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ABSTRACT

Our goal is to extend the denoising diffusion implicit model (DDIM) to general
diffusion models (DMs) besides isotropic diffusions. Instead of constructing a
non-Markov noising process as in the original DDIM, we examine the mecha-
nism of DDIM from a numerical perspective. We discover that the DDIM can
be obtained by using some specific approximations of the score when solving the
corresponding stochastic differential equation. We present an interpretation of the
accelerating effects of DDIM that also explains the advantages of a determinis-
tic sampling scheme over the stochastic one for fast sampling. Building on this
insight, we extend DDIM to general DMs, coined generalized DDIM (gDDIM),
with a small but delicate modification in parameterizing the score network. We
validate gDDIM in two non-isotropic DMs: Blurring diffusion model (BDM) and
Critically-damped Langevin diffusion model (CLD). We observe more than 20
times acceleration in BDM. In the CLD, a diffusion model by augmenting the
diffusion process with velocity, our algorithm achieves an FID score of 2.26, on
CIFAR10, with only 50 number of score function evaluations (NFEs) and an FID
score of 2.86 with only 27 NFEs. Project page and code: https://github.com/qsh-
zh/gDDIM.

1 INTRODUCTION

Generative models based on diffusion models (DMs) have experienced rapid developments in the
past few years and show competitive sample quality compared with generative adversarial net-
works (GANs) (Dhariwal & Nichol, 2021; Ramesh et al.; Rombach et al., 2021), competitive nega-
tive log likelihood compared with autoregressive models in various domains and tasks (Song et al.,
2021; Kawar et al., 2021). Besides, DMs enjoy other merits such as stable and scalable training,
and mode-collapsing resiliency (Song et al., 2021; Nichol & Dhariwal, 2021). However, slow and
expensive sampling prevents DMs from further application in more complex and higher dimension
tasks. Once trained, GANs only forward pass neural networks once to generate samples, but the
vanilla sampling method of DMs needs 1000 or even 4000 steps (Nichol & Dhariwal, 2021; Ho
et al., 2020; Song et al., 2020b) to pull noise back to the data distribution, which means thousands
of neural networks forward evaluations. Therefore, the generation process of DMs is several orders
of magnitude slower than GANs.

How to speed up sampling of DMs has received significant attention. Building on the seminal
work by Song et al. (2020b) on the connection between stochastic differential equations (SDEs)
and diffusion models, a promising strategy based on probability flows (Song et al., 2020b) has been
developed. The probability flows are ordinary differential equations (ODE) associated with DMs
that share equivalent marginal with SDE. Simple plug-in of off-the-shelf ODE solvers can already
achieve significant acceleration compared to SDEs-based methods (Song et al., 2020b). The ar-
guably most popular sampling method is denoising diffusion implicit model (DDIM) (Song et al.,
2020a), which includes both deterministic and stochastic samplers, and both show tremendous im-
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provement in sampling quality compared with previous methods when only a small number of steps
is used for the generation.

Although significant improvements of the DDIM in sampling efficiency have been observed empiri-
cally, the understanding of the mechanism of the DDIM is still lacking. First, why does solving prob-
ability flow ODE provide much higher sample quality than solving SDEs, when the number of steps
is small? Second, it is shown that stochastic DDIM reduces to marginal-equivalent SDE (Zhang &
Chen, 2022), but its discretization scheme and mechanism of acceleration are still unclear. Finally,
can we generalize DDIMs to other DMs and achieve similar or even better acceleration results?

In this work, we conduct a comprehensive study to answer the above questions, so that we can
generalize and improve DDIM. We start with an interesting observation that the DDIM can solve
corresponding SDEs/ODE exactly without any discretization error in finite or even one step when
the training dataset consists of only one data point. For deterministic DDIM, we find that the added
noise in perturbed data along the diffusion is constant along an exact solution of probability flow
ODE (see Prop 1). Besides, provided only one evaluation of log density gradient (a.k.a. score),
we are already able to recover accurate score information for any datapoints, and this explains the
acceleration of stochastic DDIM for SDEs (see Prop 3). Based on this observation, together with the
manifold hypothesis, we present one possible interpretation to explain why the discretization scheme
used in DDIMs is effective on realistic datasets (see Fig. 2). Equipped with this new interpretation,
we extend DDIM to general DMs, which we coin generalized DDIM (gDDIM). With only a small
but delicate change of the score model parameterization during sampling, gDDIM can accelerate
DMs based on general diffusion processes. Specifically, we verify the sampling quality of gDDIM
on Blurring diffusion models (BDM) (Hoogeboom & Salimans, 2022; Rissanen et al., 2022) and
critically-damped Langevin diffusion (CLD) (Dockhorn et al., 2021) in terms of Fréchet inception
distance (FID) (Heusel et al., 2017).

To summarize, we have made the following contributions: 1) We provide an interpretation for the
DDIM and unravel its mechanism. 2) The interpretation not only justifies the numerical discretiza-
tion of DDIMs but also provides insights into why ODE-based samplers are preferred over SDE-
based samplers when NFE is low. 3) We propose gDDIM, a generalized DDIM that can accelerate
a large class of DMs deterministically and stochastically. 4) We show by extensive experiments
that gDDIM can drastically improve sampling quality/efficiency almost for free. Specifically, when
applied to CLD, gDDIM can achieve an FID score of 2.86 with only 27 steps and 2.26 with 50 steps.
gDDIM has more than 20 times acceleration on BDM compared with the original samplers.

The rest of this paper is organized as follows. In Sec. 2 we provide a brief inntroduction to diffusion
models. In Sec. 3 we present an interpretation of the DDIM that explains its effectiveness in practice.
Built on this interpretation, we generalize DDIM for general diffusion models in Sec. 4.

2 BACKGROUND

In this section, we provide a brief introduction to diffusion models (DMs). Most DMs are built on
two diffusion processes in continuous-time, one forward diffusion known as the noising process that
drives any data distribution to a tractable distribution such as Gaussian by gradually adding noise
to the data, and one backward diffusion known as the denoising process that sequentially removes
noise from noised data to generate realistic samples. The continuous-time noising and denoising
processes are modeled by stochastic differential equations (SDEs) (Särkkä & Solin, 2019).

In particular, the forward diffusion is a linear SDE with state u(t) ∈ RD

du = Ftudt+Gtdw, t ∈ [0, T ] (1)

where Ft,Gt ∈ RD×D represent the linear drift coefficient and diffusion coefficient respectively,
and w is a standard Wiener process. When the coefficients are piece-wise continuous, Eq. (1) admits
a unique solution (Oksendal, 2013). Denote by pt(u) the distribution of the solutions {u(t)}0≤t≤T

(simulated trajectories) to Eq. (1) at time t, then p0 is determined by the data distribution and pT is
a (approximate) Gaussian distribution. That is, the forward diffusion Eq. (1) starts as a data sample
and ends as a Gaussian random variable. This can be achieved with properly chosen coefficients
Ft,Gt. Thanks to linearity of Eq. (1), the transition probability pst(u(t)|u(s)) from u(s) to u(t) is
a Gaussian distribution. For convenience, denote p0t(u(t)|u(0)) byN (µtu(0),Σt) where µt,Σt ∈
RD×D.
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Figure 1: Importance of Kt for score parameterization sθ(u, t) = −K−T
t ϵθ(u, t) and acceleration

of diffusion sampling with probability flow ODE. Trajectories of probability ODE for CLD (Dock-
horn et al., 2021) at random pixel locations (Left). Pixel value and output of ϵθ in v channel with
choice Kt = Lt (Dockhorn et al., 2021) along the trajectory (Mid). Output of ϵθ in x,v channels
with our choice Rt (Right). The smooth network output along trajectories enables large stepsize
and thus sampling acceleration. gDDIM based on the proper parameterization of Kt can accelerate
more than 50 times compared with the naive Euler solver (Lower row).

The backward process from u(T ) to u(0) of Eq. (1) is the denoising process. It can be characterized
by the backward SDE simulated in reverse-time direction (Song et al., 2020b; Anderson, 1982)

du = [Ftudt−GtG
T
t ∇ log pt(u)]dt+Gtdw̄, (2)

where w̄ denotes a standard Wiener process running backward in time. Here ∇ log pt(u) is known
as the score function. When Eq. (2) is initialized with u(T ) ∼ pT , the distribution of the simulated
trajectories coincides with that of the forward diffusion Eq. (1). Thus, u(0) of these trajectories are
unbiased samples from p0; the backward diffusion Eq. (2) is an ideal generative model.

