

GShuttle: Optimizing Memory Access Efficiency for Graph Convolu-
tional Neural Network Accelerators

Jia-Jun Li1 (李家军), Ke Wang2 (王　可), Hao Zheng3 (郑　皓), and Ahmed Louri4, Fellow, IEEE

1 School of Astronautics, Beihang University, Beijing 100191, China
2 Department of Electrical and Computer Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223

U.S.A.
3 Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, U.S.A.
4 Department of Electrical and Computer Engineering, George Washington University, Washington, DC 20052, U.S.A.

E-mail: jiajunli@buaa.edu.cn; ke.wang@uncc.edu; hao.zheng@ucf.edu; louri@gwu.edu

Received September 29, 2022; accepted January 1, 2023.

Abstract Graph convolutional neural networks (GCNs) have emerged as an effective approach to extending deep

learning for graph data analytics, but they are computationally challenging given the irregular graphs and the large num-

ber of nodes in a graph. GCNs involve chain sparse-dense matrix multiplications with six loops, which results in a large de-

sign space for GCN accelerators. Prior work on GCN acceleration either employs limited loop optimization techniques, or

determines the design variables based on random sampling, which can hardly exploit data reuse efficiently, thus degrading

system efficiency. To overcome this limitation, this paper proposes GShuttle, a GCN acceleration scheme that maximizes

memory access efficiency to achieve high performance and energy efficiency. GShuttle systematically explores loop opti-

mization techniques for GCN acceleration, and quantitatively analyzes the design objectives (e.g., required DRAM access-

es and SRAM accesses) by analytical calculation based on multiple design variables. GShuttle further employs two ap-

proaches, pruned search space sweeping and greedy search, to find the optimal design variables under certain design con-

straints. We demonstrated the efficacy of GShuttle by evaluation on five widely used graph datasets. The experimental

simulations show that GShuttle reduces the number of DRAM accesses by a factor of 1.5 and saves energy by a factor of

1.7 compared with the state-of-the-art approaches.

Keywords graph convolutional neural network, memory access, neural network accelerator

 1 Introduction

In recent years, deep learning over graph data has

achieved great success in a broad range of applica-

tions, such as traffic prediction[1], object detection[2],

and disease classification[3]. One of the most success-

ful models is Graph Convolutional Neural Network

(GCN)[4] that re-defines the notion of convolution for

graph data, and has been widely used in data centers

of Google, Alibaba[5], and Facebook[6].

Just like traditional neural networks, training and

inference of GCNs are both compute- and memory-in-

tensive, which poses a major challenge to the hard-

ware platforms. Typically, the graph convolutional

layers occupy the majority of execution time in GC-

Ns[7, 8] through two primary phases: aggregation and

combination. The computation in the combination

phase is similar to that in conventional neural net-

works. However, the aggregation phase relies on the

graph structure, which is often sparse and irregular.

This difference imposes new requirements on the de-

sign of GCN architectures.

Regular Paper

Special Issue in Honor of Professor Kai Hwang’s 80th Birthday
 A preliminary version of the paper was published in the Proceedings of HPCA 2021.

This work was supported by the U.S. National Science Foundation under Grant Nos. CCF-2131946, CCF-1953980, and CCF-
1702980. Part of this work was conducted when Dr. Jia-Jun Li was a post-doctoral researcher at the HPCAT Laboratory, George
Washington University.

Li JJ, Wang K, Zheng H et al. GShuttle: Optimizing memory access efficiency for graph convolutional neural network ac-

celerators. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 38(1): 115−127 Jan. 2023. DOI:

10.1007/s11390-023-2875-9

©Institute of Computing Technology, Chinese Academy of Sciences 2023

https://doi.org/10.1007/s11390-023-2875-9

The key computation pattern in GCNs can be ab-

stracted as chain sparse-dense matrix multiplications

(SpMMs)[9]. It involves six loops that result in a large

design space for GCN accelerators in terms of paral-

lelism, computation partitioning and scheduling.

These problems can be handled by the existing loop

optimization techniques[10], such as loop tiling, loop

unrolling, loop interchange and loop fusion. Recently,

a few customized GCN accelerators[9, 11, 12] have lever-

aged these techniques to deliver gains in performance

and energy efficiency. However, none of them has sys-

tematically studied the impact of these techniques on

system efficiency in terms of latency, on-chip SRAM

accesses and off-chip DRAM accesses. Instead, they

either employ limited loop optimization techniques, or

determine the design variables based on random sam-

pling. As a result, they can hardly exploit data reuse

efficiently, leading to increased memory accesses. As

memory access is much more expensive than compu-

tation[13], it will significantly degrade the energy effi-

ciency.

To this end, this paper proposes GShuttle, a GCN

acceleration scheme that maximizes memory access ef-

ficiency to improve energy efficiency. First, we pro-

vide an in-depth analysis of the four loop optimiza-

tion techniques for GCN computation and use corre-

sponding design variables to characterize different ac-

celeration schemes. We then build analytical models

to quantitatively estimate the design objectives of

GCN accelerators, such as on-chip SRAM accesses

and off-chip DRAM accesses. Based on the analytical

models, we formulate the accelerator design as an op-

timization problem, which aims to find the best com-

bination of design variables that maximizes the de-

sign objectives under certain design constraints, such

as on-chip storage size and the number of processing

elements (PEs). We further propose two algorithms,

namely pruned search space sweeping (PSSS) and

greedy search (GS), to address the problem. PSSS

prunes the search space to make the search practical-

ly manageable, while GS leverages empirical rules

concluded from simulation results to further reduce

the time complexity of the search. To demonstrate

the efficacy of the proposed framework, we simulate

the corresponding hardware accelerators based on the

design variables derived from GShuttle. The experi-

mental simulations show that our approach reduces

DRAM accesses by a factor of 1.5 and saves energy

by a factor of 1.7 on average compared with the

state-of-the-art approaches.

In summary, this paper makes the following con-

tributions.

• Problem Definition. We define an optimization

problem for GCN accelerator designs to maximize

memory access efficiency based on an in-depth analy-

sis of the loop optimization techniques and analytical

models.

• Search Algorithms. We develop two search algo-

rithms to solve the optimization problem to find a so-

lution within a reasonable amount of time.

• Framework Validation. We build an accelerator

simulator based on the design variables obtained from

GShuttle, and performed simulation studies to

demonstrate the efficacy of the proposed framework.

This paper is a significantly extended and revised

version of [12]. In [12], we proposed a flexible and en-

ergy-efficient accelerator for GCNs. However, [12]

mainly focuses on the dataflow optimization and has

not systematically explored the optimization of mem-

ory accesses. In this paper, we propose GShutte which

maximizes memory access efficiency (including both

DRAM and SRAM accesses) to achieve high perfor-

mance and energy efficiency.

