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Abstract

Federated learning (FL) was originally regarded

as a framework for collaborative learning among

clients with data privacy protection through a co-

ordinating server. In this paper, we propose a new

active membership inference (AMI) attack carried

out by a dishonest server in FL. In AMI attacks,

the server crafts and embeds malicious parameters

into global models to effectively infer whether a

target data sample is included in a client’s private

training data or not. By exploiting the correlation

among data features through a non-linear decision

boundary, AMI attacks with a certified guarantee

of success can achieve severely high success rates

under rigorous local differential privacy (LDP)

protection; thereby exposing clients’ training data

to significant privacy risk. Theoretical and ex-

perimental results on several benchmark datasets

show that adding sufficient privacy-preserving

noise to prevent our attack would significantly

damage FL’s model utility.

1 INTRODUCTION

Federated Learning (FL) has emerged as a promising large-

scale collaborative learning framework in recent years. By

design, FL enables participating clients to collaboratively

train a global model through a coordinating server. Al-

though training data never leaves clients’ devices, a dis-

honest server can still infer the membership information
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of any client’s training data through observing their local

model updates by using (passive or active) membership

inference attacks [Shokri et al., 2017, Salem et al., 2019,

Song and Mittal, 2021, Nasr et al., 2019]. For that reason,

FL in its primitive form offers little to no privacy protection.

To address the problem, several privacy-preserving mecha-

nisms, such as local differential privacy (LDP), have been

developed to challenge membership inference (MI) attacks

in general and active membership inference (AMI) attacks

in particular by effectively protecting the membership in-

formation of client’s training data with upper-bounded

privacy leakage [Arachchige et al., 2019, Sun et al., 2021,

Lai et al., 2021, Lyu et al., 2020]. Recent studies appar-

ently show that LDP protection is effective in mitigating MI

and AMI attacks [Rahman et al., 2018, Bernau et al., 2021,

Gu et al., 2022]. The key reason for this result is that exist-

ing attacks have not fully conveyed privacy risks in FL by

under-exploiting the correlation among data features and

LDP protection. That poses previously unexplored privacy

risk to the clients’ local training data.

Key Contributions. To tackle that problem, we first formal-

ize a new AMI threat model equipping with an AMI attack

from a dishonest server. The key idea is that, given a target

data sample, the server carefully crafts malicious weights

of the global model such that the model updates from the

clients would expose the membership information of the

target data sample through the behavior of a chosen neuron.

A chosen neuron is only activated given the target data sam-

ple controlled by a non-linear decision boundary embedded

inside the malicious weights. With our non-linear decision

boundary, the server can infer this membership information

with severely high success rates. Furthermore, the server

effortlessly achieves this result with a minimal change to

the global model parameters within one training iteration.

In addition, we take a step forward and devise an AMI attack

strategy under LDP protection to significantly amplify the
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privacy risk in FL. By adding a certain amount of privacy-

preserving noise to the local data before training, LDP can

protect the data with formal privacy leakage bounds (con-

trolled by a privacy budget ε) [Dwork et al., 2014]. The

key advantage of our AMI attack is exploiting the corre-

lation among data features to distinguish the target data

sample from others under LDP protection (Eq. 7). If LDP-

preserving noise is insufficient to break this correlation (i.e.,

large privacy budgets ε), clients’ local data will be at risk of

our AMI attack with certified guarantees of success. Mean-

while, large privacy-preserving noise (i.e., small privacy

budgets ε) can significantly damage the FL’s model utility.

Our theoretical and experimental results in many benchmark

datasets show that our AMI attacks stress-test the fundamen-

tal trade-offs between model utility and privacy risk in FL to

a new level. That reflects through notably high success rates

under rigorous LDP protection (i.e., small privacy budgets

ε which significantly degenerate FL’s model utility).

Organization. The remainder of the paper is structured

as follows. Section 2 presents background and establishes

our threat model. Section 3 introduces our AMI attack

from a dishonest server in FL. We devise an attack strategy

under LDP protection with certified guarantees of success

in Section 4. Section 5 evaluates the performance of AMI

attacks in several benchmark datasets. Section 6 discusses

related work and Section 7 provides concluding remarks.

2 BACKGROUND AND THREAT MODEL

In this section, we briefly review the background of feder-

ated learning and differential privacy, and then introduce

our active membership inference threat model.

2.1 Background

Federated Learning (FL). We focus on a horizontal set-

ting of FL in which different clients hold the same set of fea-

tures but different sets of samples. We denote fθ : Rd → R
k

as a k-class neural network model that is parameterized by

a set of weights θ. The aim of fθ is to map a data point

x ∈ R
d to a vector of posterior probabilities fθ(x) = Y

over k classes, where the sum of all values in Y is 1.