In general, the score function∇ log pt(u) is not accessible. In diffusion-based generative models, a
time-dependent network sθ(u, t), known as the score network, is used to fit the score ∇ log pt(u).
One effective approach to train sθ(u, t) is the denoising score matching (DSM) technique (Song
et al., 2020b; Ho et al., 2020; Vincent, 2011) that seeks to minimize the DSM loss

Et∼U [0,T ]Eu(0),u(t)|u(0)[∥∇ log p0t(u(t)|u(0))− sθ(u(t), t)∥2Λt
], (3)

where U [0, T ] represents the uniform distribution over the interval [0, T ]. The time-dependent
weight Λt is chosen to balance the trade-off between sample fidelity and data likelihood of learned
generative model (Song et al., 2021). It is discovered in Ho et al. (2020) that reparameterizing the
score network by

sθ(u, t) = −K−T
t ϵθ(u, t) (4)

with KtK
T
t = Σt leads to better sampling quality. In this parameterization, the network tries to

predict directly the noise added to perturb the original data. Invoking the expressionN (µtu(0),Σt)
of p0t(u(t)|u(0)), this parameterization results in the new DSM loss

L(θ) = Et∼U [0,T ]Eu(0)∼p0,ϵ∼N (0,ID)[∥ϵ− ϵθ(µtu(0) +Ktϵ, t)∥2K−1
t ΛtK

−T
t

]. (5)

Sampling: After the score network sθ is trained, one can generate samples via the backward SDE
Eq. (2) with a learned score, or the marginal equivalent SDE/ODE (Song et al., 2020b; Zhang &
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Chen, 2021; 2022)

du = [Ftu−
1 + λ2

2
GtG

T
t sθ(u, t)]dt+ λGtdw, (6)

where λ ≥ 0 is a free parameter. Regardless of the value of λ, the exact solutions to Eq. (6) produce
unbiased samples from p0(u) if sθ(u, t) = ∇ log pt(u) for all t,u. When λ = 1, Eq. (6) reduces to
reverse-time diffusion in Eq. (2). When λ = 0, Eq. (6) is known as the probability flow ODE (Song
et al., 2020b)

du = [Ftu−
1

2
GtG

T
t sθ(u, t)]dt. (7)

Isotropic diffusion and DDIM: Most existing DMs are isotropic diffusions. A popular DM is
Denoising diffusion probabilistic modeling (DDPM) (Ho et al., 2020). For a given data distribution
pdata(x), DDPM has u = x ∈ Rd and sets p0(u) = pdata(x). Though originally proposed in the
discrete-time setting, it can be viewed as a discretization of a continuous-time SDE with parameters

Ft :=
1

2

d logαt

dt
Id, Gt :=

√
−d logαt

dt
Id (8)

for a decreasing scalar function αt satisfying α0 = 1, αT = 0. Here Id represents the identity
matrix of dimension d. For this SDE, Kt is always chosen to be

√
1− αtId.

The sampling scheme proposed in DDPM is inefficient; it requires hundreds or even thousands of
steps, and thus number of score function evaluations (NFEs), to generate realistic samples. A more
efficient alternative is the Denoising diffusion implicit modeling (DDIM) proposed in Song et al.
(2020a). It proposes a different sampling scheme over a grid {ti}

x(ti−1) =

√
αti−1

αti

x(ti) + (
√
1− αti−1

− σ2
ti −

√
1− αti

√
αti−1

αti

)ϵθ(x(ti), ti) + σtiϵ, (9)

where {σti} are hyperparameters and ϵ ∼ N (0, Id). DDIM can generate reasonable samples within
50 NFEs. For the special case where σti = 0, it is recently discovered in Zhang & Chen (2022) that
Eq. (9) coincides with the numerical solution to Eq. (7) using an advanced discretization scheme
known as the exponential integrator (EI) that utilizes the semi-linear structure of Eq. (7).

CLD and BDM: Dockhorn et al. (2021) propose critically-dampled Langevin diffusion (CLD), a
DM based on an augmented diffusion with an auxiliary velocity term. More specifically, the state
of the diffusion in CLD is of the form u(t) = [x(t),v(t)] ∈ R2d with velocity variable v(t) ∈ Rd.
The CLD employs the forward diffusion Eq. (1) with coefficients

Ft :=

[
0 βM−1

β −ΓβM−1

]
⊗ Id, Gt :=

[
0 0
0 −ΓβM−1

]
⊗ Id. (10)

Here Γ > 0, β > 0,M > 0 are hyperparameters. Compared with most other DMs such as DDPM
that inject noise to the data state x directly, the CLD introduces noise to the data state x through
the coupling between v and x as the noise only affects the velocity component v directly. Another
interesting DM is Blurring diffusion model (BDM) (Hoogeboom & Salimans, 2022). It can be shown
the forward process in BDM can be formulated as a SDE with (Detailed derivation in App. B)

Ft :=
d log[V αtV

T ]

dt
, Gt :=

√
dσ2

t

dt
− Ftσ2

t − σ2
tFt, (11)

where V T denotes a Discrete Cosine Transform (DCT) and V denotes the Inverse DCT. Diagonal
matrices αt,σt are determined by frequencies information and dissipation time. Though it is argued
that inductive bias in CLD and BDM can benefit diffusion model (Dockhorn et al., 2021; Hooge-
boom & Salimans, 2022), non-isotropic DMs are not easy to accelerate. Compared with DDPM,
CLD introduces significant oscillation due to x-v coupling while only inefficient ancestral sampling
algorithm supports BDM (Hoogeboom & Salimans, 2022).

3 REVISIT DDIM: GAP BETWEEN THE EXACT SOLUTION AND NUMERICAL
SOLUTION

The complexity of sampling from a DM is proportional to the NFEs used to numerically solve
Eq. (6). To establish a sampling algorithm with a small NFEs, we ask the bold question:
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Can we generate samples exactly from a DM with finite steps if the score function is precise?

To gain some insights into this question, we start with the simplest scenario where the training
dataset consists of only one data point x0. It turns out that accurate sampling from diffusion models
on this toy example is not that easy, even if the exact score function is accessible. Most well-known
numerical methods for Eq. (6), such as Runge Kutta (RK) for ODE, Euler-Maruyama (EM) for SDE,
are accompanied by discretization error and cannot recover the single data point in the training set
unless an infinite number of steps are used. Surprisingly, DDIMs can recover the single data point
in this toy example in one step.

Built on this example, we show how the DDIM can be obtained by solving the SDE/ODE Eq. (6)
with proper approximations. The effectiveness of DDIM is then explained by justifying the usage
of those approximations for general datasets at the end of this section.

ODE sampling We consider the deterministic DDIM, that is, Eq. (9) with σti = 0. In view of
Eq. (8), the score network Eq. (4) is sθ(u, t) = − ϵθ(u,t)√

1−αt
. To differentiate between the learned score

and the real score, denote the ground truth version of ϵθ by ϵGT. In our toy example, the following
property holds for ϵGT.
Proposition 1. Assume p0(u) is a Dirac distribution. Let u(t) be an arbitrary solution to the
probability flow ODE Eq. (7) with coefficient Eq. (8) and the ground truth score, then ϵGT(u(t), t) =
−√1− αt∇ log pt(u(t)) remains constant, which is∇ log pT (u(T )), along u(t).

We remark that even though ϵGT(u(t), t) remains constant along an exact solution, the score
∇ log pt(u(t)) is time-varying. This underscores the advantage of the parameterization ϵθ over sθ.
Inspired by Prop 1, we devise a sampling algorithm as follows that can recover the exact data point
in one step for our toy example. This algorithm turns out to coincide with the deterministic DDIM.

Proposition 2. With the parameterization sθ(u, τ) = − ϵθ(u,τ)√
1−ατ

and the approximation ϵθ(u, τ) ≈
ϵθ(u(t), t) for τ ∈ [t − ∆t, t], the solution to the probability flow ODE Eq. (7) with coefficient
Eq. (8) is

u(t−∆t) =

√
αt−∆t

αt
u(t) + (

√
1− αt−∆t −

√
1− αt

√
αt−∆t

αt
)ϵθ(u(t), t), (12)

which coincides with deterministic DDIM.

When ϵθ = ϵGT as is the case in our toy example, there is no approximation error in Prop 2 and
Eq. (12) is precise. This implies that deterministic DDIM can recover the training data in one step
in our example. The update Eq. (12) corresponds to a numerical method known as the exponential
integrator to the probability flow ODE Eq. (7) with coefficient Eq. (8) and parameterization
sθ(u, τ) = − ϵθ(u,τ)√

1−ατ
. This strategy is used and developed recently in Zhang & Chen (2022). Prop 1

and toy experiments in Fig. 2 provide sights on why such a strategy should work.

SDE sampling The above discussions however do not hold for stochastic cases where λ > 0 in
Eq. (6) and σti > 0 in Eq. (9). Since the solutions to Eq. (6) from t = T to t = 0 are stochas-
tic, neither ∇ log pt(u(t)) nor ϵGT(u(t), t) remains constant along sampled trajectories; both are
affected by the stochastic noise. The denoising SDE Eq. (6) is more challenging compared with the
probability ODE since it injects additional noise to u(t). The score information needs to remove not
only noise presented in u(T ) but also injected noise along the diffusion. In general, one evaluation
of ϵθ(u, t) can only provide the information to remove noise in the current state u; it cannot predict
the future injected noise. Can we do better? The answer is affirmative on our toy dataset. Given
only one score evaluation, it turns out that score at any point can be recovered.
Proposition 3. Assume SDE coefficients Eq. (8) and that p0(u) is a Dirac distribution. Given any
evaluation of the score function∇ log ps(u(s)), one can recover∇ log pt(u) for any t,u as

∇ log pt(u) =
1− αs

1− αt

√
αt

αs
∇ log ps(u(s))−

1

1− αt
(u−

√
αt

αs
u(s)). (13)

The major difference between Prop 3 and Prop 1 is that Eq. (13) retains the dependence of the score
over the state u. This dependence is important in canceling the injected noise in the denoising SDE
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Figure 2: Manifold hypothesis and Dirac distribution assumption. We model an image dataset as a
mixture of well-separated Dirac distribution and visualize the diffusion process on the left. Curves in
red indicate high density area spanned by p0t(u(t)|u(0)) by different mode and region surrounded
by them indicates the phase when pt(u) is dominated by one mode while region surrounded by blue
one is for the mixing phase, and green region indicates fully mixed phase. On the right, sampling
trajectories depict smoothness of ϵGT along ODE solutions, which justifies approximations used in
DDIM and partially explains its empirical acceleration.

Eq. (6). This approximation Eq. (13) turns out to lead to a numerical scheme for Eq. (6) that coincide
with the stochastic DDIM.
Theorem 1. Given the parameterization sθ(u, τ) = − ϵθ(u,τ)√

1−ατ
and the approximation sθ(u, τ) ≈

1−αt

1−ατ

√
ατ

αt
sθ(u(t), t) − 1

1−ατ
(u −

√
ατ

αt
u(t)) for τ ∈ [t − ∆t, t], the exact solution u(t−∆t)

to Eq. (6) with coefficient Eq. (8) is

u(t−∆t) ∼ N (

√
αt−∆t

αt
u(t) +

[
−
√

αt−∆t

αt

√
1− αt +

√
1− αt−∆t − σ2

t

]
ϵθ(u(t), t), σ

2
t Id)

(14)

with σt = (1− αt−∆t)

[
1−

(
1−αt−∆t

1−αt

)λ2 (
αt

αt−∆t

)λ2]
, which is the same as the DDIM Eq. (9).

