
Published as a conference paper at ICLR 2023

WEIGHTED CLOCK LOGIC POINT PROCESS

Ruixuan Yan1, Yunshi Wen1, Debarun Bhattacharjya2, Ronny Luss2, Tengfei Ma2,
Achille Fokoue2, and Agung Julius1

1Rensselaer Polytechnic Institute
2IBM T.J. Watson Research Center

ABSTRACT

Datasets involving multivariate event streams are prevalent in numerous applica-
tions. We present a novel framework for modeling temporal point processes called
clock logic neural networks (CLNN) which learn weighted clock logic (wCL) for-
mulas as interpretable temporal rules by which some events promote or inhibit
other events. Specifically, CLNN models temporal relations between events using
conditional intensity rates informed by a set of wCL formulas, which are more ex-
pressive than related prior work. Unlike conventional approaches of searching for
generative rules through expensive combinatorial optimization, we design smooth
activation functions for components of wCL formulas that enable a continuous re-
laxation of the discrete search space and efficient learning of wCL formulas using
gradient-based methods. Experiments on synthetic datasets manifest our model’s
ability to recover the ground-truth rules and improve computational efficiency. In
addition, experiments on real-world datasets show that our models perform com-
petitively when compared with state-of-the-art models.

1 INTRODUCTION AND RELATED WORK

Multivariate event streams are emerging types of data that involve occurrences of different types of
events in continuous time. Event streams are observed in a wide range of applications, including but
not limited to finance (Bacry et al., 2015), politics (O’Brien, 2010), system maintenance (Gunawar-
dana et al., 2011), healthcare (Weiss & Page, 2013), and social networks (Farajtabar et al., 2015). As
opposed to time series data that typically comprises continuous-valued variables evolving in regular
discrete time stamps, event streams involve events occurring irregularly and asynchronously in con-
tinuous time. Modeling the dynamics in event streams is important for a wide range of scientific and
industrial processes, such as predicting the occurrence of events of interest or understanding why
some deleterious events occur so as to possibly prevent their occurrence. A (multivariate) tempo-
ral point process (TPP) provides a formal mathematical framework for representing event streams,
where a conditional intensity rate for each event measures its occurrence rate at any time given the
historical events in the stream (Daley & Vere-Jones, 2003; Aalen et al., 2008).

There has been a proliferation of research around TPPs in recent years, particularly around the use of
neural networks for modeling conditional intensity rates as a function of historical occurrences (Du
et al., 2016; Mei & Eisner, 2017; Xiao et al., 2017; Xu et al., 2017; Gao et al., 2020; Zhang et al.,
2020; Zuo et al., 2020). One stream of research studies graphical event models (GEMs) as a compact
and interpretable graphical representation for TPPs, where the conditional intensity rate for any
particular event depends only on the history of a subset of the events (Didelez, 2008; Gunawardana
& Meek, 2016). While any TPP can be represented as a GEM, various models make assumptions
about the parametric form of conditional intensity rates for the sake of learnability, for instance that
rates are piece-wise constant with respect to occurrences within historical windows (Gunawardana
et al., 2011; Bhattacharjya et al., 2018). Ordinal GEMs(OGEM) (Bhattacharjya et al., 2020; 2021)
are a recent model from this family where a conditional intensity rate depends on the order in which
parent events occur within the most recent historical time period.

A temporal logic point process (TLPP) framework was proposed as an alternate way to lend some
interpretability to TPPs by modeling intensity rates using temporal logic rules (Li et al., 2020).
Although the initial work pre-specified temporal logic rules, recent work has introduced a temporal
logic rule learner (TELLER) for automatically discovering rules (Li et al., 2021). There is however

1

Published as a conference paper at ICLR 2023

the issue of scalability since TELLER exploits an expensive branch-and-price algorithm to search for
temporal logic rules in a discrete space. Another important limitation of this work is that TELLER’s
rules are not informative enough to explain how the interval length between ordered events impacts
the conditional intensity rate. For instance, while predicting the occurrence of diabetes, the rule
that “insulin injection happens 20 minutes before eating meal” is more informative and accurate in
predicting “blood glucose remains normal” than the rule that “insulin injection happens before eating
meal”, as the latter rule cannot expose the interval between ‘insulin injection’ and ‘eating meal’. To
tackle the above limitations, we propose novel atomic predicates enriching the expressiveness of
temporal logic rules as well as a differentiable framework to learn rules in an end-to-end manner.

This work introduces a differentiable neuro-symbolic framework, clock logic neural network
(CLNN), to model TPPs by learning weighted clock logic (wCL) formulas as explanations. Firstly,
event streams are converted into continuous-time clock signals representing the time interval be-
tween the last occurrence of an event and the current time. Next, we propose a novel wCL to de-
scribe the underlying temporal relations with relative interval length, enabling the design of a CLNN
to learn the generative mechanisms. Instead of searching for temporal logic rules in some vast dis-
crete space, CLNN associates every neuron with an order representation or a logical operator and
assigns weights to edges to reflect the importance of various inputs, which relaxes the search space
to be continuous. Moreover, architecture weights are introduced into CLNN to make the formula
structure search differentiable. wCL formula-informed intensity rates are carefully designed so that
the parameters appearing in the rules can be learned through maximum likelihood estimation using
gradient-based approaches. CLNN is tested on synthetic datasets to show that CLNN can recover
the ground-truth rules as well as on real-world datasets to demonstrate its model-fitting performance.

2 PRELIMINARIES

2.1 NOTATION & BACKGROUND

Let L denote the set of event labels, and M= |L| denote the number of event labels. An event stream
is a sequence of events including time stamps, denoted as D={(l1, t1), (l2, t2), ..., (lN , tN)}, where
ti ∈ R+ denotes a time stamp between the beginning time t0 = 0 and end time tN+1 = T , and
li ∈ L is the event label that happens at ti. We refer to ‘event label’ and ‘label’ interchangeably.
Every event label l ∈ L has an associated conditional intensity rate describing the occurrence rate of
label l at t given the history up to t. In multivariate temporal point processes, conditional intensity
rates describe the dynamics of events. Let Ht = {(li, ti) : ti < t} denote the historical events
up to time t. The conditional intensity rate of event label l is denoted as λl(t|Ht). Specifically,
λl(t|Ht) describes the expected number of occurrences of event label l in an infinitesimal interval
[t, t+∆t] given the history Ht, i.e., λl(t|Ht) = lim∆t→0(E[Nl(t + ∆t) − Nl(t)|Ht]/∆t), where
Nl(t) denotes the number of event label l’s occurrences up to t.

Example 1 A running example of an event stream with 11 events of 4 labels is shown in Figure 1(a).

A B C D

0 1 3 6 10 12 14 17 21 23 25 27 308

(a)

Event
Stream

Masked
event stream

Event
clocks

POC wCL
formula

Intensity
rate

SOC

AC

CLNN Output

Masking
function

Clocking
function

(b)

Figure 1: (a): An event stream example with N = 11 events of M = 4 event labels over T =
30 days. (Integer-valued time stamps are utilized for easy interpretation, note that the proposed
approach also works for ti ∈ R). (b): The overall workflow of the proposed method (POC: paired
order cell, SOC: singleton order cell, AC: architecture cell, details presented in Section 2.2 to 3.3).

2.2 ORDER REPRESENTATIONS FOR EVENT STREAMS

The overall workflow of the proposed framework is visualized as Figure 1(b). The raw event streams
first go through a masking function to generate the masked event streams, which are then trans-
formed into event clocks using a clocking function. The event clocks are given as inputs to the clock
logic neural network (CLNN) to learn interpretable wCL formulas and the intensity rate of event
occurrences. The following sections provide a detailed explanation for each module in Figure 1(b).

We are interested in exploring the effect of temporal ordering between event labels and the occur-
rences of causal event labels in a historical window on the occurrence rate of a particular event label,

2

Published as a conference paper at ICLR 2023

where the generative mechanism is expressed as interpretable formulas. An event stream up to t may
include multiple occurrences of the same event label, thus a masking function is required to mask
out duplicated event labels in the history for accessing the ordering information at any t. Here we
adopt a technique similar to Bhattacharjya et al. (2020) for extracting distinct event labels from Ht.
Definition 1 (Masking Function) A masking function Γ(·) is a function that takes an event stream
as input and returns a new event stream that is a subset of the input stream and contains no dupli-
cated event labels. Mathematically, Γ(·) is applied to Ht = {(li, ti)} and converts it into a new
stream H′

t = {(lj , tj) ∈ Ht : lj ̸= lj′ if j ̸= j′}.

We consider the following two masking functions as per Bhattacharjya et al. (2020) due to simplic-
ity: ‘first’ masking and ‘last’ masking. The ‘first’ (resp. ‘last’) masking function keeps the first
(resp. last) occurrence of an event label in an event stream.
Example 1 (cont.) Let H13 = {(A, 1), (B, 3), (A, 6), (D, 8), (C, 10), (D, 12)}. The ‘first’ mask-
ing function converts it to H′

13 = {(A, 1), (B, 3), (D, 8), (C, 10)}, and the ‘last’ masking function
converts it to H′

13 = {(B, 3), (A, 6), (C, 10), (D, 12)}.

With the masked event history H′
t, we define two order representations for the order relationship

between any two event labels and the occurrence of an event within a historical window of t.
Definition 2 (Paired Order Representation (POR)) A paired order representation is defined as
[li, lj]∈ [L]2, where [L]2 denotes two-element permutation of a subset of L. A paired order repre-
sentation for H′

t can be obtained by arranging any two distinct labels in H′
t in a sequential order.

Definition 3 (Singleton Order Representation (SOR)) A singleton order representation is de-
noted as [lj , ulj] ∈ L × R+, representing event label lj ∈ L occurred within the past ulj time
units, where ulj is a variable to learn through a process that will be explained in Section 3.3.

Example 1 (cont.) With first masking, an example of paired order representation for H′
13 can be

[A,B] representing “A happens before B” or [B,C] representing “B happens before C”. The overall
order representation for H′

13 is expressed as [A,B,D,C], which can be derived from the paired
order representations: [A,B], [B,D], [D,C]. A singleton order representation example of H′

13 can
be expressed as [B, 10.5], meaning B happened in the past 10.5 days.

2.3 WEIGHTED CLOCK LOGIC FORMULA

To adapt H′
t to continuous-time signals that can be described by logical statements, we extract clock

signals from H′
t to describe the time passed since the last occurrence of a label. A clocking function

is introduced to convert tj into a clock signal cj denoting the time interval length between tj and t.
Definition 4 (Clocking Function) A clocking function Ξ(·) converts H′

t into a vector of clock sig-
nals as C′(t) = [c1(t), c2(t), ..., cM (t)]T ∈ RM

+ with ci(t) denoting the clock signal for event label
i ∈ L, where ci(t) is computed as ci(t) = t−tj if (lj , tj) ∈ H′

t and lj = i, and ci(t) = Z̄ otherwise.
Note that Z̄ is a user-defined, large positive number to indicate event label i not happening in H′

t.

Example 1 (cont.) Taking the ‘first’ masked event stream H′
13 = {(A, 1), (B, 3), (D, 8), (C, 12)}

as an example, the event clocks are extracted as C′(13) = [12, 10, 1, 5]T .