FL is an iterative learning framework for training a global

model fθ on distributed data owned by N different clients

{uj}Nj=1. A central server coordinates the training of fθ
by iteratively aggregating gradients computed locally by

the clients. Let i ∈ Z≥0 be the current iteration of the

FL protocol, and θi be the set of parameters at iteration

i. At iteration i = 0, the global θi is initialized randomly

by the central coordinating server. At every iteration i, a

subset of M < N clients is randomly selected to participate

in the training. Each of the selected clients uj receives

fθi from the central server and calculates the gradients Gi
j

for fθi using their local training batch Dj . Specifically,

Gi
j = ∇θiL(Dj , θ

i) where L is a loss function. Then,

each uj uploads its gradients to the central server, who

averages all of these gradients to compute the global model’s

parameters with a learning rate η:

Gi =
1

M

M
∑

j=1

Gi
j , θi+1 = θi − ηGi (1)

The training continues until fθi converges.

FL with Local Differential Privacy (LDP). Recent at-

tacks have shown that clients’ training data samples can

be extracted from the shared gradients [Zhu et al., 2019,

Yin et al., 2021]. These attacks underscore privacy risks in

FL. Therefore, privacy-preserving mechanisms are needed

to control and mitigate the privacy risks introduced by gra-

dient sharing while optimizing utility.

Local differential privacy (LDP) [Dwork et al., 2006,

Erlingsson et al., 2014] is one of the auspicious solutions,

given its formal protection without an undue sacrifice in

computation efficiency. LDP builds on the ideas of ran-

domized response [Warner, 1965], which was initially intro-

duced to allow survey respondents to provide their inputs

while maintaining their confidentiality. The definition of

ϵ-LDP is as follows:

Definition 1. ϵ-LDP. A randomized algorithmM fulfills

ϵ-LDP, if for any two inputs x and x′, and for all pos-

sible outputs O ∈ Range(M), we have: Pr[M(x) =
O] ≤ eϵPr[M(x′) = O], where ϵ is a privacy budget and

Range(M) denotes every possible output ofM.

The privacy budget ϵ controls the amount by which the

distributions induced by inputs x and x′ may differ. A

smaller value of ϵ enforces a stronger privacy guarantee but

reduces model utility.

2.2 Active Membership Inference Threat Model

Previous studies typically focus on a scenario in which the

central server is interested in uncovering client information

by examining local updates from the clients, but still abid-

ing by the system protocol. This threat model is commonly

referred to as honest-but-curious or semi-honest. However,

this threat model undermines the vulnerability of the FL

system as in practice, the server can deviate from the proto-

col to strengthen the privacy attacks [Boenisch et al., 2021,

Nguyen et al., 2022, Fowl et al., 2021]. In this work, we are

thus interested in explicitly malicious (or actively dishon-

est) servers that may modify the model architecture and/or

model parameters before dispatching them to the clients.

In this regard, we propose an active membership inference

threat model, in which a dishonest server maliciously ad-

justs the model parameters to determine whether a target

data sample is in the local training dataset of a client.
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Exp(A,L,D):
D ∼ D

n # Sample n data points from D into D

b
$←{0, 1} # Flip a bit b uniformly at random

if b = 1 then

t
$←D # Choose t uniformly from D

end

else
t ∼ D \ D # Sample t from D s.t. t /∈ D

end

θ ← AD

INIT
(t) # The adversary receives t and returns a set

of parameters θ

G← ∇θL(D, θ) # Compute the gradients from θ and D

b′ ← AD(t, G) # The adversary receives t, G and returns a

bit b′

Ret [b′ = b] # The game returns 1 if b′ = b (the adversary

wins), 0 otherwise

Figure 1: AMI Threat Model as a Security Game.

We describe the active membership inference threat model

as follows. We denote A as the central server in FL, which

is also the adversary. Note that this threat model repre-

sents an attack at an arbitrary iteration that targets a spe-

cific client. Let D = {(xi, yi)} be the batch of train-

ing data of the target client. The set D contains sample

xi ∈ R
d and its ground-truth label yi ∈ {1, ..., k} with k

classes. Suppose that D is sampled from a distribution D on

(xi, yi) that the adversary A has knowledge of (i.e., similar

to existing studies [Carlini et al., 2022, Yeom et al., 2018,

Shokri et al., 2017]). This is practical in the real world since

the server can collect a massive amount of data that covers

the local data distribution of a sufficient number of clients

[Shokri et al., 2017]. The adversary outputs maliciously

crafted model parameters θ to the target client. The client

sends the local gradients G = ∇θL(D, θ) back to the ad-

versary. By observing the local gradients G, the goal of the

server’s attack is to determine whether a target (data) sample

t ∈ R
d is included in the local training setD. More formally,

the adversary can be defined as the following function:

AD : t, G→ {0, 1} (2)

where AD denotes the query access to D, 1 means t ∈ D,

and 0 otherwise.