Note that Thm 1 with λ = 0 agrees with Prop 2; both reproduce the deterministic DDIM but with
different derivations. In summary, DDIMs can be derived by utilizing local approximations.

Justification of Dirac approximation While Prop 1 and Prop 3 require the strong assumption
that the data distribution is a Dirac, DDIMs in Prop 2 and Thm 1 work very effectively on realistic
datasets, which may contain millions of datapoints (Nichol et al., 2021). Here we present one
possible interpretation based on the manifold hypothesis (Roweis & Saul, 2000).

It is believed that real-world data lie on a low-dimensional manifold (Tenenbaum et al., 2000) em-
bedded in a high-dimensional space and the data points are well separated in high-dimensional data
space. For example, realistic images are scattered in pixel space and the distance between every two
images can be very large if measured in pixel difference even if they are similar perceptually. To
model this property, we consider a dataset consisting of M datapoints {u(m)}Mm=1. The exact score
is

∇ log pt(u) =
∑
m

wm∇ log p0t(u|u(m)), wm =
p0t(u|u(m))∑
m p0t(u|u(m))

, (15)

which can be interpreted as a weighted sum of M score functions associated with Dirac distributions.
This is illustrated in Fig. 2. In the red color region where the weights {wm} are dominated by one
specific data u(m∗) and thus ∇ log pt(u) ≈ ∇ log p0t(u|u(m∗)). Moreover, in the green region
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different modes have similar ∇ log p0t(u|u(m)) as all of them are close to Gaussian and can be
approximated by any condition score of any mode. The {ϵGT(u(t), t)} trajectories in Fig. 2 validate
our hypothesis as we have very smooth curves at the beginning and ending period. The phenomenon
that score of realistic datasets can be locally approximated by the score of one datapoint partially
justifies the Dirac distribution assumption in Prop 1 and 3 and the effectiveness of DDIMs.

4 GENERALIZE AND IMPROVE DDIM

The DDIM is specifically designed for DDPMs. Can we generalize it to other DMs? With the
insights in Prop 1 and 3, it turns out that with a carefully chosen Kτ , we can generalize DDIMs
to any DMs with general drift and diffusion. We coin the resulted algorithm the Generalized
DDIM (gDDIM).

4.1 DETERMINISTIC GDDIM WITH PROP 1

Toy dataset: Motivated by Prop 1, we ask whether there exists an ϵGT that remains constant along
a solution to the probability flow ODE Eq. (7). We start with a special case with initial distribution
p0(u) = N (u0,Σ0). It turns out that any solution to Eq. (7) is of the form

u(t) = Ψ(t, 0)u0 +Rtϵ (16)

with a constant ϵ and a time-varying parameterization coefficients Rt ∈ RD×D that satisfies
R0R

T
0 = Σ0 and

dRt

dt
= (Ft +

1

2
GtG

T
t Σ

−1
t )Rt. (17)

Here Ψ(t, s) is the transition matrix associated with Fτ ; it is the solution to ∂Ψ(t,s)
∂t =

FtΨ(t, s),Ψ(s, s) = ID. Interestingly, Rt satisfies RtR
T
t = Σt like Kt in Eq. (4). We remark

Kt =
√
1− αtId is a solution to Eq. (17) when the DM is specialized to DDPM. Based on Eq. (16)

and Eq. (17), we extend Prop 1 to more general DMs.

Proposition 4. Assume the data distribution p0(u) is N (u0,Σ0). Let u(t) be an arbitrary so-
lution to the probability flow ODE Eq. (7) with the ground truth score, then ϵGT(u(t), t) :=
−RT

t ∇ log pt(u(t)) remains constant along u(t).

Note that Prop 4 is slightly more general than Prop 1 in the sense that the initial distribution p0 is a
Gaussian instead of a Dirac. Diffusion models with augmented states such as CLD use a Gaussian
distribution on the velocity channel for each data point. Thus, when there is a single data point, the
initial distribution is a Gaussian instead of a Dirac distribution. A direct consequence of Prop 4 is
that we can conduct accurate sampling in one step in the toy example since we can recover the score
along any simulated trajectory given its value at t = T , if Kt in Eq. (4) is set to be Rt. This choice
Kt = Rt will make a huge difference in sampling quality as we will show later. The fact provides
guidance to design an efficient sampling scheme for realistic data.

Realistic dataset: As the accurate score is not available for realistic datasets, we need to use learned
score sθ(u, t) for sampling. With our new parameterization ϵθ(u, t) = −RT

t sθ(u, t) and the ap-
proximation ϵ̃θ(u, τ) = ϵθ(u(t), t) for τ ∈ [t − ∆t, t], we reach the update step for deterministic
gDDIM by solving probability flow with approximator ϵ̃θ(u, τ) exactly as

u(t−∆t) = Ψ(t−∆t, t)u(t) + [

∫ t−∆t

t

1

2
Ψ(t−∆t, τ)GτG

T
τ R

−T
τ dτ ]ϵθ(u(t), t), (18)

Multistep predictor-corrector for ODE: Inspired by Zhang & Chen (2022), we further boost the
sampling efficiency of gDDIM by combining Eq. (18) with multistep methods (Hochbruck & Os-
termann, 2010; Zhang & Chen, 2022; Liu et al., 2022). We derive multistep predictor-corrector
methods to reduce the number of steps while retaining accuracy (Press et al., 2007; Sauer, 2005).
Empirically, we found that using more NFEs in predictor leads to better performance when the total
NFE is small. Thus, we only present multistep predictor for deterministic gDDIM. We include the
proof and multistep corrector in App. B. For time discretization grid {ti}Ni=0 where t0 = 0, tN = T ,
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the q-th step predictor from ti to ti−1 in term of ϵθ parameterization reads

u(ti−1) = Ψ(ti−1, ti)u(ti) +

q−1∑
j=0

[Cijϵθ(u(ti+j), ti+j)], (19a)

Cij =

∫ ti−1

ti

1

2
Ψ(ti−1, τ)GτG

T
τ R

−T
τ

∏
k ̸=j

[
τ − ti+k

ti+j − ti+k
]dτ. (19b)

We note that coefficients in Eqs. (18) and (19b) for general DMs can be calculated efficiently using
standard numerical solvers if closed-form solutions are not available.

4.2 STOCHASTIC GDDIM WITH PROP 3

Following the same spirits, we generalize Prop 3
Proposition 5. Assume the data distribution p0(u) isN (u0,Σ0). Given any evaluation of the score
function∇ log ps(u(s)), one can recover∇ log pt(u) for any t,u as

∇ log pt(u) = Σ−1
t Ψ(t, s)Σs∇ log ps(u(s))− Σ−1

t [u−Ψ(t, s)u(s)]. (20)

Prop 5 is not surprising; in our example, the score has a closed form. Eq. (20) not only provides
an accurate score estimation for our toy dataset, but also serves as a score approximator for realistic
data.

Realistic dataset: Based on Eq. (20), with the parameterization sθ(u, τ) = −R−T
τ ϵθ(u, τ), we

propose the following gDDIM approximator ϵ̃θ(u, τ) for ϵθ(u, τ)

ϵ̃θ(u, τ) = R−1
τ Ψ(τ, s)Rsϵθ(u(s), s) +R−1

τ [u−Ψ(τ, s)u(s)]. (21)

Proposition 6. With the parameterization ϵθ(u, t) = −RT
t sθ(u, t) and the approximator ϵ̃θ(u, τ)

in Eq. (21), the solution to Eq. (6) satisfies

u(t) ∼ N (Ψ(t, s)u(s) + [Ψ̂(t, s)−Ψ(t, s)]Rsϵθ(u(s), s),Pst), (22)

where Ψ̂(t, s) is the transition matrix associated with F̂τ := Fτ +
1+λ2

2 GτG
T
τ Σ

−1
τ and the covari-

ance matrix Pst solves

dPsτ

dτ
= F̂τPsτ + Psτ F̂

T
τ + λ2GτG

T
τ , Pss = 0. (23)

Our stochastic gDDIM then uses Eq. (22) for update. Though the stochastic gDDIM and the deter-
ministic gDDIM look quite different from each other, there exists a connection between them.
Proposition 7. Eq. (22) in stochastic gDDIM reduces to Eq. (18) in deterministic gDDIM when
λ = 0.

5 EXPERIMENTS

As gDDIM reduces to DDIM for VPSDE and DDIM proves very successful, we validate the gener-
ation and effectiveness of gDDIM on CLD and BDM. We design experiments to answer the follow-
ing questions. How to verify Prop 4 and 5 empirically? Can gDDIM improve sampling efficiency
compared with existing works? What differences do the choice of λ and Kt make? We conduct
experiments with different DMs and sampling algorithms on CIFAR10 for quantitative comparison.
We include more illustrative experiments on toy datasets, high dimensional image datasets, and more
baseline comparison in App. C.

Choice of Kt: A key of gDDIM is the special choice Kt = Rt which is obtained via solv-
ing Eq. (17). In CLD, Dockhorn et al. (2021) choose Kt = Lt based on Cholesky decomposition
of Σt and it does not obey Eq. (17). More details regarding Lt are included in App. C. As it is
shown in Fig. 1, on real datasets with a trained score model, we randomly pick pixel locations and
check the pixel value and ϵθ output along the solutions to the probability flow ODE produced by the
high-resolution ODE solver. With the choice Kt = Lt, ϵ

(L)
θ (u, t;v) suffers from oscillation like x

8
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value along time. However, ϵ(R)
θ (u, t) is much more flat. We further compare samples generated by

Lt and Rt parameterizaiton in Tab. 1, where both use the multistep exponential solver in Eq. (19).