The event clocks can essentially provide the ordering between any two event labels in that the differ-
ence between any two event labels’ clock signals reflects which event label happens first. As shown
in the diabetes prediction example in the Introduction section, the time interval between ordering
events is notably important in explaining and predicting an event label’s occurrence. In contrast to
(Li et al., 2020; 2021) which only learns the temporal ordering relation between event labels, we
define a paired order predicate (POP) with a learnable parameter ulilj to describe the time interval
between two ordered event labels li and lj and a singleton order predicate (SOP) with a learnable
parameter ulj to describe the occurrence of label lj within a historical window ulj as follows.

Definition 5 (Paired Order Predicate) A POP describes the order between two labels li, lj ∈
L, li ̸= lj , denoted as π

lilj
pop := g(cli , clj) = cli − clj > ulilj , where ulilj ∈ R is a parameter to

learn. A positive ulilj means li happened before lj for at least ulilj time units, and a negative ulilj

means lj happened before li for at most −ulilj time units. A POP is used in the POC of Figure 1(b).

Definition 6 (Singleton Order Predicate) An SOP describes a causal label lj ∈L occurring within
the past ulj time units, defined as πlj

sop := clj − ulj < 0, where ulj ∈ R+ is a learnable parameter.

3

Published as a conference paper at ICLR 2023

Instead of taking a heuristic approach for some underlying combinatorial search problem for a given
set of temporal predicates (Bhattacharjya et al., 2020; 2021; Li et al., 2021) to uncover the effective
order relations, this work proposes a differentiable learning model to learn suitable singleton and
paired order predicates among all the possible choices of order predicates through a gradient-based
approach. The scheme of weighted signal temporal logic (wSTL) in Yan et al. (2021; 2022) is
exploited to build weighted clock logic (wCL) formulas that are logical compositions of singleton
and paired order predicates. The syntax of wCL is recursively defined as (Mehdipour et al., 2021):

ϕ := πlilj
pop |πlj

sop | ¬ϕ |ϕw1
1 ∧ ϕw2

2 · · · ∧ ϕwk

k |ϕw1
1 ∨ ϕw2

2 · · · ∨ ϕwk

k , (1)

where ϕ1, · · ·ϕk are wCL formulas, ¬ denotes negation, ∧ denotes logical conjunction, ∨ denotes
logical disjunction, wj ≥ 0, j = 1, · · · , k denotes non-negative weights assigned to ϕ1, · · · , ϕk in
the conjunction and disjunction operations. A wCL formula can describe the characteristics of Ht,
thus the conditional intensity rate of event l given Ht can be equivalently denoted as λl|ϕ(t).

Remark 7 The syntax above means each wCL formula can be built by using predicates in π
lilj
pop or

π
lj
sop and then by recursively applying the ¬ or the ∧ or the ∨ operations.

Example 1 (cont.) A wCL formula example is ϕ = (cA − cB > 1)1 ∧ (cC < 3)0.05. The first and
second clauses read “A happened before B for at least one day” and “C happened less than 3 days
ago”, respectively. Note that ϕ is satisfied by the event stream up to t = 13 in Figure 1(a). The two
clauses have weights of 1 and 0.05, reflecting the first clause is more important than the second one.

3 WEIGHTED CLOCK LOGIC POINT PROCESSES

3.1 TRUTH DEGREE OF WEIGHTED CLOCK LOGIC

To quantitatively measure the satisfaction degree of a wCL formula ϕ over the event clocks C′(t), i.e.,
how well does ϕ describe the underlying patterns of C′(t), we propose smooth activation functions
(AFs) to compute the truth degree, denoted p(C′, ϕ, t) ∈ [0, 1], defined as (Riegel et al., 2020):

p(C′, πlilj
pop, t) = sigmoid(cli(t)− clj (t)− ulilj), (2)

p(C′, πlj
sop, t) = sigmoid(ulj − clj (t)), (3)

p(C′,¬ϕ, t) = 1− p(C′, ϕ, t). (4)

In contrast to the combinatorial search of the temporal logic predicates in Li et al. (2021), the smooth
design of AFs in (2) - (4) benefits the maximum likelihood estimation problem shown later in Section
3.6 by allowing it to learn the parameters in the POP and SOP through gradient-based methods.
Next, we present the design of activation functions (AF) for the ∧ operator. Here we use a 2-ary
conjunction operator to motivate the design. Let p∧ = p(C′, ϕw1

1 ∧ ϕw2
2 , t) ∈ [0, 1]. Intuitively, p∧

is low when either input is low, and p∧ is high when both inputs are high. Here we adopt a similar
idea to Sen et al. (2022) for capturing the low and high. A user-defined hyperparameter α ∈ [12 , 1]
is introduced to aid the interpretability of low and high such that p∧ represents high if p∧ ∈ [α, 1]
and low if p∧ ∈ [0, 1 − α]. Considering the importance weights, a low input with a zero weight
should not impact the output, which implies p∧ should be low when both inputs are low. With these
considerations, the AF for the ∧ operator is defined as follows: (See Appendix A for more details.)

p(C′, ϕw1
1 ∧ ϕw2

2 · · · ∧ ϕwk

k , t) = f(β −
k∑

j=1

wj(1− p(C′, ϕj , t))), (5)

subject to β −
k∑

j=1

wj(1− α) ≥ α, β −
k∑

j=1

wjα ≤ 1− α,

where f(z) = max{0,min{z, 1}} clamps the truth degree into [0, 1], wj ≥ 0 and β ≥ 0 are
parameters to learn. By De Morgan’s law (Hurley, 2014), the AF for the ∨ operator is defined as

p(C′, ϕw1
1 ∨ ϕw2

2 · · · ∨ ϕwk

k , t) = f(1− β +

k∑
j=1

wj(p(C′, ϕj , t))), (6)

subject to 1− β +
k∑

j=1

wjα ≥ α, 1− β +
k∑

j=1

wj(1− α) ≤ 1− α.

4

Published as a conference paper at ICLR 2023

An event stream with M event labels would generate P2
M = M !

(M−2)! paired order predicates and
M singleton order predicates. If a conjunction or disjunction operator takes these predicates as
inputs, how it recognizes the effective order predicates in describing the event dynamics becomes a
critical issue. By carefully designing the AFs in (5) - (6), the logical operators exhibit the following
properties so as to recognize effective inputs. This is a critical advantage over Bhattacharjya et al.
(2020; 2021); Li et al. (2021) in that it allows a differentiable search of the suitable predicates among
all the possible choices of order predicates in an end-to-end manner. Here we illustrate the properties
for ∧ with two inputs, which can be generalized to k-ary inputs. (See Appendix B for more details.)

Theorem 8 The AF for the ∧ operator with two inputs exhibits the following properties.

1) Nonimpact for zero weights: If wj = 0, j = 1, 2, p(C′, ϕj , t) has no impact on p(C′, ϕ1 ∧ ϕ2, t).

2) Impact ordering: If p(C′, ϕ1, t)=p(C′, ϕ2, t), and w1≥w2, then ∂p(C′,ϕ1∧ϕ2,t)
∂p(C′,ϕ1,t)

≥ ∂p(C′,ϕ1∧ϕ2,t)
∂p(C′,ϕ2,t)

.

3) Monotonicity: f(β−
∑2

j=1wj(1−p(C′, ϕj , t)))≤f(β−
∑2

j=1 wj(1− (p(C′, ϕj , t)+ d))), d≥0.

𝒄𝑨(𝒕) 𝒄𝑩(𝒕) 𝒄𝑪(𝒕)

𝝅𝒑𝒐𝒑
𝑨,𝑩 𝝅𝒑𝒐𝒑

𝑩,𝑨 𝝅𝒑𝒐𝒑
𝑨,𝑪 𝝅𝒑𝒐𝒑

𝑪,𝑨 𝝅𝒑𝒐𝒑
𝑪,𝑫 𝝅𝒑𝒐𝒑

𝑫,𝑪 𝝅𝒔𝒐𝒑
𝑨 𝝅𝒔𝒐𝒑

𝑩 𝝅𝒔𝒐𝒑
𝑪

∧ ∧ ∧ ∧

∧

∧ ∨

𝑤𝑝𝑜𝑝
𝐴,𝐵

𝑤𝑝𝑜𝑝
𝐵,𝐴

𝑤3
1

𝑤3
2

𝑤3
6

Architecture cell

Paired order cell

Singleton order cell

𝑤𝑠𝑜𝑝
𝐴

𝑤𝑠𝑜𝑝
𝐵 𝑤𝑠𝑜𝑝

𝐶

𝛼𝑎𝑟𝑐
∧ 𝛼𝑎𝑟𝑐

∨

𝑤4
1 𝑤4

2

𝑤4
3 𝑤4

4

𝒑(𝓒′, 𝝓, 𝒕)

𝝀𝒍|𝝓(𝒕)

…
𝝅𝒔𝒐𝒑
𝑪

𝑤𝑠𝑜𝑝
𝐷

𝛼𝑎𝑟𝑐 Architecture weight

𝑤𝑝𝑜𝑝 Paired-order weight

𝑤𝑠𝑜𝑝 Singleton-order weight

𝒄𝑫(𝒕)

POP selection
node

Logical
selection node⊝

𝑤𝑝𝑜𝑝
𝐴,𝐶

𝑤𝑝𝑜𝑝
𝐶,𝐴 𝑤𝑝𝑜𝑝

𝐶,𝐷
𝑤𝑝𝑜𝑝
𝐷,𝐶

SOP selection
node

(a)

𝒄𝑨(𝒕) 𝒄𝑩(𝒕) 𝒄𝑪(𝒕)

𝝅𝒑𝒐𝒑
𝑨,𝑩 𝝅𝒑𝒐𝒑

𝑩,𝑪

∧

∨

𝝅𝒔𝒐𝒑
𝑨

𝝀𝒍|𝝓(𝒕)

𝒑(𝓒′,𝝓, 𝒕)

(b)

Figure 2: CLNN Structure. (a): Continuous relaxation of the search space using weights. (b): The
learned discrete model structure for ϕ = (πA,B

pop ∧ πB,C
pop) ∨ (πA

sop).

3.2 LEARNING OF PAIRED ORDER REPRESENTATION

With the smooth AFs designed in (2) - (6), a neuro-symbolic model called clock logic neural network
(CLNN) can be designed for any given wCL formula ϕ, in which every neuron has a corresponding
symbolic representation. A typical CLNN for ϕ = (πA,B

pop ∧πB,C
pop)∨(πA

sop) is visualized as Fig. 2(b),
which can be considered as the discrete structure obtained by learning the parameters of the model
in Figure 2(a) and keeping the dominant components. Here ϕ can be interpreted as “(A happens
before B for at least uAB time units or B happens before C for at least uBC time units) and A
happens within the past uA time units.” This part describes the continuous relaxation of the search
space by designing a paired order cell, a singleton order cell, and an architecture cell for learning
the paired order representation, singleton order representation and the formula structure.

Paired Order Cell (POC). A POC is a directed acyclic graph (DAG) comprising two paired order
predicate (POP) nodes and one logical node for the ∧ operator, shown as an orange block in Figure
2(a). The two POP nodes represent πli,lj

pop and π
lj ,li
pop sharing the same parameter uli,lj , where π

li,lj
pop

denotes “li happened before lj for at least uli,lj time units” and π
lj ,li
pop denotes “lj happened before

li for at least uli,lj time units”. Each POP has an associated weight wli,lj
pop or wlj ,li

pop to be learned,
and the ∧ operator forces one of the two weight parameters to dominate the other one such that
the learned POR is consistent with the event stream. For example, the POC in Figure 2(a) aims
to learn the POR between A and B, whose discretized version would be either πA,B

pop or πB,A
pop .

An event stream with M event labels can generate P2
M = M !

