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Abstract    Graph  convolutional  neural  networks  (GCNs)  have  emerged  as  an  effective  approach  to  extending  deep

learning for graph data analytics, but they are computationally challenging given the irregular graphs and the large num-

ber of nodes in a graph. GCNs involve chain sparse-dense matrix multiplications with six loops, which results in a large de-

sign space for GCN accelerators. Prior work on GCN acceleration either employs limited loop optimization techniques, or

determines the design variables based on random sampling, which can hardly exploit data reuse efficiently, thus degrading

system efficiency. To overcome this limitation, this paper proposes GShuttle, a GCN acceleration scheme that maximizes

memory access efficiency to achieve high performance and energy efficiency. GShuttle systematically explores loop opti-

mization techniques for GCN acceleration, and quantitatively analyzes the design objectives (e.g., required DRAM access-

es and SRAM accesses) by analytical calculation based on multiple design variables.  GShuttle further employs two ap-

proaches, pruned search space sweeping and greedy search, to find the optimal design variables under certain design con-

straints. We demonstrated the efficacy of GShuttle by evaluation on five widely used graph datasets. The experimental

simulations show that GShuttle reduces the number of DRAM accesses by a factor of 1.5 and saves energy by a factor of

1.7 compared with the state-of-the-art approaches.
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 1    Introduction

In recent years, deep learning over graph data has

achieved  great  success  in  a  broad  range  of  applica-

tions,  such  as  traffic  prediction[1],  object  detection[2],

and  disease  classification[3].  One  of  the  most  success-

ful  models  is  Graph  Convolutional  Neural  Network

(GCN)[4] that re-defines the notion of convolution for

graph data, and has been widely used in data centers

of Google, Alibaba[5], and Facebook[6].

Just like traditional neural networks, training and

inference of GCNs are both compute- and memory-in-

tensive,  which  poses  a  major  challenge  to  the  hard-

ware  platforms.  Typically,  the  graph  convolutional

layers  occupy the  majority  of  execution  time in  GC-

Ns[7, 8] through  two  primary  phases:  aggregation  and

combination.  The  computation  in  the  combination

phase  is  similar  to  that  in  conventional  neural  net-

works.  However,  the  aggregation  phase  relies  on  the

graph  structure,  which  is  often  sparse  and  irregular.

This  difference  imposes  new requirements  on  the  de-

sign of GCN architectures.
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The key computation pattern in GCNs can be ab-

stracted  as  chain  sparse-dense  matrix  multiplications

(SpMMs)[9]. It involves six loops that result in a large

design space for  GCN accelerators  in  terms of  paral-

lelism,  computation  partitioning  and  scheduling.

These  problems  can  be  handled  by  the  existing  loop

optimization  techniques[10],  such  as  loop  tiling,  loop

unrolling, loop interchange and loop fusion. Recently,

a few customized GCN accelerators[9, 11, 12] have lever-

aged these techniques to deliver gains in performance

and energy efficiency. However, none of them has sys-

tematically studied the impact of these techniques on

system efficiency  in  terms of  latency,  on-chip  SRAM

accesses  and  off-chip  DRAM  accesses.  Instead,  they

either employ limited loop optimization techniques, or

determine the design variables based on random sam-

pling. As a result, they can hardly exploit data reuse

efficiently,  leading  to  increased  memory  accesses.  As

memory access  is  much more expensive than compu-

tation[13],  it  will  significantly degrade the energy effi-

ciency.

To this end, this paper proposes GShuttle, a GCN

acceleration scheme that maximizes memory access ef-

ficiency  to  improve  energy  efficiency.  First,  we  pro-

vide  an  in-depth  analysis  of  the  four  loop  optimiza-

tion techniques for  GCN computation and use corre-

sponding design variables to characterize different ac-

celeration  schemes.  We  then  build  analytical  models

to  quantitatively  estimate  the  design  objectives  of

GCN  accelerators,  such  as  on-chip  SRAM  accesses

and off-chip DRAM accesses. Based on the analytical

models, we formulate the accelerator design as an op-

timization problem, which aims to find the best com-

bination  of  design  variables  that  maximizes  the  de-

sign objectives under certain design constraints,  such

as on-chip storage size and the number of processing

elements  (PEs).  We  further  propose  two  algorithms,

namely  pruned  search  space  sweeping  (PSSS)  and

greedy  search  (GS),  to  address  the  problem.  PSSS

prunes the search space to make the search practical-

ly  manageable,  while  GS  leverages  empirical  rules

concluded  from  simulation  results  to  further  reduce

the  time  complexity  of  the  search.  To  demonstrate

the  efficacy  of  the  proposed  framework,  we  simulate

the corresponding hardware accelerators based on the

design  variables  derived  from  GShuttle.  The  experi-

mental  simulations  show  that  our  approach  reduces

DRAM accesses  by  a  factor  of  1.5  and  saves  energy

by  a  factor  of  1.7  on  average  compared  with  the

state-of-the-art approaches.

In  summary,  this  paper  makes  the  following con-

tributions.

• Problem Definition.  We define  an  optimization

problem  for  GCN  accelerator  designs  to  maximize

memory access efficiency based on an in-depth analy-

sis of the loop optimization techniques and analytical

models.