Table 1: Lt vs Rt (Our) on CLD

FID at different NFE
Kt 20 30 40 50
Lt 368 167 4.12 3.31
Rt 3.90 2.64 2.37 2.26

Table 2: λ and integrators choice with NFE=50

FID at different λ
Method 0.0 0.1 0.3 0.5 0.7 1.0
gDDIM 5.17 5.51 12.13 33 41 49
EM 346 168 137 89 45 57

Choice of λ: We further conduct a study with different λ values. Note that polynomial extrapolation
in Eq. (19) is not used here even when λ = 0. As it is shown in Tab. 2, increasing λ deteriorates
the sample quality, demonstrating our claim that deterministic DDIM has better performance than
its stochastic counterpart when a small NFE is used. We also find stochastic gDDIM significantly
outperforms EM, which indicates the effectiveness of the approximation Eq. (21).

Accelerate various DMs: We present a comparison among various DMs and various sampling
algorithms. To make a fair comparison, we compare three DMs with similar size networks while
retaining other hyperparameters from their original works. We make two modifications to DDPM,
including continuous-time training (Song et al., 2020b) and smaller stop sampling time (Karras
et al., 2022), which help improve sampling quality empirically. For BDM, we note Hoogeboom
& Salimans (2022) only supports the ancestral sampling algorithm, a variant of EM algorithm.
With reformulated noising and denoising process as SDE Eq. (11), we can generate samples by
solving corresponding SDE/ODEs. The sampling quality of gDDIM with 50 NFE can outperform
the original ancestral sampler with 1000 NFE, more than 20 times acceleration.

Table 3: Acceleration on various DMs with similar training pipelines and architecture. For RK45,
we tune its tolerance hyperparameters so that the real NFE is close but not equal to the given NFE. †:
pre-trained model from Song et al. (2020b). ††: Karras et al. (2022) apply Heun method in rescaled
DM, which is essentially a variant of DEIS (Zhang & Chen, 2022)

FID (↓) under different NFE
DM Sampler 10 20 50 100 1000

DDPM†

EM >100 >100 31.2 12.2 2.64
Prob.Flow, RK45 >100 52.5 6.62 2.63 2.56
2nd Heun†† 66.25 6.62 2.65 2.57 2.56
gDDIM 4.17 3.03 2.59 2.56 2.56

BDM
Ancestral sampling >100 >100 29.8 9.73 2.51
Prob.Flow, RK45 >100 68.2 7.12 2.58 2.46
gDDIM 4.52 2.97 2.49 2.47 2.46

CLD
EM >100 >100 57.72 13.21 2.39
Prob.Flow, RK45 >100 >100 31.7 4.56 2.25
gDDIM 13.41 3.39 2.26 2.26 2.25

6 CONCLUSIONS AND LIMITATIONS

Contribution: The more structural knowledge we leverage, the more efficient algorithms we obtain.
In this work, we provide a clean interpretation of DDIMs based on the manifold hypothesis and the
sparsity property on realistic datasets. This new perspective unboxes the numerical discretization
used in DDIM and explains the advantage of ODE-based sampler over SDE-based when NFE is
small. Based on this interpretation, we extend DDIMs to general diffusion models. The new al-
gorithm, gDDIM, only requires a tiny but elegant modification to the parameterization of the score
model and improves sampling efficiency drastically. We conduct extensive experiments to validate
the effectiveness of our new sampling algorithm. Limitation: There are several promising future
directions. First, though gDDIM is designed for general DMs, we only verify it on three DMs. It
is beneficial to explore more efficient diffusion processes for different datasets, in which we believe
gDDIM will play an important role in designing sampling algorithms. Second, more investigations
are needed to design an efficient sampling algorithm by exploiting more structural knowledge in
DMs. The structural knowledge can originate from different sources such as different modalities of
datasets, and mathematical structures presented in specific diffusion processes.

9
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A MORE RELATED WORKS

Learning generative models with DMs via score matching has received tremendous attention re-
cently (Sohl-Dickstein et al., 2015; Lyu, 2012; Song & Ermon, 2019; Song et al., 2020b; Ho et al.,
2020; Nichol & Dhariwal, 2021). However, the sampling efficiency of DMs is still not satisfy-
ing. Jolicoeur-Martineau et al. (2021a) introduced adaptive solvers for SDEs associated with DMs
for the task of image generation. Song et al. (2020a) modified the forward noising process into a
non-Markov process without changing the training objective function. The authors then proposed
a family of samplers, including deterministic DDIM and stochastic DDIM, based on the modifica-
tions. Both of the samplers demonstrate significant improvements over previous samplers. There
are variants of the DDIM that aim to further improve the sampling quality and efficiency. Determin-
istic DDIM in fact reduces to probability flow in the infinitesimal step size limit (Song et al., 2020a;
Liu et al., 2022). Meanwhile, various approaches have been proposed to accelerate DDIM (Kong
& Ping, 2021b; Watson et al., 2021; Liu et al., 2022). Bao et al. (2022) improved the DDIM by
optimizing the reverse variance in DMs. Watson et al. (2022) generalized the DDIM in DDPM with
learned update coefficients, which are trained by minimizing an external perceptual loss. Nichol
& Dhariwal (2021) tuned the variance of the schedule of DDPM. Liu et al. (2022) found that the
DDIM is a pseudo numerical method and proposed a pseudo linear multi-step method for it. Zhang
& Chen (2022) discovered that DDIMs are numerical integrators for marginal-equivalent SDEs, and
the deterministic DDIM is actually an exponential integrator for the probability flow ODE. They
further utilized exponential multistep methods to boost sampling performance for VPSDE.

Another promising approach to accelerate the diffusion model is distillation for the probability flow
ODE. Luhman & Luhman (2021) proposed to learn the map from noise to data in a teacher-student
fashion, where supervised signals are provided by simulating the deterministic DDIM. The final
student network distilled is able to generate samples with reasonable quality within one step. Sali-
mans & Ho (2022) proposed a new progressive distillation approach to improve training efficiency
and stability. This distillation approach relies on solving the probability flow ODE and needs extra
training procedures. Since we generalize and improve the DDIM in this work, it will be beneficial
to combine this distillation method with our algorithm for better performance in the future.

Recently, numerical structures of DMs have received more and more attention; they play important
roles in efficient sampling methods. Dockhorn et al. (2021) designed Symmetric Splitting CLD
Sampler (SSCS) that takes advantage of Hamiltonian structure of the CLD and demonstrated advan-
tages over the naive Euler-Maruyama method. Zhang & Chen (2022) first utilized the semilinear
structure presented in DMs and showed that the exponential integrator gave much better sampling
quality than the Euler method. The proposed Diffusion Exponential Integrator Sampler (DEIS) fur-
ther accelerates sampling by utilizing Multistep and Runge Kutta ODE solvers. Similar to DEIS, Lu
et al. (2022); Karras et al. (2022) also proposed ODE solvers that utilize analytical forms of diffuson
scheduling coefficients. Karras et al. (2022) further improved the stochastic sampling algorithm
by augmenting ODE trajectories with small noise. Further tailoring these integrators to account for
the stiff property of ODEs (Hochbruck & Ostermann, 2010; Whalen et al., 2015) is a promising
direction in fast sampling for DMs.

B PROOFS

Since the proposed gDDIM is a generalization of DDIM, the results regarding gDDIM in Sec. 4
are generalizations of those in Sec. 3. In particular, Prop 4 generalizes Prop 1, Eq. (18) general-
izes Prop 2, and Prop 5 generalizes Prop 3. Thus, for the sake of simplicity, we mainly present
proofs for gDDIM in Sec. 4.

B.1 BLURRING DIFFUSION MODELS

We first review the formulations regarding BDM proposed in Hoogeboom & Salimans (2022) and
show it can be reformulated as SDE in continuous time Eq. (11).

Hoogeboom & Salimans (2022) introduce an forwarding noising scheme where noise corrupts data
in frequency space with different schedules for the dimensions. Different from existing DMs, the
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diffusion process is defined in frequency space:

p(yt|y0) = N (yt|αty0,σtI) yt = V Txt (24)

where α,σ are Rd×d diagonal matries and control the different diffuse rate for data along different
dimension. And yt is the mapping of xt in frequency domain obtained through Discrete Cosine
Transform (DCT) V T . We note V is the inverse DCT mapping and V TV = I .

Based on Eq. (24), we are able to derive its corresponding noising scheme in original data space

p(xt|x0) = N (xt|V αtV
Tx0,σtI). (25)

Eq. (25) indicates BDM is a non-isotropic diffusion process. Therefore, we are able to derive its
forward process as a linear SDE. For a general linear SDE Eq. (1), its mean and covariance follow

dmt

dt
= Ftmt (26)

dΣt

dt
= FtΣt +ΣtFt +GtG

T
t . (27)

Plugging Eq. (25) into Eq. (26), we are able to derive the drift and diffusion Ft,Gt for BDM
as Eq. (11). As BDM admit a SDE formulation, we can use Eq. (3) to train BDM. For choice
of hyperparameters αt,σt and pratical implementation, we include more details in App. C.

B.2 DETERMINISTIC GDDIM

B.2.1 PROOF OF EQ. (17)

Since we assume data distribution p0(u) = N (u0,Σ0), the score has closed form

∇ log pt(u) = −Σ−1
t (u−Ψ(t, 0)u0). (28)

To make sure our construction Eq. (16) is a solution to the probability flow ODE, we examine the
condition for Rt. The LHS of the probability flow ODE is

du = d[Ψ(t, 0)u0 +Rtϵ]

= Ψ̇(t, 0)u0dt+ Ṙtϵdt

= [FtΨ(t, 0)u0 + Ṙtϵ]dt. (29)

The RHS of the probability flow ODE is

[Ftu−
1

2
GtG

T
t ∇ log pt(u)]dt = [FtΨ(t, 0)u0 + FtRtϵ+

1

2
GtG

T
t R

−T
t ϵ]dt

= [FtΨ(t, 0)u0 + FtRtϵ+
1

2
GtG

T
t R

−T
t R−1

t Rtϵ]dt, (30)

where the first equality is due to∇ log pt(u) = −R−T
t ϵ.

