evaluating it on various Linux-based systems
along with experimenting it on the Contiki IoT-centric
OS; given that IoT devices have been recently reported to
also be an appealing attack vector to ransomware [17], as
these IoT sensors continue to be deployed deep within critical
infrastructure.
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