The rest of the paper is organized as follows. Sec-

tion 2 summarizes the key design variables that char-

acterize the loop optimization techniques for GCN ac-

celeration. Section 3 describes the optimization prob-

lem that maximizes the memory access efficiency un-

der certain constraints based on the analytical mod-

els that estimate the on-chip SRAM and off-chip

DRAM accesses, and presents two approaches to

solve the optimization problem to find the best com-

bination design variables within a reasonable amount

of time. Section 4 describes the experimental method-

ology, and presents the experimental results in com-

parison with prior work. Section 5 introduces related

work and Section 6 concludes the paper.

 2 GCN Acceleration

 2.1 GCN Computation

The typical structure of a graph convolutional lay-

er is illustrated in Fig.1. The main computation of the

GCN models[14– 16] can be abstracted as a chain Sp-

MM:

X(k+1) = σ(ÂX(k)W (k)), (1)

X(l) l

X

W (l)

where is the matrix of input features in layer ;

each column of represents a feature vector while

each row denotes a node. is the weight matrix of

116 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

l σ(·)
Â

Â

Â

layer . denotes the non-linear activation func-

tion such as ReLU. is a transformed matrix from

the graph adjacency matrix. The transformation func-

tion varies across different GCN models. Since can

be computed offline from A, we hereafter use A to de-

note the normalized .

A ∈ RM×N X ∈ RN×K W ∈ RK×C ∈ RN×C

X ·W O ∈ RM×C

The chain SpMM in GCNs consists of six loops as

shown in the pseudocode in Fig.2. We assume that

, , . Matrix B

is the intermediate result of and is

the final output matrix. We assume we use the execu-

A ·(X ·W)tion order of as it reduces the number of

computations for most graph datasets[9].

 2.2 GCN Accelerators

Recently, a few GCN accelerators have been pro-

posed, delivering substantial gains in performance and

energy efficiency compared with generic CPU- and

GPU-based solutions. Specifically, HyGCN[11] ex-

ploits two dedicated compute engines, i.e., an aggre-

gation engine and a combination engine, to accelerate

the aggregation and combination phases, respectively.

AWB-GCN[9] is an architecture for accelerating GC-

Ns and Sparse-dense Matrix Multiplication (SpMM)

kernels, and addresses the issue of workload imbal-

ance in processing real-world graphs. GCNAX[12] pro-

poses a flexible dataflow for GCNs that simultaneous-

ly improves resource utilization and reduces data

movement.

These accelerators can be illustrated by the typi-

cal architecture shown in Fig.3. It consists of an accel-

X(l) l W (l)

l X(l+1) l + 1

Fig.1. Illustration of a GCN layer. The graph contains six nodes. A: adjacency matrix, : feature vectors of layer , : weight
matrix of layer , and : feature vectors of layer .

B

BO A

X W

Fig.2. Pseudocode of the chain SpMM in GCNs.

Accelerator Chip

Processing Units

GCN Configurations PE

Scheduler

Processing Units

Router

Aggregation
Engine

Combination
EngineGlobal

Buffer

FIFOs

Off-
Chip

DRAM

Fig.3. A typical GCN accelerator architecture.

Jia-Jun Li et al.: GShuttle: Optimizing Memory Access Efficiency for GCN Accelerators 117

erator chip and off-chip memory (usually DRAM).

The accelerator chip is primarily composed of a pro-

cessing unit (PU), a global buffer (GLB) and a sched-

uler. The PU can support high compute parallelism to

perform the matrix multiplications, consisting of ei-

ther two separate engines (HyGCN) or one uniform

engine (AWB-GCN, GCNAX). The scheduler is used

to map the GCNs onto the proposed accelerator us-

ing the computation sequences defined by the loop

optimization techniques. GLB is usually a uniform

software-controlled SRAM scratchpad memory that

can be used to exploit input data reuse and hide

DRAM access latency, or for the storage of intermedi-

ate data. The accelerator provides three levels of the

memory hierarchy, including DRAM, GLB and local

registers in PEs. Accessing data from a different level

implies a different energy cost[13]. In this paper, we fo-

cus on the expensive off-chip DRAM accesses (be-

tween off-chip DRAM and GLB) and on-chip SRAM

accesses (between GLB and registers in PEs).

 2.3 Loop Optimization and Design Variables

The chain SpMMs can be transformed in numer-

ous ways to capture different reuse patterns to map

the computation to a hardware accelerator implemen-

tation. In this paper, we will investigate four loop op-

timization techniques, namely loop unrolling, loop

tiling, loop interchange and loop fusion, to optimize

the memory access patterns with the three levels of

the memory hierarchy.

 2.3.1 Loop Unrolling

Loop unrolling determines the parallelization

strategy of the GCN loops, which then determines the

PE array scale and organization as well as the size of

registers in each PE. It can be used to increase the

utilization of massive computation resources. Re-

searchers have extensively studied the methods to un-

roll SpMM for parallel computations. As illustrated in

Fig.4 which takes SpMM1 as an example, unrolling

different loops directs parallelization of different com-

putations, which affects the optimal PE array archi-

tecture with respect to the data reuse opportunities

and memory access patterns.

Pn

W

Pn

• Loop-1 Unrolled (Fig.4(a)). In this case, a col-

umn vector of pixels from X is multiplied with a

pixel from in each cycle, and generates a column

vector of pixels which will be accumulated to ma-

2× Pn + 1 Pn

trix B. If data reuse in local registers is not enabled,

it will involve SRAM reads and SRAM

writes in each cycle.

Pc W

Pc

2× Pc + 1 Pc

• Loop-2 Unrolled (Fig.4(b)). In this case, a row

vector of pixels from is multiplied with a pixel

from X in each cycle, and generates a row vector of

 pixels which will be accumulated to matrix B. If

data reuse in local registers is not enabled, it will in-

volve SRAM reads and SRAM writes in

each cycle.

Pk

W

2× Pk + 1

• Loop-3 Unrolled (Fig.4(c)). In this case, the in-

ner product of a row vector of pixels from X and a

column vector of the same size from is computed

in each cycle, and generates one pixel which will be

accumulated to matrix B. If data reuse in local regis-

ters is not enabled, it will involve SRAM

reads and 1 SRAM write in each cycle.

Pn, Pk, PcThese unrolling factors () will determine

the total number of parallel multiple-and-accumula-

tion (MAC) operations as well as the number of re-

Fig.4. Loop unrolling. (a) Unroll loop-1. (b) Unroll loop-2.
(c) Unroll loop-3.

118 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

quired multipliers.

 2.3.2 Loop Tiling

Loop tiling can be applied for each SpMM to

leverage data locality and it determines the required

capacity and the partitioning of GLB. As the on-chip

GLB capacity is usually not large enough to hold all

the data in GCNs, loop tiling can be used to divide

the entire data and only fit a small portion of the da-

ta into the on-chip GLB. By properly selecting the

loop tile sizes, the data reuse can be maximized to re-

duce off-chip DRAM access, which will significantly

improve the overall energy efficiency as the energy

cost of off-chip memory accesses is orders of magni-

tude higher than that of arithmetic operations. The

tile sizes set the lower bound of the required GLB ca-

pacity. In other words, the GLB should be sized large

enough to hold the data tiles.