We formalize this threat model as a security game

Exp(A,L,D) between a challenger and the adversary in

Fig. 1. From that, the adversary’s advantage, or the attack

success rate, is defined as follows:

AdvA = Pr[Exp(A,L,D) = 1]

=
1

2
Pr[b′ = 1|b = 1] +

1

2
Pr[b′ = 0|b = 0]

(3)

where Pr[b′ = 1|b = 1] is the True Positive Rate (TPR),

and Pr[b′ = 0|b = 0] is the True Negative Rate (TNR). The

success rate AdvA should be greater than 0.5, which is the

probability of random guessing.

3 ACTIVE MEMBERSHIP INFERENCE

(AMI) ATTACK

This section first discusses the technical intuition of mem-

bership inference through gradients. Based on this concept,

we then describe our proposed strategy to launch the AMI

attack from a dishonest server.

3.1 Inferring Membership via Gradients

As shown in Fig. 1, the adversary A receives the gradients

G that was computed on the training set D, and A wishes

to determine whether t ∈ D. This section discusses how the

membership information can be inferred through gradients.

Suppose that, on an input data point x ∈ R
d, the output of

the first fully-connected layer is expressed as ReLU(Wx+
b) = max(0,Wx + b) where W ∈ R

r×d is the weight

matrix of that layer and b ∈ R
r is the bias vector (r is the

number of neurons in the layer). To express the output of the

i-th neuron of that layer, we denote Wi as the corresponding

row in the weight matrix and bi as the corresponding compo-

nent in the bias vector. We observe that, when Wix+bi ≤ 0,

the ReLU outputs zero, in other words, the neuron i is not

activated by x. As a result, the gradient of neuron i, de-

noted by G
(x)
i , is zero at the data point x. Otherwise, when

Wix+ bi > 0, the gradient G
(x)
i is non-zero.

As the gradient G is computed over the whole training set

D, the gradient of a neuron i received by the adversary is

the average of gradients over all data points x ∈ D, i.e.,

Gi = 1
|D|

∑

x∈D G
(x)
i . If there exists a neuron i that is

activated only by a target data sample t (t ∈ R
d), and not

activated by any other data samples x ̸= t, then we have:



























d
∑

j=1

Wijtj > 0

d
∑

j=1

Wijxj ≤ 0, ∀x ∈ D \ t
(4)

note that we suppress the bias term for simplicity.

If t ∈ D, then Gi will be non-zero; otherwise, t /∈ D results

in Gi being zero. From that, the adversary upon seeing Gi

can easily infer whether the target data sample t was a part of

the training set D or not. The formulation in Eq. (4) is sim-

ilar to the framework proposed by [Boenisch et al., 2021]

for conducting data reconstruction attacks where a neuron

that is activated only by one sample can be used to perfectly

reconstruct that sample. However, we shall see below that
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this simple formulation is actually inapplicable to the mem-

bership inference attack, thus requiring a more advanced

strategy to launch the attack.

3.2 Attack Strategy: Manipulating Model Parameters

via Training a Chosen Neuron

As aforementioned, if there exists a neuron that is activated

only by the target data sample t, it is sufficient to determine

whether t is in the training set D or not. From the threat

model, the adversary can determine the model parameters

θ, which includes the weight matrix W . Obviously, the

adversary can choose some neuron i and try to solve Eq. (4)

for W to realize the conditions of the chosen neuron. Since

the adversary does not know D, it can only approximate Eq.

(4) for all of its observed data samples x that are different

from t (i.e., x ̸= t and x /∈ D). However, that makes Eq. (4)

infeasible due to the linearity of the functions
∑d

j=1 Wijtj

and
∑d

j=1 Wijxj , as shown in Appendix A.