(M−2)! PORs between any two event

5

Published as a conference paper at ICLR 2023

labels, resulting in (P2
M/2) POCs. Similar to learning the POR between any two events, the discrete

order representations for the entire history Ht can be learned using a POP selection node (as shown
in Figure 2(a)) that takes the outputs of all the POCs as input and identifies the important PORs.
The learning of the POCs essentially becomes learning the w, β in (5) for the POCs and the POP
selection node, as well as ulilj in (2) for the POPs through back propagation. The discrete PORs
can be acquired by keeping the top-k strongest POCs and the dominant POPs.

3.3 LEARNING OF SINGLETON ORDER REPRESENTATION

Singleton Order Cell (SOC). The learning of SOR is accomplished by an SOC, which is displayed
as a green block in Figure 2(a). An SOC is a DAG comprising M singleton order predicate (SOP)
nodes and one SOP selection node for the ∧ operator. An SOP node represents π

lj
sop that takes

clj (t) as input and returns the truth degree of πlj
sop over clj (t). The SOP selection node has the

same functionality as the POP selection node. The ∧ operator in the SOP selection node assigns
a nonnegative weight to every SOP node and learns the importance weights w and β to extract
the dominant SORs affecting the conditional intensity rate the most. The learning of the SOC is
thus learning the w, β in (5) for the SOP selection node and ulj in (3) for the SOPs through back
propagation. The discrete SORs can be determined by keeping the top-k strongest SOPs.

3.4 LEARNING OF FORMULA STRUCTURE

Architecture Cell (AC). For a given set of PORs or SORs, their conjunction or disjunction
will behave differently and have distinct meanings. For instance, given two causal formulas
ϕ1 = (cA−cB > 1)1∧(cC < 5)1 and ϕ2 = (cA−cB > 1)1∨(cC < 5)1 for the occurrence of event
label D, ϕ1 means “(A happens before B for at least 1 time unit) and (C happens within the past 5
time units) simultaneously will cause D to happen”, whereas ϕ2 means “(A happens before B for at
least 1 time unit) or (C happens within the past 5 time units) alternatively will cause D to happen.”
The afore-mentioned cells can learn the order representations. Nevertheless, whether their outputs
should be connected by the ∧ or ∨ operator needs to be determined. Here we consider the outputs of
the POCs and the SOCs having two choices of being connected by a ∧ or ∨ operator, each of which
is associated with an architecture weight α∧

arc or α∨
arc that enables continuous learning of the two

choices; this is also called differentiable architecture search (Liu et al., 2019). An architecture cell
is introduced for learning the model architecture, which comprises two logical nodes representing a
∧ operator and a ∨ operator as well as a logical selection node (LSN), shown as the blue block in
Figure 2(a). Let p = {p1, ..., pk} denote the set of inputs for each logical operator. Subsequently,
the conjunction operator takes p as input and returns p∧ = f(β∧ −

∑k
j=1 w

∧
j (1− pj)), and the dis-

junction operator takes p as input and returns p∨ = f(1−β∨+
∑k

j=1 w
∨
j pj). The LSN represented

by ⊖ takes p∧ and p∨ as inputs and returns their weighted sum, where the weights are computed
using the softmax of the architecture weights as shown below:

p⊖ = p(C′, ϕ, t) =
∑

m∈{∧,∨}

eα
m
arc∑

m′∈{∧,∨}eαm′
arc

pm. (7)

The task of architecture search then reduces to learning the architecture weights α∧
arc, α∨

arc and the
w, β in (5) - (6) for the two logical operators, which can be executed simultaneously while learning
parameters in the POCs and SOCs. The outcome of the architecture search process is a discrete
architecture obtained by retaining the logical operator with the strongest architecture weight.

3.5 WCL-INFORMED INTENSITY FUNCTION

…CLNN--𝝓𝟏 CLNN--𝝓𝒏

𝓒′:Clock signal for 𝓛

𝒑(𝓒′, 𝝓𝟏, 𝒕) 𝒑(𝓒′, 𝝓𝒏, 𝒕)…

𝝀𝒍|𝚽

𝑳𝑳𝒍Forward
propagation

Backward
propagation

Figure 3: The overall learning
framework for n wCL formulas.

The output of a CLNN is the truth degree of ϕ over C′ at t, which
is incorporated into modeling the conditional intensity rates. The
modeling process aims to discover the generative mechanism as
wCL formulas for every l ∈ L. In other words, a larger value
of p(C′, ϕ, t) should reflect that ϕ has a greater impact on the
occurrence of a particular label. For example, if the wCL for-
mula for affecting the occurrence of event label D is given as
ϕ = ((πA,B

pop)w1 ∧ (πC
sop)

w2), it means if ϕ is satisfied or the truth
degree of ϕ is high, then it has a strong impact on the occurrence of
D, where the impact can be promoting or inhibiting the occurrence
of D. In terms of the relation between the truth degree and the con-
ditional intensity rate, the higher the truth degree p(C′, ϕ, t), the greater its impact on λD|ϕ. Note

6

Published as a conference paper at ICLR 2023

that the occurrence of one event label may depend on multiple wCL formulas. This work follows the
assumption that the impact of multiple formulas are additive in predicting the intensity rate, similar
to Li et al. (2020). To incorporate a set of wCL formulas Φ = {ϕ1, ϕ2, ..., ϕn} into the modeling of
the conditional intensity rate, we define a wCL formula-informed conditional intensity rate as:

λl|Φ(t) = exp(
n∑

i=1

wϕi
p(C′, ϕi, t) + ρ), (8)

where wϕi is the weight of ϕi, and ρ is a bias term that allows for spontaneous occurrence without
the influence from ϕ.

3.6 MAXIMUM LIKELIHOOD ESTIMATION

Suppose event stream D contains nl occurrences of event l, for which the occurrence time stamps
are denoted as tl1 , tl2 , ..., tlnl

. Let t0 = 0, tlnl+1
= T . Based on the conditional intensity function

in (8), the likelihood for label l over the event stream is calculated as (Daley & Vere-Jones, 2003):

Ll =

nl−1∏
i=0

(
exp

(
−
∫ tli+1

tli

λl|Φ(s)ds

)
λl|Φ(tli+1)

)
exp

(
−
∫ T

tlnl

λl|Φ(s)ds

)
. (9)

The corresponding log-likelihood for event label l is expressed as LLl = (−
∫ T

0
λl|Φ(s)ds) +∑nl

i=1[log(λl|Φ(tli))]. The total log-likelihood of all the events in D is thus LLD =
∑

l∈L LLl.
During the training process, we train the model parameters for each event label separately. Specifi-
cally, the maximum likelihood estimation problem for event label l can be formulated as follows:

min −LLl (10)

s.t. ∀ϕ ∈ Φ, ∀1 ≤ k ≤ K∧
ϕ , βk −

∑
i∈Ik

wi,k(1− α) ≥ α, βk −
∑
i∈Ik

wi,kα ≤ 1− α, (11)

∀ϕ ∈ Φ, ∀1 ≤ k′ ≤ K∨
ϕ , 1− βk′ +

∑
i∈Ik′

wi,k′α ≥ α, 1− βk′ +
∑
i∈Ik′

wi,k′(1− α) ≤ 1− α, (12)

wi,k ≥ 0, βk ≥ 0, wi,k′ ≥ 0, βk′ ≥ 0, ulj ≥ 0,

where K∧
ϕ (resp. K∨

ϕ) is the number of ∧ (resp. ∨) operators in ϕ, Ik (resp. Ik′) denotes the
inputs to the k-th ∧ (resp. k′-th ∨) operator. Please see Appendix A for more details about the
above formulation. The overall learning framework is shown in Figure 3, in which the forward
propagation computes LLl by using n CLNNs; each learns a wCL formula ϕi and the backward
propagation updates the parameters in n CLNNs using projected gradient descent.

4 EXPERIMENTS

We conduct several experiments on synthetic and real-world datasets to demonstrate the efficacy of
our proposed model. Simultaneously, we compare with state-of-the-art (SOTA) models. The exper-
iments are run using the AdamW optimizer in Pytorch (1.10.2) on a Windows 10 system desktop
with a 16-core CPU (i7, 3.60GHz) and 32 GB RAM. Our code is available at https://ICLR-CLNN.

4.1 MODELS

Multivariate Hawkes Process (MHP) [(Bacry et al., 2017)]: A conventional multivariate Hawkes
process utilizing an exponential kernel function to describe the conditional intensity rate, which
involves a decay rate and an infectivity matrix characterizing the inter-dependence among events.
This model is implemented in the tick1 library, where the learning problem is posed as a convex
quadratic programming problem with a fixed decay rate.

Proximal Graphical Event Model (PGEM) [(Bhattacharjya et al., 2018)]: A type of GEM that
models event data by considering whether a parent in some underlying graph happens in a proximal
(recent) window.

1https://x-datainitiative.github.io/tick/modules/hawkes.html

7

https://tinyurl.com/iclrCLNN

Published as a conference paper at ICLR 2023

Ground truth ϕ̂1 = (cA − cB > 1)1 ∧ (cA − cC > 3)1

CLNN’s rule (cA − cB > 1.21)1.52 ∧ (cA − cC > 3.00)1.41 ∧ (cA − cD > 0.82)0.33 ∧ (cB − cC > 4.33)0 ∧ (cB − cD > 10.69)0 ∧ (cD − cC > −6.57)0.16

TELLER’s rule A before D, B before D, C before D, A before D and C before D

OGEM-tab’s rule Excitation: [B], [C,B], [B,C]; Inhibitory: [A], [C,A], [A,C]

Table 1: Comparison of rule discovery for CLNN, TELLER, and OGEM-tab on the Syn-1 dataset.

Ordinal Graphical Event Model (OGEM) [(Bhattacharjya et al., 2020; 2021)]: An ordinal GEM
that models the impact of the order of events on the conditional intensity rate. OGEM-tab (resp.
OGEM-tree) refers to an OGEM that adopts a tabular (resp. tree) representation of orders.
Temporal Logic Rule Learner (TELLER)2 [(Li et al., 2021)]. This is a method to learn first-order
temporal logic rules explaining the generative mechanism of TPPs. The rule discovery process is
formulated as a maximum likelihood estimation problem solved by a branch-and-price algorithm.
4.2 SYNTHETIC DATASETS

The first part of this experiment demonstrates CLNN’s capability of recovering ground-truth rules
using three synthetic datasets generated by CLNN with pre-specified formula structure and param-
eters, including ulilj in π

li,lj
pop , as well as the importance weights w and bias β in (5) for logical

operators, and the wϕ and ρ in (8) for the conditional intensity rate.

Experimental Setting. Each synthetic dataset contains 1, 000 event streams partitioned into three
sets: training (70%), validation (15%), and test (15%). Every dataset is generated using a wCL
formula with wϕ = 3 and ρ = −5. The truth value threshold is set as α = 0.5, and the clock signal
for representing an event not occurring in H′

t is set as Z̄ = 1.5Tmax, where Tmax is the maximal
ending time among all the event streams. During the training process, we initialize the parameters
using four approaches (see Appendix C.5 for more details) and report the best one, and CLNN aims
to recover the manually set parameters.