 2.3.3 Loop Interchange

Loop interchange[17] determines the computation

order of the loops and it can be used to enable differ-

ent types of data reuse to reduce external memory

traffic by exchanging the order of the nested loops.

There are two types of loop interchange in the GCN

loops, namely intra-tiling and inter-tiling loop orders.

The intra-tiling loop order determines the pattern of

data movements from on-chip GLB to register files.

The inter-tiling loop order determines the data move-

ment from external memory to on-chip GLB. Loop in-

terchange along with local memory promotion can re-

duce the data movements. Specifically, if the inner-

most loop is irrelevant to a matrix, i.e., the loop itera-

tor does not appear in the access function of the ma-

trix[18], there will be redundant memory operations

between different loop iterations which can be elimi-

nated to reduce memory access operations.

 2.3.4 Loop Fusion

Loop fusion optimization[19] can be leveraged to

reduce data transfer of intermediate data. Specifically,

we can fuse the processing of SpMM1 and SpMM2 to

reduce the data transfer of matrix B between off-chip

DRAM and on-chip GLB. As shown in Fig.2, if the

two SpMMs are executed sequentially without fusion,

the elements of matrix B are stored back to DRAM in

SpMM1, and they are again fetched from DRAM to

k

k

m

on-chip in SpMM2. Therefore, we can reduce the da-

ta transfer of these intermediate data by fusing the

execution of SpMM1 and SpMM2. When SpMM1 fin-

ishes the computation of loop and generates a B
chunk, we can pause the execution of SpMM1 and

proceed to the execution of SpMM2. By doing so, the

data transfer of the intermediate matrix (B) is elimi-

nated. Notably, although loop fusion reduces data

transfer of intermediate results, it somehow sacrifices

the freedom of loop interchange. Specifically, the iter-

ation in SpMM1 must be the innermost loop to en-

sure that matrix B finishes all its computations (not a

PartialMat) before being forwarded to SpMM2. More-

over, as becomes the innermost loop in the commu-

nication part of SpMM2, matrix O has to be frequent-

ly transferred between on-chip and off-chip. Since O is

the result matrix, the volume of data transfer is dou-

bled compared with the input matrix such as matrix

A because the result matrix has to be written back to

the main memory when being replaced, whereas the

input matrix can be directly replaced without being

written back.

n c

n0, c0

n1, c1

Table 1 lists the parameters in GCNs and the de-

sign variables used by the four loop optimization

techniques, where variables with a prefix of capital T
denotes the tile size, and P for unrolling factors. Since

both SpMM1 and SpMM2 contain the loops and ,

we hereafter use as the loop iterator in SpMM1,

and as the loop iterator in SpMM2.

Table 1. GCN Loop Parameters and Design Variables

GCN
Loop

Dimen-
sion

Without Loop
Fusion

With Loop
Fusion

Loop
Tiling

Loop
Unrolling

Loop
Tiling

Loop
Unrolling

SpMM1
(B = XW)

Loop-1 N Tn0 Pn0 Tn0 Pn0

Loop-2 C Tc0 Pc0 Tc0 Pc0

Loop-3 K Tk Pk Tk Pk

SpMM2
(O = AB)

Loop-4 M Tm Pm Tm Pm

Loop-5 C Tc1 Pc1 –(equal
to T c0)

Pc1

Loop-6 N Tn1 Pn1 –(equal
to Tn0)

Pn1

 3 GShuttle: Optimization Framework

Although we have concluded the key factors that

determine the memory accesses, it is not easy to de-

cide which combination of design variables is optimal

for a given GCN layer. Simply using static design

variables by random sampling for all layers as a lot of

Jia-Jun Li et al.: GShuttle: Optimizing Memory Access Efficiency for GCN Accelerators 119

prior work did[9, 11] is far from optimal due to the di-

mension and sparsity variance across different layers.

Therefore, in this section, we introduce how to deter-

mine the design variables for a given graph convolu-

tional layer. We first formulate the selection of de-

sign variables as an optimization problem, which aims

to find the best combination of design variables that

maximizes the design objectives (e.g., the number of

off-chip DRAM and on-chip SRAM accesses) under

certain design constraints (e.g., the on-chip storage

size and the number of PEs). We find that it is an

NP-hard problem because of the large design space,

thus requiring heuristic solutions in practice. There-

fore, we further propose two algorithms, namely

Pruned Search Space Sweeping, and Greedy Search to

address this problem.

 3.1 Problem Formulation

 3.1.1 Design Objectives

As our aim is to optimize memory access efficien-

cy, we will primarily target at two design objectives:

to minimize the following two metrics.

• Number of Off-Chip DRAM Accesses. It primar-

ily relies on the size of GLB and the degree of data

reuse, which are determined by the tiling size, inter-

tiling loop order, and loop fusion strategy.

• Number of On-Chip SRAM Accesses. It is deter-

mined by the loop unrolling strategies and intra-tiling

loop order, since they determine the reuse patterns of

the data transfer from GLB to local registers.

To simultaneously achieve both design objectives

might be infeasible as the best combination of design

variables for off-chip DRAM accesses may not be op-

timal for on-chip SRAM accesses, and vice versa.

Therefore, to optimize the overall memory access effi-

ciency, we combine the two design objectives into one

by calculating their weighted total as follows:

Minimize
X

V = Vd(X t,X oo,X f) + ω × Vs(X u,X oi)

s.t. 0 < Tm ⩽ M, 0 < Tk ⩽ K,
0 < Tn0 ⩽ N, 0 < Tn1 ⩽ N,
0 < Tc0 ⩽ C, 0 < Tc1 ⩽ C,
SX + SW + SB1 ⩽ GLBsize,
SA + SO + SB2 ⩽ GLBsize,
Pn0 × Pc0 × Pk ⩽ #PEs,
Pn1 × Pc1 × Pk ⩽ #PEs,

(2)

X = X t ∪ X oo ∪ X f ∪ X u ∪ X oi

X t,X oo,X f ,X u,X oi

where denotes the en-

tire search space, and denote the

parameter spaces of the tile size, inter-tiling loop or-

Vd Vs

SX , SW , SB1, SA, SO, SB2

ω

ω = 0.007 8

Vd Vs

Vd

Vs

der, loop fusion strategy, unrolling factors, and intra-

tiling loop order, respectively. and denote the

number of off-chip DRAM accesses and on-chip

SRAM accesses, respectively.

denote the required on-chip storage sizes of the corre-

sponding matrices, which are determined by the tile

size. is an adjustment parameter that reflects the

difference in the energy cost between basic DRAM ac-

cess and SRAM access. According to [13], we set

 indicating a basic DRAM access opera-

tion consumes 128x more energy than a basic SRAM

access does. To solve this optimization problem, we

first need to measure and given a combination

of design variables and a GCN layer. To this end, we

build analytical models for the estimation of and

.