Since Eqs. (29) and (30) holds for each ϵ, we establish

Ṙt = (Ft +
1

2
GtG

T
t R

−T
t R−1

t )Rt (31)

= (Ft +
1

2
GtG

T
t Σ

−1
t )Rt. (32)

B.2.2 PROOF OF PROP 4

Similar to the proof of Eq. (17), over a solution {u(t), t} to the probability flow ODE, R−1
t (u(t)−

Ψ(t, 0)u0) is constant. Furthermore, by Eq. (28),

∇ log pt(u(t)) = −Σ−1
t (u(t)−Ψ(t, 0)u0)

= −R−T
t R−1

t (u(t)−Ψ(t, 0)u0) (33)

Eq. (33) implies that −RT
t ∇ log pt(u(t)) is a constant and invariant with respect to t.
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B.2.3 PROOF OF EQS. (12) AND (18)

We derive Eq. (18) first.

The update step is based on the approximation ϵ̃θ(u, τ) = ϵθ(u(t), t) for τ ∈ [t − ∆t, t]. The
resultant ODE with ϵ̃θ reads

u̇ = Fτu+
1

2
GτG

T
τ R

−1
τ ϵθ(u(t), t), (34)

which is a linear ODE. The closed-form solution reads

u(ti−1) = Ψ(ti−1, ti)u(t) + [

∫ ti−1

ti

1

2
Ψ(ti−1, τ)GτG

T
τ R

−T
τ dτ ]ϵθ(u(t), t), (35)

where Ψ(t, s) is the transition matrix associated Ft, that is, Ψ satisfies

dΨ(t, s)

dt
= FtΨ(t, s) Ψ(s, s) = ID. (36)

When the DM is specified to be DDPM, we derive Eq. (12) based on Eq. (18) by expanding the
coefficients in Eq. (18) explicitly as

Ψ(t, s) =

√
αt

αs
,

Ψ(t−∆t, t) =

√
αt−∆t

αt
,∫ t−∆t

t

1

2
Ψ(t−∆t, τ)GτG

T
τ R

−1
τ dτ =

∫ t−∆t

t

−1

2

√
αt−∆t

ατ

d logατ

dτ

1√
1− ατ

dτ

=
√
αt−∆t

√
1− ατ

ατ

∣∣∣∣∣
αt−∆t

αt

=
√
1− αt−∆t −

√
1− αt

√
αt−∆t

αt
.

B.2.4 PROOF OF MULTISTEP PREDICTOR-CORRECTOR

Our Multistep Predictor-Corrector method slightly extends the traditional linear multistep Predictor-
Corrector method to incorporate the semilinear structure in the probability flow ODE with an expo-
nential integrator (Press et al., 2007; Hochbruck & Ostermann, 2010).

Predictor:

For Eq. (7), the key insight of the multistep predictor is to use existing function eval-
uations ϵθ(u(ti), ti), ϵθ(u(ti+1), ti+1), · · · , ϵθ(u(ti+q−1), ti+q−1) and their timestamps
ti, ti+1, · · · , ti+q−1 to fit a q − 1 order polynomial ϵp(t) to approximate ϵθ(u(τ), τ). With
this approximator ϵ̃θ(u, τ) = ϵp(τ) for τ ∈ [ti−1, ti], the multistep predictor step is obtained by
solving

du

dt
= Ftu+

1

2
GτG

T
τ R

−T
τ ϵ̃θ(u, τ)

= Ftu+
1

2
GτG

T
τ R

−T
τ ϵp(τ), (37)

which is a linear ODE. The solution to Eq. (37) satisfies

u(ti−1) = Ψ(ti−1, ti)u(ti) +

∫ ti−1

ti

1

2
GτG

T
τ R

−T
τ ϵp(τ)dτ. (38)

Based on Lagrange formula, we can write ϵp(τ) as

ϵp(τ) =

q−1∑
j=0

[
∏
k ̸=j

τ − ti+k

ti+j − ti+k
]ϵθ(uti+j

, ti+j). (39)
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Plugging Eq. (39) into Eq. (38), we obtain

u(ti−1) = Ψ(ti−1, ti)u(ti) +

q−1∑
j=0

[pC(q)
ij ϵθ(u(ti+j), ti+j)], (40)

pC(q)
ij =

∫ ti−1

ti

1

2
Ψ(ti−1, τ)GτG

T
τ R

−T
τ

q−1∏
k ̸=j,k=0

[
τ − ti+k

ti+j − ti+k
]dτ, (41)

which are Eqs. (19a) and (19b). Here we use pC(q)
ij to emphasize these are constants used in the

q-step predictor. The 1-step predictor reduces to Eq. (18).

Corrector:

Compared with the explicit scheme for the multistep predictor, the multistep corrector behaves like
an implicit method (Press et al., 2007). Instead of constructing ϵp(τ) to extrapolate model out-
put for τ ∈ [ti−1, ti] as in the predictor, the q step corrector aims to find ϵc(τ) to interpolate
ϵθ(u(ti−1), ti−1), ϵθ(u(ti), ti), ϵθ(u(ti+1), ti+1), · · · , ϵθ(u(ti+q−2), ti+q−2) and their timestamps
ti−1, ti, ti+1, · · · , ti+q−2. Thus, u(ti−1) is obtained by solving

u(ti−1) = Ψ(ti−1, ti)u(ti) +

∫ ti−1

ti

1

2
GτG

T
τ R

−T
τ ϵc(τ)dτ. (42)

Since ϵc(τ) is defined implicitly, it is not easy to find ϵc(τ),u(ti−1).
Instead, practitioners bypass the difficulties by interpolating
ϵθ(ū(ti−1), ti−1), ϵθ(ū(ti), ti), ϵθ(ū(ti+1), ti+1), · · · , ϵθ(ū(ti+q−2), ti+q−2) where ū(ti−1)
is obtained by the predictor in Eq. (38) and ū(ti) = u(ti), ū(ti+1) = u(ti+1), · · · , ū(ti+q−2) =
u(ti+q−2). Hence, we derive the update step for corrector based on

u(ti−1) = Ψ(ti−1, ti)u(ti) +

∫ ti−1

ti

1

2
GτG

T
τ R

−T
τ ϵc(τ)dτ, (43)

where ϵc(τ) is defined as

ϵc(τ) =

q−2∑
j=−1

[
∏
k ̸=j

τ − ti+k

ti+j − ti+k
]ϵθ(ūti+j

, ti+j). (44)

Plugging Eq. (44) into Eq. (43), we reach the update step for the corrector

u(ti−1) = Ψ(ti−1, ti)u(ti) +

q−2∑
j=−1

[cC(q)
ij ϵθ(ū(ti+j), ti+j)], (45)

cC(q)
ij =

∫ ti−1

ti

1

2
Ψ(ti−1, τ)GτG

T
τ R

−T
τ

q−2∏
k ̸=j,k=−1

[
τ − ti+k

ti+j − ti+k
]dτ. (46)

We use cC(q)
ij to emphasis constants used in the q-step corrector.

Exponential multistep Predictor-Corrector:

Here we present the Exponential multistep Predictor-Corrector algorithm. Specifically, we employ
one q-step corrector update step after an update step of the q-step predictor. The interested reader can
easily extend the idea to employ multiple update steps of corrector or different number of steps for
the predictor and the corrector. We note coefficients pC, cC can be calculated using high resolution
ODE solver once and used everywhere.
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Algorithm 1 Exponential multistep Predictor-Corrector

Input: Timestamps {ti}Ni=0, step order q, coefficients for predictor update pC, coefficients for
corrector update cC
Instantiate: u(tN ) ∼ pT (u)
for i in N,N − 1, · · · , 1 do

# predictor update step
qcur = min(q,N − i+ 1) # handle warming start, use lower order multistep method
uti−1 ← Simulate Eq. (40) with qcur-step predictor
# corrector update step
qcur = min(q,N − i+ 2) # handle warming start, use lower order multistep method
ū(ti−1), ū(ti), · · · , ū(ti+qcur−1)← u(ti−1),u(ti), · · · ,u(ti+qcur−1)
uti−1

← Simulate Eq. (45) with qcur-step corrector
end for

B.3 STOCHASTIC GDDIM

B.3.1 PROOF OF PROP 5

Assuming that the data distribution p0(u) is N (u0,Σ0) with a given Σ0, we can derive the mean
and covariance of pt(u) as

µt = Ψ(t, 0) (47)
dΣt

dt
= FtΣt +ΣtF

T
t +GtG

T
t . (48)

Therefore, the ground truth score reads
∇ log pt(u) = −Σ−1

t (u−Ψ(t, 0)u0). (49)

We assume Σ0 is given but u0 is unknown. Fortunately, u0 can be inferred via one score evaluation
as follows. Given evaluation∇ log ps(u(s)), we can recover u0 as

u0 = Ψ(0, s)[Σs∇ log ps(u(s)) + u(s)]. (50)
Plugging Eq. (50) and Ψ(t, s) = Ψ(t, 0)Ψ(0, s) into Eq. (49), we recover Eq. (20).