Results. The ground-truth rule ϕ̂1 for generating the first synthetic dataset (Syn-1) with L =
{A,B,C,D} and the rules discovered by CLNN, TELLER, and OGEM-tab are summarized in
Table 1. Results for the other synthetic datasets are presented in Appendix C. The rules are learned
using the ‘last’ masking method, which was also used for data generation. The experimental results
show an accurate recovery performance of CLNN in terms of order representation recovery and pa-
rameter identification. The unweighted version of the ground truth rule reads: “If A happens before
B for at least 1 time unit and A happens before C for at least 3 time units, then D will happen”. The
rule of TELLER only reflects the temporal relation between events A,B,C and D but is unable to
capture the temporal relation between A and B or A and C, which does not match the ground-truth
rule. In OGEM-tab’s rule, [l] denotes a single parent. We show the top 3 excitation and inhibitory
rules from OGEM-tab, where excitation (resp. inhibitory) means λl|Φ is higher (resp. lower) than
the λl|Φ with all wϕi

= 0. The excitation rules of OGEM-tab do not match the ground-truth rule.
In contrast, the rule discovered by CLNN (ϕ1) assigns larger weights to the paired order predicates
πA,B
pop = (cA− cB > 1.21) and πA,C

pop = (cA− cC > 3.00) and small weights to the other predicates,
where the interval values of 1.21 and 3.00 are both learned. By ignoring the small weights, ϕ1 can
be interpreted as “If A happens before B for at least 1.21 time units and A happens before C for
at least 3.00 time units, then D will happen”, meaning the paired order representations discovered
by CLNN match well with the ground truth. Moreover, CLNN’s rules are more expressive than
TELLER and OGEM as it provides a detailed interval length between two ordered labels.

wCL formula ϕ1 ϕ2 ϕ3,1 ϕ3,2 Average

CLNN 5.20 4.60 4.95 7.73 5.62
TELLER 252.91 286.83 925.58 1078.66 635.99

Table 2: Runtime (s) for CLNN and TELLER on
synthetic datasets.

To show the computational efficiency of our
gradient-based learning, we compare the runtimes
of CLNN and TELLER on the synthetic datasets in
Table 2. Notably, CLNN not only recovers the cor-
rect order representations but also was two orders
of magnitude faster on average (5.62 s vs 635.99
s). In addition, CLNN can learn more expressive order representations that describe both the order
relation between two events and their interval length.

4.3 REAL-WORLD DATASETS

LinkedIn [(Xu et al., 2017)]. An event dataset related to job hopping records of 3, 000 LinkedIn
users in 82 IT companies. Each event stream records a user’s check-in time stamps for different
companies or the time stamps for role change within the same company. We filter the dataset to
popular companies as per Bhattacharjya et al. (2020), resulting in 1, 000 users.

2https://github.com/FengMingquan-sjtu/Logic Point Processes ICLR

8

Published as a conference paper at ICLR 2023

Mimic II [(Saeed et al., 2011)]. An event dataset concerning health records of patients from Inten-
sive Care Unit (ICU) visits over 7 years. A patient’s event stream records each visit’s time stamp
and the corresponding diagnosis. We filter out sequences with few visits, resulting in 650 patients.

Stack Overflow [(Grant & Betts, 2013)]. An event dataset that is related to the badges awarded to
users in the question-answering website, the Stack Overflow. Each user’s event stream records the
badges that he/she receives at various time stamps. We keep the event streams with one or more of
20 types of badges and sample 1, 000 users from the dataset used in Du et al. (2016).

Experimental Setup. Each dataset is partitioned into three sets: training (70%), validation (15%),
and test (15%). For simplicity, ulilj are set as 0 to study the ordering representations. The truth
value threshold is α = 0.5, and Z̄ = 1.5Tmax, same as the setting for the synthetic datasets, and
the number of subformulas is n = 5, and the parameters are initialized as random numbers from a
uniform distribution on [0, 1). CLNN is trained on the training set, and the validation set is utilized
for model selection during training. Model fit is evaluated using log-likelihood on the test set.

Results. We follow a similar trend to Bhattacharjya et al. (2018; 2020; 2021) to use the log-
likelihood for evaluation of the model’s performance. The log-likelihood on the real-world datasets
is reported in Table 3, where DR denotes the difference ratio – the difference between CLNN and
the best SOTA divided by the absolute value of best SOTA. CLNN’s result is chosen as the better
one among the ‘first’ or the ‘last’ masking. Notably, CLNN outperforms the baseline models on
the LinkedIn dataset (13.40% advantage) and achieves a competitive result on the MIMIC II dataset
(1.63% loss only). It is observed that PGEM achieves a better result on the Stack Overflow dataset.
In Stack Overflow, one type of badge can be awarded only when a user receives a particular badge
multiple times, for example, the ‘Epic’ badge is awarded only when earning 200 daily reputations 50
times, depending on the ‘Mortarboard’ badge acquired while answering or asking questions. CLNN
and OGEMs apply masking methods to the data, which may not capture the above dependence. In
contrast, PGEM models data without masking, making it more suitable for this dataset.

Dataset N (# events) M (labels) MHP PGEM OGEM-tab OGEM-tree TELLER CLNN DR

LinkedIn 2932 10 -1593 -1462 -1478 -1418 -1548 -1228 13.40%

MIMIC II 2419 15 -567 -500 -474 -429 -645 -436 -1.63%

Stack Overflow 71254 20 -52543 -48323 -49344 -49192 -71101 -50981 -5.50%

Table 3: Dataset information and log-likelihood for all models on the real-world datasets.

Rules Effect

CLNN

ϕ1 = (cD > cH)0.90 ∧ (cI > cJ)
0.72 Inhibitory

ϕ2 = ((cB < 0.45)0.58 ∧ (cD < 0.05)0.66 Excitation
ϕ3 = (cB > cF)

0.50 ∧ (cJ > cD)0.47 Inhibitory
ϕ4 = (cA < 0.84)0.76 ∧ (cH < 1.09)0.50 Inhibitory

TELLER [A, F], [C, F], [E, F], [B, F], [D, F] Excitation

OGEM-tab [F], [F , A] Excitation
[A] Inhibitory

Table 4: Formulas and their effect as learned by CLNN,
TELLER and OGEM-tab on company F of LinkedIn.

Case Study. The primary strength of
CLNN over the SOTA models is that it
can describe the generative mechanism
as wCL formulas, being more expres-
sive and potentially providing more de-
tailed information. CLNN can be de-
ployed as a valuable tool for assisting
domain specialists in knowledge discov-
ery from event data. Here we showcase
the above strength of CLNN using an il-
lustrative example. We select the experimental result on company F of the LinkedIn dataset to
demonstrate the expressivity of CLNN’s rules, which are shown in Table 4. Here we specify the
model to learn five formulas, four of which are inhibitory, and one exhibits excitation. One inhibitory
formula has a weight of 0.05, thus not reported in Table 4. Each formula shows the dominant single-
ton or paired order predicates. Notably, CLNN learns expressive wCL formulas that describe how
the logical composition of paired order predicates and(or) singleton order predicates affect a role
change in the company F . CLNN’s rules are more expressive than TELLER and as expressive as
OGEM-tab for describing the occurrence of a causal event within a specific historical window.

5 CONCLUSION

In this paper, we proposed a novel neuro-symbolic model, CLNN, to learn interpretable wCL for-
mulas from multivariate event data. Experimental results using synthetic and real-world datasets
demonstrate CLNN’s expressiveness in recovering ground-truth rules in multivariate temporal point
processes. Further, CLNN can be trained using gradient-based methods, which improve the learning
speed compared to the SOTA.

9

Published as a conference paper at ICLR 2023

6 ACKNOWLEDGEMENT

This research is sponsored by the Rensselaer-IBM AI Research Collaboration (http://airc.rpi.edu),
part of the IBM AI Horizons Network; the National Science Foundation under Grant CMMI-
1936578; and the Defense Advanced Research Projects Agency (DARPA) through Cooperative
Agreement D20AC00004 awarded by the U.S. Department of the Interior (DOI), Interior Business
Center. The content of the information does not necessarily reflect the position or the policy of the
Government, and no official endorsement should be inferred.

REFERENCES

Odd Aalen, Ornulf Borgan, and Hakon Gjessing. Survival and Event History Analysis: A Process
Point of View. Springer Science & Business Media, 2008.

Emmanuel Bacry, Iacopo Mastromatteo, and Jean-François Muzy. Hawkes processes in finance.
Market Microstructure and Liquidity, 1(01):1550005, 2015.

Emmanuel Bacry, Martin Bompaire, Philip Deegan, Stéphane Gaı̈ffas, and Søren V Poulsen. tick: A
Python library for statistical learning, with an emphasis on Hawkes processes and time-dependent
models. The Journal of Machine Learning Research, 18(1):7937–7941, 2017.

Debarun Bhattacharjya, Dharmashankar Subramanian, and Tian Gao. Proximal graphical event
models. Advances in Neural Information Processing Systems (NeurIPS), 31:8147–8156, 2018.

Debarun Bhattacharjya, Tian Gao, and Dharmashankar Subramanian. Order-dependent event mod-
els for agent interactions. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), pp. 1977–1983, 2020.

Debarun Bhattacharjya, Tian Gao, and Dharmashankar Subramanian. Ordinal historical dependence
in graphical event models with tree representations. In Proceedings of the Conference on Artificial
Intelligence (AAAI), pp. 6759–6767, 2021.

Yuanda Chen. Thinning algorithms for simulating point processes. Florida State University, Talla-
hassee, FL, 2016.

Daryl J Daley and David Vere-Jones. An Introduction to the Theory of Point Processes, Volume I:
Elementary Theory and Methods. Springer, 2003.

Vanessa Didelez. Graphical models for marked point processes based on local independence. Jour-
nal of the Royal Statistical Society: Series B (Statistical Methodology), 70(1):245–264, 2008.

Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and Le Song.
Recurrent marked temporal point processes: embedding event history to vector. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 1555–1564, 2016.

Mehrdad Farajtabar, Yichen Wang, Manuel Gomez Rodriguez, Shuang Li, Hongyuan Zha, and
Le Song. COEVOLVE: A joint point process model for information diffusion and network co-
evolution. In Advances in Neural Information Processing Systems (NeurIPS), volume 28, pp.
1954–1962, 2015.

Tian Gao, Dharmashankar Subramanian, Karthikeyan Shanmugam, Debarun Bhattacharjya, and
Nicholas Mattei. A multi-channel neural graphical event model with negative evidence. In Pro-
ceedings of the Conference on Artificial Intelligence (AAAI), pp. 3946–3953, 2020.

Scott Grant and Buddy Betts. Encouraging user behaviour with achievements: An empirical study.
In Proceedings of the 10th Working Conference on Mining Software Repositories, MSR ’13, pp.
65–68. IEEE Press, 2013.

Asela Gunawardana and Chris Meek. Universal models of multivariate temporal point processes. In
Artificial Intelligence and Statistics, pp. 556–563. PMLR, 2016.

10

Published as a conference paper at ICLR 2023

Asela Gunawardana, Christopher Meek, and Puyang Xu. A model for temporal dependencies in
event streams. Advances in Neural Information Processing Systems (NeurIPS), 24, 2011.

Patrick J Hurley. A Concise Introduction to Logic. Cengage Learning, 2014.

Shuang Li, Lu Wang, Ruizhi Zhang, Xiaofu Chang, Xuqin Liu, Yao Xie, Yuan Qi, and Le Song.
Temporal logic point processes. In International Conference on Machine Learning, pp. 5990–
6000. PMLR, 2020.

Shuang Li, Mingquan Feng, Lu Wang, Abdelmajid Essofi, Yufeng Cao, Junchi Yan, and Le Song.
Explaining point processes by learning interpretable temporal logic rules. In International Con-
ference on Learning Representations, 2021.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
International Conference on Learning Representations, 2019.