• Search Algorithms. We develop two search algo-

rithms to solve the optimization problem to find a so-

lution within a reasonable amount of time.

• Framework Validation. We build an accelerator

simulator based on the design variables obtained from

GShuttle,  and  performed  simulation  studies  to

demonstrate the efficacy of the proposed framework.

This paper is a significantly extended and revised

version of [12]. In [12], we proposed a flexible and en-

ergy-efficient  accelerator  for  GCNs.  However,  [12]

mainly focuses  on the dataflow optimization and has

not systematically explored the optimization of mem-

ory accesses. In this paper, we propose GShutte which

maximizes  memory  access  efficiency  (including  both

DRAM and  SRAM accesses)  to  achieve  high  perfor-

mance and energy efficiency.

The rest of the paper is organized as follows. Sec-

tion 2 summarizes the key design variables that char-

acterize the loop optimization techniques for GCN ac-

celeration. Section 3 describes  the  optimization prob-

lem that maximizes the memory access efficiency un-

der  certain  constraints  based  on  the  analytical  mod-

els  that  estimate  the  on-chip  SRAM  and  off-chip

DRAM  accesses,  and  presents  two  approaches  to

solve the optimization problem to find the best com-

bination design variables within a reasonable amount

of time. Section 4 describes the experimental method-

ology,  and  presents  the  experimental  results  in  com-

parison with  prior  work. Section 5 introduces  related

work and Section 6 concludes the paper.

 2    GCN Acceleration

 2.1    GCN Computation

The typical structure of a graph convolutional lay-

er is illustrated in Fig.1. The main computation of the

GCN  models[14– 16] can  be  abstracted  as  a  chain  Sp-

MM: 

X(k+1) = σ(ÂX(k)W (k)), (1)

X(l) l

X

W (l)

where  is  the matrix of  input features  in layer ;

each  column  of  represents  a  feature  vector  while

each row denotes a node.  is the weight matrix of
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l σ(·)
Â

Â

Â

layer .  denotes  the  non-linear  activation  func-

tion  such  as  ReLU.  is  a  transformed  matrix  from

the graph adjacency matrix. The transformation func-

tion varies across different GCN models. Since  can

be computed offline from A, we hereafter use A to de-

note the normalized .

A ∈ RM×N X ∈ RN×K W ∈ RK×C ∈ RN×C

X ·W O ∈ RM×C

The chain SpMM in GCNs consists of six loops as

shown  in  the  pseudocode  in Fig.2.  We  assume  that

, , . Matrix B 

is the intermediate result of  and   is

the final output matrix. We assume we use the execu-

A ·(X ·W )tion order of  as it  reduces the number of

computations for most graph datasets[9].

 2.2    GCN Accelerators

Recently, a few GCN accelerators have been pro-

posed, delivering substantial gains in performance and

energy  efficiency  compared  with  generic  CPU-  and

GPU-based  solutions.  Specifically,  HyGCN[11] ex-

ploits  two  dedicated  compute  engines,  i.e.,  an  aggre-

gation engine and a combination engine, to accelerate

the aggregation and combination phases, respectively.

AWB-GCN[9] is  an  architecture  for  accelerating  GC-

Ns  and  Sparse-dense  Matrix  Multiplication  (SpMM)

kernels,  and  addresses  the  issue  of  workload  imbal-

ance in processing real-world graphs. GCNAX[12] pro-

poses a flexible dataflow for GCNs that simultaneous-

ly  improves  resource  utilization  and  reduces  data

movement.

These accelerators  can be illustrated by the typi-

cal architecture shown in Fig.3. It consists of an accel-

 
X(l) l W (l)

l X(l+1) l + 1

Fig.1.  Illustration of a GCN layer. The graph contains six nodes. A: adjacency matrix, : feature vectors of layer , : weight
matrix of layer , and : feature vectors of layer .

B

BO A

X W

 
Fig.2.  Pseudocode of the chain SpMM in GCNs.

Accelerator Chip

Processing Units

GCN Configurations PE

Scheduler

Processing Units

Router

Aggregation
Engine

Combination
EngineGlobal

Buffer

FIFOs

Off-
Chip

DRAM

 
Fig.3.  A typical GCN accelerator architecture.
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erator  chip  and  off-chip  memory  (usually  DRAM).

The accelerator  chip is  primarily  composed of  a  pro-

cessing unit (PU), a global buffer (GLB) and a sched-

uler. The PU can support high compute parallelism to

perform  the  matrix  multiplications,  consisting  of  ei-

ther  two  separate  engines  (HyGCN)  or  one  uniform

engine (AWB-GCN, GCNAX). The scheduler is used

to  map  the  GCNs  onto  the  proposed  accelerator  us-

ing  the  computation  sequences  defined  by  the  loop

optimization  techniques.  GLB  is  usually  a  uniform

software-controlled  SRAM  scratchpad  memory  that

can  be  used  to  exploit  input  data  reuse  and  hide

DRAM access latency, or for the storage of intermedi-

ate data. The accelerator provides three levels of the

memory  hierarchy,  including  DRAM,  GLB and  local

registers in PEs. Accessing data from a different level

implies a different energy cost[13]. In this paper, we fo-

cus  on  the  expensive  off-chip  DRAM  accesses  (be-

tween off-chip DRAM and GLB) and on-chip SRAM

accesses (between GLB and registers in PEs).

