ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/362633990
INC: In-Network Classification of Botnet Propagation at Line Rate

Conference Paper - August 2022

CITATIONS READS
2 307
4 authors:
Kurt Friday Elie Kfoury
Florida Atlantic University University of South Carolina
9 PUBLICATIONS 112 CITATIONS 48 PUBLICATIONS 482 CITATIONS
SEE PROFILE SEE PROFILE
Elias Bou-Harb == Jorge Crichigno
) University of Texas at San Antonio % University of South Carolina
153 PUBLICATIONS 2,761 CITATIONS 121 PUBLICATIONS 1,511 CITATIONS
SEE PROFILE SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Project Explicit feedback for congestion control inScience DMZ cyberinfrastructures based onprogramable data-plane switches View project

Project Building a Cybersecurity Pipeline through Experiential Virtual Labs and Workforce Alliances View project

All content following this page was uploaded by Elias Bou-Harb on 11 August 2022.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/362633990_INC_In-Network_Classification_of_Botnet_Propagation_at_Line_Rate?enrichId=rgreq-18138c0bd63694392bc9ea6bf73e4894-XXX&enrichSource=Y292ZXJQYWdlOzM2MjYzMzk5MDtBUzoxMTQzMTI4MTA3ODc2NDU3OUAxNjYwMjM5ODI1ODYz&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/362633990_INC_In-Network_Classification_of_Botnet_Propagation_at_Line_Rate?enrichId=rgreq-18138c0bd63694392bc9ea6bf73e4894-XXX&enrichSource=Y292ZXJQYWdlOzM2MjYzMzk5MDtBUzoxMTQzMTI4MTA3ODc2NDU3OUAxNjYwMjM5ODI1ODYz&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Explicit-feedback-for-congestion-control-inScience-DMZ-cyberinfrastructures-based-onprogramable-data-plane-switches?enrichId=rgreq-18138c0bd63694392bc9ea6bf73e4894-XXX&enrichSource=Y292ZXJQYWdlOzM2MjYzMzk5MDtBUzoxMTQzMTI4MTA3ODc2NDU3OUAxNjYwMjM5ODI1ODYz&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Building-a-Cybersecurity-Pipeline-through-Experiential-Virtual-Labs-and-Workforce-Alliances?enrichId=rgreq-18138c0bd63694392bc9ea6bf73e4894-XXX&enrichSource=Y292ZXJQYWdlOzM2MjYzMzk5MDtBUzoxMTQzMTI4MTA3ODc2NDU3OUAxNjYwMjM5ODI1ODYz&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-18138c0bd63694392bc9ea6bf73e4894-XXX&enrichSource=Y292ZXJQYWdlOzM2MjYzMzk5MDtBUzoxMTQzMTI4MTA3ODc2NDU3OUAxNjYwMjM5ODI1ODYz&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kurt-Friday?enrichId=rgreq-18138c0bd63694392bc9ea6bf73e4894-XXX&enrichSource=Y292ZXJQYWdlOzM2MjYzMzk5MDtBUzoxMTQzMTI4MTA3ODc2NDU3OUAxNjYwMjM5ODI1ODYz&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kurt-Friday?enrichId=rgreq-18138c0bd63694392bc9ea6bf73e4894-XXX&enrichSource=Y292ZXJQYWdlOzM2MjYzMzk5MDtBUzoxMTQzMTI4MTA3ODc2NDU3OUAxNjYwMjM5ODI1ODYz&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Florida-Atlantic-University?enrichId=rgreq-18138c0bd63694392bc9ea6bf73e4894-XXX&enrichSource=Y292ZXJQYWdlOzM2MjYzMzk5MDtBUzoxMTQzMTI4MTA3ODc2NDU3OUAxNjYwMjM5ODI1ODYz&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kurt-Friday?enrichId=rgreq-18138c0bd63694392bc9ea6bf73e4894-XXX&enrichSource=Y292ZXJQYWdlOzM2MjYzMzk5MDtBUzoxMTQzMTI4MTA3ODc2NDU3OUAxNjYwMjM5ODI1ODYz&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elie-Kfoury?enrichId=rgreq-18138c0bd63694392bc9ea6bf73e4894-XXX&enrichSource=Y292ZXJQYWdlOzM2MjYzMzk5MDtBUzoxMTQzMTI4MTA3ODc2NDU3OUAxNjYwMjM5ODI1ODYz&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elie-Kfoury?enrichId=rgreq-18138c0bd63694392bc9ea6bf73e4894-XXX&enrichSource=Y292ZXJQYWdlOzM2MjYzMzk5MDtBUzoxMTQzMTI4MTA3ODc2NDU3OUAxNjYwMjM5ODI1ODYz&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-South-Carolina?enrichId=rgreq-18138c0bd63694392bc9ea6bf73e4894-XXX&enrichSource=Y292ZXJQYWdlOzM2MjYzMzk5MDtBUzoxMTQzMTI4MTA3ODc2NDU3OUAxNjYwMjM5ODI1ODYz&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elie-Kfoury?enrichId=rgreq-18138c0bd63694392bc9ea6bf73e4894-XXX&enrichSource=Y292ZXJQYWdlOzM2MjYzMzk5MDtBUzoxMTQzMTI4MTA3ODc2NDU3OUAxNjYwMjM5ODI1ODYz&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elias-Bou-Harb?enrichId=rgreq-18138c0bd63694392bc9ea6bf73e4894-XXX&enrichSource=Y292ZXJQYWdlOzM2MjYzMzk5MDtBUzoxMTQzMTI4MTA3ODc2NDU3OUAxNjYwMjM5ODI1ODYz&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elias-Bou-Harb?enrichId=rgreq-18138c0bd63694392bc9ea6bf73e4894-XXX&enrichSource=Y292ZXJQYWdlOzM2MjYzMzk5MDtBUzoxMTQzMTI4MTA3ODc2NDU3OUAxNjYwMjM5ODI1ODYz&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Texas-at-San-Antonio?enrichId=rgreq-18138c0bd63694392bc9ea6bf73e4894-XXX&enrichSource=Y292ZXJQYWdlOzM2MjYzMzk5MDtBUzoxMTQzMTI4MTA3ODc2NDU3OUAxNjYwMjM5ODI1ODYz&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elias-Bou-Harb?enrichId=rgreq-18138c0bd63694392bc9ea6bf73e4894-XXX&enrichSource=Y292ZXJQYWdlOzM2MjYzMzk5MDtBUzoxMTQzMTI4MTA3ODc2NDU3OUAxNjYwMjM5ODI1ODYz&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jorge-Crichigno?enrichId=rgreq-18138c0bd63694392bc9ea6bf73e4894-XXX&enrichSource=Y292ZXJQYWdlOzM2MjYzMzk5MDtBUzoxMTQzMTI4MTA3ODc2NDU3OUAxNjYwMjM5ODI1ODYz&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jorge-Crichigno?enrichId=rgreq-18138c0bd63694392bc9ea6bf73e4894-XXX&enrichSource=Y292ZXJQYWdlOzM2MjYzMzk5MDtBUzoxMTQzMTI4MTA3ODc2NDU3OUAxNjYwMjM5ODI1ODYz&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-South-Carolina?enrichId=rgreq-18138c0bd63694392bc9ea6bf73e4894-XXX&enrichSource=Y292ZXJQYWdlOzM2MjYzMzk5MDtBUzoxMTQzMTI4MTA3ODc2NDU3OUAxNjYwMjM5ODI1ODYz&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jorge-Crichigno?enrichId=rgreq-18138c0bd63694392bc9ea6bf73e4894-XXX&enrichSource=Y292ZXJQYWdlOzM2MjYzMzk5MDtBUzoxMTQzMTI4MTA3ODc2NDU3OUAxNjYwMjM5ODI1ODYz&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elias-Bou-Harb?enrichId=rgreq-18138c0bd63694392bc9ea6bf73e4894-XXX&enrichSource=Y292ZXJQYWdlOzM2MjYzMzk5MDtBUzoxMTQzMTI4MTA3ODc2NDU3OUAxNjYwMjM5ODI1ODYz&el=1_x_10&_esc=publicationCoverPdf

INC: In-Network Classification of Botnet
Propagation at Line Rate

Kurt Friday!, Elie Kfoury?, Elias Bou-Harb', and Jorge Crichigno?