Noushin Mehdipour, Cristian-Ioan Vasile, and Calin Belta. Specifying user preferences using
weighted signal temporal logic. IEEE Control Systems Letters, 5(6):2006–2011, 2021.

Hongyuan Mei and Jason M Eisner. The neural Hawkes process: A neurally self-modulating multi-
variate point process. Advances in Neural Information Processing Systems (NeurIPS), 30:6757–
6767, 2017.

Sean P O’Brien. Crisis early warning and decision support: Contemporary approaches and thoughts
on future research. International Studies Review, 12(1):87–104, 2010.

Ryan Riegel, Alexander Gray, Francois Luus, Naweed Khan, Ndivhuwo Makondo, Ismail Yunus
Akhalwaya, Haifeng Qian, Ronald Fagin, Francisco Barahona, Udit Sharma, et al. Logical neural
networks. arXiv preprint arXiv:2006.13155, 2020.

Mohammed Saeed, Mauricio Villarroel, Andrew T Reisner, Gari Clifford, Li-Wei Lehman, George
Moody, Thomas Heldt, Tin H Kyaw, Benjamin Moody, and Roger G Mark. Multiparameter in-
telligent monitoring in intensive care II (MIMIC-II): A public-access intensive care unit database.
Critical Care Medicine, 39(5):952, 2011.

Prithviraj Sen, Breno WSR de Carvalho, Ryan Riegel, and Alexander Gray. Neuro-symbolic in-
ductive logic programming with logical neural networks. In Proceedings of the Conference on
Artificial Intelligence (AAAI), volume 36, pp. 8212–8219, 2022.

Jeremy C. Weiss and David Page. Forest-based point process for event prediction from electronic
health records. In Machine Learning and Knowledge Discovery in Databases, pp. 547–562, 2013.

Shuai Xiao, Junchi Yan, Xiaokang Yang, Hongyuan Zha, and Stephen Chu. Modeling the intensity
function of point process via recurrent neural networks. In Proceedings of the Conference on
Artificial Intelligence (AAAI), volume 31, pp. 1597–1603, 2017.

Hongteng Xu, Dixin Luo, and Hongyuan Zha. Learning Hawkes processes from short doubly-
censored event sequences. In International Conference on Machine Learning, pp. 3831–3840.
PMLR, 2017.

Ruixuan Yan, Agung Julius, Maria Chang, Achille Fokoue, Tengfei Ma, and Rosario Uceda-Sosa.
STONE: Signal temporal logic neural network for time series classification. In 2021 International
Conference on Data Mining Workshops (ICDMW), pp. 778–787. IEEE, 2021.

Ruixuan Yan, Tengfei Ma, Achille Fokoue, Maria Chang, and Agung Julius. Neuro-symbolic mod-
els for interpretable time series classification using temporal logic description. In 2022 IEEE In-
ternational Conference on Data Mining (ICDM), pp. 618–627, 2022. doi: 10.1109/ICDM54844.
2022.00072.

Qiang Zhang, Aldo Lipani, Omer Kirnap, and Emine Yilmaz. Self-attentive Hawkes process. In
International Conference on Machine Learning, pp. 11183–11193. PMLR, 2020.

Simiao Zuo, Haoming Jiang, Zichong Li, Tuo Zhao, and Hongyuan Zha. Transformer Hawkes
process. In International Conference on Machine Learning, pp. 11692–11702. PMLR, 2020.

11

Published as a conference paper at ICLR 2023

A FORMULATION OF LOGICAL CONSTRAINTS & OBJECTIVE FUNCTION

The optimization problem in (10) is formulated by maximizing the log-likelihood subject to the
logical constraints for the ∧ and ∨ operators. This section discusses the details of the formulation
for the two logical constraints and how to formulate the optimization problem while considering the
logical constraints. Without loss of generality, we illustrate the formulation of the constraints for the
∧ operator, and the constraints for ∨ operator can be derived from the constraints for the ∧ operator
using De Morgan’s law.

• Logical constraints for ∧ operator.
Let x, y ∈ [0, 1] denote the inputs of the ∧ operator, and f(x, y) denote the quantitative
satisfaction of ∧. The conventional characteristic of the ∧ operator is illustrated as follows:
1) f(x, y) is low when either input is low, and 2) f(x, y) is high when both inputs are high.
However, we associate each input with a nonnegative weight, implying the input with a
zero weight should not affect the output. In other words, if a low input has a zero weight, it
should not affect the output of f(x, y). Therefore, we require the ∧ operator to exhibit the
following characteristics: 1) f(x, y) is low when both inputs are low, and 2) f(x, y) is high
when both inputs are high. Here we introduce a user-defined hyperparameter α ∈ [12 , 1]
to capture low vs. high: x ∈ [0, 1 − α) represents low and x ∈ [α, 1] represents high.
According to the above characteristics, we have (Sen et al., 2022)

f(x, y) ≤ 1− α, ∀x, y ∈ [0, 1− α),

f(x, y) ≥ α, ∀x, y ∈ [α, 1].
(13)

Here we follow a specific choice of f by using a triangular norm (t-norm) and define the
quantitative satisfaction function of ∧ as (Riegel et al., 2020)

p(C′, ϕw1
1 ∧ ϕw2

2 , t) = f(β −
2∑

j=1

wj(1− p(C′, ϕj , t))), (14)

subject to β −
2∑

j=1

wj(1− α) ≥ α, β −
2∑

j=1

wjα ≤ 1− α, (15)

where f(z) = max{0,min{z, 1}} is introduced to clamp the truth value into the range of
[0, 1].

• Logical constraints for ∨ operator.
By using De Morgan’s law, we could derive the quantitative satisfaction function and the
logical constraints for the ∨ operator with 2 inputs as follows:

p(C′, ϕw1
1 ∨ ϕw2

2 , t) = f(1− β +
2∑

j=1

wj(p(C′, ϕj , t))), (16)

subject to 1− β +
2∑

j=1

wjα ≥ α, 1− β +
2∑

j=1

wj(1− α) ≤ 1− α. (17)

Here we show the characteristics of the activation functions for the ∧ and ∨ operators using Figure 4.
Figure 4(a) shows the truth value of the ∧ operator with α = 0.7. Figure 4(b) shows the truth value
of the ∧ operator with α = 0.9. It can be distinctly observed that f(x, y) is close to 0 when both x
and y are low, and f(x, y) is close to 1 when both x and y are high. In addition, the unconstrained
region for α = 0.9 is larger than the unconstrained region for α = 0.7. Figure 4(c) shows the truth
value of the ∨ operator with α = 0.7. It is obvious that f(x, y) is close to 0 when both x and y are
low, and f(x, y) is close to 1 when both x and y are high.

In general, we could extend the quantitative satisfaction for the ∧ and ∨ operators in (14) - (17) to
k-ary conjunction and k-ary disjunction. The k-ary conjunction formulation is expressed as follows.

p(C′, ϕw1
1 ∧ ϕw2

2 · · · ∧ ϕwk

k , t) = f(β −
k∑

j=1

wj(1− p(C′, ϕj , t))), (18)

12

Published as a conference paper at ICLR 2023

(a) (b) (c)

Figure 4: Plot of truth degree for (a) CLNN-∧ with α = 0.7, (b) CLNN-∧ with α = 0.9, (c) CLNN-
∨ with α = 0.7.

subject to β −
k∑

j=1

wj(1− α) ≥ α, β −
k∑

j=1

wjα ≤ 1− α. (19)

The k-ary disjunction formulation is expressed as follows.

p(C′, ϕw1
1 ∨ ϕw2

2 · · · ∨ ϕwk

k , t) = f(1− β +
k∑

j=1

wj(p(C′, ϕj , t))), (20)

subject to 1− β +
k∑

j=1

wjα ≥ α, 1− β +
k∑

j=1

wj(1− α) ≤ 1− α. (21)

With the above constraints, we can formulate the maximum likelihood estimation problem as

min −LLl (22)

s.t. ∀ϕ ∈ Φ, ∀1 ≤ k ≤ K∧
ϕ , βk −

∑
i∈Ik

wi,k(1− α) ≥ α, βk −
∑
i∈Ik

wi,kα ≤ 1− α, (23)

∀ϕ ∈ Φ, ∀1 ≤ k′ ≤ K∨
ϕ , 1− βk′ +

∑
i∈Ik′

wi,k′α ≥ α, 1− βk′ +
∑
i∈Ik′

wi,k′(1− α) ≤ 1− α.

(24)

In this paper, we set α = 0.5, thus the constraints in (19) become

k∑
i=1

wi ≥ 2β − 1,

k∑
i=1

wi ≤ 2β − 1,

2β − 1 ≥ 0,

wi ≥ 0.

(25)

Reformulating the above constraints, we have

k∑
i=1

wi = 2β − 1, (26)

β ≥ 0.5,

wi ≥ 0. (27)

The above constraints hold for each conjunction operator in ϕ. Therefore, we can incorporate the
constraints in (26) into the objective function, which becomes

min − LLl +

K∧
ϕ∑

k=1

(
∑
i∈Ik

wi,k − 2βk + 1)2, (28)

13

Published as a conference paper at ICLR 2023

subject to wi,k ≥ 0, βk ≥ 0.5, ∀i ∈ Ik, ∀1 ≤ k ≤ K∧
ϕ , ∀ϕ ∈ Φ. (29)

Similarly, we propose a set of logical constraints for the ∨ operator as (21). If we set α = 0.5, the
constraints in (21) become

k∑
i=1

wi ≥ 2β − 1,

k∑
i=1

wi ≤ 2β − 1,

2β − 1 ≥ 0,

wi ≥ 0.

(30)

Reformulating the above constraints, we have
k∑
i1

wi = 2β − 1, (31)

β ≥ 0.5.

wi ≥ 0. (32)

The above constraints hold for each disjunction operator in ϕ. Therefore, we can incorporate the
constraints in (31) into the objective function. The maximum likelihood estimation problem then
becomes

min − LLl +

K∧
ϕ∑

k=1

(
∑
i∈Ik

wi,k − 2βk + 1)2 +

K∨
ϕ∑

k′=1

(
∑
i∈Ik′

wi,k′ − 2βk′ + 1)2, (33)

subject to wi,k ≥ 0, βk ≥ 0.5, ∀i ∈ Ik, ∀1 ≤ k ≤ K∧
ϕ , ∀ϕ ∈ Φ,

wi,k′ ≥ 0, βk′ ≥ 0.5, ∀i ∈ Ik′ , ∀1 ≤ k′ ≤ K∨
ϕ , ∀ϕ ∈ Φ.

B PROOF OF THEOREM 8

The activation function designed for the ∧ operator satisfies the properties of nonimpact for zero
weights, impact ordering, and monotonicity. Without loss of generality, we present the proof for
the ∧ operator connecting two clauses, which can be generalized to the ∧ operator connecting k-ary
clauses.

Proof 1 Here we present the proof for the activation function for the ∧ operator satisfying each
property mentioned above.

• Nonimpact for zero weights.

This means if wj = 0, j = 1, 2, then p(C′, ϕj , t) should have no impact on p(C′, ϕw1
1 ∧

ϕw2
2 , t). Without loss of generality, we suppose w1 = 0, thus we have

p(C′, ϕw1
1 ∧ ϕw2

2 , t) = f(β − 0 · (1− p(C′, ϕ1, t))− w2 · (1− p(C′, ϕ2, t))),

= f(β − w2 · (1− p(C′, ϕ2, t))),
(34)

meaning p(C′, ϕ1, t) has no impact on p(C′, ϕw1
1 ∧ ϕw2

2 , t).