 2.3    Loop Optimization and Design Variables

The chain  SpMMs can be  transformed in  numer-

ous  ways to  capture  different  reuse  patterns  to  map

the computation to a hardware accelerator implemen-

tation. In this paper, we will investigate four loop op-

timization  techniques,  namely  loop  unrolling,  loop

tiling,  loop  interchange  and  loop  fusion,  to  optimize

the  memory  access  patterns  with  the  three  levels  of

the memory hierarchy.

 2.3.1    Loop Unrolling

Loop  unrolling  determines  the  parallelization

strategy of the GCN loops, which then determines the

PE array scale and organization as well as the size of

registers  in  each  PE.  It  can  be  used  to  increase  the

utilization  of  massive  computation  resources.  Re-

searchers have extensively studied the methods to un-

roll SpMM for parallel computations. As illustrated in

Fig.4 which  takes  SpMM1  as  an  example,  unrolling

different loops directs parallelization of different com-

putations,  which  affects  the  optimal  PE array  archi-

tecture  with  respect  to  the  data  reuse  opportunities

and memory access patterns.

Pn

W

Pn

• Loop-1 Unrolled (Fig.4(a)).  In  this  case,  a  col-

umn vector of  pixels from X is multiplied with a

pixel  from  in each cycle,  and generates a column

vector of  pixels which will be accumulated to ma-

2× Pn + 1 Pn

trix B.  If  data reuse in local registers is not enabled,

it will involve  SRAM reads and  SRAM

writes in each cycle.

Pc W

Pc

2× Pc + 1 Pc

• Loop-2 Unrolled (Fig.4(b)).  In  this  case,  a  row

vector of  pixels from  is multiplied with a pixel

from X in  each  cycle,  and  generates  a  row vector  of

 pixels  which  will  be  accumulated  to  matrix B.  If

data reuse in local registers is not enabled, it will in-

volve  SRAM reads and  SRAM writes in

each cycle.

Pk

W

2× Pk + 1

• Loop-3 Unrolled (Fig.4(c)). In this case, the in-

ner product of a row vector of  pixels from X and a

column vector of the same size from  is computed

in  each  cycle,  and  generates  one  pixel  which  will  be

accumulated to matrix B. If data reuse in local regis-

ters  is  not  enabled,  it  will  involve  SRAM

reads and 1 SRAM write in each cycle.

Pn, Pk, PcThese unrolling factors ( ) will  determine

the  total  number  of  parallel  multiple-and-accumula-

tion  (MAC)  operations  as  well  as  the  number  of  re-

 
Fig.4.   Loop  unrolling.  (a)  Unroll  loop-1.  (b)  Unroll  loop-2.
(c) Unroll loop-3.
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quired multipliers.

 2.3.2    Loop Tiling

Loop  tiling  can  be  applied  for  each  SpMM  to

leverage  data  locality  and  it  determines  the  required

capacity and the partitioning of GLB. As the on-chip

GLB capacity is usually not large enough to hold all

the  data  in  GCNs,  loop  tiling  can  be  used  to  divide

the entire data and only fit a small portion of the da-

ta  into  the  on-chip  GLB.  By  properly  selecting  the

loop tile sizes, the data reuse can be maximized to re-

duce  off-chip  DRAM  access,  which  will  significantly

improve  the  overall  energy  efficiency  as  the  energy

cost  of  off-chip  memory  accesses  is  orders  of  magni-

tude  higher  than  that  of  arithmetic  operations.  The

tile sizes set the lower bound of the required GLB ca-

pacity. In other words, the GLB should be sized large

enough to hold the data tiles.

 2.3.3    Loop Interchange

Loop  interchange[17] determines  the  computation

order of the loops and it can be used to enable differ-

ent  types  of  data  reuse  to  reduce  external  memory

traffic  by  exchanging  the  order  of  the  nested  loops.

There are two types of loop interchange in the GCN

loops, namely intra-tiling and inter-tiling loop orders.

The intra-tiling  loop order  determines  the  pattern  of

data  movements  from  on-chip  GLB  to  register  files.

The inter-tiling loop order determines the data move-

ment from external memory to on-chip GLB. Loop in-

terchange along with local memory promotion can re-

duce  the  data  movements.  Specifically,  if  the  inner-

most loop is irrelevant to a matrix, i.e., the loop itera-

tor does not appear in the access function of the ma-

trix[18],  there  will  be  redundant  memory  operations

between  different  loop  iterations  which  can  be  elimi-

nated to reduce memory access operations.