1 The Cyber Center for Security and Analytics
The University of Texas at San Antonio, USA
{kurt.friday,elias.bouharb}@utsa.edu
2 Integrated Information Technology
The University of South Carolina, USA
{jcrichigno@cec, ekfoury@email}.sc.edu

Abstract. The ever-increasing botnet presence has enabled attackers to
compromise millions of nodes and launch a plethora of Internet-scale co-
ordinated attacks within a very short period of time. While the challenge
of identifying and patching the vulnerabilities that these botnets exploit
in a timely manner has proven elusive, a more promising solution is to
mitigate such exploitation attempts at core traffic transmission mediums,
such as within the forwarding devices of ISPs, backbones, and other high-
rate network environments. To this end, we present an In-Network Clas-
sification (INC) technique to fingerprint the spread of botnets at wire-
speed within busy networks. In particular, INC employs a unique bagging
classification system residing entirely within programmable switch hard-
ware in order to classify and subsequently mitigate bot infections amid
Thbps traffic rates. Additionally, INC immediately pushes the data plane
features of mitigated bots to the controller to infer botnet orchestration
in real-time via behavioral clustering. INC was comprehensively evalu-
ated against several datasets and achieved state-of-the-art results while
reducing the detection times of comparable techniques by several orders
of magnitude. Further, we demonstrate that INC can generalize well to
previously unseen botnets.

Keywords: Bot detection - Botnet inference - Machine learning - En-
semble learning - Bootstrap aggregation - Bagging - Network traffic clas-
sification - Programmable switches - P4.

1 Introduction

Botnets have long been the key means of executing various Internet attacks,
including Distributed Denial of Service (DDoS), spam, cryptojacking, identify
theft, phishing, and more recently, ransomware. Despite numerous research ef-
forts devoted to safeguarding modern-day networks against this coordinated ma-
liciousness, botnet malware infections persist as one of the primary security con-
cerns as outbreaks continue to escalate in both frequency and volume [1]. Indeed,
it has been empirically demonstrated that a single botnet can infect upwards of

2 K. Friday et al.

a million devices in a very short period of time [2]. Moreover, it is possible for
enterprises to now be held liable for any attacks that their infected machines may
conduct [6], despite the fact that such infections can occur without the network
operator’s knowledge [36].

A number of factors have amplified the spread of botnet malware; however,
none of these factors are more fundamental to its propagation than the enhanced
reachability of computing devices in general. Furthermore, the bots of a botnet
typically have short lifetimes (e.g., a few days) due to patching procedures, mal-
ware detection mechanisms, etc. [31], so it is essential for a botnet to exploit this
reachability to remain healthy. Thus, the most effective means of safeguarding
the Internet at large against botnet infections is by eradicating the propagation
of botnet malware at the Internet’s core transmission mediums, namely, the data
planes of ISPs, BackBones (BBs), Science DMZs, and other high-rate network
environments. Additionally, it is paramount that detection is performed swiftly,
given the speed at which botnet infections can propagate.

To this end, a number of botnet detection techniques employing network
traffic analysis have been proposed; however, the state-of-the-art techniques still
must be conducted at a time later than when the traffic was transmitted. Largely,
these approaches are based on software that processes packet captures or flow
data in an offline manner. Notably, software is incapable of processing the large
traffic loads of the aforementioned high-rate network implementations without
severe throughput degradation or even crashes [37]. Hence, software-centric ap-
proaches can not support broad-scale botnet detection or are tightly coupled
with substantial detection latency.

Alternatively, a few approaches extract the features of traffic flows from the
data plane’s switches. As opposed to software, switch hardware is capable of
handling high rates of network traffic. Then at a later predetermined point in
time, the flow features are collected by a centralized machine (i.e., a controller)
that fingerprints bot traffic. While this leveraging of the data plane is commend-
able, there are still research gaps that exist. In particular, these strategies rely
on aggregating an abundance of flow data, which is both time consuming and
taxing on a switch’s limited storage. Moreover, the centralized detection may
result in network congestion [32] and additional delays due to discrepancies be-
tween when the data collection for a malicious flow has completed in the data
plane and when the detection is actually performed on the controller. Addition-
ally, past implementations do not scale well to busy core networks that typically
must process millions of unique IP addresses within very short periods of time
and support asymmetric routing (i.e., bidirectional flow features cannot be uti-
lized). Finally, while the aforementioned strategies fingerprint bots, they do not
identify coordination between them. As a result, such strategies fail to provide
key insights pertaining to specific services or previously-unknown vulnerabili-
ties that should be hardened, future coordinated attacks that can expected and
therefore provisioned for, etc.

To address these research gaps, we propose INC, an in-network classification
scheme rooted in P4 [4] that not only extracts relevant features but also performs

INC: In-Network Classification of Botnet Propagation at Line Rate 3

bot detection entirely within the data plane via the programmable switch tech-
nology. In particular, INC instruments such switches with an Adapted Switch
Classification (ASC) technique, which circumvents the aforementioned pitfalls
associated with centralized detection strategies. ASC was constructed in a com-
pact manner for high-throughput switches (supporting up to 25 Tbps traffic pro-
cessing [13]) and to run alongside a variety of other essential switch applications.
To the best of our knowledge, INC is the first full-fledged, switch-based classi-
fication methodology (i.e., the extraction and subsequent storing of features,
followed their classification) that is conservative enough with the switch’s lim-
ited resources to allow the concurrent execution of switch’s required forwarding
and telemetry applications. Further, INC requires a small number of unidirec-
tional packets from a source IP address to detect if it is a bot, which enables both
asymmetric routing implementations and detection speeds that are many orders
of magnitude faster than the state-of-the-art. Additionally, INC is equipped with
a novel data structure for the storing of granular per-IP features necessary for
accurately fingerprinting individual bots amid the millions of IPs that busy core
network environments process in short time windows. Lastly, INC transmits the
features of bots upon detection to the centralized controller in order to attribute
the presence of botnet campaigns in real time.

INC was comprehensively evaluated amid a variety of noteworthy datasets.
We demonstrate that INC not only achieves an Fl-score of 0.99 for bot classifi-
cation on the test split of the training data but also performs similarly on botnet
datasets it has not observed. We also conducted a comparison with state-of-the-
art approaches that rely on features extracted from the data plane, certifying
that INC performs similarly or better than such resource-intensive, centralized
Machine Learning (ML) classifiers. Finally, we show that INC can also detect
the presence of botnets with an accuracy of 99%.

The core contributions of this work are highlighted as follows:

— We offer INC as a first-of-a-kind means of mitigating botnet propagation and
inferring orchestrated botnets at wire-speed via the newfound programmable
switch technology. INC was specifically tailored towards busy network imple-
mentations to address the botnet epidemic at scale and to fingerprint such
maliciousness within a fraction of the time of past approaches. To facilitate
future cybersecurity advancements in this domain, we make all source code
publicly available, as well as a variety of code for conducting associated data
analysis tasks [19].