• Impact Ordering

This means the truth degree of subformula with higher weights has a greater impact on
p(C′, ϕw1

1 ∧ϕw2
2 , t). Mathematically, we need to prove that if p(C′, ϕ1, t) = p(C′, ϕ2, t) and

w1 ≥ w2, then

∂p(C′, ϕw1
1 ∧ ϕw2

2 , t)

∂p(C′, ϕ1, t)
≥ ∂p(C′, ϕw1

1 ∧ ϕw2
2 , t)

∂p(C′, ϕ2, t)
. (35)

14

Published as a conference paper at ICLR 2023

As f(x) = max{0,min{x, 1}}, we have

df

dx
=


0, if x < 0,

1, if 0 < x < 1,

0, if x > 1.

(36)

If β−
∑2

j=1 wj(1−p(C′, ϕj , t)) < 0 or β−
∑2

j=1 wj(1−p(C′, ϕj , k)) > 1, then we have

∂p(C′, ϕw1
1 ∧ ϕw2

2 , t)

∂p(C′, ϕ1, t)
=

∂p(C′, ϕw1
1 ∧ ϕw2

2 , t)

∂p(C′, ϕ2, t)
= 0. (37)

Also, if 0 < β −
∑2

j=1 wj(1− p(C′, ϕj , t)) < 1, then we have

∂(β −
∑2

j=1 wj(1− p(C′, ϕj , t)))

∂p(C′, ϕ1, t)
= w1(β −

2∑
j=1

wj(1− p(C′, ϕj , t))), (38)

and

∂(β −
∑2

j=1 wj(1− p(C′, ϕj , t)))

∂p(C′, ϕ2, t)
= w2(β −

2∑
j=1

wj(1− p(C′, ϕj , t))). (39)

As w1 ≥ w2, the following holds:

∂p(C′, ϕw1
1 ∧ ϕw2

2 , t)

∂p(C′, ϕ1, t)
≥ ∂p(C′, ϕw1

1 ∧ ϕw2
2 , t)

∂p(C′, ϕ2, t)
, (40)

which proves the impact ordering property holds.

• Monotonicity.

This means p(C′, ϕw1
1 ∧ ϕw2

2 , t) increases monotonically over p(C′, ϕj , t), i.e.

f(β −
2∑

j=1

wj(1− p(C′, ϕj , t))) ≤ f(β −
2∑

j=1

wj(1− p(C′, ϕj , t)− d)) for d ≥ 0. (41)

First, note that β −
∑2

j=1 wj(1− p(C′, ϕj , t)) can be rewritten as

β −
2∑

j=1

wj(1− p(C′, ϕj , t)) = β − w1 − w2 + w1p(C′, ϕ1, t) + w2p(C′, ϕ2, t). (42)

This implies f(β −
∑2

j=1 wj(1 − p(C′, ϕj , t))) is monotonically increasing over
p(C′, ϕ1, t) and p(C′, ϕ2, t). Also, from the proof of impact ordering we know f(x) =
max{0,min{x, 1}} is monotonically nondecreasing, we can show that

f(β −
2∑

j=1

wj(1− p(C′, ϕj , t))) ≤ f(β −
2∑

j=1

wj(1− p(C′, ϕj , t)− d)), d ≥ 0. (43)

Thus the property of monotonicity is satisfied.

C EXPERIMENT RESULTS OF SYNTHETIC DATASETS

Dataset Generation. In the experiments on synthetic datasets, we manually generate 3 synthetic
datasets considering different settings, where the details and results for the first synthetic dataset is
reported in Section 4.2. Each setting considers a different order representation, different number of
event labels or different intensity of causal event labels.

15

Published as a conference paper at ICLR 2023

𝝅𝒑𝒐𝒑
𝑨,𝑩 𝝅𝒑𝒐𝒑

𝑨,𝑪 𝝅𝒑𝒐𝒑
𝑨,𝑫 𝝅𝒑𝒐𝒑

𝑫,𝑨 𝝅𝒑𝒐𝒑
𝑪,𝑫 𝝅𝒑𝒐𝒑

𝑫,𝑪

𝒄𝑨(𝒕) 𝒄𝑩(𝒕) 𝒄𝑪(𝒕)

𝒑(𝓒′, 𝝓𝟏, 𝒕)

𝝀𝑫|𝝓𝟏
(𝒕)

∧

𝒄𝑫(𝒕)

𝒘 = 𝟏

𝝅𝒑𝒐𝒑
𝑨,𝑩 : = 𝒄𝑨 − 𝒄𝑩 > 𝟏

𝝅𝒑𝒐𝒑
𝑨,𝑪 : = 𝒄𝑨 − 𝒄𝑪 > 𝟑

𝝅𝒑𝒐𝒑
𝑩,𝑨 𝝅𝒑𝒐𝒑

𝑪,𝑨

∧ ∧ ∧

…

∧
𝒘 = 𝟏 𝒘 = 𝟎 𝒘 = 𝟏 𝒘 = 𝟎 𝒘 = 𝟎 𝒘 = 𝟎 𝒘 = 𝟎 𝒘 = 𝟎

𝒘 = 𝟏 𝒘 = 𝟎 𝒘 = 𝟎

Figure 5: Model structure of ϕ̂1 for generating the first synthetic dataset.

C.1 SYNTHETIC DATASET–1 (SYN-1).

Generation process. The first synthetic dataset contains 4 event labels: A,B,C, and D, where D
is the event for prediction, and A,B,C are causal events. The wCL formula used to generate event
D in the first synthetic dataset is set as

ϕ̂1 = (cA − cB > 1)1 ∧ (cA − cC > 3)1, (44)

whose unweighted version reads as “If A happens before B for at least 1 time unit and A happens
before C for at least 3 time units, then D will happen.”

Here we consider event labels A,B,C as free predicates, whose occurrences are generated by a
homogeneous Poisson process. The homogeneous intensity rate for A,B,C are set as λA = 0.2,
λB = 0.2, and λC = 0.2. The algorithm used to generate instances of A,B,C is described as
Algorithm 1 (Chen, 2016).

Algorithm 1 Simulation of a homogeneous Poisson process with intensity rate λ.
Input:

Intensity rate λ, simulation horizon T
Output:

Occurrence time stamps T = {tk}
1: Initialize n = 0, t0 = 0;
2: while True do
3: Generate u ∼ uniform(0, 1);
4: Let w = −ln(u)/λ;
5: Set tn+1 = tn + w;
6: if tn+1 > T then
7: return T = {tk}k=1,2,...,n;
8: else
9: Set n = n+ 1;

10: end if
11: end while

With the above algorithm, we can generate the occurrences of event labels A,B, and C. Next, we
build a CLNN for ϕ̂1 = (cA − cB > 1)1 ∧ (cA − cC > 3)1 to calculate the conditional intensity
rate λD|ϕ̂1

, whose model structure is shown in Figure 5. After obtaining λD|ϕ̂1
(t), we could use

Algorithm 2 (Chen, 2016) to generate the occurrence of D.

Results. The rules learned by CLNN, TELLER, and OGEM-tab on the first synthetic dataset are
presented in Table 5, where the paired order predicate among the two candidates with the highest

16

Published as a conference paper at ICLR 2023

Algorithm 2 Simulation of an inhomogeneous Poisson process with intensity rate λ(t).
Input:

intensity rate λ(t), simulation horizon T
Output:

Occurrence time stamps T = {tk}
1: Initialize n = m = 0, t0 = s0 = 0, λ̄ = sup0≤t≤T ;λ(t);
2: while sm < T do
3: Generate a uniform random variable u ∼ uniform(0, 1);
4: Let w = − lnu/λ̄;
5: Set sm+1 = sm + w;
6: Generate D ∼ uniform(0,1);
7: if D ≤ λ(sm+1)λ̄ then
8: tn+1 = sm+1;
9: n = n+ 1;

10: end if
11: m = m+ 1;
12: if tn ≤ T then
13: return {tk}k=1,2,...,n

14: else
15: return {tk}k=1,2,...,n−1

16: end if
17: end while

Dataset Syn-1
N (# events) N = 4, L = {A,B,C,D}
Ground truth ϕ̂1 = (cA − cB > 1)1 ∧ (cA − cC > 3)1

CLNN’s rule (cA − cB > 1.21)1.52 ∧ (cA − cC > 3.00)1.41 ∧ (cA −
cD > 0.82)0.33 ∧ (cB − cC > 4.33)0 ∧ (cB − cD >
10.69)0 ∧ (cD − cC > −6.57)0.16

TELLER’s rule A before D, B before D, C before D, A before D and C
before D

OGEM-tab’s rule Excitation: [B], [C], [C, B], [B, C], [A, C, B], [A, B,
C]
Inhibitory: [A], [B, A], [B, A, C], [C, B, A], [A, B],
[A, C], [B, C, A], [C, A, B], [C, A]

Table 5: Comparison of rule discovery for CLNN and TELLER on the Syn-1 dataset.

weight is presented. It can be clearly observed that by truncating the predicates with small weights,
we could obtain the formula as

ϕ1 = (cA − cB > 1.21)1.52 ∧ (cA − cC > 3.00)1.41, (45)

which matches well with the ground-truth rule. However, TELLER cannot capture the paired order
representation between A and B or A and C. OGEM-tab captures the order representation [A,B]
and [A,C] as inhibitory causes, which contradicts the ground-truth rule.

C.2 SYNTHETIC DATASET-2 (SYN-2).

Generation Process. The second synthetic dataset contains 5 event labels: A,B,C,D and E, where
E is the event for prediction, and A,B,C,D are causal events. The wCL formula used to generate
the occurrence of event E in the second synthetic dataset is set as

ϕ̂2 = (cA − cB > 0.5)1 ∧ (cA − cC > 1.5)1 ∧ (cC − cD > 2)1, (46)

whose unweighted version reads as “If A happens before B for at least 0.5 time units, A happens
before C for at least 1.5 time units, and C happens before D for at least 2 time units, then E will
happen.”

17

Published as a conference paper at ICLR 2023

𝝅𝒑𝒐𝒑
𝑨,𝑩 𝝅𝒑𝒐𝒑

𝑨,𝑪 𝝅𝒑𝒐𝒑
𝑩,𝑪 𝝅𝒑𝒐𝒑

𝑪,𝑩 𝝅𝒑𝒐𝒑
𝑪,𝑫 𝝅𝒑𝒐𝒑

𝑫,𝑪

𝒄𝑨(𝒕) 𝒄𝑩(𝒕) 𝒄𝑪(𝒕)

𝒑(𝓒′, 𝝓𝟐, 𝒕)

𝝀𝑫|𝝓𝟐
(𝒕)

∧

𝒄𝑫(𝒕)

𝒘 = 𝟏

𝝅𝒑𝒐𝒑
𝑩,𝑨 𝝅𝒑𝒐𝒑

𝑪,𝑨

∧ ∧ ∧ ∧
𝒘 = 𝟏 𝒘 = 𝟎 𝒘 = 𝟎 𝒘 = 𝟏 𝒘 = 𝟎 𝒘 = 𝟏 𝒘 = 𝟎

𝒘 = 𝟏 𝒘 = 𝟎𝒘 = 𝟏

𝒄𝑬(𝒕)

𝝅𝒑𝒐𝒑
𝑨,𝑩 : = 𝒄𝑨 − 𝒄𝑩 > 𝟎. 𝟓

𝝅𝒑𝒐𝒑
𝑩,𝑪 : = 𝒄𝑩 − 𝒄𝑪 > 𝟏. 𝟓

𝝅𝒑𝒐𝒑
𝑪,𝑫 : = 𝒄𝑪 − 𝒄𝑫 > 𝟐

… … 𝝅𝒑𝒐𝒑
𝑫,𝑬 𝝅𝒑𝒐𝒑

𝑬,𝑫

∧
𝒘 = 𝟎 𝒘 = 𝟎

…

𝒘 = 𝟎

𝒘 = 𝟎

Figure 6: Model structure of ϕ̂2 for generating the second synthetic dataset.