 3.1.2 Estimation of Off-Chip DRAM Accesses

n0 → c0 → k,m →
c1 → n1

Since the space of the design variables is polyhe-

dral, we use an example to explain how the analyti-

cal models for off-chip DRAM accesses are built. As-

suming the inter-tiling loop order is

 and loop fusion is not enabled, the total num-

ber of off-chip DRAM accesses is calculated by:

Vd = αX×SX + αW ×SW + αB1×SB1+
αB2×SB2 + αA×SA + αO×SO,

(3)

where 

SX = γX ×Tn0 ×Tk,
SW = Tk ×Tc0,
SB1 = Tn0 ×Tc0,
SB2 = Tn1 ×Tc1,
SA = γA ×Tm ×Tn1,
SO = Tm ×Tc1,

(4)

 

αX = αW =
N

Tn0

× C

Tc0

×K

Tk

,

αB1 =
N

Tn0

× C

Tc0

,

αB2 = αA =
M

Tm

× C

Tc1

× N

Tn1

,

αO =
M

Tm

× C

Tc1

.

(5)

αX , αW , αB, αA SX , SW , SB, SA

αB1, αB2, SB1,

SB2

Here and denote

the trip counts and buffer sizes of memory accesses to

X, W, B, A, respectively. Note that

 are used to differentiate the accesses in SpMM1

and SpMM2 respectively. As matrices X and A are

sparse[9, 12], the off-chip DRAM accesses can be re-

duced by compressed encoding of the matrices. We

120 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

γX , γA
SX SA

assume that the zeros in matrices X and A are dis-

tributed evenly so we use the overall density of X and

A () to represent the density of each chunk

when estimating and , as shown in (4). Al-

though it does not reflect the actual distribution, we

make this assumption for simplicity since considering

the sparsity distribution would significantly increase

the model complexity. Moreover, we find that the es-

timated values from the model deviate little from the

actual values derived from a cycle-level simulation.

α′s

α′s

When changing the inter-tiling loop order, we on-

ly need to modify the equation of in (5). The enu-

meration of the loop orders and the corresponding

equation of are omitted for brevity. When en-

abling loop fusion, the total number of off-chip access-

es and the buffer size are also calculated by (3) and

(4), but the trip counts are estimated as follows. 

αX = αW =
N

Tn0

× C

Tc0

×K

Tk

,

αB1 = αB2 = 0,

αA =
M

Tm

× C

Tc0

× N

Tn0

,

αO = 2× M

Tm

× C

Tc0

× N

Tn0

.

(6)

αO

We can see that the DRAM accesses of matrix B
are eliminated but is much larger than that in (5).

 3.1.3 Estimation of On-Chip SRAM Accesses

If data reuse in local registers is not enabled, the

total number of read operations from on-chip GLB for

SpMM1 will be calculated as follows:

#sram_read_no_reuse = 3×N × C ×K, (7)

since every multiplication needs three SRAM reads.

The total number of write operations from PEs to on-

chip buffers for SpMM1 will be calculated as follows:

#sram_read_no_reuse = N × C ×K. (8)

n0 →c0 → k

Tk

As mentioned in Subsection 2.3, the number of

on-chip SRAM accesses can be reduced by enabling

data reuse under different loop unrolling strategies

and intra-tiling loop order. For example, given the in-

tra-tiling loop order () and loop-3 un-

rolled for SpMM1, the data elements in matrix B can

be reused for times. Therefore, the total number of

SRAM reads and writes is:

#sram_read =

(
2 +

1

Tk

)
× (N × C ×K),

#sram_write =
1

Tk

×N × C ×K,

(9)

respectively.

Similarly, we can calculate the SRAM reads and

writes give other combinations of design variables.

 3.2 Search Algorithms

Given the analytical models, we need to find out

which combination of design variables can minimize

the design objective described in (2). Clearly, by

sweeping all the combinations of design variables, we

can find the optimal solution but it takes a lot of time

due to the large search space. According to our exper-

iments, it takes tens of hours to fully explore the en-

tire design space on an Intel I7-8650U@1.90GHz,

which is infeasible for practical use.

Pc0

To simplify the search, we use outer-product-

based computation architecture[20] as shown in

Fig.4(b) to optimize the SRAM accesses. Although

this method would have a negative impact on the

reuse of the output matrix, it provides additional in-

put matrix reuse compared with the inner-product-

based method. More importantly, it well supports the

elimination of zero computations. Since the input pix-

el from X is the input operand for all the multipli-

cations, these computations can be skipped simultane-

ously if the input pixel is zero. For DRAM accesses,

we tackle the optimization problem by developing two

approaches, pruned search space sweeping and greedy

search.

 3.2.1 Pruned Search Space Sweeping

X t

X t

N

We discovered that the main reason for the large

search space is that (the search space of tiling

size) contains every integer value between 1 and the

dimension size. Therefore, pruning the search space

 can significantly shrink the entire search space.

Most tile size values cannot be fully divided by the di-

mension size. In such cases, we need to pad the data

block to simplify data movements[21], which will de-

grade the GLB space utilization. Clearly, the tile size

that causes less padding will utilize the GLB space ef-

ficiently, thus reducing unnecessary off-chip DRAM

accesses. Among a set of the tile sizes that results in

the same number of iterations, the one requires mini-

mum padding has the least data padding. Therefore,

from 1 to the dimension size, we only need to consid-

er the smallest tile size values that yield a new num-

ber of loop iterations. For example, assuming a value

of 10 for dimension , the candidate tile size will be

Jia-Jun Li et al.: GShuttle: Optimizing Memory Access Efficiency for GCN Accelerators 121

{1, 2, 3, 4, 5, 10}
{10, 5, 4, 3, 2, 1}

N O(N)

O(2
√
N)

 since they yield the number of loop it-

erations of . The number of points to

sweep in dimension will be reduced from to

, which will significantly shrink the search

space, thus reducing the search time from tens of

hours to several minutes.

 3.2.2 Greedy Search

X t,X oo,

X f

Alternatively, we also provide a greedy search al-

gorithm that further reduces the search time to sever-

al seconds. Table 2 shows how to determine the de-

sign variables for off-chip DRAM accesses (

). This greedy algorithm leverages the empirical

rules concluded from many simulation results.

Table 2. Greedy Search Algorithm to Determine the Design
Variables

Condition Loop
Fusion

Inter-Tiling
Loop Order

Tile Size Setting
Priority

N × C ⩾
GLBsize

No n0 →c0 →k
m →c1 →n1

, Tn0, Tm

Tc0, Tc1

Tn1, Tk

①
②
③

N × C <

GLBsize
Yes n0 →c0 →k →m Tn0, Tn1

Tc0, Tc1

Tm, Tk

①
②
③

N × C ⩾ GLBsize Tn0 Tm

Tc0, Tc1

Tn0 Tm

Tc0, Tc1

The tile size setting priority indicates which tiling

factor has the priority for larger number settings. For

example, if , and have the

highest priority for larger number settings, which

means they will be set to the maximal number while

satisfying other constraints. have the second

highest priority. When and are already set as

the largest number, then will be set as large as

possible.