— We propose a novel conversion of the Decision Tree (DT) data structure
(i.e., ASC) to allow it to be placed entirely within the switch with sufficient
resources to spare for several other data plane applications. To the best of our
knowledge, this has never before been achieved. Additionally, practitioners
can leverage ASC to perform a variety of other ML applications on the
switch.

— We perform a comprehensive evaluation of INC on several notable datasets
and show that INC is, at minimum, as effective as the state-of-the-art ML
approaches for bot detection and similarly effective on unseen data.

4 K. Friday et al.

The remainder of the paper is organized as follows. In the following section,
we begin by introducing the threat model for this work. In Section 2, we present
INC and detail its various intricacies. Subsequently, Section 3 encompasses a
comprehensive evaluation of INC to verify its effectiveness and compare its per-
formance to the state-of-the-art. In Section 4, we review the related literature.
Finally, we conclude this work and summarize its findings in Section 5.

1.1 Threat Model

We begin by first elaborating upon the threat model for which INC was designed.
Ultimately, our threat model is based on modern and prominent botnet malware.
In general, such malware may explicitly target Internet of Things (IoT) devices,
typical environments such as workstations, or both. In turn, we do not make any
assumptions about these botnets’ modus operandi, other than it they will have
to emit network traffic to achieve their aim. This traffic may include varying
degrees of propagation attempts and exchange of information with a Command
and Control (C&C) server. We address these variations in the traffic in differ-
ent strains of contemporary botnet malware by only considering a particular
sequence of packets to be malicious if it contains some attempt at propagation
or C&C contact. This technique accounts for the fact that infected nodes will of-
ten still be performing their typical duties and therefore be transmitting benign
traffic as well. Such a sequence of packets is referred to as pgpresn herein.

In terms of deployment, the switch in which INC resides must be on the
path of the aforementioned malicious traffic in order to detect it. For example,
an ISP could protect its business and residential consumers by placing INC on
the paths utilized by their traffic, as these entities are typically associated with
the vulnerable IoT devices and workstations that botnets exploit. Whether such
paths with the highest coverage are within the core layer or elsewhere can very
depending upon the given network fabric. That said, the small pipresp nUM-
ber of packets that INC requires to accurately fingerprint a bot circumvents
the need to consider collaborative detection with choosing a placement strategy.
Furthermore, with INC’s reliance upon a small pip.esp and no recirculations,
any forwarding scenarios for a given topology where one INC-empowered switch
might observe some of the same traffic as another will have no impact on clas-
sification performance. Finally, INC does not require controller aid to perform
detection or bidirectional flow analysis. Indeed, the aforementioned advantages
coupled with the cost benefits of leveraging programmable switches [37] enable
INC to support any number of placement options and strategies.

2 Proposed Approach

In this section, we present INC’s methodology for detecting isolated bots and
performing botnet campaign inference. In particular, an overview of the pro-
posed approach is discussed to offer intuition about its modus operandi. Next,

INC: In-Network Classification of Botnet Propagation at Line Rate 5

the four primary components of INC are highlighted, namely, the Register Re-
cycling Manager (RRM), feature aggregation, ASC, and botnet inference. Fig.
1 visualizes these components (denoted with blue) and INC’s overall flow of ex-
ecution. We kindly refer interested readers to our publicly available source and
data analysis code [19] for additional details pertaining to the implementation
of INC.

2.1 Overview

xxT1 1. L T T | . 1 . i) 1 B} I R .

and (2) originating from the
source IP IPgource Of a bot
" can be fingerprinted, the
faster any further propaga-
tion of the botnet can be mit-
igated and any future mali-
cious acts that it may perform
OAW o 5 can be prevented. To this ex-
@@ ?)3 Qo tent, INC aims to dramati-
Botnet POer— cally reduce number of pack-
ets from a particular I Psoysce
Fig. 1: Overview of INC. The primary components are high- that are reqUired to detect
lighted in blue, which correspond to subsections in Section traffic types (]_) and (2) As
= portrayed in Fig. 1, this aim
is achieved by ASC’s classification on features aggregated by INC’s Feature Ag-
gregation component over a reduced window of pip,esp consecutive packets from
such an I Pgyypce-

The challenge with storing the aforementioned aggregated features associated
with every I Psource in @ high-rate network environment that observes many IP
addresses is that the switch does not house nearly enough SRAM storage to
support such an endeavor. For instance, even if slots of SRAM could be allocated
for the feature aggregation of, say, 200K different IPsyce values, that is still
far less than would be needed to account for the millions of I Ps,yce values that
could arise in backbone environments. INC mitigates this issue with the RRM,
which promptly frees-up such limited slots so the switch can begin aggregating
the features of newly-arriving I Py rce values immediately; otherwise, the latency
before a newly-arriving bot I Psgyrce receives a slot may allow further infections
and other maliciousness to take place prior to detection.

Once the pipresn window for an I Pjsqyrce has concluded, ASC endeavors to
classify whether traffic types (1) and (2) are present in the window of packets
via the via the aggregated features, in order to determine if the IPsyyrce is a
bot or benign entity. However, since novel botnets are increasingly surfacing

Switch
(0
i\

x]
s
8
=
Q
Z

Hash(IP g,

Controller E

6 K. Friday et al.

and their techniques for performing malicious behavior are constantly evolving,
an ML model trained on a few botnets can quickly become obsolete. As such,
a primary aspiration of ASC is to generalize well to botnet data that was not
observed during the training process. In turn, ASC employs a bagging technique
based off shallow DT learners that are learned in parallel via bootstrapping and
their predictions act as votes towards classifying whether an I Pg,yce 1S a bot
or benign. Since the DT learners are shallow, they offer a dramatic reduction
in variance, which promotes ASC’s ability to generalize to botnets that it was
not trained on. However, the combination of the learners being shallow and that
DTs are trained in a greedy fashion can lead to bias. To address this issue,
we propose a feature selection technique that mitigates such bias by identifying
aggregated features that are ideal for binary classification and generalization
to unseen data. In the event ASC classifies an [P,y ce as a bot, the I Psyyrce
is considered mitigated as its traffic can be easily blocked or monitored at the
discretion of the network operator. Additionally, the bot’s aggregated features
are immediately pushed to the controller to attribute the IP;,yrce to a botnet,
as portrayed in Fig. 1. At this juncture, the controller performs a behavioral
clustering procedure on such features with those from other attributed bots to
fingerprint occurrences of coordination. Indeed, such behavioral analysis is a
strong indicator of orchestrated botnets [22].