The occurrence of events A,B,C and D are generated using Algorithm 1, in which λA = λB =
λC = λD = 0.2. After obtaining the occurrence of A,B,C and D, we simulate the generation of
event label E using Algorithm 2, in which the intensity rate λE|ϕ̂2

(t) is computed using the model
shown in Figure 6.

Results. The rules learned by CLNN, TELLER and OGEM-tab on the second synthetic dataset are
presented in Table 6, where the paired order predicate with the highest weight is presented. It can be
clearly observed that by truncating the predicates with small weights, CLNN learns a wCL formula
as:

ϕ2 = (cA − cB > 0.77)1.27 ∧ (cA − cC > 2.09)1.15 ∧ (cC − cD > 2.60)1.06, (47)

whose order representation match well with the ground-truth rule. Nevertheless, TELLER’s rule
only capture the ordering between A, B and E, whereas the ordering between A and B or B and
C or C and D are not learned. OGEM-tab’s rules can only capture the relation between event label
D and event label E can excite the occurrence of event label E, whereas not able to capture the
dependence of event label E’s occurrence on the order relation between A and B or B and C or C
and D.

Dataset Syn-2
N (# events) N = 5, L = {A,B,C,D,E}
Ground truth ϕ̂2 = (cA−cB > 0.5)1∧(cB−cC > 1.5)1∧(cC−cD >

2)1

CLNN’s rule (cA − cB > 0.77)1.27 ∧ (cA − cC > 2.09)1.15 ∧ ((cA −
cD) > −5.00)0.25 ∧ ((cA − cE) > −2.74)0.09∧ (cB −
cC > −9.31)0.02 ∧ (cB − cD > −8.54)0.08 ∧ (cB −
cE > 2.07)0 ∧ ((cC − cD) > 2.60)1.06 ∧ ((cC − cE) >
−4.27)0.03 ∧ ((cD − cE) > 1.17)0.07

TELLER’s rule A before E, B before E, A and B before E, A and C
before E

OGEM-tab’s rule Excitation: [D], [D, E], [E], [E, D]
Inhibitory: [D, A], [A], [A, D], [A,D,E], [E, D, A], [D,
A, E], [A, E], [E, A], [D, E, A], [A, E, D], [E, A, D]

Table 6: Comparison of rule discovery for CLNN and TELLER on the Syn-2 dataset.

C.3 SYNTHETIC DATASET 3 (SYN-3).

The third synthetic dataset is generated using a more interesting scheme by combining the generation
schemes of the first synthetic dataset and the second synthetic dataset. The third synthetic dataset

18

Published as a conference paper at ICLR 2023

𝝅𝒑𝒐𝒑
𝑩,𝑨 : = 𝒄𝑩 − 𝒄𝑨 > −𝟐

𝝅𝒑𝒐𝒑
𝑪,𝑨 : = 𝒄𝑪 − 𝒄𝑨 > −𝟓

𝝅𝒑𝒐𝒑
𝑨,𝑩 𝝅𝒑𝒐𝒑

𝑨,𝑪 𝝅𝒑𝒐𝒑
𝑨,𝑫 𝝅𝒑𝒐𝒑

𝑫,𝑨 𝝅𝒑𝒐𝒑
𝑪,𝑫 𝝅𝒑𝒐𝒑

𝑫,𝑪

𝒄𝑨(𝒕) 𝒄𝑩(𝒕) 𝒄𝑪(𝒕)

𝒑(𝓒′, 𝝓𝟑,𝟏, 𝒕)

𝝀𝑫|𝝓𝟑,𝟏
(𝒕)

∧

𝒄𝑫(𝒕)

𝒘 = 𝟏

𝝅𝒑𝒐𝒑
𝑩,𝑨 𝝅𝒑𝒐𝒑

𝑪,𝑨

∧ ∧ ∧

…

∧
𝒘 = 𝟎 𝒘 = 𝟏 𝒘 = 𝟏𝒘 = 𝟎 𝒘 = 𝟎 𝒘 = 𝟎 𝒘 = 𝟎 𝒘 = 𝟎

𝒘 = 𝟏 𝒘 = 𝟎 𝒘 = 𝟎

Figure 7: Model structure of ϕ̂3,1 for generating the occurrence of D in the Syn-3 dataset.

𝝅𝒑𝒐𝒑
𝑩,𝑨 : = 𝒄𝑩 − 𝒄𝑨 > −𝟓

𝝅𝒑𝒐𝒑
𝑪,𝑩 : = 𝒄𝑪 − 𝒄𝑩 > −𝟒

𝝅𝒑𝒐𝒑
𝑫,𝑪 : = 𝒄𝑫 − 𝒄𝑪 > −𝟑

𝝅𝒑𝒐𝒑
𝑨,𝑩 𝝅𝒑𝒐𝒑

𝑨,𝑪 𝝅𝒑𝒐𝒑
𝑩,𝑪 𝝅𝒑𝒐𝒑

𝑪,𝑩 𝝅𝒑𝒐𝒑
𝑪,𝑫 𝝅𝒑𝒐𝒑

𝑫,𝑪

𝒄𝑨(𝒕) 𝒄𝑩(𝒕) 𝒄𝑪(𝒕)

𝒑(𝓒′, 𝝓𝟑,𝟐, 𝒕)

𝝀𝑬|𝝓𝟑,𝟐
(𝒕)

∧

𝒄𝑫(𝒕)

𝒘 = 𝟏

𝝅𝒑𝒐𝒑
𝑩,𝑨 𝝅𝒑𝒐𝒑

𝑪,𝑨

∧ ∧ ∧ ∧
𝒘 = 𝟎 𝒘 = 𝟎 𝒘 = 𝟎 𝒘 = 𝟎

𝒘 = 𝟏 𝒘 = 𝟎𝒘 = 𝟏

𝒄𝑬(𝒕)

… … 𝝅𝒑𝒐𝒑
𝑫,𝑬 𝝅𝒑𝒐𝒑

𝑬,𝑫

∧
𝒘 = 𝟎 𝒘 = 𝟎

…

𝒘 = 𝟎

𝒘 = 𝟎𝒘 = 𝟏 𝒘 = 𝟏 𝒘 = 𝟏

Figure 8: Model structure of ϕ̂3,2 for generating the occurrence of E in the Syn-3 dataset.

includes five event labels: A,B,C,D and E. Here we consider A,B, and C as the causal events
for the occurrence of D, and A,B,C, and D as the causal events for the occurrence of E. The
occurrence of events A,B,C are generated using Algorithm 1, in which λA = 0.2, λb = 0.2, and
λc = 0.2. The wCL formula used to generate the occurrence of event D is set as

ϕ̂3,1 = (cB − cA > −2)1 ∧ (cC − cA > −5)1, (48)

whose unweighted version reads as “If A happens before B for less than 2 time units, and A happens
before C for less than 1 time unit, then D will happen.” The generation of D’s occurrence follows
Algorithm 2, where λD|ϕ̂3,1

(t) is computed using the model shown in Figure 7. We call the third
synthetic dataset at this step as Syn-3.1.

After obtaining the occurrences of events A,B,C, and D, we could simulate the occurrence of E
using the following formula:

ϕ̂3,2 = (cB − cA > −5)1 ∧ (cC − cB > −4)1 ∧ (cD − cC > −3)1. (49)

Similarly, the generation of E’s occurrence follows Algorithm 2, where the intensity rate λE|ϕ̂3,2
(t)

is computed using the model shown in Figure 8. We call the third synthetic dataset at this step as
Syn-3.2.

Results.

The rules learned by CLNN, TELLER, and OGEM-tab on the cause of event D in the third synthetic
dataset are presented in Table 7, where the paired order predicate with the highest weight among the
two candidates is reported. It can be clearly observed that by truncating the predicates with small

19

Published as a conference paper at ICLR 2023

weights, CLNN learns a wCL formula as

ϕ3,1 = (cB − cA > −1.85)1.72 ∧ (cC − cA > −3.90)1.59, (50)

whose order representation match well with the ground-truth rule. On the other hand, TELLER’s
rule only reveal the temporal relation between event labels A, B, C and D, but it does not capture
the temporal relation between event labels A and B or A and C. In addition, we could observe that
OGEM-tab does not capture that C is a parent event of D.

Dataset Syn-3.1
N (# events) N = 5, L = {A,B,C,D,E}
Ground truth ϕ̂3,1 = (cB − cA > −2)1 ∧ (cC − cA > −5)1

CLNN’s rule (cB − cA > −1.85)1.72 ∧ (cC − cA > −3.90)1.59 ∧ ((cD − cA) >
−16.25)0.33 ∧ ((cC − cB) > −3.01)0∧ (cD − cB > −7.37)0.02 ∧
(cD − cC > −7.55)0

TELLER’s rule A before D, B before D, C before D

OGEM-tab’s rule Excitation: [A], [A, B, D], [B, D, A], [D, A], [D, A, B], [B, A], [A,
D], [D], [B, A, D], [D, B, A]
Inhibitory: [A, B], [B, D], [B], [A, D, B], [D, B]

Table 7: Comparison of rule discovery of ϕ3,1 for CLNN and TELLER on the Syn-3.1 dataset.

The rules learned by CLNN, TELLER, and GEM on the cause of event E in the third synthetic
dataset are presented in Table 8, in which the discrete wCL formula learned by CLNN is

ϕ3,2 = (cB − cA > −3.94)1.49 ∧ (cC − cB > −3.02)2.03 ∧ ((cD − cC) > −2.00)1.92. (51)

It is obvious that ϕ3,2 is able to learn the temporal relation between A and B, B and C, and C
and D. However, TELLER’s rules only reflect the temporal relation between A,B,C and E, which
cannot give the information about the temporal relation betwee A and B, or B and C, or C and D.
OGEM-tab’s rule indicate that it considers event labels A,D,E as the parent events of D, which
does not match with the ground-truth parent set.

Dataset Syn-3.2
N (# events) N = 5, L = {A,B,C,D,E}
Ground truth ϕ̂3,2 = (cB − cA > −5)1 ∧ (cC − cB > −4)1 ∧

(cD − cC > −3)1

CLNN’s rule (cB−cA > −3.94)1.49∧(cC−cA > −9.12)0.25∧
((cD − cA) > −1.42)0.13 ∧ ((cE − cA) >
−3.88)0.15∧ (cC−cB > −3.02)2.03∧(cD−cB >
−6.27)0.02 ∧ (cE − cB > −7.30)0.04 ∧ ((cD −
cC) > −2.00)1.92 ∧ ((cE − cC) > −5.30)0.09 ∧
((cE − cD) > −1.57)0.01

TELLER’s rule A before E, B before E, C before E

OGEM-tab’s rule Excitation: [A, D], [D, A], [D, E], [E], [A, D,
E], [D, E, A], [E, A], [A, E], [E, A, D], [A, E,
D], [D, A, E], [E, D, A]
Inhibitory: [A], [D], [E, D]

Table 8: Comparison of rule discovery of ϕ3,2 for CLNN and TELLER on the Syn-3.2 dataset.