To address this issue, we introduce non-linearity into the

equation. To do so, instead of relying on the first layer,

the adversary can choose a neuron in the second fully-

connected layer such that the neuron is activated only by

the target data sample t, and not activated by any other data

samples x ̸= t. Let us denote h ∈ R
r as the weight vec-

tor of the chosen neuron in the second layer, the attack is

successful if we can find (h,W ) such that:



























r
∑

i=1

hi ReLU(

d
∑

j=1

Wijtj) > 0

r
∑

i=1

hi ReLU(

d
∑

j=1

Wijxj) ≤ 0, ∀x ̸= t

(5)

To solve Eq. (5), we can train the chosen neuron to be

activated only by the target data sample t. For the training,

we first put forth a logistic sigmoid function (σ) on the

output of the chosen neuron. As a result, the function of the

chosen neuron becomes:

s(x) = σ(

r
∑

i=1

hi ReLU(

d
∑

j=1

Wijxj))

= σ(h · ReLU(Wx))

(6)

Next, we sample a dataset X ∼ D
m, in which we assign a

label 1 for the target data sample t and label 0 for all other

data samples x ∈ X \ t. After that, we train the chosen

neuron using cross-entropy loss. The key idea is that the

training process tries to make s(t) = 1, and s(x) = 0 for

x ̸= t. When s(t) > 0.5, it means that h · ReLU(Wt) > 0;

otherwise, when s(x) < 0.5, we have h · ReLU(Wx) < 0
and that conforms to Eq. (5).

When the adversary receives the gradient G, it can observe

the gradient of that chosen neuron to determine whether

adversary AD

INIT(t):

X ∼ D
m

DA ←
⋃

x∈X\t{(x, 0)}

DA ← DA ∪ {(t, 1)}
Train h,W (Eq. 6) from dataset DA

Initialize θ
θ ← θ ∪ (h,W )
Ret θ

adversary AD(t, G):

Extract gt as the gradient of the chosen neuron from G
Ret [gt ̸= 0]

Figure 2: AMI Attack Strategy of the Adversary A.

the target data sample t is in the training set D (t ∈ D)

or not, as discussed in the previous section. In particular,

the adversary extracts the gradient of the chosen neuron,

denoted by gt, from G and sees whether gt is non-zero. If

gt is zero, the adversary predicts that the target data sample

t is not in the training set D (i.e., t /∈ D). This is because

the chosen neuron was not activated during the gradient

computation on the training set D. Otherwise, if gt is non-

zero, then the adversary predicts that the target data sample

t is in the training set D (i.e., t ∈ D).

Fig. 2 shows a design of the adversary A according to the

threat model in Fig. 1. Note that our attack strategy only

modifies the parameters of 1 chosen neuron in the second

layer and r associated neurons in the first layer. That makes

our attack feasible by enabling us to make a minimal change

to the model parameters, and the attack can be carried out

within one FL training iteration.

4 AMI ATTACK UNDER LDP WITH

CERTIFIED GUARANTEE OF SUCCESS

LDP is generally regarded as an effective defense against

privacy inference attacks given its rigorous privacy protec-

tion compared with other approaches [Wagh et al., 2021].

To tolerate such mechanisms, our AMI attack exploits the

correlation among input features captured through a non-

linear decision boundary to distinguish the target data sam-

ple t from others (Eq. 5) under LDP protection. If LDP-

preserving noise is insufficient to break this correlation (i.e.,

large privacy budgets ε), clients’ local data will be at risk of

our AMI attack. Meanwhile, large privacy-preserving noise

(i.e., small privacy budgets ε) can significantly damage the

model utility. In FL, it is challenging for clients to identify

suitable privacy budgets given their limited local training

data. Therefore, they usually rely on the server to provide

the privacy budget ε and the LDP-preserving mechanism

M. That increases the risk of exposing their local training

data to a dishonest server under our AMI attack. We focus

on shedding light on the fundamental trade-offs between
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ε-LDP protection, model utility, and privacy risk with a

certified bound for our AMI attack to be successful.

Each client independently perturbs every training data sam-

ple in their local training data D using an LDP-preserving

mechanismM (Def. 1) to obtain a randomized local train-

ing set D′ = M(D, ε) = {M(x, ε)}x∈D. The client

sends the gradients derived from the randomized training

set G = ∇θL(D′, θ) to the server. The mechanismM and

the privacy budget ε are known to the adversary A, thus,

the adversary function in Eq. (2) is re-defined under LDP

context as AD,M
LDP : t, G, ε→ {0, 1}. We enhance the threat

model to reflect the use of LDP in Fig. 3.