2.2 RRM

The RRM is positioned within INC’s flow of execution as shown in Fig. 1 and
has the primary task of mitigating any bot detection delays for a newly-arriving
bot’s I Psoyuree due to all SRAM slots being occupied. The RRM addresses this
issue by freeing-up a slot on an as-needed basis so that INC can begin aggregat-
ing such a bot’s features over its pinresn packet window. In a similar vein, the
freeing-up of slots on an as-needed basis also promotes utilizing a smaller pool of
slots to consume less SRAM registers within the switch. As portrayed in Fig. 1,
an I Pyyrce is first hashed before reaching the RRM. The hashing is performed
by a 32-bit Cyclic Redundancy Check CRC32 algorithm, as CRC is computation-
ally inexpensive and readily available in many high-speed networking devices,
particularly in Intel Tofino switches [12]. This CRC32 hashing procedure returns
an array index I P;4, that enables INC to map each I P,y ce to its corresponding
features that are stored in SRAM Register Arrays (RAs). The set of all registers
located at IP;q, within such RAs act as the slot for a given IPsyypce-

Collisions. Utilizing a smaller pool of slots can result in additional IP;4, col-
lisions. However, the CRC32 hashing algorithm uniformly distributes each IP;q,
throughout the RAs (as opposed to using a portion of the I Pypyrce as an I Pig;)
and thereby reduces such collisions. A collision can result in a benign source
being wrongly fingerprinted as malicious (a false positive) or even allowing a
malicious source to appear benign (a false negative). The only guaranteed way
of negating collisions entirely is for INC to store the IPs,yrce currently using
every 1Py, to compare against the I Psyy.ce of any incoming packets with the
same I P;4;. Thus, we employ such a measure via storing each I Ps,yce at index

INC: In-Network Classification of Botnet Propagation at Line Rate 7

1P;4, within RA;p, as shown in the RRM design portrayed in Fig. 2. This fig-
ure follows the convention of utilizing a subscript p for data associated with the
previous I Psyyree held at I P4, and a subscript ¢ for that of the newly-arrived
IP;ource that is currently being processed. Note that all RAs, both within the
RRM and the subsequent Feature Aggregation component shown in Fig. 1, have
a predetermined size RAg;.., which is later evaluated in Section 3.4.

Priority groups. To free-up a slot for an incoming I Psyqypce, Priority Groups
(PG) are inteorated into the RRM to determine when to recvele the RAS’ reois-
ters locatec

array at ev

to such IP;

a priority -

maintains a timestamp

RA to control how long pues
an IP,,,ce should be
allowed to occupy a slot I,
in the event it has a

‘ hashyy(192.158.1.38) }—“ 110...100010010100001 1 1 m‘ Evict
2 192.158.1.12

Priority
Discrepancy?

Expired?

No
RA;

benign, timeout,

priority value of 0. Ad- 192.168.1.2 1110000...110
ditionally, note in Fig, Example data 192.158.1.12 1011111010
2 that CRC32 is apphed pi 192.158.1.12 192.18.1.122 1001100...001

¢:192.158.1.38 192.168.21.55 1011110...101
as Opposed to CRC16 i\lf‘;rﬁ;:;ls(‘zv?;[‘h(i«lsthw 192.168.1.198 1101100...000

because five additional
bits are needed to iden-
tify the PG index at the given I P4, RA location.

Fig. 2 visualizes an example operation of the RRM. In this example, I Psource,
192.158.1.12 has been blocking IP;4, 8,784 while its features have been aggre-
gating until its pspresn packet window has been reached to trigger classification.
However, another packet with an I Poyrce, 1192.158.1.38 sharing the same I P;q,
of 8,784 has just arrived. Since IPsource, # IPsource., IPsource. Will replace
I Psource, and all other RA locations at IPjq, will be recycled for IPsource,,
given I P;uyrce, has a higher priority of 0. Note that if there was no such priority
discrepancy, IPsource, would still be evicted for IPsource, if timestamp, was
expired.

Fig.2: RRM design.

2.3 Feature Aggregation

As depicted in Fig. 1, once the RRM has established the I Psgyce to be consid-
ered, the switch then performs the aggregation of its features and stores them
at I P;4, within the feature RAs. Prior to selecting a final feature set that INC
will be tasked with aggregating per-IP;,yrce, We first formulate a pool of po-
tential features. Note that since programmable switches cannot inspect packet
payloads without performance penalties [14], INC only aggregates features that
can be derived from network and transport layer headers, as well as metadata
such as timestamps, using simple operations that switches can easily support.
Thus, we applied either counts or summations to a particular header field h over

8 K. Friday et al.

Pihresh tO arrive at such a pool. More formally, we employ Eff;{“h h,, for sum-
mations and > "1 f},(h,,) for counts, where header function f,(hy) returns a
value of 1 or 0 depending on whether a condition on h,, is met or not. In general,
header fields that do not generalize well (e.g., IP addresses) were not considered
as features. An exception was a feature we devised called alternating dst,
where f1,() receives the h,, of destination IP d_ip,, within packet n and returns 1
when d_ip,, # d_ip,—1. Indeed, alternating dst may indicate that an I Psyyrce
is probing for vulnerable nodes to infect or endeavoring to contact its C&C
server.

Subsequently, we aim to select the features from the aforementioned gener-
ated pool that will generalize well to unseen data when applied to ASC’s shallow
learners. To this end, we identify each feature g; whose discrete Probability Den-
sity Function (PDF) fyotnet; (Xg,;) for a botnet dataset i of data samples X has
a maximum amount of overlap with other botnet datasets and similarly has a
PDF fienign, (Xg].) for a benign dataset ¢ with a maximum amount of overlap
with other benign datasets. At the same time, such overlap should be minimized
between all fyotnet, and fpenign, to promote binary classification performance.
Recall that a g; value for a given data sample z is actually an aggregation of
this g; value over pipresn consecutive packets.

We define this measure of overlap n(f1(), f2()) between two discrete PDFs
£10) and f2() as n(f10), £20) = Sp min((@), fa(er). where 5 falls within
the range [0, 1]. The X inputs are divided among equally-distributed bins ranging
from the first to last input x of f1() U f2() and set |bins| = min(num_inputs, 1024),
where num_ints is the number of such z inputs in f1() J f2(). Note this overlap
measure does not make any assumptions about underlying feature distributions,
which can limit the use of this measure in practice [21].

To arrive at the final n for each feature g;, arithmetic means are taken for
each of the (%) (fi(), f2()) pairs in the botnet and benign datasets to arrive
at Mpotnet AN Npenign, respectively. Next, a minimal n(fisotnet()s fivenign()) is
sought after, where fijiotnet() and fijpenign() are the unions of the g; distri-
butions within the botnet and benign datasets, respectively. We set 7finar =
Mootnet /4 +Mbenign /44 1=1(fUvotnet 0:fUbenign0)/2, and select the largest m 1finq val-
ues to obtain m features to apply towards ASC’s training. Note that 7¢inq was
formalized in this manner, since Npotner and Npenign share equal importance re-
gardless of the number of datasets encompassed by each, and the maximization
and minimization operations should also be treated equally.

2.4 ASC

As portrayed in Fig. 1, features processed by INC’s Feature Aggregation com-
ponent are subsequently leveraged by ASC to classify a given IPgyypce stored
at IP;4,. ASC is based on a methodology for transforming Decision Tree (DT)
classifiers to programmable switch data structures that perform classification in
two stages. This methodology is in stark contrast to performing DT traversals
sequentially, which exhausts numerous stages within the switch and therefore is

INC: In-Network Classification of Botnet Propagation at Line Rate 9

not practical or even feasible in many scenarios. To offer some intuition, a sim-
plified overview of this transformation using only two features is given in Fig. 3.
After the controller performs training of a decision tree, it uses the values that
the features are compared against (x; and y; in Fig. 3) within the DT’s nodes as
decision boundaries for each feature. The Range Interpretation of Fig. 3 gives a
visualization of how ultimately these decision boundaries divide shaded ranges
that translate to classifications.

To arrive at such classifications on the switch, the first stage of ASC is used
to identify within which decision boundary-based ranges the features reside.
This is achieved by applying a Match-Action Table (MAT) for each feature in
order to map it to an integer that uniquely identifies a given feature’s range,
as shown in Fig. 3. Additionally, note that there are no dependencies between
fantiivno 1tilimine ACQ0 vmnthadalacsr and thavafarva thaon fantiira +ahlac avn e

m
o-
n.