To better understand the greedy search, Table 3

presents the tile size, loop order and loop fusion choic-

es for five datasets: Cora[22], CiteSeer[22], PubMed[15],

Nell[23] and Reddit[15]. We constrain GLBsize at 128

KB.

 4 Evaluation

 4.1 Experimental Setup

Accelerator Implementation. To evaluate GShut-

tle, we built a cycle-level simulator in C++ to model

the behavior of the hardware described in Section 2

when using the design variables derived from GShut-

tle. The simulator models the microarchitectural be-

haviors of each module, and supports different combi-

nations of design variables. The simulator counts the

exact amount of DRAM reads and writes, on-chip

SRAM reads and writes and the number of execution

cycles, which is used for estimation of performance

and energy efficiency.

Design Constraints. We constrain the number of

PEs no more than 128, and the on-chip GLB is no

more than 128 KB. The off-chip DRAM bandwidth is

128 GB/s.

Baselines. We compare GShuttle with three GCN

accelerators (HyGCN[11], AWB-GCN[9] and GCNAX[12]).

GShuttle has two variants, one is GShuttle-PSSS

which uses pruned search space sweeping to find the

combination of design variables, and the other is

GShuttle-GS which uses greedy search. Table 4 sum-

marizes the characteristics of the baselines and

GShuttle. The baseline accelerators are scaled to be

equipped with the same number of multipliers and

DRAM bandwidth as GShuttle. Since HyGCN and

AWB-GCN use single-precision floating-point num-

bers (32-bit) whereas GCNAX uses double-precision

(64-bit), we uniformly use double-precision numbers

for all accelerators to provide a fair comparison. We

also resize the baseline accelerators to be equipped

Table 3. Design Variables (Tile Size, Inter-Tiling Loop Order and Loop Fusion) Derived from Greedy Search

Dataset Layer (M-N-K-C) γA γX Loop
Fusion

Inter-Tiling Loop Order
Tn0, Tc0, Tk, Tn1, Tc1, Tm

Tile Size Tuple
()

Cora L1 (2 708-2 708-1 433-16) 0.001 800 0.012 70 Yes n0 →c0 →k →m (2 708, 16, 1, 2 708, 16, 1)

L2 (2 708-2 708-16-7) 0.001 800 0.780 00 Yes n0 →c0 →k →m (2 708, 7, 1, 2 708, 7, 1)

Citeseer L1 (3 327-3 327-3 703-16) 0.001 100 0.008 50 Yes n0 →c0 →k →m (3 000, 16, 5, 3 000, 16, 1)

L2 (3 327-3 327-16-6) 0.001 100 0.008 50 Yes n0 →c0 →k →m (3 000, 6, 1, 3 000, 6, 1)

Pubmed L1 (19 717-19 717-500-16) 0.000 280 0.100 00 No n0 →c0 →k m →c1 →n1, (3 073, 16, 1, 1, 16, 3 073)

L2 (19 717-19 717-16-3) 0.000 280 0.776 00 No n0 →c0 →k m →c1 →n1, (3 000, 3, 1, 1 025, 3, 3 000)

Nell L1 (65 755-65 755-61 278-64) 0.000 073 0.000 11 No n0 →c0 →k m →c1 →n1, (4 096, 1, 33, 1, 1, 4 096)

L2 (65 755-65 755-64-186) 0.000 073 0.864 00 No n0 →c0 →k m →c1 →n1, (257, 186, 1, 1, 17, 2 817)

Reddit L1 (232 965-232 965-602-64) 0.002 100 0.516 00 No n0 →c0 →k m →c1 →n1, (641, 64, 1, 1, 9, 4 096)

L2 (232 965-232 965-64-41) 0.002 100 0.600 00 No n0 →c0 →k m →c1 →n1, (1 153, 41, 1, 1, 17, 2 817)

122 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

with the on-chip storage capacity. For example, we

simulate the HyGCN accelerator with 128 KB on-chip

storage rather than the original 16 MB. The DRAM

bandwidth for all the accelerators is scaled to 128

GB/s. Note that as HyGCN uses an edge-centric pro-

gramming model for the aggregation phase, their com-

putation in the aggregation phase is not matrix multi-

plication. Our simulator takes this into account and

estimates the execution cycles and DRAM accesses

according to HyGCN's dataflow.

Table 4. Characteristics of Baselines

Baseline Execution
Order

Loop
Fusion

Inter-Tiling Loop
Order

Tile Size

HyGCN[11] (AX)W Yes n0 →c0 →k →m Static

AWB-
GCN[9] A(XW) Yes n0 →c0 →k →m Static

GCNAX[12] A(XW) Adaptive Adaptive Static

GShuttle A(XW) Adaptive Adaptive Adaptive

Benchmarks. We use the graph datasets listed in

Table 3 as the benchmarks to test the efficiency of

GShuttle and the baselines. These datasets vary in the

number of edges, vertices and sparsity levels, which

provides sufficient diversity to evaluate the effective-

ness of these methods.

 4.2 Experimental Results

 4.2.1 Number of DRAM Accesses

We firstly make the comparison on the total num-

ber of DRAM accesses, as shown in Fig.5. GShuttle

provides a tremendous DRAM access advantage over

the baselines. Specifically, GShuttle-GS reduces DRAM

accesses by a factor of 11.1x, 3.3x and 1.4x compared

with HyGCN, AWB-GCN and GCNAX, respectively.

Moreover, GShuttle-PSSS reduces DRAM accesses by

a factor of 11.7x, 3.4x and 1.5x over the three base-

lines. The high DRAM access efficiency of GShuttle

mainly stems from the followings. 1) GShuttle uses

adaptive loop order and fusion strategy for different

graph datasets. 2) The adaptive tiling sizes of GShut-

tle can make the best use of the global buffer. Since

HyGCN uses inefficient execution order, it involves

more computations that result in more DRAM access-

es. AWB-GCN optimizes the reuse of the intermedi-

ate matrix. However, it sacrifices the reuse of the out-

put matrix due to the limited on-chip storage size.

Moreover, the tile sizes are not carefully tailored in

the AWB-GCN accelerator.

 4.2.2 Energy Consumption

For energy evaluation, we primarily focus on three

parts: 1) energy consumed by arithmetic operations,

2) energy consumed by on-chip SRAM accesses, and

3) energy consumed by off-chip DRAM accesses. As

the simulator counts the number of arithmetic opera-

tions and data accesses at different levels, we use

these numbers to estimate the total energy consump-

tion by multiplying them with the energy cost of ba-

sic arithmetic and memory operations in a 45 nm

CMOS process[13]. Fig.6 shows the normalized energy

consumption of these accelerator designs. Overall,

GShuttle-GS achieves 9.5x, 3.1x, and 1.4x energy sav-

ings on average over HyGCN, AWB-GCN, and GC-

NAX, respectively, while GShuttle-PSSS saves ener-

gy by a factor of 12.1x, 3.9x, and 1.7x compared with

the three baseline accelerators respectively.