Attack Strategy. Given the gradients G computed on

LDP-perturbed data D′, applying the same attack strategy

that was discussed in Section 3.2 would not work effec-

tively. Suppose that the target sample t is in D, and that

the adversary were able to train a neuron that is activated

only by the target sample t, i.e., h · ReLU(Wt) > 0 and

h·ReLU(Wx) < 0 for x ̸= t. However, it is very likely that

t is not in the randomized local training set D′ since t was

randomized under LDP. As the client uses D′ for gradients

computation, the chosen neuron may remain inactivated,

i.e., h · ReLU(W · M(t, ε)) < 0. Hence, the attack fails to

infer the correct membership of t.

Therefore, it is necessary for the adversary to ensure that the

chosen neuron is activated only by the randomized target

sample M(t, ε). Similar to Eq. (5), we formulate this

observation as finding (h,W ) such that:

{

h · ReLU(WM(t, ε)) > 0

h · ReLU(Wx) ≤ 0, ∀x ̸=M(t, ε)
(7)

To develop an effective attack for Eq. (7), it is essential

for the chosen neuron to be activated if the client uses

M(t, ε) regardless of the randomness introduced by the

LDP-preserving mechanismM(·, ε). To achieve our goal,

we strengthen our attack by generating a set T of l per-

turbationsM(t, ε), that is, invokingM(t, ε) l times with

independent draws of LDP-preserving noise. Next, we sam-

ple a training set X ∼ D
m such that X ∩ T = ∅. Then, we

assign label 1 for samples in T (which contains randomized

versions of t) and label 0 for samples in X . Finally, we train

the chosen neuron using cross-entropy loss. The remaining

steps follow Section 3.2. Fig. 4 shows the design of the

adversary ALDP with respect to the threat model in Fig. 3.

Certified Guarantee of Success for AMI. Now, we de-

rive certified guarantees for the adversary (Fig. 4) to be

successful under ε-LDP protection. The AMI attack AD,M
LDP

is successful in determining the membership of the target

sample t if it can ensure that the chosen neuron is activated

only by the LDP-preserving M(t, ε). Following the ex-

pected output stability property in DP [Lecuyer et al., 2019],

ExpLDP (ALDP ,L,D,M, ε):

D ∼ D
n

b
$

←{0, 1}
if b = 1 then

t
$

←D
end
else

t ∼ D \ D
end

θ ← AD,M
LDP,INIT(t, ε)

D′ ←M(D, ε) # Apply the LDP mechanism on D
G← ∇θL(D

′, θ)

b′ ← AD,M
LDP (t, G, ε)

Ret [b′ = b]

Figure 3: AMI Threat Model under LDP Mechanisms.

adversary AD,M
LDP,INIT(t, ε):

Choose l ∈ N

T ← ∅
for i = 1 to l do
T ← T ∪ {M(t, ε)}

end
X ∼ D

m \ T # Sample X ∼ D
m s.t. X ∩ T = ∅

DA ←
⋃

x∈X{(x, 0)}

DA ← DA ∪
(
⋃

x∈T {(x, 1)}
)

Train h,W (Eq. 6) from dataset DA

Initialize θ
θ ← θ ∪ (h,W )
Ret θ

adversary AD,M
LDP (t, G, ε):

Extract gt as the gradient of the chosen neuron from G
Ret [gt ̸= 0]

Figure 4: Attack Strategy of the Adversary ALDP .

in which the expected value of an ε-LDP algorithm with

bounded output is not sensitive to small changes in the input,

the trained attack AD,M
LDP is certifiably robust toM(·, ε) if

the following condition holds:
{

E
[

v(t)
]

> 0

E
[

v(x)
]

≤ 0, x ̸=M(t, ε)
(8)

where v(t) = h · ReLU(WM(t, ε)) and v(x) = h ·
ReLU(Wx) are the values of the chosen neuron, given

the randomized target sampleM(t, ε) and any other data

samples x ̸=M(t, ε), respectively.

However, due to the potentially complex nature of the post-

noise computation, we cannot precisely compute the ex-

pectations in Eq. (8). We therefore resort to Monte Carlo

sampling to estimate the expectations Ê(·). This estimation

is obtained by invokingM(·) multiple times with indepen-

dent draws of the noise over the input. We denote vp(t) as
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the p draws ofM(t, ε) from the target sample t and vq(x)
as the q draws of M(x, ε) from the sample x. Then, we

replace E
[

v(t)
]

with Ê
[

v(t)
]

= 1
p

∑

p vp(t) and replace

E
[

v(x)
]

with Ê
[

v(x)
]

= 1
q

∑

q vq(x), where p an q are the

number of invocations ofM(·) for t and x, respectively.