Since ASC performs binary

e e bot detection, observe that it
. Trained tree ' '

: : also reduces the number of
, """"""""" “““ > classification MAT entries by

’ ’ only matching upon the inte-
gers that translate to a sin-
. gle class and letting any other
(=) % input that does not match
o ® ® Default to the other class.
When extending ASC to mul-

3. Match-action conversion

RAf, f, Match-action table
Range | Return integer
[0.x) 1 Classification table tiple DTs within a bagging
et — bast [T Rewrn class ensemble, the ranges of each
Default] 0 L = ! feature are combined over all
RAf, f, Match-action table 2.2 1 Bot .
Range [Return integer 35 1 DTs, ensuring that there are
[0.y) i 35 I
oval 2 bemii |0] ——semien 110 OVerlaps between ranges so
, ®) 3 . .
e B each combination of the fea-

ture MATS’ return integers
correspond to only one entry
in the subsequent classification MAT. For instance, if an overlap of two ranges for
a particular feature is identified, the overlap is split into three adjacent ranges.
To evaluate ranges in P4 MATSs, ternary, lpm, or range match keys can be
leveraged. Indeed, the embedding of ASC’s methodology within MATs allows
the classifier to be updated on the fly, such as when new botnet intelligence
arrives, because the controller can populate each of the MATs with the match
keys and return values during runtime.

Fig. 3: ASC’s parallel execution strategy.

In order to train ASC effectively, we first extract consecutive packets for dif-
ferent pipresn values from each benign and botnet IPsyce within the datasets
covered later in Table 1. As infected machines often transmit legitimate traf-
fic as well, we only label a piresn sequence of packets originating from a bot

10 K. Friday et al.

I P;ource as malicious if it contains at least one packet tied to the given botnet
malware (e.g., a packet that is probing for vulnerabilities, executing malicious
commands, attempting to contact a C&C server, etc.). Once such labeling was
performed on the datasets, ASC was trained on the controller via Gini impurity
and the features identified by leveraging the aforementioned feature selection
strategy proposed in Section 2.3. Additionally, Grid Search was executed on
the number of shallow learners in the bagging ensemble and their depth, with
the aim at minimizing such depth for generalization purposes. Ultimately, utiliz-
ing weighted decision stumps for the features syn_flag count, ack_flag count,
tcp-flag sum, alternating dst, eth_size_sum, and ip_-id_sum gave the ideal
trade-off between classification performance and a minimal depth of the shallow
learners. Note that weighting is accounted for by the controller when populat-
ing the classification MAT, and therefore ASC’s P4 implementation requires no
modifications in order to integrate such weighting.

2.5 Botnet Inference

The controller performs a two-phase clustering procedure on the aggregated
features of a bot that are pushed by the switch immediately after it is detected,
which is shown in Fig. 1. Such procedure is executed at each interval I, with
the length of I being dependent upon the controller’s available resources and
time constraints of the given implementation. Recall that at this juncture, any
propagation attempts by the infected IPsyyce have been halted by the switch.
HDBSCAN [18] is leveraged for both clustering phases, as it shares many of the
core advantageous of hierarchical clustering and its predecessor, DBSCAN [28],
yet has undergone several optimizations. Such optimizations include an ability to
work with arbitrarily shaped clusters of varying sizes and densities, and enhanced
speed. Phase-one entails clustering the bots’ behaviors based on the aggregated
features used by ASC for classification. Alternatively, the phase-two clusters
each of the phase-one clusters by destination ports. To provide the ports for the
phase-two clustering, the switch stores the top three most targeted ports by every
I Pyouree, which necessitates three more RAs, respectively. Note that these ports
are note applied to bot classification by ASC, since the I P,y has been classfied
as bot, it is expected that the top ports will correspond to the services that the
bot is leveraging for malicious acts. Past research has empirically demonstrated
that most botnets will target between one and five ports [9,34]. Therefore, three
ports is reasonable to capture the breadth of the port targeting behavior of an
IP,,urce yet conserves the switch’s SRAM. The end result of this two-phase
clustering procedure are robust clusters of botnet campaigns.

3 Evaluation

In this section, we evaluate INC extensively to asses its efficiency and effective-
ness. Results are reported by way of confusion matrices and accuracy, as well as
F1-scores to measure classification results with imbalanced data.

INC: In-Network Classification of Botnet Propagation at Line Rate 11

Testbed. The environment setup consisted of four Intel Xeon Silver 4114 ma-
chines. Each machine functions off 32 CPUs at 2.20GHz, underneath Debian
GNU Linux 9. Additionally, an Edgecore Wedge 100BF-32X [20] switch pro-
grammed with P4 was employed to forward traffic between the four machines.
The switch was designed for high-performance data centers with programmable
Tofino switch silicon and encompasses 32x100 Gbps ports which equate to a

throughput processing capacity reaching 3.2 Tbps. The datasets utilized for the
following experiments are detailed in Table 1, where a synopsis of each is given.

[Source [Description [Size |
Benign A large group of benign packet captures of the P2P applications |62 GB
P2P [23] Skype, eMule, FrostWire, pTorrent, and Vuze
General benign|An aggregation of 18 benign packet captures including a variety |9 GB
data [30] of traffic, such as HTTPS interactions, DNS requests, and P2P.
CAIDA BB/ A large set of packet captures containing anonymized Internet BB|[50 GB
traffic [5] traffic from CAIDA
Mirai bot-|Packet captures from a medium-sized IoT network infrastructure|813 MB
net [11] consisting of 83 IoT devices
Bashlite botnet |Packet captures extracted from a medium-sized IoT network in-|{531 MB
[11] frastructure consisting of 83 IoT devices
Trickbot bot-|Three packet captures corresponding to three Trickbot-infected|452 MB
net [30] machines targeting both non-IoT and IoT devices
Dridex botnet|Five packet captures from five variations of the Dridex botnet|261 MB
[19] malware, respectively, that were executed in a Triage sandbox [24]
consisting of non-IoT devices
Emotet botnet|Four packet captures from four variations of the Emotet botnet|319 MB
[19] malware, respectively, that were executed in a Triage sandbox [24]
consisting of non-IoT devices
Neris bot-|[Packet captures extracted from 10 non-IoT devices encompassing |97 MB Neris,
net [10] benign traffic and Neris botnet samples utilizing IRC, ClickFraud, |52 GB benign
and SPAM
CAIDA SIP-|Samples of each UDP probing packet targeting port 5060 captured [425 MB
scan [8] by the CAIDA /8 network telescope

Table 1: Synopsis of the incorporated datasets.

The underlying motivation for selecting these botnets was to establish a represen-
tative sample of both IoT and non-IoT botnets. For instance, Mirai and Bashlite
were chosen as IoT botnets because the majority of IoT botnets were found to be
derived from them [7]. The controller performed ASC’s training and subsequent
deployment to the Tofino hardware switch. Next, the packet captures listed in
Table 1 were replayed by three Linux machines through the Tofino switch us-
ing tcpreplay, which forwarded the packets to the fourth Linux machine that
doubled as both the destination entity and controller. The primary function of
the the fourth Linux machine was to aggregate the results of the experiments.
Ultimately, as we are evaluating the unidirectional classification capabilities of
INC in a high-rate forwarding environment, the environment was designed to
transmit the packet captures though the switch simultaneously, while ensuring
the interarrival times of the packets within the captures were respected.