 4.2.3 Sensitivity to Hardware Parameters

y

GLBsize < 1

The optimization framework in Section 3 indi-

cates that GLBsize is an important specification for

the number of off-chip DRAM accesses. Moreover, as

we scale the baseline accelerators to be equipped with

the same global buffer size, which would potentially

hurt the efficiency of the baseline accelerators, we

conduct a sensitivity analysis on the Reddit dataset

to quantify the effects of global buffer size. In Fig.7,

we sweep the on-chip buffer size from 128 KB up to 8

MB to investigate how it influences the number of

DRAM accesses. The axis denotes the total num-

ber of DRAM accesses of the two layers. All schemes

achieve DRAM access reduction with larger GLB pro-

visioning, especially when GLBsize is small

(MB). With GLBsize going larger, the

benefit gains slower. For specific schemes, GShuttle-

GS and GShuttle-PSSS outperform the baselines in

all GLB settings.

 5 Related Work

Besides the GCN accelerators mentioned in Sec-

tion 2, there are also a few other GNN (graph neural

network) accelerators in the literature. Auten et al.[24]

proposed a GNN accelerator to efficiently execute the

irregular data movement required for graph computa-

tion in GNNs, while also providing a high compute

throughput required by GNN models. EnGN[25] is de-

signed to accelerate the three key stages of GNN

propagation, which is abstracted as common comput-

Jia-Jun Li et al.: GShuttle: Optimizing Memory Access Efficiency for GCN Accelerators 123

320

120

45
33 32

H
y
G

C
N

A
W

B
-
G

C
N

G
C

N
A

X

G
S
h
u
tt

le
-
G

S

G
S
h
u
tt

le
-
P
S
S
S

0

50

100

150

200

250

300

350

D
R

A
M

 A
c
c
e
ss

e
s

(M
B

)

Layer 1 Layer 240

6.5
3.9 2.9 2.8

H
y
G

C
N

A
W

B
-
G

C
N

G
C

N
A

X

G
S
h
u
tt

le
-
G

S

G
S
h
u
tt

le
-
P
S
S
S

0

5

10

15

20

25

30

35

40

D
R

A
M

 A
c
c
e
ss

e
s

(M
B

)

Layer 1 Layer 2

18

3.8
2.3

1.8 1.8

H
y
G

C
N

A
W

B
-
G

C
N

G
C

N
A

X

G
S
h
u
tt

le
-
G

S

G
S
h
u
tt

le
-
P
S
S
S

0

5

10

15

20

D
R

A
M

 A
c
c
e
ss

e
s

(M
B

)

Layer 1 Layer 2

32 000

18 000

5 600
3 800 3 500

H
y
G

C
N

A
W

B
-
G

C
N

G
C

N
A

X

G
S
h
u
tt

le
-
G

S

G
S
h
u
tt

le
-
P
S
S
S

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
R

A
M

 A
c
c
e
ss

e
s

(M
B

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
R

A
M

 A
c
c
e
ss

e
s

(M
B

)
Layer 1 Layer 2

310 000

93 000

30 000
21 000 20 000

H
y
G

C
N

A
W

B
-
G

C
N

G
C

N
A

X

G
S
h
u
tt

le
-
G

S

G
S
h
u
tt

le
-
P
S
S
S

Layer 1 Layer 2104 105

(b)(a) (c)

(d) (e)

Fig.5. DRAM accesses of GShuttle and the baseline approaches. (a) Cora. (b) Citeseer. (c) Pubmed. (d) Nell. (e) Reddit.

Cora Citeseer Pubmed Nell Reddit
0

5

10

15

20

E
n
e
rg

y
 C

o
n
su

m
p
ti
o
n

HyGCN

AWB-GCN

GCNAX

GShuttle-GS

GShuttle-PSSS

Fig.6. Energy savings of GShuttle over the baselines.

27 28 29 210 211 212 213

On-Chip Global Buffer Size (KB)

D
R

A
M

 A
c
c
e
se

s
(M

B
)

107

106

105

104

103

HyGCN AWB-GCN GCNAX

GShuttle-GS GShuttle-PSSS

Fig.7. Number of DRAM accesses w.r.t. the variation on-chip
buffer size (tested on the Reddit dataset).

124 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

ing patterns shared by typical GNNs. GRIP[26] is de-

signed for low-latency inference of GNNs, which splits

GNN inference into a fixed set of edge- and vertex-

centric execution phases that can be implemented in

hardware, and then specializes each unit for the

unique computational structure found in each phase.

GraphACT[27] is dedicated for the acceleration of

training GCNs on CPU-FPGA heterogeneous sys-

tems, which incorporates multiple algorithm-architec-

ture co-optimizations. VersaGNN[28] is systolic-array-

based versatile GNN accelerator that unifies dense

and sparse matrix multiplication in GNNs.

Since the loop optimization techniques proposed

in this paper can significantly improve memory ac-

cess efficiency, which is of paramount importance for

GCN acceleration, we believe that our approach can

be easily applied to the other accelerators.

 6 Conclusions

Motivated by the observation that most of the en-

ergy is consumed by memory accesses for state-of-the-

art GCN accelerators, this paper presented GShuttle

to optimize memory access efficiency for such acceler-

ators. GShuttle employs two algorithms to solve the

memory access optimization problem raised in GCN

accelerators, both of which can find the optimal de-

sign variables of GCN dataflow under certain design

constraints. Our results showed that GShuttle could

significantly reduce the number of DRAM and SRAM

accesses for GCN accelerators. Since the optimiza-

tions on DRAM accesses are orthogonal to those on

computation, we expect that GShuttle can be applied

to many existing GCN accelerators such as HyGCN

and AWB-GCN.

Acknowledgment　 The authors appreciate the

constructive comments provided by the anonymous

reviewers.

References

 Jiang W W, Luo J Y. Graph neural network for traffic

forecasting: A survey. arXiv: 2101.11174, 2021. https://

arxiv.org/abs/2101.11174, Dec. 2022.

[1]

 Shi W J, Rajkumar R. Point-GNN: Graph neural net-

work for 3D object detection in a point cloud. In Proc.

the 2020 IEEE/CVF Conference on Computer Vision and

Pattern Recognition, Jun. 2020, pp.1711–1719. DOI:

10.1109/CVPR42600.2020.00178.

[2]

 Wee C Y, Liu C Q, Lee A, Poh J S, Ji H, Qiu A Q, The

Alzheimers Disease Neuroimage Initiative. Cortical graph

[3]

neural network for AD and MCI diagnosis and transfer

learning across populations. NeuroImage: Clinical, 2019,

23: 101929. DOI: 10.1016/j.nicl.2019.101929.

 Zhang Z W, Cui P, Zhu W W. Deep learning on graphs:

A survey. IEEE Trans. Knowledge and Data Engineering,

2022, 34(1): 249–270. DOI: 10.1109/TKDE.2020.2981333.

[4]

 Yang H X. AliGraph: A comprehensive graph neural net-

work platform. In Proc. the 25th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery & Data Min-

ing, Jul. 2019, pp.3165–3166. DOI: 10.1145/3292500.334

0404.