 2.3.4    Loop Fusion

Loop  fusion  optimization[19] can  be  leveraged  to

reduce data transfer of intermediate data. Specifically,

we can fuse the processing of SpMM1 and SpMM2 to

reduce the data transfer of matrix B between off-chip

DRAM and  on-chip  GLB.  As  shown  in Fig.2,  if  the

two SpMMs are executed sequentially without fusion,

the elements of matrix B are stored back to DRAM in

SpMM1,  and  they  are  again  fetched  from DRAM to

k

k

m

on-chip in SpMM2. Therefore, we can reduce the da-

ta  transfer  of  these  intermediate  data  by  fusing  the

execution of SpMM1 and SpMM2. When SpMM1 fin-

ishes  the  computation  of  loop  and  generates  a B
chunk,  we  can  pause  the  execution  of  SpMM1  and

proceed to the execution of SpMM2. By doing so, the

data transfer of the intermediate matrix (B) is elimi-

nated.  Notably,  although  loop  fusion  reduces  data

transfer of intermediate results,  it somehow sacrifices

the freedom of loop interchange. Specifically, the iter-

ation  in SpMM1 must be the innermost loop to en-

sure that matrix B finishes all its computations (not a

PartialMat) before being forwarded to SpMM2. More-

over, as  becomes the innermost loop in the commu-

nication part of SpMM2, matrix O has to be frequent-

ly transferred between on-chip and off-chip. Since O is

the result matrix, the volume of data transfer is dou-

bled compared with the input matrix such as matrix

A because the result matrix has to be written back to

the  main  memory  when  being  replaced,  whereas  the

input  matrix  can  be  directly  replaced  without  being

written back.

n c

n0, c0

n1, c1

Table 1 lists the parameters in GCNs and the de-

sign  variables  used  by  the  four  loop  optimization

techniques, where variables with a prefix of capital T
denotes the tile size, and P for unrolling factors. Since

both SpMM1 and SpMM2 contain the loops  and ,

we hereafter use  as the loop iterator in SpMM1,

and  as the loop iterator in SpMM2.
 
 

Table  1.   GCN Loop Parameters and Design Variables

GCN
Loop

Dimen-
sion

Without Loop
Fusion

With Loop
Fusion

Loop
Tiling

Loop
Unrolling

Loop
Tiling

Loop
Unrolling

SpMM1
(B = XW)

Loop-1 N Tn0 Pn0 Tn0 Pn0

Loop-2 C Tc0 Pc0 Tc0 Pc0

Loop-3 K Tk Pk Tk Pk

SpMM2
(O = AB)

Loop-4 M Tm Pm Tm Pm

Loop-5 C Tc1 Pc1 –(equal
to T c0)

Pc1

Loop-6 N Tn1 Pn1 –(equal
to Tn0)

Pn1

 3    GShuttle: Optimization Framework

Although we have concluded the key factors that

determine the memory accesses,  it  is  not  easy to de-

cide which combination of design variables is optimal

for  a  given  GCN  layer.  Simply  using  static  design

variables by random sampling for all layers as a lot of
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prior work did[9, 11] is far from optimal due to the di-

mension and sparsity variance across different layers.

Therefore, in this section, we introduce how to deter-

mine the design variables  for  a  given graph convolu-

tional  layer.  We  first  formulate  the  selection  of  de-

sign variables as an optimization problem, which aims

to find the best combination of design variables that

maximizes  the  design  objectives  (e.g.,  the  number  of

off-chip  DRAM  and  on-chip  SRAM  accesses)  under

certain  design  constraints  (e.g.,  the  on-chip  storage

size  and  the  number  of  PEs).  We  find  that  it  is  an

NP-hard  problem  because  of  the  large  design  space,

thus  requiring  heuristic  solutions  in  practice.  There-

fore,  we  further  propose  two  algorithms,  namely

Pruned Search Space Sweeping, and Greedy Search to

address this problem.

 3.1    Problem Formulation

 3.1.1    Design Objectives

As our aim is to optimize memory access efficien-

cy, we will  primarily target at two design objectives:

to minimize the following two metrics.

• Number of Off-Chip DRAM Accesses. It primar-

ily  relies  on  the  size  of  GLB and  the  degree  of  data

reuse,  which are  determined by the  tiling  size,  inter-

tiling loop order, and loop fusion strategy.

• Number of On-Chip SRAM Accesses. It is deter-

mined by the loop unrolling strategies and intra-tiling

loop order, since they determine the reuse patterns of

the data transfer from GLB to local registers.

To  simultaneously  achieve  both  design  objectives

might be infeasible as the best combination of design

variables for off-chip DRAM accesses may not be op-

timal  for  on-chip  SRAM  accesses,  and  vice  versa.