3.1 Bot Detection

pktipresn assessment. A small pktipresn allows INC to dramatically reduce de-
tection latency, improve RRM register recycling, and circumvent the overhead as-

12 K. Friday et al.

sociated with network-wide traffic statistics aggregation. In turn, we first endeav-
ored to identify the optimal pktp,csn value. To this end, it should be noted that
infected hosts may also have a number of benign processes transmitting traffic.
Moreover, multiple hosts behind Network Address Translation (NAT), say, one
infected host and several benign, may appear as one IP to a switch on an external
network. Thus, to evaluate INC’s ability to handle such circumstances, we also
interleaved with the collection legitimate benign traffic [30] mentioned in Table 1
at different interarrival time ranges, namely, [0.0, 0.55), [0.55, 1.0), [1.0, 5.5), and
[5.5, 10.0) milliseconds. Subsequently, once

ASC was trained on 70% of data, an evalu- 5057099099 100038100 1001000 90571 [N
ation of pktip,esn over these interarrival time — seshice (EESECIRIERIPRIERIERIPRIPRIPHILLY l
ranges was performed. The Fl-score achieved — micoo SRR R ER LI LU X ST
by INC, along with the Base rate with no crepu(EIERIREIERINRHTE. |
additional benign traffic interleaved (several — e °-3‘°-31M09609509“99”99”9”99
botnet datasets already have intermittent be- Ol e O O =5 125 -9 .09 1 00 028 08
nign traffic), is offered in Fig. 4.a. Tt can o i
be observed that while there is subtle per- TR e me s
formance degradation with increased rates,

the Fl-scores still remain relatively consis-U
tent, with pinresn = 20 giving the best per-

formance. Py wom B
Generalization to unseen botnets. Given ws» 0490-600»950-%0991001-0001980»%0-99
that new botnets are consistently surfacing,
INC should also be able to effectively gener-
alize to such unseen botnet traffic. To asses

[0.55, 1) -{UEd] 0.55@0.92 0.970.98 0.99 0.99 0.98 0.97 0.97

[N 0.49 0.52 (V] 0.90 0.96 0.98 0.98 0.99 0.97 0.97 0.96|

1 2 3 4 5 10 15 20 30 40 50

INC'’s ability to do so, we iteratively removed Pehresh
one botnet dataset from the training data and (b) Unseen botnet generalization.
then tested the trained ASC model on the bot- Fig. 4: Evaluating INC amid varying

net dataset that was held out. Since there is Pt"7es"-

only one label in the test set in this scenario, accuracy was utilized to depict
INC’s performance in Fig. 4.b. As shown, while the less aggressive nature of
Trickbot and Neris gave INC trouble for the first four pktipresn, whereas INC
generalized near perfectly (rounding is performed for visualization purposes) by
pktthresh = 20.

3.2 Botnet Inference

We substantiated INC’s ability to attribute bots to botnets by evaluating the
clustering performance of the first 20K bots for each botnet that were finger-
printed by ASC in Section 3.1. Additionally, we utilized pktipresn = 20 as it
gave the best performance and the Base rate to ensure a more controlled ex-
periment. The results of this evaluation are given in the Table 2. As shown, the
majority of the bots were attributed to their respective botnet. The bulk of the
misclassifications were associated with Mirai, which were largely due to Mirai’s
high-variance behavior falling in between that of Bashlite and Trickbot. For ex-
ample, the mean interarrival time for Mirai was approximately 3.165 seconds,

INC: In-Network Classification of Botnet Propagation at Line Rate 13
[Mirai [Bashlite |[Trickbot [Dridex [Emotet [Neris [SIPscan[Outliers |

19,524 417 0 0 0 0 0 159
0 20,000 0 0 0 0 0 0

0 0 19,669 49 177 7 0 78
0 0 52 19,911 6 0 0 31
0 0 23 40 19,908 16 0 13
0 0 0 8 16 19,968 |0 8

0 0 0 0 0 0 20,000 |0

Table 2: Botnet Inference Results

versus roughly 0.000041 and 40.01 seconds for Bashlite and Trickbot, respec-
tively. To add to the confusion, both Mirai and Bashlite heavily target Telnet
port 23, which is why a number of Mirai samples were clustered as Bashlite. Re-
call that INC’s phase-two clustering is strictly performed on destination ports,
which is why Mirai’s other misclassifications were considered outliers since Bash-
lite is the only other botnet that shares a common destination port. A similar
occurrence can be observed between the botnets that rely on non-IoT devices
due to their interaction with destination port 443. That being said, INC still
achieved an overall accuracy of 0.9927 for this evaluation.

3.3 Comparison with Existing Solutions

While there are no other bot detection techniques that solely use the data plane,
we identified three notable works to compare INC against that apply features
extracted from the data plane to controller-based classifiers. The first of such re-
search efforts was the recently-proposed FlowLens [3]. FlowLens extracts quan-
tized sequences of both interarrival times and packet lengths as features for
control plane-based ML algorithms. Within their use cases, the authors demon-
strated the ability of such features to enable botnet chatter detection when using
a Random Forest (RF) running on the controller. The second approach we com-
pared INC against is coined EDIMA (Early Detection of IoT Malware network
Activity) [16]. EDIMA relies on header-based features that can be applied to
traditional data plane applications, namely, the number of unique destination
IP addresses and the minimum, maximum, and mean of the number of packets
sent to each destination by a particular source IP. EDIMA also applied an RF,
as well as a K-NN and naive Bayes classifier. The final work we compared INC
to is a technique presented by Letteri et al. [17] that inputs 22 data plane-based
traffic features into a Deep Neural Network classifier (DNN). Note that all of
these works were geared towards identifying the presence of bots on a network
and not coordination between them (i.e., botnets); therefore, we only compare
these works to our ASC implementation.

The best implementation of each of the aforementioned works was used for
this evaluation, as specified in each paper. Two comparisons were then per-
formed for all models: (1) a performance evaluation on the test split of all
datasets and (2) an assessment of how well each model can detect botnets it
has not observed during training. Specifically, all datasets listed in Table 1
were trained upon for comparison (1), and the same setup that was applied
to INC’s generalization evaluation in experiment 3.1 was utilized for compar-
ison (2). Regarding both FlowLens and EDIMA, an RF with 1024 trees gave

14 K. Friday et al.

the best results and was therefore applied. For the DNN presented by Let-
teri et al. [17], seven hidden layers containing 44, 88, 176, 88, 44, 22, and
11 neurons, respectively, were utilized. The Adam optimizer [15] was also em-
ployed for training this DNN, along with a learning rate of 0.001, batch sizes
of 100, and ten epochs. The results for comparison (1) are listed in Table 3.

As can be observed, ASC outper-

[Work [Observed F1[Unseen F1 | formed the other more complex
FlowLens [3] 0.9818 0.0000 ML algorithms running on the
EDIMA [16] 0.8870 0.0000 controller for the observed data,
Letteri et al. [17] 0.6677 1.000 . .

INC (our approach) |0.9907 0.9961 which we largely attribute to the

features that INC leverages. Tim-
ing comparisons were not made
as the other works all require the
control plane for classification, and no details were given pertaining to when the
controller executes the ML algorithms (e.g., running batch classifications upon
expiring time windows, etc.).

Comparison (2) revealed a much larger disparity in each model’s perfor-
mance when fingerprinting bots whose data was not previously trained upon, as
displayed by the mean Fl-scores in Table 3. Interestingly, both FlowLens and
EDIMA performed poorly. This is notable when considering that these state-of-
the-art techniques leverage RF's, yet INC’s decision tree-based approach achieved
good results; thus, it is clear that this degradation of accuracy is not due to
FlowLens and EDIMA’s model selection, but rather their data preprocessing.
This preprocessing entails aspects such as the length of the flow duration re-
quired (e.g., an hour in the case of FlowLens), features utilized, and so forth.
Alternatively, it appears that the DNN implementation proposed by Letteri et
al. performed markedly well at first glance; however, it is apparent from Table
3 that such performance is due to this model’s tendency to classify all samples
as malicious.