The key idea is to simultaneously ensure that the lower

bound Ê
lb
[

v(t)
]

is larger than 0 and the upper bound

Ê
ub
[

v(x)
]

is smaller than or equal to 0 with a broken prob-

ability δ. That provides a certified guarantee for the Eq. (8)

to hold. We compute (1− δ)-confidence the lower bound

Ê
lb
[

v(t)
]

and the upper bound Ê
ub
[

v(x)
]

by using Hoeffd-

ing’s inequality [Hoeffding, 1963], as follows:

Ê
lb
[

v(t)
]

≜ Ê
[

v(t)
]

− Range
(

v(t)
)

√

− ln(δ)

2p
(9)

Ê
ub
[

v(x)
]

≜ Ê
[

v(x)
]

+Range
(

v(x)
)

√

− ln(δ)

2q
(10)

where Range
(

v(·)
)

is the range of v(·).
By replacing the bounds in Eqs. (9) and (10) to the expec-

tations in Eq. (8), we derive the certified guarantee so that

Eq. (8) holds as in Theorem 1.

Theorem 1. (Certified Guarantee Condition) Suppose that

clients in FL apply the LDP-preserving M(·, ε) to their

local data. Êlb
[

v(t)
]

and Ê
ub
[

v(x)
]

, computed as in Eqs. 9

and 10, are the (1− δ)-confidence lower and upper bounds,

respectively. The AMI attack AD,M
LDP is successful in in-

ferring the membership of the target sample t in D if the

following condition is satisfied:

{

Ê
lb
[

v(t)
]

> 0

Ê
ub
[

v(x)
]

≤ 0, x ̸=M(t, ε)
(11)

Proof of Theorem 1 is in Appendix B. At the attack time,

we implement a certified guarantee of success as a search to

return the minimal privacy budget ε and broken probability

δ so that the condition in Theorem 1 holds, as follows:

Corollary 1. Given a well-trained model fθ and the target

sample t, the AMI attackAD,M
LDP is guaranteed to be success-

ful up to the privacy budget ε∗ and the broken probability

δ∗ for which the condition in Theorem 1 checks out:

(ε∗, δ∗)= argmin
ε,δ

s.t.

{

Ê
lb
[

h · ReLU(WM(t, ε))
]

> 0

Ê
ub
[

h · ReLU(Wx)
]

≤ 0, x ̸=M(t, ε)
(12)

Since the mechanism M(·) and the privacy budget ε are

known to the adversary A, we only do a line search to find

the minimal δ for a given ε∗.

5 EVALUATION

This section validates the effectiveness of our AMI at-

tack by gauging its success rate. We particularly focus

on evaluating how well it performs under LDP protec-

tion. Our implementation of the attack is available at

https://github.com/trucndt/ami.

Experimental Settings. We evaluate AMI attack

with three benchmark datasets, including CIFAR-10

[Krizhevsky et al., 2009], ImageNet [Deng et al., 2009],

and CelebA [Liu et al., 2015]. Each dataset includes a

training set and a validation set. The training set is used to

sample the local training set D in the threat model (Figs. 1

and 3), while the validation set is used as the sampled set

X of the adversary. Our experiment follows the security

game in Figs. 1 and 3, and the success rate is calculated

using Eq. (3) after executing the game 10,000 times. The

batch size |D| is chosen to be 20 for the CelebA dataset

according to its specification (i.e., 20 face images per

person). As in [Fowl et al., 2021, Boenisch et al., 2021,

Geiping et al., 2020], we set |D| to 64 and 100 for the

ImageNet and CIFAR-10 datasets, respectively. We modify

r = 1, 000 neurons in the first layer and 1 neuron in the

second layer to carry out AMI attacks. Further details on

the experimental settings can be found in Appendix D.

To realize M in Fig. 3, we use two different

LDP mechanisms: OME [Lyu et al., 2020] and BitRand

[Lai et al., 2021]. These mechanisms add LDP noises to the

embeddings of data samples. Such embeddings are obtained

via a pre-trained Resnet-18 model which results in feature

vectors of 512 dimensions [He et al., 2016]. We show the

results when using BitRand in this section and refer the read-

ers to Appendix D for the results on OME. A background

on BitRand and OME is provided in Appendix C.

Attack Performance without LDP. In three datasets, our

attack achieves near 100% success rate. The key reason

behind this impressive success rate is that our attack strat-

egy can easily train the chosen neuron to satisfy the attack

objective, i.e., Eq. (5). Intuitively, the problem formulation

in Eq. (5) is equivalent to finding a decision boundary over-

fitting to t in a way that can distinguish t against all other

samples. As a result, increasing the number of neurons in

the first layer (r) helps improve the attack performance, as it

makes the model more over-fitting. In our experiments, we

can achieve a 100% success rate with as few as 5 neurons

(r = 5) in the first layer. We refer the readers to Appendix

D for further analysis of this scenario as we focus the rest

of this section on evaluating the attack under LDP.