[5]

 Lerer A, Wu L, Shen J, Lacroix T, Wehrstedt L, Bose A,

Peysakhovich A. PyTorch-BigGraph: A large-scale graph

embedding system. arXiv: 1903.12287, 2019. https://arx-

iv.org/abs/1903.12287, Dec. 2022.

[6]

 Yan M Y, Chen Z D, Deng L, Ye X C, Zhang Z M, Fan

D R, Xie Y. Characterizing and understanding GCNs on

GPU. IEEE Computer Architecture Letters, 2020, 19(1):

22–25. DOI: 10.1109/LCA.2020.2970395.

[7]

 Zhang Z H, Leng J W, Ma L X, Miao Y S, Li C, Guo M

Y. Architectural implications of graph neural networks.

IEEE Computer Architecture Letters, 2020, 19(1): 59–62.

DOI: 10.1109/LCA.2020.2988991.

[8]

 Geng T, Li A, Shi R B, Wu C S, Wang T Q, Li Y F,

Haghi P, Tumeo A, Che S, Reinhardt S, Herbordt M C.

AWB-GCN: A graph convolutional network accelerator

with runtime workload rebalancing. In Proc. the 53rd An-

nual IEEE/ACM International Symposium on Microarchi-

tecture (MICRO), Oct. 2020, pp.922–936. DOI:

10.1109/MICRO50266.2020.00079.

[9]

 Ma Y F, Cao Y, Vrudhula S, Seo J S. Optimizing loop

operation and dataflow in FPGA acceleration of deep con-

volutional neural networks. In Proc. the 2017 ACM/SIG-

DA International Symposium on Field-Programmable

Gate Arrays, Feb. 2017, pp.45–54. DOI: 10.1145/3020078.

3021736.

[10]

 Yan M Y, Deng L, Hu X, Liang L, Feng, Y J, Ye X C,

Zhang Z M, Fan D R, Xie Y. HyGCN: A GCN accelera-

tor with hybrid architecture. In Proc. the 2020 IEEE In-

ternational Symposium on High Performance Computer

Architecture (HPCA), Feb. 2020, pp.15–29. DOI: 10.1109/

HPCA47549.2020.00012.

[11]

 Li J J, Louri A, Karanth A, Bunescu R. GCNAX: A flexi-

ble and energy-efficient accelerator for graph convolution-

al neural networks. In Proc. the 2021 IEEE International

Symposium on High-Performance Computer Architecture

(HPCA), Mar. 2021, pp.775–788. DOI: 10.1109/HPCA

51647.2021.00070.

[12]

 Galal S, Horowitz M. Energy-efficient floating-point unit

design. IEEE Transactions on Computers, 2011, 60(7):

913-922.

[13]

 Kipf T N, Welling M. Semi-supervised classification with

graph convolutional networks. arXiv: 1609.02907, 2016.

https://arxiv.org/abs/1609.02907, Dec. 2022.

[14]

 Hamilton W L, Ying R, Leskovec J. Inductive representa-

tion learning on large graphs. In Proc. the 31st Interna-

[15]

Jia-Jun Li et al.: GShuttle: Optimizing Memory Access Efficiency for GCN Accelerators 125

https://arxiv.org/abs/2101.11174
https://arxiv.org/abs/2101.11174
http://dx.doi.org/10.1109/CVPR42600.2020.00178
http://dx.doi.org/10.1016/j.nicl.2019.101929
http://dx.doi.org/10.1109/TKDE.2020.2981333
http://dx.doi.org/10.1145/3292500.3340404
http://dx.doi.org/10.1145/3292500.3340404
https://arxiv.org/abs/1903.12287
https://arxiv.org/abs/1903.12287
https://arxiv.org/abs/1903.12287
http://dx.doi.org/10.1109/LCA.2020.2970395
http://dx.doi.org/10.1109/LCA.2020.2988991
http://dx.doi.org/10.1109/MICRO50266.2020.00079
http://dx.doi.org/10.1145/3020078.3021736
http://dx.doi.org/10.1145/3020078.3021736
http://dx.doi.org/10.1109/HPCA47549.2020.00012
http://dx.doi.org/10.1109/HPCA47549.2020.00012
http://dx.doi.org/10.1109/HPCA51647.2021.00070
http://dx.doi.org/10.1109/HPCA51647.2021.00070
https://arxiv.org/abs/1609.02907

tional Conference on Neural Information Processing Sys-

tems, Dec. 2017, pp.1024–1034.

 Xu K, Hu W H, Leskovec J, Jegelka S. How powerful are

graph neural networks? arXiv: 1810.00826, 2018. https://

arxiv.org/abs/1810.00826, Dec. 2022.

[16]

 Allen J R, Kennedy K. Automatic loop interchange. In

Proc. the 1984 SIGPLAN Symposium on Compiler Con-

struction, Jun. 1984, pp.233–246. DOI: 10.1145/502874.

502897.

[17]

 Zhang C, Li P, Sun G Y et al. Optimizing FPGA-based

accelerator design for deep convolutional neural networks.

In Proc. the 2015 ACM/SIGDA International Sympo-

sium on Field-Programmable Gate Arrays, Feb. 2015,

pp.161–170. DOI: 10.1145/2684746.2689060.

[18]

 Pugh W. Uniform techniques for loop optimization. In

Proc. the 5th International Conference on Supercomput-

ing, Jun. 1991, pp.341–352. DOI: 10.1145/109025.109108.

[19]

 Pal S, Beaumont J, Park D H, Amarnath A, Feng S Y,

Chakrabarti C, Kim H S, Blaauw D, Mudge T, Dreslins-

ki R. OuterSPACE: An outer product based sparse ma-

trix multiplication accelerator. In Proc. the 2018 IEEE In-

ternational Symposium on High Performance Computer

Architecture (HPCA), Feb. 2018, pp.724–736. DOI:

10.1109/HPCA.2018.00067.

[20]

 Nie J. Memory-driven data-flow optimization for neural

processing accelerators [Ph.D. Thesis]. Princeton Universi-

ty, 2020. https://www.proquest.com/openview/41fe23f43fd

65cafaa8c2e051aed4059/1?pq-origsite=gscholar&cbl=187

50&diss=y, Jan. 2023.

[21]

 Sen P, Namata G, Bilgic M et al. Collective classification

in network data. AI Magazine, 2008, 29(3): 93-106. DOI:

10.1609/aimag.v29i3.2157.

[22]

 Carlson A, Betteridge J, Kisiel B et al. Toward an archi-

tecture for never-ending language learning. In Proc. the

34th AAAI Conference on Artificial Intelligence, July

2010, pp.1306–1313.

[23]

 Auten A, Tomei M, Kumar R. Hardware acceleration of

graph neural networks. In Proc. the 57th ACM/IEEE De-

sign Automation Conference (DAC), Jul. 2020. DOI:

10.1109/DAC18072.2020.9218751.