Table 3: State-of-the-art bot detection comparison re-
sults.

3.4 Deployment Microbenchmarks

Hardware resource usage. The resource utilization of INC when compiled
on the Tofino switch is listed in Table 4. As can be observed, INC consumes
very little resources. For in-
stance, the TCAM utilization
which is leveraged for the
ASC’s parallel feature MATSs
Oﬂly consumed 3.3% of that Table 4: Tofino hardware resource utilization.
available. Moreover, the en-

tirety of INC’s operations occupied only four stages, which allows a number of
other P4 applications to run alongside it. Finally, INC maintained a low SRAM
consumption of 10.00%, which we attribute to the RRM enabling the use of
small RAs.

RRM Analysis. To effectively evaluate the RRM implementation, we assessed
over 50 GB of real BB traffic provided by CAIDA [5] for 25 minutes. The results

Hash ’Gateway’SRAM ‘ALU ‘TCAM ‘Stages
bits

[10.48% [12.50% [10.00% [0.00% [3.33% _[4.0]

INC: In-Network Classification of Botnet Propagation at Line Rate 15

from this analysis are shown in Fig. 5.a and Fig. 5.b. Note that smoothing was
applied to enhance the visualization of trends. Fig. 5.a displays the number
of collisions exhibited when applying different size RAs for storing each IP;q,,
namel 84.

70000
26000 L . |
[

60000 Z
= 24000

g 50000 %
% l' % 22000
Q(E 40000 ! — G65kRA Qz_“
o~ ! —- 65k RA with RRM o, 20000
° N 16k RA with RRM ° 4
30000 >
8 --= 16k RA Sisoo Ty A, |
£ 2] Iy WYy
] =] v
20000
Z Z. 16000
10000 10 Packet Threshold with RRM
14000 20 Packet Threshold with RRM
o P e T e s e e\ e e P e 5 Packet Threshold with RRM
12000
[10 15 20 25) 5 10 15 20 25
Minutes Minutes
(a) RRM collisions. (b) Missed packets.

Fig. 5: Evaluating RRM amid BB traffic.

Additionally, both sizes were evaluated both with and without the RRM. As
shown, the reduction in the number of collisions that the RRM provides for
both sizes is dramatic. Additionally, both the 16,384 and 65,536 RAs without
RRMs gave a similar amount of collisions. Thus, we deem RA sizes of 16,384
effective for high-rate network implementations.

Alternatively, Fig. 5.b displays the number of packets that were not analyzed
due to their given RA index I P4, already being occupied by another IPsgrce-
With INC striving to minimize pipresp, to reduce this occurrence, we evaluate
three different pypresp values on the BB trace. As Fig. 5.b portrays, decreasing
the packet count can reduce the number of such packets not analyzed by several
thousand. Additionally, note that the timeout was set to a very high 30 minutes
and is the cause of the increase over time of packets that were not analyzed.
This is because if the amount of packets that an I Psyy-ce transmits falls under
Dthresh, it Will not be discarded and will continue to occupy the index IP;4, of
the RAs until such timeout is reached. Nevertheless, there are about 39 million
distinct packets recorded per every 0.1 seconds in this trace, and therefore the
RRM roughly obtained a missed packet rate falling within the range of [0.036%,
0.062%].

Examining real-world applicability. We additionally evaluated INC in

2500000 | real-world conditions by examining
h ~ Aomawrm= Sy

AN e the hardware performance amid high-
: .
g 2000000 rate traffic. Specifically, we performed
k=i] —— Benign classifications (BB)
& 1500000 1 Benien classifications (amplificd 53y TWO €Xperiments with one server to
2 * Bot classifications (BB) transmit the botnet datasets listed
9 1000000 ----- Bot classifications (amplified BB) . .
3] [’“”‘”‘ A A o in Table 1 along with two servers to
I* .
500000 send the aforementioned CAIDA BB
o - trace through the switch. The first of
0 20 40 €0 80 100 120 the experiments entailed transmitting
Seconds

Fig. 6: Tofino hardware BB assessment.

16 K. Friday et al.

both the botnet and CAIDA traffic at

their captured rates (arriving at an
average of over 2 Gbps), whereas the second sent three separate instances of
the CAIDA trace (totaling upwards of 6 Gbps on average) while keeping the
botnet traffic at its captured rates. As can be observed in Fig. 6, the number of
benign classifications of the BB traffic was consistent with the increased rates.
Moreover, Fig. 6 demonstrates that the number of bot classifications remains
relatively fixed regardless of the increased BB. Ultimately, INC gave an average
F1-score of over 0.99 in both experiments, which demonstrates its ability to gen-
eralize well to a variety of benign BB traffic. Note that the time for each packet
to be processed by INC was also measured, which was fixed at approximately
350 nanoseconds amid both experiments.

4 Related Work

The commendable efforts by Barradas et al. [3], Kumar and Lim [16], and Letteri
et al. [17] that INC was compared against in Section 3.3 are the approaches in
the literature that were able to leverage data plane-based features for controller-
based bot detection with ML algorithms. However, a growing area of research
has been the synergizing ML techniques with the programmable switches them-
selves. For example, the processing power of such switches has been leveraged
to speed up the computational overhead of ML tasks [25-27, 35]. Alternatively,
Siracusano et al. [29] took a noteworthy first-step towards implementing neural
networks in P4 by way of utilizing only the bitwise logic programmable switches
can support, such as quantized binary weights. Subsequently, Xiong and Zilber-
man [33] introduced theoretical strategies for integrating more traditional ML
algorithms into the switch’s pipeline. By the authors’ admission, it is unclear as
to whether actual switch hardware can support their implementations, as they
are resource intensive.

5 Conclusion

Botnets and their prompt propagation have enabled adversaries to cause con-
siderable damage to contemporary networks, often before administrators are
even aware that an infection has taken place. However, the emergence of pro-
grammable data planes finally offers a viable means of countering this ongoing
maliciousness. To this end, we presented INC, an ML-based approach rooted in
programmable switches to detect and mitigate botnet propagation at scale, in
real-time. By way of employing several notable datasets, we demonstrated that
INC can not only detect a variety of botnet malware with an F1l-score upwards
of 0.99 on average, but it can also both fingerprint unseen bots and attribute
coordination between them with negligible performance degradation. Finally, we
showed that INC resource-conservative approach can outperform state-of-the-art
techniques. All source code has been made publicly available via GitHub [19] in
order to facilitate future advances in this research domain.

INC: In-Network Classification of Botnet Propagation at Line Rate 17

References

10.

11.

12.

13.

14.

15.

16.