Therefore, to optimize the overall memory access effi-

ciency, we combine the two design objectives into one

by calculating their weighted total as follows: 

Minimize
X

V = Vd(X t,X oo,X f ) + ω × Vs(X u,X oi)

s.t. 0 < Tm ⩽ M, 0 < Tk ⩽ K,
0 < Tn0 ⩽ N, 0 < Tn1 ⩽ N,
0 < Tc0 ⩽ C, 0 < Tc1 ⩽ C,
SX + SW + SB1 ⩽ GLBsize,
SA + SO + SB2 ⩽ GLBsize,
Pn0 × Pc0 × Pk ⩽ #PEs,
Pn1 × Pc1 × Pk ⩽ #PEs,

(2)

X = X t ∪ X oo ∪ X f ∪ X u ∪ X oi

X t,X oo,X f ,X u,X oi

where  denotes  the  en-

tire search space, and  denote the

parameter  spaces  of  the tile  size,  inter-tiling loop or-

Vd Vs

SX , SW , SB1, SA, SO, SB2

ω

ω = 0.007 8

Vd Vs

Vd

Vs

der, loop fusion strategy, unrolling factors, and intra-

tiling  loop  order,  respectively.  and  denote  the

number  of  off-chip  DRAM  accesses  and  on-chip

SRAM accesses, respectively. 

denote the required on-chip storage sizes of the corre-

sponding  matrices,  which  are  determined  by  the  tile

size.  is  an  adjustment  parameter  that  reflects  the

difference in the energy cost between basic DRAM ac-

cess  and  SRAM  access.  According  to  [13],  we  set

 indicating  a  basic  DRAM  access  opera-

tion consumes 128x more energy than a basic SRAM

access  does.  To  solve  this  optimization  problem,  we

first  need to measure  and  given a combination

of design variables and a GCN layer. To this end, we

build  analytical  models  for  the  estimation  of  and

.

 3.1.2    Estimation of Off-Chip DRAM Accesses

n0 → c0 → k,m →
c1 → n1

Since  the  space  of  the  design variables  is  polyhe-

dral,  we  use  an  example  to  explain  how the  analyti-

cal models for off-chip DRAM accesses are built. As-

suming the inter-tiling loop order is 

 and loop fusion is not enabled, the total num-

ber of off-chip DRAM accesses is calculated by: 

Vd = αX×SX + αW ×SW + αB1×SB1+
αB2×SB2 + αA×SA + αO×SO,

(3)

where  

SX = γX ×Tn0 ×Tk,
SW = Tk ×Tc0,
SB1 = Tn0 ×Tc0,
SB2 = Tn1 ×Tc1,
SA = γA ×Tm ×Tn1,
SO = Tm ×Tc1,

(4)

  

αX = αW =
N

Tn0

× C

Tc0

×K

Tk

,

αB1 =
N

Tn0

× C

Tc0

,

αB2 = αA =
M

Tm

× C

Tc1

× N

Tn1

,

αO =
M

Tm

× C

Tc1

.

(5)

αX , αW , αB, αA SX , SW , SB, SA

αB1, αB2, SB1,

SB2

Here  and  denote

the trip counts and buffer sizes of memory accesses to

X, W, B, A,  respectively.  Note  that 

 are  used  to  differentiate  the  accesses  in  SpMM1

and  SpMM2  respectively.  As  matrices X and A are

sparse[9, 12],  the  off-chip  DRAM  accesses  can  be  re-

duced  by  compressed  encoding  of  the  matrices.  We
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γX , γA
SX SA

assume  that  the  zeros  in  matrices X and A are  dis-

tributed evenly so we use the overall density of X and

A ( )  to  represent  the  density  of  each  chunk

when  estimating  and ,  as  shown  in  (4).  Al-

though it  does not reflect the actual  distribution,  we

make this assumption for simplicity since considering

the  sparsity  distribution  would  significantly  increase

the model complexity. Moreover, we find that the es-

timated values from the model deviate little from the

actual values derived from a cycle-level simulation.

α′s

α′s

When changing the inter-tiling loop order, we on-

ly need to modify the equation of  in (5). The enu-

meration  of  the  loop  orders  and  the  corresponding

equation  of  are  omitted  for  brevity.  When  en-

abling loop fusion, the total number of off-chip access-

es  and the  buffer  size  are  also  calculated  by (3)  and

(4), but the trip counts are estimated as follows.  

αX = αW =
N

Tn0

× C

Tc0

×K

Tk

,

αB1 = αB2 = 0,

αA =
M

Tm

× C

Tc0

× N

Tn0

,

αO = 2× M

Tm

× C

Tc0

× N

Tn0

.

(6)

αO

We can see that the DRAM accesses of matrix B
are eliminated but  is much larger than that in (5).

 3.1.3    Estimation of On-Chip SRAM Accesses

If data reuse in local registers is not enabled, the

total number of read operations from on-chip GLB for

SpMM1 will be calculated as follows: 

#sram_read_no_reuse = 3×N × C ×K, (7)

since  every  multiplication  needs  three  SRAM  reads.

The total number of write operations from PEs to on-

chip buffers for SpMM1 will be calculated as follows: 

#sram_read_no_reuse = N × C ×K. (8)

n0 →c0 → k

Tk

As  mentioned  in Subsection 2.3,  the  number  of

on-chip  SRAM  accesses  can  be  reduced  by  enabling

data  reuse  under  different  loop  unrolling  strategies

and intra-tiling loop order. For example, given the in-

tra-tiling  loop  order  ( )  and  loop-3  un-

rolled for SpMM1, the data elements in matrix B can

be reused for  times. Therefore, the total number of

SRAM reads and writes is: 

#sram_read =

(
2 +

1

Tk

)
× (N × C ×K),

#sram_write =
1

Tk

×N × C ×K,

(9)

respectively.