[24]

 Liang S W, Wang Y, Liu C et al. EnGN: A high-through-

put and energy-efficient accelerator for large graph neu-

ral networks. IEEE Trans. Computers, 2021, 70(9):

1511–1525. DOI: 10.1109/TC.2020.3014632.

[25]

 Kiningham K, Re C, Levis P. GRIP: A graph neural net-

work accelerator architecture. arXiv: 2007.13828, 2020.

https://arxiv.org/abs/2007.13828v1, Dec. 2022.

[26]

 Zeng H Q, Prasanna V. GraphACT: Accelerating GCN

training on CPU-FPGA heterogeneous platforms. In Proc.

the 2020 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, Feb. 2020, pp.255–265.

DOI: 10.1145/3373087.3375312.

[27]

 Shi F, Jin A Y, Zhu S C. VersaGNN: A versatile accelera-

tor for graph neural networks. arXiv: 2105.01280, 2021.

https://arxiv.org/abs/2105.01280, Dec. 2022.

[28]

Jia-Jun Li received his B.E. degree

from the Department of Automation,

Tsinghua University, Beijing, in 2013.

He received his Ph.D. degree from the

Institute of Computing Technology,

Chinese Academy of Sciences, Beijing,

in 2019. From 2019 to 2021, he was a

postdoc researcher with the Department of Electrical

and Computer Engineering, George Washington Univer-

sity, Washington. He is currently an associate professor

with the School of Astronautics, Beihang University,

Beijing. His current research interests include machine

learning and heterogeneous computer architecture.

Ke Wang received his Ph.D. de-

gree in computer engineering from the

George Washington University, Wash-

ington, in 2022. He received his M.S.

degree in electrical engineering from

Worcester Polytechnic Institute, Wor-

cester, in 2015, and his B.S. degree in

electrical engineering from Peking University, Beijing, in

2013. He is currently an assistant professor of the De-

partment of Electrical and Computer Engineering at the

University of North Carolina at Charlotte. His research

work focuses on parallel computing, computer architec-

ture, interconnection networks, and machine learning.

Hao Zheng received his Ph.D. de-

gree in computer engineering from

George Washington University, Wash-

ington, in 2021. He is an assistant pro-

fessor in the Department of Electrical

and Computer Engineering at the Uni-

versity of Central Florida, Orlando.

His research interests are in the broad area of computer

architecture and parallel computing, with emphasis on

interconnection networks, AI chips for emerging applica-

tions, and energy-efficient manycore architecture de-

signs.

126 J. Comput. Sci. & Technol., Jan. 2023, Vol.38, No.1

https://arxiv.org/abs/1810.00826
https://arxiv.org/abs/1810.00826
http://dx.doi.org/10.1145/502874.502897
http://dx.doi.org/10.1145/502874.502897
http://dx.doi.org/10.1145/2684746.2689060
http://dx.doi.org/10.1145/2684746.2689060
http://dx.doi.org/10.1145/2684746.2689060
http://dx.doi.org/10.1145/109025.109108
http://dx.doi.org/10.1109/HPCA.2018.00067
https://www.proquest.com/openview/41fe23f43fd65cafaa8c2e051aed4059/1?pq-origsite=gscholar&cbl=18750&diss=y
https://www.proquest.com/openview/41fe23f43fd65cafaa8c2e051aed4059/1?pq-origsite=gscholar&cbl=18750&diss=y
https://www.proquest.com/openview/41fe23f43fd65cafaa8c2e051aed4059/1?pq-origsite=gscholar&cbl=18750&diss=y
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2157
http://dx.doi.org/10.1109/DAC18072.2020.9218751
http://dx.doi.org/10.1109/TC.2020.3014632
http://dx.doi.org/10.1109/TC.2020.3014632
http://dx.doi.org/10.1109/TC.2020.3014632
https://arxiv.org/abs/2007.13828v1
http://dx.doi.org/10.1145/3373087.3375312
https://arxiv.org/abs/2105.01280

Ahmed Louri is the David and

Marilyn Karlgaard Endowed Chair

Professor of the Department of Elec-

trical and Computer Engineering at

the George Washington University,

Washington, which he joined in Au-

gust 2015. He is also the director of

the High Performance Computing Architectures and

Technologies Laboratory. Dr. Louri received his Ph.D.

degree in computer engineering from the University of

Southern California, Los Angeles in 1988. From 1988 to

2015, he was a professor of Electrical and Computer En-

gineering at the University of Arizona, Tucson, and dur-

ing that time, he served six years (2000 to 2006) as the

chair of the Computer Engineering Program. From 2010

to 2013, Dr. Louri served as a program director in the

National Science Foundation’s (NSF) Directorate for Co-

mputer and Information Science and Engineering. He di-

rected the core computer architecture program and was

on the management team of several cross-cutting pro-

grams. Dr. Louri conducts research in the broad area of

computer architecture and parallel computing, with em-

phasis on interconnection networks, optical intercon-

nects for scalable parallel computing systems, reconfig-

urable computing systems, and power-efficient and reli-

able Network-on-Chips (NoCs) for multicore architec-

tures. Recently he has been concentrating on: energy-ef-

ficient, reliable, and high-performance many-core archi-

tectures; accelerator-rich reconfigurable heterogeneous

architectures; machine learning techniques for efficient

computing, memory, and interconnect systems; emerg-

ing interconnect technologies (photonic, wireless, RF,

hybrid) for NoCs; future parallel computing models and

architectures (including convolutional neural networks,

deep neural networks, and approximate computing); and

cloud-computing and data centers. He is the recipient of

the 2020 IEEE Computer Society Edward J. McCluskey

Technical Achievement Award, for pioneering contribu-

tions to the solution of on-chip and off-chip communica-

tion problems for parallel computing and manycore ar-

chitectures. Dr. Louri is a fellow of IEEE, and he is cur-

rently the Editor-in-Chief of the IEEE Transactions on

Computers. More information can be found at

https://hpcat.seas.gwu.edu/Director.html.

Jia-Jun Li et al.: GShuttle: Optimizing Memory Access Efficiency for GCN Accelerators 127

	1 Introduction
	2 GCN Acceleration
	2.1 GCN Computation
	2.2 GCN Accelerators
	2.3 Loop Optimization and Design Variables
	2.3.1 Loop Unrolling
	2.3.2 Loop Tiling
	2.3.3 Loop Interchange
	2.3.4 Loop Fusion

	3 GShuttle: Optimization Framework
	3.1 Problem Formulation
	3.1.1 Design Objectives
	3.1.2 Estimation of Off-Chip DRAM Accesses
	3.1.3 Estimation of On-Chip SRAM Accesses

	3.2 Search Algorithms
	3.2.1 Pruned Search Space Sweeping
	3.2.2 Greedy Search

	4 Evaluation
	4.1 Experimental Setup
	4.2 Experimental Results
	4.2.1 Number of DRAM Accesses
	4.2.2 Energy Consumption
	4.2.3 Sensitivity to Hardware Parameters

	5 Related Work
	6 Conclusions
	References