Attack Performance under LDP. Fig. 5 shows that our

attack introduces severe privacy risk to clients’ local training

data through strong attack success rates under LDP protec-

tion. Large privacy budgets ε (e.g., ε ≥ 5) does minimal to



Truc Nguyen, Phung Lai, Khang Tran, NhatHai Phan, My T. Thai

1 2 3 4 5 6 7 8 9 10

Privacy budget ε

0.5

0.6

0.7

0.8

0.9

1.0
A
tt
a
ck

su
cc
es
s
ra
te

Adv

TPR

TNR

0.5

0.6

0.7

0.8

0.9

1.0

M
o
d
el
a
cc
u
ra
cy

Model accuracy

(a) CelebA

1 2 3 4 5 6 7 8 9 10

Privacy budget ε

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
tt
a
ck

su
cc
es
s
ra
te

Adv

TPR

TNR

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
o
d
el
a
cc
u
ra
cy

Model accuracy

(b) ImageNet

1 2 3 4 5 6 7 8 9 10

Privacy budget ε

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
tt
a
ck

su
cc
es
s
ra
te

Adv

TPR

TNR

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
o
d
el
a
cc
u
ra
cy

Model accuracy

(c) CIFAR-10

Figure 5: Attack success rate of AMI against an ε-LDP mechanism on CelebA, ImageNet, and CIFAR-10 datasets. The

success rate is represented via the advantage (Adv), true positive rate (TPR), and true negative rate (TNR) according to Eq.

3. The baseline of random guessing is 0.5. The model accuracy illustrates the utility loss of the data when using LDP.

(a) ε = 10 (b) ε = 7 (c) ε = 5

Figure 6: Visualizing the distribution of the target sample t among other samples in the training set D using t-SNE

embeddings. The red dots denote the target sample t and a multitude of its LDP noisesM(t, ε), while the blue dots denote

other non-target samples. These data samples are obtained from the CelebA dataset.

defend against our AMI attack. Across all three datasets,

the model accuracy on the legitimate classification task re-

mains acceptable given ε ≥ 5. However, our attack imposes

a severely high success rate (≥ 0.77), which approaches

a near perfect success rate of 0.99 with ε ≥ 9. When

we reduce the privacy budget (ε ∈ [3, 4]), our attack still

maintains a success rate of at least 0.67, 0.58, and 0.62, on

CelebA, ImageNet, and CIFAR-10, respectively. With very

low ε (ε ∈ [1, 2]), the model accuracy is severely damaged.

Furthermore, Fig. 5 depicts the TPR and TNR of our attack.

Recall that TPR denotes how well the attack detects the

presence of the target sample t in the training data D, and

TNR measures the ability to detect the absence of t. From

the result, we can see that our attack has high TPR across

all scenarios, which means it is sensitive to detecting the

case where t ∈ D. Moreover, our TNR is greater than 0.5

indicating the capability of discerning the absence of t in

the training data (except for the ImageNet dataset at ε ≤ 4).

Training the Chosen Neuron under LDP. Training the

chosen neuron is equivalent to determining a decision bound-

ary that can distinguish the target sample (and its random-

ized variants) from any other samples. Fig. 6 visualizes how

the samples in the training setD are distributed using t-SNE

[Van der Maaten and Hinton, 2008]. At ε = 10, Fig. 6a

shows that the t-SNE algorithm is able to group together the

target sample t and its randomized variants. This is because

the LDP mechanism imposes a small amount of noise such

that t and its randomized variantsM(t, ε) closely resemble

one another. Hence, t-SNE models these by nearby points.

Therefore, it is easy for our attack to train a neuron that

can distinguishM(t, ε) from other samples, resulting in an

attack success rate of about 0.99 as shown in Fig. 5.

At ε = 5, Fig. 6c shows that M(t, ε) blends into other

samples, meaning that t-SNE is unable to group together the

randomized variants of t as in the previous Fig. 6a. This is

because the mechanismM(·, ε) imposes a high amount of

noise at ε = 5, so that all randomized variantsM(t, ε) no

longer closely resemble one another. This makes the task of

finding the decision boundary betweenM(t, ε) and other

samples more difficult. Nevertheless, our AMI attack can

still attain a success rate of 0.80 (Fig. 5).