B.3.2 PROOF OF PROP 6

With the approximator ϵ̃θ(u, t) defined in Eq. (21) for τ ∈ [s, t], Eq. (6) can be reformulated as

du = Fτudτ +
1 + λ2

2
GτG

T
τ R

−T
τ ϵ̃θ(u, τ)dt+ λGτdw

= (Fτ +
1 + λ2

2
GτG

T
τ R

−T
τ R−1

τ )udt

+
1 + λ2

2
GτG

T
τ R

−T
τ R−1

τ Ψ(τ, s)(Rsϵθ(u(s), s)− u(s))dt+ λGτdw. (51)

Define F̂τ := Fτ + 1+λ2

2 GτG
T
τ R

−T
τ R−1

τ = Fτ + 1+λ2

2 GτG
T
τ Σ

−1
τ , and denote by Ψ̂(t, s) the

transition matrix associated with it. Clearly, Eq. (51) is a linear differential equation on u, and the
conditional probability p̂st(u(t)|u(s)) associated with it is a Gaussian distribution.

Applying Särkkä & Solin (2019, Eq (6.6,6.7)), we obtain the exact expressions

Mean = Ψ̂(t, s)u(s)− [

∫ t

s

Ψ̂(t, τ)
1 + λ2

2
GτG

T
τ Σ

−1
τ Ψ(τ, s)]dτ u(s)

+ [

∫ t

s

Ψ̂(t, τ)
1 + λ2

2
GτG

T
τ Σ

−1
τ Ψ(τ, s)]dτ Rsϵθ(u(s), s) (52)

for the mean of p̂st(u(t)|u(s)). Its covariance Psτ satisfies
dPsτ

dτ
= F̂τPsτ + Psτ F̂τ

T
+ λ2GτG

T
τ , Pss = 0. (53)

Eq. (52) has a closed form expression with the help of the following lemma.
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Lemma 1. ∫ t

s

Ψ̂(t, τ)
1 + λ2

2
GτG

T
τ Σ

−1
τ Ψ(τ, s) = Ψ̂(t, s)−Ψ(t, s)

Proof. For a fixed s, we define N(t) =
∫ t

s
Ψ̂(t, τ) 1+λ2

2 GτG
T
τ Σ

−1
τ Ψ(τ, s) and M(t) = Ψ̂(t, s)−

Ψ(t, s). It follows that

dN(τ)

dτ
= F̂τN(τ) +

1 + λ2

2
GτG

T
τ Σ

−1
τ Ψ(τ, s)

= FτN(τ) +
1 + λ2

2
GτG

T
τ Σ

−1
τ [N(τ) + Ψ(τ, s)] (54)

dM(τ)

dτ
= F̂τ Ψ̂(τ, s)− FτΨ(τ, s)

= FτM(τ) +
1 + λ2

2
GτG

T
τ Σ

−1
τ Ψ̂(τ, s). (55)

Define E(t) = N(t)−M(t), then

dE(t)

dt
= (Ft +

1 + λ2

2
GtG

T
t Σ

−1
t )E(t). (56)

On the other hand, N(s) = M(s) = 0 which implies E(s) = 0. We thus conclude E(t) = 0 and
N(t) = M(t).

Using lemma 1, we simplify Eq. (52) to

Ψ(t, s)u(s) + [Ψ̂(t, s)−Ψ(t, s)]Rsϵθ(u(s), s), (57)

which is the mean in Eq. (22).

B.3.3 PROOF OF THM 1

We restate the conclusion presented in Thm 1. The exact solution u(t−∆t) to Eq. (6) with coeffi-
cient Eq. (8) is

u(t−∆t) ∼ N (

√
αt−∆t

αt
u(t) +

[
−
√

αt−∆t

αt

√
1− αt +

√
1− αt−∆t − σ2

t

]
ϵθ(u(t), t), σ

2
t Id)

(58)

with σ2
t = (1− αt−∆t)

[
1−

(
1−αt−∆t

1−αt

)λ2 (
αt

αt−∆t

)λ2]
, which is the same as the DDIM Eq. (9).

Thm 1 is a concrete application of Eq. (22) when the DM is a DDPM and Fτ ,Gτ are set to Eq. (8).
Thanks to the special form of Fτ , Ψ has the expression

Ψ(t, s) =

√
αt

αs
Id, (59)

and Ψ̂ satisfies

log Ψ̂(t, s) =

∫ t

s

[
1

2

d logατ

dτ
− 1 + λ2

2

d logατ

dτ

1

1− ατ
]dτ (60)

Ψ̂(t, s) =

(
1− αt

1− αs

) 1+λ2

2
(
αs

αt

)λ2

2

. (61)
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Mean: Based on Eq. (22), we obtain the mean of p̂st as√
αt

αs
u(s) +

−√αt

αs

√
1− αs +

(
1− αt

1− αs

) 1+λ2

2
(
αs

αt

)λ2

2 √
1− αs

 ϵθ(u(s), s) (62)

=

√
αt

αs
u(s) +

−√αt

αs

√
1− αs +

√
(1− αt)

(
1− αt−∆t

1− αt

)λ2 (
αt

αt−∆t

)λ2
 ϵθ(u(s), s)

(63)

=

√
αt

αs
u(s) +

[
−
√

αt

αs

√
1− αs +

√
1− αt − σ2

s

]
ϵθ(u(s), s), (64)

where

σ2
s = (1− αt)

[
1−

(
1− αt

1− αs

)λ2 (
αs

αt

)λ2]
. (65)

Setting (s, t)← (t, t−∆t), we arrive at the mean update in Eq. (14).

Covariance: It follows from

dPsτ

dτ
= 2[

d logατ

2dτ
− 1 + λ2

2

d logατ

dτ

1

1− ατ
]Psτ − λ2 d logατ

dτ
Id, Pss = 0

that

Pst = (1− αt)

[
1−

(
1− αt

1− αs

)λ2 (
αs

αt

)λ2]
.

Setting (s, t)← (t, t−∆t), we recover the covariance in Eq. (14).

B.3.4 PROOF OF PROP 7

When λ = 0, the update step in Eq. (22) from s to t reads

u(t) = Ψ(t, s)u(s) + [Ψ̂(t, s)−Ψ(t, s)]Rsϵθ(u(s), s). (66)

Meanwhile, the update step in Eq. (18) from s to t is

u(t) = Ψ(t, s)u(s) + [

∫ t

s

1

2
Ψ(t, τ)GτG

T
τ R

−T
τ dτ ]ϵθ(u(s), s). (67)

Eqs. (66) and (67) are equivalent once we have the following lemma.
Lemma 2. When λ = 0,∫ t

s

1

2
Ψ(t, τ)GτG

T
τ R

−T
τ dτ = [Ψ̂(t, s)−Ψ(t, s)]Rs.

Proof. We introduce two new functions

N(t) :=

∫ t

s

1

2
Ψ(t, τ)GτG

T
τ R

−T
τ dτ (68)

M(t) := [Ψ̂(t, s)−Ψ(t, s)]Rs. (69)

First, N(s) = M(s) = 0. Second, they satisfy

dN(t)

dt
= FtN(t) +

1

2
GtG

T
t R

−T
t (70)

dM(t)

dt
= [F̂tΨ̂(t, s)− FtΨ(t, s)]Rs (71)

= FtM(t) +
1

2
GtG

T
t Σ

−1
t Ψ̂(t, s)Rs. (72)
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Note Ψ̂ and R satisfy the same linear differential equation as

dΨ̂(t, s)

dt
= [Ft +

1

2
GtG

T
t Σ

−1
t ]Ψ̂(t, s),

dRt

dt
= [Ft +

1

2
GtG

T
t Σ

−1
t ]Rt. (73)

It is a standard result in linear system theory (see Särkkä & Solin (2019, Eq(2.34))) that Ψ̂(t, s) =
RtR

−1
s . Plugging it and RtR

T
t = Σt into Eq. (72) yields

dM(t)

dt
= FtM(t) +

1

2
GtG

T
t R

−T
t . (74)

Define E(t) = N(t)−M(t), then it satisfies

E(s) = 0
dE(t)

dt
= FtE(t), (75)

which clearly implies that E(t) = 0. Thus, N(t) = M(t).

C MORE EXPERIMENT DETAILS

We present the practical implementation of gDDIM and its application to BMD and CLD. We in-
clude training details and discuss the necessary calculation overhead for executing gDDIM. More
experiments are conducted to verify the effectiveness of gDDIM compared with other sampling al-
gorithms. We report image sampling performance over an average of 3 runs with different random
seeds.

C.1 BDM: TRAINING AND SAMPLING

Unfortunately, the pre-trained models for BDM are not available. We reproduce the training pipeline
in BDM (Hoogeboom & Salimans, 2022) to validate the acceleration of gDDIM. The official
pipeline is quite similar to the popular DDPM (Ho et al., 2020). We highlight the main differ-
ence and changes in our implementation. Compared DDPM, BDM use a different forward noising
scheme Eqs. (11) and (25). The two key hyperparameters {αt}, {σt} follow the exact same setup
in Hoogeboom & Salimans (2022), whose details and python implementation can be found in Ap-
pendix A (Hoogeboom & Salimans, 2022). In our implementation, we use Unet network architec-
tures (Song et al., 2020b). We find our larger Unet improves samples quality. As a comparison, our
SDE sampler can achieve FID as low as 2.51 while Hoogeboom & Salimans (2022) only has 3.17
on CIFAR10.

C.2 CLD: TRAINING AND SAMPLING

For CLD, Our training pipeline, model architectures and hyperparameters are similar to those
in Dockhorn et al. (2021). The main differences are in the choice of Kt and loss weights
K−1

t ΛtK
−T
t .

Denote by ϵθ(u, t) = [ϵθ(u, t;x), ϵθ(u, t;v)] for corresponding model parameterization. The au-
thors of Dockhorn et al. (2021) originally propose the parameterization sθ(u, t) = −L−T

t ϵθ(u, t)
where Σt = LtL

T
t is the Cholesky decomposition of the covariance matrix of p0t(u(t)|x(0)).