C.4 QUANTITATIVE COMPARISON OF CLNN’S RULES WITH GROUND TRUTH

To quantitatively evaluate the difference between the ground-truth rules and the rules learned by
CLNN, we adopt the Jaccard similarity score to assess the learned formulas against the ground
truth. Let G denote the set of paired ordering representations from the ground-truth rule, and C
denote the set of paired ordering representations from the learned rules, the Jaccard similarity score
is calculated as J = |C∩G|

|C∪G| . For TELLER and OGEM-tab, the ordering representations are extracted

20

Published as a conference paper at ICLR 2023

(a) (b)

(c) (d)

Figure 9: Comparison of ground-truth rules with CLNN’s rules in terms of Jaccard similarity score
for a) Syn-1, b) Syn-2, c) Syn-3.1, d) Syn-3.2.

from the excitation rules. The comparison of Jaccard similarity score for the synthetic datasets is
shown in Figure 9, where the Jaccard similarity score of 0 is manually set to the minimum threshold
0.05 for clarity purposes. It is clearly observed that the Jaccard similarity scores for CLNN is higher
than the ones for TELLER or OGEM, implying the rules discovered by CLNN are more consistent
with the ground truth.

C.5 STABILITY ANALYSIS OF CLNN’S RULES WITH RESPECT TO INITIALIZATION

To further validate the model’s stability in learning wCL rules, different parameter initialization
methods are carried out, including:

1. rand – parameter initialization as random numbers from a uniform distribution on the in-
terval [0, 1);

2. randn – random numbers from a normal distribution with mean 0 and variance 1;

3. ones – constant values of 1;

4. xavier – random numbers from a uniform distribution on the interval [−1/
√
n, 1/

√
n],

where n is the dimension of the parameter.

The rules learned by CLNN for the above parameter initializations are summarized in Table 9.
By inspecting the rules for different initialization methods, it is clear that CLNN can still recover
the correct paired order representations even if initializing the learning process from a different
position. In the meantime, the logic formulas learned by CLNN are stable as the variance of learned
parameters is relatively small.

21

Published as a conference paper at ICLR 2023

Dataset Initialization Rules

Syn - 1

Ground truth ϕ̂ = (cA − cB > 1)1 ∧ (cA − cC > 3)1

rand ϕ = (cA − cB > 1.21)1.52 ∧ (cA − cC > 3.00)1.41

randn ϕ = (cA − cB > 1.21)1.58 ∧ (cA − cC > 3.32)1.56

ones ϕ = (cA − cB > 1.17)1.59 ∧ (cA − cC > 3.14)1.32

xavier ϕ = (cA − cB > 1.12)1.45 ∧ (cA − cC > 3.20)1.33

Syn - 2

Ground truth ϕ̂ = (cA − cB > 0.5)1 ∧ (cA − cC > 1.5)1 ∧ (cC − cD > 2)1

rand ϕ = (cA − cB > 0.77)1.27 ∧ (cA − cC > 2.09)1.15 ∧ ((cC − cD) > 2.60)1.06

randn ϕ = (cA − cB > 0.80)1.97 ∧ (cA − cC > 1.92)1.62 ∧ ((cC − cD) > 1.74)1.45

ones ϕ = (cA − cB > 1.03)1.63 ∧ (cA − cC > 1.92)1.50 ∧ ((cC − cD) > 2.03)1.44

xavier ϕ = (cA − cB > 0.97)1.92 ∧ (cA − cC > 2.07)1.63 ∧ ((cC − cD) > 1.97)1.62

Syn - 3.1

Ground truth ϕ̂ = (cB − cA > −2)1 ∧ (cC − cA > −5)1

rand ϕ = (cB − cA > −1.85)1.72 ∧ (cC − cA > −3.90)1.59

randn ϕ = (cB − cA > −1.98)1.51 ∧ (cC − cA > −3.89)1.68

ones ϕ3,1 = (cB − cA > −1.94)1.84 ∧ (cC − cA > −3.68)2.33

xavier ϕ3,1 = (cB − cA > −1.89)1.54 ∧ (cC − cA > −3.92)1.62

Syn - 3.2

Ground truth ϕ̂ = (cB − cA > −5)1 ∧ (cC − cB > −4)1 ∧ (cD − cC > −3)1

rand ϕ = (cB − cA > −3.94)1.49 ∧ (cC − cB > −3.02)2.03 ∧ ((cD − cC) > −2.00)1.92

randn ϕ = (cB − cA > −3.79)1.71 ∧ (cC − cB > −3.04)1.89 ∧ ((cD − cC) > −1.68)1.65

ones ϕ = (cB − cA > −3.53)1.66 ∧ (cC − cB > −3.09)1.88 ∧ ((cD − cC) > −1.25)1.81

xavier ϕ = (cB − cA > −3.71)1.53 ∧ (cC − cB > −3.09)2.04 ∧ ((cD − cC) > −1.86)1.73

Table 9: Comparison of rules learned by CLNN for different parameter initialization methods.

C.6 ANALYSIS OF LOGICAL CONSTRAINTS ON THE LL

In this part, we investigate the effect of the interpretability using an experiment of the impact of log-
ical constraints on the model’s performance. The log-ikelihood on the synthetic datasets for CLNN
with and without logical constraints is summarized in Table 10. Table 10 demonstrates that the log-
likelihood for CLNN with logical constraints is higher than the log-likelihood for CLNN without
constraints, implying that interpretability (logical constraints) is helpful to improve the performance.

Dataset CLNN with constraints CLNN without constraints
Syn - 1 -7821 -8716
Syn - 2 -6075 -6942

Syn - 3.1 -10898 -11583
Syn - 3.2 -10919 -11230

Table 10: Comparison of LL for CLNN with and without logical constraints.

D EXPERIMENT RESULTS OF REAL-WORLD DATASETS

D.1 LINKEDIN DATASET

The LinkedIn dataset is a collection of job hopping records between 82 IT companies of 3,000
LinkedIn users. Each event stream represents a user’s check-in time stamps for different com-
panies or role changes within the same company. Here we select 1000 users’ event streams to
compose the dataset by filtering out the event streams with uncommon companies, resulting in 10
event labels: L = {A,B,C,D,E, F,G,H, I, J}. Here we set the number of formulas as 5, i.e.,
Φ = {ϕ1, ϕ2, ϕ3, ϕ4, ϕ5}, each of which embodies a model structure shown in Figure 2(a) and
CLNN aims to learn the parameters for each formula. The weight parameters in the paired order
cell or the singleton order cell are initialized as random variables following a Gaussian distribu-
tion, and the bias terms of conjunction or disjunction operators are initialized as 1. The architecture
weights are initialized as random variables following a Gaussian distribution, and the formula im-
pact weights and bias are initialized as Gaussian random variables. The detailed log-likelihood for
each event label is summarized in Table 11.

22

Published as a conference paper at ICLR 2023

Event Label Log-likelihood

A -180.59
B -177.80
C -89.49
D -140.31
E -132.83
F -76.63
G -106.23
H -103.33
I -95.51
J -125.45

Table 11: Log likelihood for each event label in the LinkedIn dataset.

D.2 MIMIC II DATASET

MIMIC II dataset is obtained from the intensive care unit research database that consists of 25,328
intensity care unit stays. The records include laboratory data, therapeutic intervention profiles such
as nursing progress notes, discharge summaries and others. Here we restrict the event types to the
diagnosis of patients and filter out the shorter event sequences with few visits, ending up with 650
patients and 15 event labels: L = {1, 2, 8, 9, 11, 12, 14, 20, 21, 22, 23, 26, 27, 42, 47}. Similar to the
setting for the LinkedIn dataset, where the initialization of parameters follow the same setting as the
LinkedIn dataset. The detailed log-likelihood for each event label is presented in Table 12.

Event Label Log-likelihood

1 -72.14
2 -62.33
8 -5.98
9 -51.34
11 -43.64
12 -25.81
14 -69.73
20 -5.96
21 -6.08
22 -10.47
23 -10.64
26 -27.08
27 -27.42
42 -5.95
47 -10.54

Table 12: Log likelihood for each event label in the MIMIC II dataset.

D.3 STACK OVERFLOW DATASET

Stack Overflow is a question-and-answer website spanning a wide range of domains. A badge
rewarding scheme is exploited to encourage users to participate in the questioning and answering
activities. The badge system of Stack Overflow comprises 81 types of non-topical badges, including
the badges that can be awarded only once and the badges that can be awarded several times. The
dataset in (Du et al., 2016) was obtained by first filtering out the badges that can be awarded only
once, then restricting to the users who have acquired at least 40 badges from 2012-01-01 to 2014-01-
01, from which the badges have been awarded more than 100 times are selected as the determinate
dataset. Our dataset was acquired by retaining the event streams with one or more of the 20 types of
specified badges and then randomly sampling 1000 users to obtain 1000 event streams. The detailed
log-likelihood for each event label in the Stack Overflow dataset is summarized in Table 13.

23

Published as a conference paper at ICLR 2023

Event Label Log-likelihood

1 -3791
2 -1451
3 -538
4 -17656
5 -3574
6 -3559
7 -1381
8 -1330
9 -10961
10 -1105
11 -189
12 -2012
13 -673
14 -1340
15 -406
16 -117
17 -186
18 -330
19 -282
20 -100

Table 13: Log likelihood for each event label in the Stack Overflow dataset.

Dataset CLNN with SOP CLNN without SOP

LinkedIn -1228 -1344

MIMIC II -436 -480

Stack Overflow -50981 -51195

Table 14: Comparison of log-likelihood for CLNN with and without SOP on the real-world datasets.

D.4 ANALYSIS OF EXPRESSIVENESS ON MODEL’S PERFORMANCE

In this part, we conduct an experiment by training the CLNN without the singleton order cell (SOC)
on real-world datasets to show the effectiveness of the singleton order predicates. The comparison
of log-likelihood for CLNN with SOC and CLNN without SOC is summarized in Table 14. As
evidenced by Table 14, the log-likelihood of CLNN with SOP is higher than the log-likelihood of
CLNN without SOP, meaning enriching the expressiveness of wCL formulas can better explain the
generative mechanism of events.

24

	Introduction and Related Work
	Preliminaries
	Notation & Background
	Order Representations for Event Streams
	Weighted Clock Logic Formula

	Weighted Clock Logic Point Processes
	Truth degree of Weighted Clock Logic
	Learning of Paired Order Representation
	Learning of Singleton Order Representation
	Learning of Formula Structure
	wCL-Informed Intensity Function
	Maximum Likelihood Estimation

	Experiments
	Models
	Synthetic Datasets
	Real-world Datasets

	Conclusion
	Acknowledgement
	Formulation of Logical Constraints & Objective Function
	Proof of Theorem 8
	Experiment Results of Synthetic Datasets
	Synthetic Dataset–1 (Syn-1).
	Synthetic Dataset-2 (Syn-2).
	Synthetic Dataset 3 (Syn-3).
	Quantitative Comparison of CLNN's Rules with Ground Truth
	Stability analysis of CLNN's rules with respect to initialization
	Analysis of Logical Constraints on the LL

	Experiment Results of Real-world Datasets
	LinkedIn Dataset
	MIMIC II Dataset
	Stack Overflow Dataset
	Analysis of Expressiveness on Model's Performance