Similarly,  we  can  calculate  the  SRAM reads  and

writes give other combinations of design variables.

 3.2    Search Algorithms

Given the analytical  models,  we need to find out

which  combination  of  design  variables  can  minimize

the  design  objective  described  in  (2).  Clearly,  by

sweeping all the combinations of design variables, we

can find the optimal solution but it takes a lot of time

due to the large search space. According to our exper-

iments, it takes tens of hours to fully explore the en-

tire  design  space  on  an  Intel  I7-8650U@1.90GHz,

which is infeasible for practical use.

Pc0

To  simplify  the  search,  we  use  outer-product-

based  computation  architecture[20] as  shown  in

Fig.4(b)  to  optimize  the  SRAM  accesses.  Although

this  method  would  have  a  negative  impact  on  the

reuse of the output matrix, it provides additional in-

put  matrix  reuse  compared  with  the  inner-product-

based method. More importantly, it well supports the

elimination of zero computations. Since the input pix-

el from X is the input operand for all the  multipli-

cations, these computations can be skipped simultane-

ously  if  the  input  pixel  is  zero.  For  DRAM accesses,

we tackle the optimization problem by developing two

approaches, pruned search space sweeping and greedy

search.

 3.2.1    Pruned Search Space Sweeping

X t

X t

N

We discovered that the main reason for the large

search  space  is  that  (the  search  space  of  tiling

size)  contains  every  integer  value  between 1  and the

dimension  size.  Therefore,  pruning  the  search  space

 can  significantly  shrink  the  entire  search  space.

Most tile size values cannot be fully divided by the di-

mension size. In such cases, we need to pad the data

block  to  simplify  data  movements[21],  which  will  de-

grade the GLB space utilization. Clearly, the tile size

that causes less padding will utilize the GLB space ef-

ficiently,  thus  reducing  unnecessary  off-chip  DRAM

accesses. Among a set of the tile sizes that results in

the same number of iterations, the one requires mini-

mum padding has the least  data padding.  Therefore,

from 1 to the dimension size, we only need to consid-

er the smallest tile size values that yield a new num-

ber of loop iterations. For example, assuming a value

of 10 for dimension , the candidate tile size will be
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{1, 2, 3, 4, 5, 10}
{10, 5, 4, 3, 2, 1}

N O(N)

O(2
√
N)

 since they yield the number of loop it-

erations  of .  The  number  of  points  to

sweep in dimension  will  be reduced from  to

,  which  will  significantly  shrink  the  search

space,  thus  reducing  the  search  time  from  tens  of

hours to several minutes.

 3.2.2    Greedy Search

X t,X oo,

X f

Alternatively, we also provide a greedy search al-

gorithm that further reduces the search time to sever-

al  seconds. Table 2 shows  how  to  determine  the  de-

sign  variables  for  off-chip  DRAM  accesses  (

).  This  greedy  algorithm  leverages  the  empirical

rules concluded from many simulation results.
 
 

Table  2.   Greedy Search Algorithm to Determine the Design
Variables

Condition Loop
Fusion

Inter-Tiling
Loop Order

Tile Size Setting
Priority

N × C ⩾
GLBsize

No n0 →c0 →k
m →c1 →n1

, Tn0, Tm

Tc0, Tc1

Tn1, Tk

①
②
③

N × C <

GLBsize
Yes n0 →c0 →k →m Tn0, Tn1

Tc0, Tc1

Tm, Tk

①
②
③

 

N × C ⩾ GLBsize Tn0 Tm

Tc0, Tc1

Tn0 Tm

Tc0, Tc1

The tile size setting priority indicates which tiling

factor has the priority for larger number settings. For

example,  if ,  and  have  the

highest  priority  for  larger  number  settings,  which

means they will be set to the maximal number while

satisfying  other  constraints.  have  the  second

highest priority. When  and  are already set as

the largest number, then  will be set as large as

possible.

To  better  understand  the  greedy  search, Table 3

presents the tile size, loop order and loop fusion choic-

es  for  five  datasets:  Cora[22],  CiteSeer[22],  PubMed[15],

Nell[23] and  Reddit[15].  We  constrain GLBsize at  128

KB.

 4    Evaluation

 4.1    Experimental Setup

Accelerator  Implementation. To  evaluate  GShut-

tle, we built a cycle-level simulator in C++ to model

the  behavior  of  the  hardware  described  in Section 2

when using the design variables derived from GShut-

tle.  The  simulator  models  the  microarchitectural  be-

haviors of each module, and supports different combi-

nations of design variables. The simulator counts the

exact  amount  of  DRAM  reads  and  writes,  on-chip

SRAM reads and writes and the number of execution

cycles,  which  is  used  for  estimation  of  performance

and energy efficiency.

Design  Constraints. We  constrain  the  number  of

PEs  no  more  than  128,  and  the  on-chip  GLB  is  no

more than 128 KB. The off-chip DRAM bandwidth is

128 GB/s.

Baselines. We compare GShuttle with three GCN

accelerators (HyGCN[11], AWB-GCN[9] and GCNAX[12]).