Built on DSM Eq. (3), they propose hybrid score matching (HSM) that is claimed to be advanta-
geous (Dockhorn et al., 2021). It uses the loss

Et∼U [0,T ]Ex(0),u(t)|x(0)[∥ϵ− ϵθ(µt(x0) +Ltϵ, t)∥2L−1
t ΛtL

−T
t

]. (76)

With a similar derivation (Dockhorn et al., 2021), we obtain the HSM loss with our new score
parameterization sθ(u, t) = −L−T

t ϵθ(u, t) as

Et∼U [0,T ]Ex(0),u(t)|x(0)[∥ϵ− ϵθ(µt(x0) +Rtϵ, t)∥2R−1
t ΛtR

−T
t

]. (77)

Though Eqs. (76) and (77) look similar, we cannot directly use pretrained model provided in Dock-
horn et al. (2021) for gDDIM. Due to the lower triangular structure of Lt and the special Gt,
the solution to Eq. (6) only relies on ϵθ(u, t;v) and thus only ϵθ(u, t;v) is learned in Dockhorn
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et al. (2021) via a special choice of Λt. In contrast, in our new parametrization, both ϵθ(u, t;x) and
ϵθ(u, t;v) are needed to solve Eq. (6). To train the score model for gDDIM, we set R−1

t ΛtR
−T
t = I

for simplicity, similar to the choice made in Ho et al. (2020). Our weight choice has reasonable
performance and we leave improvement possibilities, such as mixed score (Dockhorn et al., 2021),
better Λt weights (Song et al., 2021), for future work. Though we require a different training scheme
of score model compared with Dockhorn et al. (2021), the modifications to the training pipeline and
extra costs are almost ignorable.

We change from Kt = Lt to Kt = Rt. Unlike Lt which has a triangular structure and closed form
expression as (Dockhorn et al., 2021)

Lt =

[√
Σxx

t 0
Σxv

t√
Σxx

t

√
Σxx

t Σxv
t −(Σxv

t )2

Σxx
t

]
, with Σt =

[
Σxx

t Σxv
t

Σxv
t Σvv

t

]
, (78)

we rely on high accurate numerical solver to solve Rt. The triangular structure of Lt and sparse
pattern of Gt for CLD in Eq. (10) also have an impact on the training loss function of the score
model. Due to the special structure of Gt, we only need to learn sθ(u, t;v) signals present in the
velocity channel. When Kt = Lt, sθ(u, t) = −L−T

t ϵ
(Lt)
θ (u, t) with L−T

t being upper triangular.
Thus we only need to train ϵ

(Lt)
θ (u, t;v) to recover sθ(u, t;v). In contrast, Rt does not share

the triangular structure as Lt; both ϵ
(Rt)
θ (u, t;x), ϵ

(Rt)
θ (u, t;v) are needed to recover sθ(u, t;v).

Therefore, Dockhorn et al. (2021) sets loss weights

L−1
t ΛtL

−T
t =

[
0 0
0 1

]
⊗ Id, (79)

while we choose

R−1
t ΛtR

−T
t =

[
1 0
0 1

]
⊗ Id. (80)

As a result, we need to double channels in the output layer in our new parameterization associated
with Rt, though the increased number of parameters in last layer is negligible compared with other
parts of diffusion models.

We include the model architectures and hyperparameters in Tab. 4. In additional to the standard size
model on CIFAR10, we also train a smaller model for CELEBA to show the efficacy and advantages
of gDDIM.

Table 4: Model architectures and hyperparameters

Hyperparameter CIFAR10 CELEBA
Model
EMA rate 0.9999 0.999
# of ResBlock per resolution 8 2
Normalization Group Normalization Group Normalization
Progressive input Residual None
Progressive combine Sum N/A
Finite Impluse Response Enabled Disabled
Embedding type Fourier Positional
# of parameters ≈ 108M ≈ 62M
Training
# of iterations 1m 150k
Optimizer Adam Adam
Learning rate 2×10−4 2×10−4

Gradient norm clipping 1.0 1.0
Dropout 0.1 0.1
Batch size per GPU 32 32
GPUs 4 A6000 4 A6000
Training time ≈ 79h ≈ 16h
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C.3 CALCULATION OF CONSTANT COEFFICIENTS

In gDDIM, many coefficients cannot be obtained in closed-form. Here we present our approach to
obtain them numerically. Those constant coefficients can be divided into two categories, solutions
to ODEs and definite integrals. We remark that these coefficients only need to be calculated once
and then can be used everywhere. For CLD, each of these coefficient corresponds to a 2× 2 matrix.
The calculation of all these coefficients can be done within 1 min.

Type I: Solving ODEs The problem appears when we need to evaluate Rt in Eq. (17) and Ψ̂(t, s)
in

dΨ̂(t, s)

dt
= F̂tΨ̂(t, s), Ψ̂(s, s) = I. (81)

Across our experiments, we use RK4 with a step size 10−6 to calculate the ODE solutions.
For Ψ̂(t, s), we only need to calculate Ψ̂(t, 0) because Ψ̂(t, s) = Ψ̂(t, 0)[Ψ̂(s, 0)]−1. In CLD,
Ft,Gt,Rt,Σt can be simplified to a 2 × 2 matrix; solving the ODE with a small step size is ex-
tremely fast. We note Ψ(t, s) and Σt admit close-form formula (Dockhorn et al., 2021). Since the
output of numerical solvers are discrete in time, we employ a linear interpolation to handle query
in continuous time. Since Rt, Ψ̂ are determined by the forward SDE in DMs, the numerical results
can be shared. In stochastic gDDIM Eq. (22), we apply the same techniques to solve Pst. In BDM,
Ft can be simplified into matrix whose shape align with spatial shape of given images. We note that
the drift coefficient of BDM is a diagonal matrix, we can decompose matrix ODE into multiple one
dimensional ODE. Thanks to parallel computation in GPU, solving multiple one dimensional ODE
is efficient.

Type II: Definite integrals

The problem appears in the derivation of update step in Eqs. (18), (19b) and (46), which require
coefficients such as pC(q)

ij , cC(q)
ij . We use step size 10−5 for the integration from t to t − ∆t.

The integrand can be efficiently evaluated in parallel using GPUs. Again, the coefficients, such
as pC(q)

ij , cC(q)
ij , are calculated once and used afterwards if we need sample another batch with the

same time discretization.

C.4 GDDIM WITH OTHER DIFFUSION MODELS

Though we only test gDDIM in several existing diffusion models, including DDPM, BDM, and
CLD, gDDIM can be applied to any other pre-trained diffusion models as long as the full score
function is available. In the following, we list key procedures to integrate gDDIM sampler into
general diffusion models. The integration consists of two stages, offline preparation of gDDIM
(Stage I), and online execution of gDDIM (Stage II).

Stage I: Offline preparation of gDDIM Preparation of gDDIM includes scheduling timestamps
and the calculation of coefficients for the execution of gDDIM.

Step 1: Determine an increasing time sequence T = {ti}
Step 2: Obtain Ψ(t, s) by solving ODE Eq. (81).

Step 3: Calculate Rt by solving ODE Eq. (17)

Step 4: Obtain pC(q)
ij , cC(q)

ij via applying definite integrator solvers on Eqs. (18), (19b) and (46)

How to solve ODEs Eqs. (17) and (81) and definite integrals Eqs. (18), (19b) and (46) has been
discussed in App. C.3.

Stage II: Online execution of gDDIM Stage II employs high order EI-based ODE solvers
for Eq. (82) with Kt = Rt. We include pseudo-code for simulating EI-multistep solvers in Algo 1.
It mainly uses updates Eq. (40) and Eq. (45).
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C.5 MORE EXPERIMENTS ON THE CHOICE OF SCORE PARAMETERIZATION

Here we present more experiments details and more experiments regarding Prop 1 and differences
between the two parameterizations involving Rt and Lt.

Toy experiments:

Figure 3: Trajectory and ϵ of Probability Flow solution in CLD
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Figure 4: Sampling on a challenging 2D example with the exact score ∇ log pt(u), where data
distribution is a mixture of Gaussian with small variance. Compared with Euler, algorithms based
on Exponential Integrator (EI) Eq. (82) have much better sampling quality. Among EI-based sam-
plers, different Kt for score parameterization ϵ(u, t) = −K−T

t log pt(u) have different sampling
performances when NFE is small. Clearly, Rt proposed by gDDIM enjoys better sampling quality
given the same NFE budget.

Here we present more empirical results to demonstrate the advantage of proper Kt.

In VPSDE, the advantage of DDIM has been verified in various models and datasets (Song et al.,
2020a). To empirically verify Prop 1, we present one toy example where the data distribution is
a mixture of two one dimension Gaussian distributions. The ground truth ∇ log pt(u) is known
in this toy example. As shown in Fig. 2, along the solution to probability flow ODE, the score
parameterization ϵ(u, t) = −∇ log pt(u)

√
1− αt enjoys smoothing property. We remark that

Rt = Lt =
√
Σt =

√
1− αtId in VPSDE, and thus gDDIM is the same as DDIM; the differ-

ences among Rt,Lt,
√
Σt only appear when Σt is non-diagonal.
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FID / IS at different NFE
q Kt 20 30 40 50