Alieyan, K., Almomani, A., Anbar, M., Alauthman, M., Abdullah, R., Gupta, B.B.:
Duns rule-based schema to botnet detection. Enterprise Information Systems 15(4),
545-564 (2021)

Antonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein, E., Cochran, J.,
Durumeric, Z., Halderman, J.A., Invernizzi, L., Kallitsis, M., et al.: Understanding
the mirai botnet. In: 26th {USENIX} security symposium ({USENIX} Security
17). pp. 1093-1110 (2017)

Barradas, D., Santos, N., Rodrigues, L., Signorello, S., Ramos, F.M., Madeira,
A.: Flowlens: Enabling efficient flow classification for ml-based network security
applications. In: Proceedings of the 28th Network and Distributed System Security
Symposium (San Diego, CA, USA) (2021)

Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J., Schlesinger,
C., Talayco, D., Vahdat, A., Varghese, G., et al.: P4: Programming protocol-
independent packet processors. ACM SIGCOMM Computer Communication Re-
view 44(3), 87-95 (2014)

CAIDA: (Jun 2021), http://www.caida.org/data/passive/passive_dataset.
xml

of Canada, P.: Bill ¢-28, https://www.parl.ca/DocumentViewer/en/40-3/bill/
C-28/third-reading

Cozzi, E., Vervier, P.A., Dell’Amico, M., Shen, Y., Bilge, L., Balzarotti, D.: The
tangled genealogy of iot malware. In: Annual Computer Security Applications Con-
ference. pp. 1-16 (2020)

Dainotti, A., King, A., Claffy, K., Papale, F., Pescapé, A.: Analysis of a “/0”
stealth scan from a botnet. IEEE/ACM Transactions on Networking 23(2), 341-
354 (2014)

Fachkha, C., Bou-Harb, E., Keliris, A., Memon, N.D., Ahamad, M.: Internet-scale
probing of cps: Inference, characterization and orchestration analysis. In: NDSS
(2017)

Garcia, S., Grill, M., Stiborek, J., Zunino, A.: An empirical comparison of botnet
detection methods. computers & security 45, 100-123 (2014)
Guerra-Manzanares, A., Medina-Galindo, J., Bahsi, H., Némm, S.: Medbiot: Gen-
eration of an iot botnet dataset in a medium-sized iot network. In: ICISSP. pp.
207-218 (2020)

Hauser, F., Haberle, M., Merling, D., Lindner, S., Gurevich, V., Zeiger, F., Frank,
R., Menth, M.: A survey on data plane programming with p4: Fundamentals,
advances, and applied research. arXiv preprint arXiv:2101.10632 (2021)

Intel: Intel®) tofino™ 3 intelligent fabric processor brief, https://www.intel.com/
content/www/us/en/products/network-io/programmable-ethernet-switch/
tofino-3-brief.html

Jepsen, T., Alvarez, D., Foster, N., Kim, C., Lee, J., Moshref, M., Soulé, R.: Fast
string searching on pisa. In: Proceedings of the 2019 ACM Symposium on SDN
Research. pp. 21-28 (2019)

Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

Kumar, A., Lim, T.J.: Edima: Early detection of iot malware network activity
using machine learning techniques. In: 2019 IEEE 5th World Forum on Internet of
Things (WF-IoT). pp. 289-294. IEEE (2019)

http://www.caida.org/data/passive/passive_dataset.xml
http://www.caida.org/data/passive/passive_dataset.xml
https://www.parl.ca/DocumentViewer/en/40-3/bill/C-28/third-reading
https://www.parl.ca/DocumentViewer/en/40-3/bill/C-28/third-reading
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-3-brief.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-3-brief.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-3-brief.html

18

17.

18.

19.
20.

21.

22.

23.
24.
25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

K. Friday et al.

Letteri, 1., Della Penna, G., De Gasperis, G.: Botnet detection in software defined
networks by deep learning techniques. In: International Symposium on Cyberspace
Safety and Security. pp. 49—62. Springer (2018)

Mclnnes, L., Healy, J., Astels, S.: hdbscan: Hierarchical density based clustering.
Journal of Open Source Software 2(11), 205 (2017)

NetSecResearch: (Sep 2021), https://github.com/NetSecResearch/INC
Networks, E.: Programmable Tofino switches for data centers, https://wuw.
edge-core.com/productsInfo.php?id=335

Pastore, M., Calcagni, A.: Measuring distribution similarities between samples: A
distribution-free overlapping index. Frontiers in psychology 10, 1089 (2019)
Pour, M.S., Mangino, A., Friday, K., Rathbun, M., Bou-Harb, E., Igbal, F., Sam-
tani, S., Crichigno, J., Ghani, N.: On data-driven curation, learning, and analysis
for inferring evolving internet-of-things (iot) botnets in the wild. Computers &
Security 91, 101707 (2020)

Rahbarinia, B., Perdisci, R., Lanzi, A., Li, K.: Peerrush: Mining for unwanted p2p
traffic. Journal of Information Security and Applications 19(3), 194-208 (2014)
Sandbox, T.: (Aug 2022), https://hatching.io/triage/

Sanvito, D., Siracusano, G., Bifulco, R.: Can the network be the ai accelerator? In:
Proceedings of the 2018 Morning Workshop on In-Network Computing. pp. 2025
(2018)

Sapio, et al.: Scaling distributed machine learning with in-network aggregation.
arXiv preprint arXiv:1903.06701 (2019)

Sapio, A., Abdelaziz, 1., Aldilaijan, A., Canini, M., Kalnis, P.: In-network com-
putation is a dumb idea whose time has come. In: Proceedings of the 16th ACM
Workshop on Hot Topics in Networks. pp. 150-156 (2017)

Schubert, E., Sander, J., Ester, M., Kriegel, H.P., Xu, X.: Dbscan revisited, revis-
ited: why and how you should (still) use dbscan. ACM Transactions on Database
Systems (TODS) 42(3), 1-21 (2017)

Siracusano, G., Bifulco, R.: In-network neural networks. arXiv preprint
arXiv:1801.05731 (2018)

Stratosphere: Stratosphere laboratory datasets (2015), retrieved March 13, 2020,
from https://www.stratosphereips.org/datasets-overview

Tanabe, R., Tamai, T., Fujita, A., Isawa, R., Yoshioka, K., Matsumoto, T., Gandn,
C., Van Eeten, M.: Disposable botnets: examining the anatomy of iot botnet in-
frastructure. In: Proceedings of the 15th International Conference on Availability,
Reliability and Security. pp. 1-10 (2020)

Turkovic, B., Kuipers, F., van Adrichem, N., Langendoen, K.: Fast network con-
gestion detection and avoidance using p4. In: Proceedings of the 2018 Workshop
on Networking for Emerging Applications and Technologies. pp. 45-51 (2018)
Xiong, Z., Zilberman, N.: Do switches dream of machine learning? toward in-
network classification. In: Proceedings of the 18th ACM Workshop on Hot Topics
in Networks. pp. 25-33 (2019)

Xu, Z., Chen, L., Gu, G., Kruegel, C.: Peerpress: Utilizing enemies’ p2p strength
against them. In: Proceedings of the 2012 ACM conference on Computer and com-
munications security. pp. 581-592 (2012)

Yang, F., Wang, Z., Ma, X., Yuan, G., An, X.: Switchagg: A further step towards
in-network computation. arXiv preprint arXiv:1904.04024 (2019)

Zhang, J., Perdisci, R., Lee, W., Sarfraz, U., Luo, X.: Detecting stealthy p2p bot-
nets using statistical traffic fingerprints. In: 2011 IEEE/IFIP 41st International
Conference on Dependable Systems & Networks (DSN). pp. 121-132. IEEE (2011)

https://github.com/NetSecResearch/INC
https://www.edge-core.com/productsInfo.php?id=335
https://www.edge-core.com/productsInfo.php?id=335
https://hatching.io/triage/
https://www.stratosphereips.org/datasets-overview

INC: In-Network Classification of Botnet Propagation at Line Rate 19

37. Zhang, M., Li, G., Wang, S., Liu, C., Chen, A., Hu, H., Gu, G., Li, Q., Xu, M.,
Whu, J.: Poseidon: Mitigating volumetric ddos attacks with programmable switches.
In: the 27th Network and Distributed System Security Symposium (NDSS 2020)

(2020)

https://www.researchgate.net/publication/362633990

	INC: In-Network Classification of Botnet Propagation at Line Rate