GShuttle  has  two  variants,  one  is  GShuttle-PSSS

which uses pruned search space sweeping to find the

combination  of  design  variables,  and  the  other  is

GShuttle-GS which uses greedy search. Table 4 sum-

marizes  the  characteristics  of  the  baselines  and

GShuttle.  The  baseline  accelerators  are  scaled  to  be

equipped  with  the  same  number  of  multipliers  and

DRAM  bandwidth  as  GShuttle.  Since  HyGCN  and

AWB-GCN  use  single-precision  floating-point  num-

bers  (32-bit)  whereas  GCNAX  uses  double-precision

(64-bit),  we  uniformly  use  double-precision  numbers

for  all  accelerators  to  provide  a  fair  comparison.  We

also  resize  the  baseline  accelerators  to  be  equipped

Table  3.   Design Variables (Tile Size, Inter-Tiling Loop Order and Loop Fusion) Derived from Greedy Search

Dataset Layer (M-N-K-C) γA γX Loop
Fusion

Inter-Tiling Loop Order
Tn0, Tc0, Tk, Tn1, Tc1, Tm

Tile Size Tuple
( )

Cora L1 (2 708-2 708-1 433-16) 0.001 800 0.012 70 Yes n0 →c0 →k →m (2 708, 16, 1, 2 708, 16, 1)

L2 (2 708-2 708-16-7) 0.001 800 0.780 00 Yes n0 →c0 →k →m (2 708, 7, 1, 2 708, 7, 1)

Citeseer L1 (3 327-3 327-3 703-16) 0.001 100 0.008 50 Yes n0 →c0 →k →m (3 000, 16, 5, 3 000, 16, 1)

L2 (3 327-3 327-16-6) 0.001 100 0.008 50 Yes n0 →c0 →k →m (3 000, 6, 1, 3 000, 6, 1)

Pubmed L1 (19 717-19 717-500-16) 0.000 280 0.100 00 No n0 →c0 →k m →c1 →n1, (3 073, 16, 1, 1, 16, 3 073)

L2 (19 717-19 717-16-3) 0.000 280 0.776 00 No n0 →c0 →k m →c1 →n1, (3 000, 3, 1, 1 025, 3, 3 000)

Nell L1 (65 755-65 755-61 278-64) 0.000 073 0.000 11 No n0 →c0 →k m →c1 →n1, (4 096, 1, 33, 1, 1, 4 096)

L2 (65 755-65 755-64-186) 0.000 073 0.864 00 No n0 →c0 →k m →c1 →n1, (257, 186, 1, 1, 17, 2 817)

Reddit L1 (232 965-232 965-602-64) 0.002 100 0.516 00 No n0 →c0 →k m →c1 →n1, (641, 64, 1, 1, 9, 4 096)

L2 (232 965-232 965-64-41) 0.002 100 0.600 00 No n0 →c0 →k m →c1 →n1, (1 153, 41, 1, 1, 17, 2 817)
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with  the  on-chip  storage  capacity.  For  example,  we

simulate the HyGCN accelerator with 128 KB on-chip

storage  rather  than the  original  16  MB.  The DRAM

bandwidth  for  all  the  accelerators  is  scaled  to  128

GB/s. Note that as HyGCN uses an edge-centric pro-

gramming model for the aggregation phase, their com-

putation in the aggregation phase is not matrix multi-

plication.  Our  simulator  takes  this  into  account  and

estimates  the  execution  cycles  and  DRAM  accesses

according to HyGCN's dataflow.

 
 

Table  4.   Characteristics of Baselines

Baseline Execution
Order

Loop
Fusion

Inter-Tiling Loop
Order

Tile Size

HyGCN[11] (AX)W Yes n0 →c0 →k →m Static

AWB-
GCN[9] A(XW ) Yes n0 →c0 →k →m Static

GCNAX[12] A(XW ) Adaptive Adaptive Static

GShuttle A(XW ) Adaptive Adaptive Adaptive

 
Benchmarks.  We use  the  graph datasets  listed  in

Table 3 as  the  benchmarks  to  test  the  efficiency  of

GShuttle and the baselines. These datasets vary in the

number  of  edges,  vertices  and  sparsity  levels,  which

provides  sufficient  diversity  to  evaluate  the effective-

ness of these methods.

 4.2    Experimental Results

 4.2.1    Number of DRAM Accesses

We firstly make the comparison on the total num-

ber  of  DRAM accesses,  as  shown  in Fig.5.  GShuttle

provides a tremendous DRAM access advantage over

the baselines. Specifically, GShuttle-GS reduces DRAM

accesses by a factor of 11.1x, 3.3x and 1.4x compared

with HyGCN, AWB-GCN and GCNAX, respectively.

Moreover, GShuttle-PSSS reduces DRAM accesses by

a factor  of  11.7x,  3.4x  and 1.5x over  the  three  base-

lines.  The  high  DRAM access  efficiency  of  GShuttle

mainly  stems  from  the  followings.  1)  GShuttle  uses

adaptive  loop  order  and  fusion  strategy  for  different

graph datasets. 2) The adaptive tiling sizes of GShut-

tle  can make the best  use  of  the global  buffer.  Since

HyGCN  uses  inefficient  execution  order,  it  involves

more computations that result in more DRAM access-

es.  AWB-GCN optimizes  the  reuse  of  the  intermedi-

ate matrix. However, it sacrifices the reuse of the out-

put  matrix  due  to  the  limited  on-chip  storage  size.