0 Lt 461.72 / 1.18 441.05 / 1.21 244.26 / 2.39 120.07 / 5.25
Rt 16.74 / 8.67 9.73 / 8.98 6.32 / 9.24 5.17 / 9.39

1 Lt 368.38 / 1.32 232.39 / 2.43 99.45 / 4.92 57.06 / 6.70
Rt 8.03 / 9.12 4.26 / 9.49 3.27 / 9.61 2.67 / 9.65

2 Lt 463.33 / 1.17 166.90 / 3.56 4.12 / 9.25 3.31 / 9.38
Rt 3.90 / 9.56 2.66 / 9.64 2.39 / 9.74 2.32 / 9.75

3 Lt 464.36 / 1.17 463.45 / 1.17 463.32 / 1.17 240.45 / 2.29
Rt 332.70 / 1.47 292.31 / 1.70 13.27 / 10.15 2.26 / 9.77

Table 5: More experiments on CIFAR10

FID at different NFE
q Kt 20 30 40 50

0 Lt 446.56 430.59 434.79 379.73
Rt 37.72 13.65 12.51 8.96

1 Lt 261.90 123.49 105.75 88.31
Rt 12.68 7.78 5.93 5.11

2 Lt 446.74 277.28 6.18 5.48
Rt 6.86 5.67 4.62 4.19

3 Lt 449.21 440.84 443.91 286.22
Rt 386.14 349.48 20.14 3.85

Table 6: More experiments on CELEBA

In CLD, we present a similar study. As the covariance Σt in CLD is no longer diagonal, we find
the difference of the Lt parameterization suggested by (Dockhorn et al., 2021) and the Rt parame-
terization is large in Fig. 3. The oscillation of {ϵ(Lt)} prevents numerical solvers from taking large
step sizes and slows down sampling. We also include a more challenging 2D example to illustrate
the difference further in Fig. 4. We compare sampling algorithms based on Exponential Integrator
without multistep methods for a fair comparison, which reads

u(t−∆t) = Ψ(t−∆t, t)u(t) + [

∫ t−∆t

t

1

2
Ψ(t−∆t, τ)GτG

T
τ K

−T
τ dτ ]ϵ(Kt)(u, t), (82)

where ϵ(Kt)(u, t) = KT
t ∇ log pt(u(t)). Though we have the exact score, sampling with Eq. (82)

will not give us satisfying results if we use Kt = Lt other than Rt when NFE is small.

Image experiments:

We present more empirical results regarding the comparison between Lt and Rt. Note that we use
exponential integrator for the parametrization Lt as well, similar to DEIS (Zhang & Chen, 2022).
We vary the polynomial order q in multistep methods (Zhang & Chen, 2022) and test sampling
performance on CIFAR10 and CELEBA. In both datasets, we generate 50k images and calcualte
their FID. As shown in Tabs. 5 and 6, Rt has significant advantages, especially when NFE is small.

We also find that multistep method with a large q can harm sampling performance when NFE is
small. This is reasonable; the method with larger q assumes the nonlinear function is smooth in
a large domain and may rely on outdated information for approximation, which may worsen the
accuracy.

C.6 MORE EXPERIMENTS ON THE CHOICE OF λ

To study the effects of λ, we visualize the trajectories generated with various λ but the same ran-
dom seeds in Fig. 5 on our toy example. Clearly, trajectories with smaller λ have better smoothing
property while trajectories with large λ contain much more randomness. From the fast sampling per-
spective, trajectories with more stochasticity are much harder to predict with small NFE compared
with smooth trajectories.
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Figure 5: Sampling with various λ and accurate score on a Toy example. Trajectories are shown
from T to 0.

We include more qualitative results on the choice of λ and comparison between the Euler-Maruyama
(EM) method and the gDDIM in Figs. 8 and 9. Clearly, when NFE is small, increasing λ has
a negative effect on the sampling quality of gDDIM. We hypothesize that λ = 0 already generates
high-fidelity samples and additional noise may harm the sampling performance. With a fixed number
of function evaluations, information derived from score network fails to remove the injected noise
as we increase λ. On the other hand, we find that the EM method shows slightly better quality as
we increase λ. We hypothesize that the ODE or SDEs with small λ has more oscillations than SDEs
with large λ. It is known that the EM method has a very bad performance for oscillations systems
and suffers from large discretization error (Press et al., 2007). From previous experiments, we find
that ODE in CLD is highly oscillated.

We also find both methods perform worse than Symmetric Splitting CLD Sampler (SSCS) (Dock-
horn et al., 2021) when λ = 1. The improvement by utilizing Hamiltonian structure and SDEs
structure is significant. This encourages further exploration that incorporates Hamiltonian structure
into gDDIM in the future. Nevertheless, we also remark that SSCS with λ = 1.0 performs much
worse than gDDIM with λ = 0.

C.7 MORE COMPARISONS

We also compare the performance of the CLD model we trained with that claimed in Dockhorn
et al. (2021) in Tab. 7. We find that our trained model performs worse than Dockhorn et al. (2021)
when a blackbox ODE solver or EM sampling scheme with large NFE are used. There may be two
reasons. First, with similar size model, our training scheme not only needs to fit ∇v log pt(u), but
also ∇x log pt(u), while Dockhorn et al. (2021) can allocate all representation resources of neural
network to ∇v log pt(u). Another factor is the mixed score trick on parameterization, which is
shown empirically have a boost in model performance (Dockhorn et al., 2021) but we do not include
it in our training.

We also compare our algorithm with more accelerating sampling methods in Tab. 7. gDDIM has
achieved the best sampling acceleration results among training-free methods, but it still cannot
compete with some distillation-based acceleration methods. In Tab. 8, we compare Predictor-only
method with Predictor-Corrector (PC) method. With the same number of steps N , PC can improve
the quality of Predictor-only at the cost of additional N − 1 score evaluations, which is almost two
times slower compared with the Predictor-only method. We also find large q may harm the sam-
pling performance in the exponential multistep method when NFE is small. We note high order
polynomial requires more datapoints to fit polynomial. The used datapoints may be out-of-date and
harmful to sampling quality when we have large stepsizes.

C.8 NEGATIVE LOG LIKELIHOOD EVALUATION

Because our method only modifies the score parameterization compared with the original
CLD (Dockhorn et al., 2021), we follow a similar procedure to evaluate the bound of negative
log-likelihood (NLL). Specifically, we can simulate probability ODE Eq. (7) to estimate the log-
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Table 7: More comparison on CIFAR10. FIDs may be reported based on different training tech-
niques and data augmentation. It should not be regarded as the only evidence to compare different
algorithms.

Class Model NFE (↓) FID (↓)

CLD

our CLD-SGM (gDDIM) 50 2.26
our CLD-SGM (SDE, EM) 2000 2.39
our CLD-SGM (Prob.Flow, RK45) 155 2.86
our CLD-SGM (Prob.Flow, RK45) 312 2.26
CLD-SGM (Prob.Flow, RK45) by Dockhorn et al. (2021) 147 2.71
CLD-SGM (SDE, EM) by Dockhorn et al. (2021) 2000 2.23

Training-free
Accelerated Score

DDIM by Song et al. (2020a) 100 4.16
Gotta Go Fast by Jolicoeur-Martineau et al. (2021b) 151 2.73
Analytic-DPM by Bao et al. (2022) 100 3.55
FastDPM by Kong & Ping (2021a) 100 2.86
PNDM by Liu et al. (2022) 100 3.53
DEIS by Zhang & Chen (2022) 50 2.56
DPM-Solver by Lu et al. (2022) 50 2.65
Rescaled 2nd Order Heun by Karras et al. (2022) 35 1.97

Training-needed
Accelerated Score

DDSS by Watson et al. (2022) 25 4.25
Progressive Distillation by Salimans & Ho (2022) 4 3.0
Knowledge distillation by Luhman & Luhman (2021) 1 9.36

Score+Others
LSGM by Vahdat et al. (2021) 138 2.10
LSGM-100M by Vahdat et al. (2021) 131 4.60
Diffusion GAN by Xiao et al. (2021) 4 3.75

FID at different steps N
q Method 20 30 40 50
0 Predictor 16.74 9.73 6.32 5.17

1 Predictor 8.03 4.26 3.27 2.67
PC 6.24 2.36 2.26 2.25

2 Predictor 3.90 2.66 2.39 2.32
PC 3.01 2.29 2.26 2.26

3 Predictor 332.70 292.31 13.27 2.26
PC 337.20 313.21 2.67 2.25

Table 8: Predictor-only vs Predictor-Corrector (PC). Compared with Predictor-only, PC adds one
more correcting step after each predicting step except the last step. When sampling with N step, the
Predictor-only approach requires n score evaluation, while PC consumes 2N − 1 NFE.
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likelihood of given data (Grathwohl et al., 2018). However, our diffusion model models the joint
distribution p(u0) = p(x0,v0) on test data x0 and augmented velocity data v0. Getting marginal
distribution p(x0) from p(u0) is challenging, as we need integrate v0 for each x0. To circumvent
this issue, Dockhorn et al. (2021) derives a lower bound on the log-likelihood,

log p(x0) = log(

∫
p(v0)

p(x0,v0)

p(v0
)dv0)

≥ Ev0∼p(v0)[log p(x0,v0)] +H(p(v0)),

where H(p(v0)) denotes the entropy of p(v0). We can then estimate the lower bound with the
Monte Carlo approach.

Empirically, our trained model achieves a NLL upper bound 3.33 bits/dim, which is comparable
with 3.31 bits/dim reported in the original CLD (Dockhorn et al., 2021). Possible approaches to
further reduce the NLL bound include maximal likelihood weights (Song et al., 2021), and improved
training techniques such as mixed score. For more discussions of log-likelihood and how to tighten
the bound, we refer the reader to Dockhorn et al. (2021).

C.9 CODE LICENSES

We implemented gDDIM and related algorithms in Jax. We have used code from a number of
sources in Tab. 9.

URL Citation License
https://github.com/yang-song/score_sde Song et al. (2020b) Apache License 2.0
https://github.com/nv-tlabs/CLD-SGM Dockhorn et al. (2021) NVIDIA License
https://github.com/qsh-zh/deis Zhang & Chen (2022) Unknown

Table 9: Code License
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Figure 6: Comparison between L (Upper) and R (Lower) with exponential integrator on CIFAR10.

28



Published as a conference paper at ICLR 2023

Figure 7: Comparison between L (Upper) and R (Lower) with exponential integrator on CELEBA.
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Figure 8: Comparison between EM (Upper) and gDDIM (Lower) on CIFAR10.
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Figure 9: Comparison between EM (Upper) and gDDIM (Lower) on CELEBA.
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