Moreover,  the  tile  sizes  are  not  carefully  tailored  in

the AWB-GCN accelerator.

 4.2.2    Energy Consumption

For energy evaluation, we primarily focus on three

parts:  1)  energy  consumed  by  arithmetic  operations,

2)  energy  consumed by  on-chip  SRAM accesses,  and

3)  energy  consumed  by  off-chip  DRAM accesses.  As

the simulator counts the number of arithmetic opera-

tions  and  data  accesses  at  different  levels,  we  use

these numbers to estimate the total energy consump-

tion by multiplying them with the energy cost of ba-

sic  arithmetic  and  memory  operations  in  a  45  nm

CMOS process[13]. Fig.6 shows the normalized energy

consumption  of  these  accelerator  designs.  Overall,

GShuttle-GS achieves 9.5x, 3.1x, and 1.4x energy sav-

ings  on  average  over  HyGCN,  AWB-GCN,  and  GC-

NAX,  respectively,  while  GShuttle-PSSS  saves  ener-

gy by a factor of 12.1x, 3.9x, and 1.7x compared with

the three baseline accelerators respectively.

 4.2.3    Sensitivity to Hardware Parameters

y

GLBsize < 1

The  optimization  framework  in Section 3 indi-

cates  that GLBsize is  an  important  specification  for

the number of off-chip DRAM accesses. Moreover, as

we scale the baseline accelerators to be equipped with

the  same  global  buffer  size,  which  would  potentially

hurt  the  efficiency  of  the  baseline  accelerators,  we

conduct  a  sensitivity  analysis  on  the  Reddit  dataset

to quantify  the effects  of  global  buffer  size.  In Fig.7,

we sweep the on-chip buffer size from 128 KB up to 8

MB  to  investigate  how  it  influences  the  number  of

DRAM  accesses.  The  axis  denotes  the  total  num-

ber of DRAM accesses of the two layers. All schemes

achieve DRAM access reduction with larger GLB pro-

visioning,  especially  when GLBsize is  small

(  MB).  With GLBsize going  larger,  the

benefit  gains  slower.  For  specific  schemes,  GShuttle-

GS  and  GShuttle-PSSS  outperform  the  baselines  in

all GLB settings.

 5    Related Work

Besides  the  GCN  accelerators  mentioned  in Sec-

tion 2, there are also a few other GNN (graph neural

network) accelerators in the literature. Auten et al.[24]

proposed a GNN accelerator to efficiently execute the

irregular data movement required for graph computa-

tion  in  GNNs,  while  also  providing  a  high  compute

throughput required by GNN models. EnGN[25] is de-

signed  to  accelerate  the  three  key  stages  of  GNN

propagation, which is abstracted as common comput-
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Fig.5.  DRAM accesses of GShuttle and the baseline approaches. (a) Cora. (b) Citeseer. (c) Pubmed. (d) Nell. (e) Reddit.
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Fig.6.  Energy savings of GShuttle over the baselines.
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Fig.7.  Number of DRAM accesses w.r.t.  the variation on-chip
buffer size (tested on the Reddit dataset).
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ing patterns shared by typical GNNs. GRIP[26] is de-

signed for low-latency inference of GNNs, which splits

GNN  inference  into  a  fixed  set  of  edge-  and  vertex-

centric  execution  phases  that  can be  implemented in

hardware,  and  then  specializes  each  unit  for  the

unique  computational  structure  found in  each  phase.

GraphACT[27] is  dedicated  for  the  acceleration  of

training  GCNs  on  CPU-FPGA  heterogeneous  sys-

tems, which incorporates multiple algorithm-architec-

ture  co-optimizations.  VersaGNN[28] is  systolic-array-

based  versatile  GNN  accelerator  that  unifies  dense

and sparse matrix multiplication in GNNs.

Since  the  loop  optimization  techniques  proposed

in  this  paper  can  significantly  improve  memory  ac-

cess efficiency, which is of paramount importance for

GCN acceleration,  we  believe  that  our  approach  can

be easily applied to the other accelerators.

 6    Conclusions

Motivated by the observation that most of the en-

ergy is consumed by memory accesses for state-of-the-

art  GCN accelerators,  this  paper  presented  GShuttle

to optimize memory access efficiency for such acceler-

ators.  GShuttle  employs  two  algorithms  to  solve  the

memory  access  optimization  problem  raised  in  GCN

accelerators,  both  of  which  can  find  the  optimal  de-

sign  variables  of  GCN dataflow under  certain  design

constraints.  Our  results  showed  that  GShuttle  could

significantly reduce the number of DRAM and SRAM

accesses  for  GCN  accelerators.  Since  the  optimiza-

tions  on  DRAM accesses  are  orthogonal  to  those  on

computation, we expect that GShuttle can be applied

to  many  existing  GCN  accelerators  such  as  HyGCN

and AWB-GCN.
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