Certified Guarantee of Success. Given a privacy bud-

get ε ∈ [1, 10], in order to check the certified guanran-

tee conditions as in Theorem 1, we obtain the the lower

and upper bounds Êlb
[

v(t)
]

and Ê
ub
[

v(x)
]

(Eqs. 9 and 10)

by using 4, 000 ε-LDP target samples M(t, ε) and all ε-

LDP non-target samplesM(x, ε) from the validation set of

each dataset. Here we use BitRand [Lai et al., 2021] as the
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(a) CelebA (b) ImageNet (c) CIFAR-10

Figure 7: Certified guarantee of success for ε ∈ [1, 10]: Expectation (solid lines), upper-bound, and lower-bound (shaded

areas surrounding the expectation) of the values of the chosen neuron. The larger the gap between the lower bound of the

noisy target samples and the upper bound of the noisy non-target samples, the higher success rate the AMI achieves.

M(·, ε) mechanism for the embeddings since BitRand is

designed and well-suited for randomizing the embeddings.

Fig. 7 shows the certified guarantee of success for the

CelebA, ImageNet, and CIFAR-10 datasets. We can de-

rive certified guarantee of success for our AMI attack given

ε ≥ 1 with a small broken probability 10−8. For rigorous

privacy budgets, e.g., ε ≤ 3, the output of the chosen neuron

for both the target and non-target samples approaches the

borderline associated with v(·) = 0 (i.e., the dotted green

lines), indicating a higher chance for AMI attacks to be

failed given a broken probability δ. When the privacy bud-

get ε increases, the output of the chosen neuron fits well

with the attack objective. As a result, the expected value of

the chosen neuron departs from the borderline, i.e., more

positive given the target samples (i.e., the solid red lines)

and more negative given the non-target samples (i.e., the

solid blue lines). That implies a better attack success rate.

Also, we observed that the overlapping area between the

two distributions of the target samples and the non-target

samples reduce significantly, which is consistent with our

certified guarantee of success (Fig. 10, Appendix D) and

our empirical results in Fig. 5.

6 RELATED WORK

Membership inference (MI) is one of the most fundamental

privacy problems in machine learning [Carlini et al., 2022].

Several research has been carried out to convey the

practical consequences of MI attacks [Backes et al., 2016,

Pyrgelis et al., 2018] and analyze the models’ vulnerability

to MI [Carlini et al., 2019, Song and Mittal, 2021]. Along

this direction, multiple MI attacks have been proposed

in which the attacker only queries the model or observes

its parameters to conduct the attacks [Shokri et al., 2017,

Salem et al., 2019, Carlini et al., 2022]. Such attacks can

be straightforwardly adapted to FL in which the central

server is a passive adversary who tries to infer the mem-

bership information of clients’ private data via inspect-

ing their local models’ parameters [Nguyen and Thai, 2022,

Melis et al., 2019]. Recently, an AMI attack in FL pro-

posed by [Nasr et al., 2019] considers a dishonest server

that can interfere with the FL training protocol. How-

ever, this attack must be repeated in multiple training it-

erations to attain a high success rate. Furthermore, LDP has

been shown to be an effective defense against these attacks

[Rahman et al., 2018, Bernau et al., 2021, Gu et al., 2022].

Our work proposes a new AMI attack in FL where the

dishonest server can maliciously modify the model weights

to its advantage. We have proposed a strategy that results

in minimal modifications to the model and can be executed

in only one training iteration. More importantly, our attack

can maintain a strong success rate even when the clients’

data are protected by an LDP mechanism.

7 CONCLUSION AND DISCUSSION

In this paper, we have introduced a formal threat model for

our AMI attack with dishonest FL servers, showing a more

realistic privacy threat. Accordingly, we have proposed a

new active membership inference (AMI) attack, exploiting

the correlation among data features through a non-linear

decision boundary. AMI attacks can achieve high success

rates even under LDP protection, confirmed by both theoret-

ical analysis and experimental evaluations. From this attack,

our research has demonstrated that current implementations

of FL provide virtually no privacy protection for clients.

With such a strong AMI attack, our future work would focus

on the defenses. We discuss some challenges in devising

such a solution as follows.

Noisy gradients with DPSGD. A potential defense against

our attack is to let clients add DP noise to their gradients

using DPSGD [Abadi et al., 2016] before sending them to

the server, hindering the attacker from knowing the true

value of the chosen neuron’s gradient. However, recent

work [Boenisch et al., 2021, Tramèr and Boneh, 2021] sug-

gests that using DPSGD makes it impossible to train a good

model for datasets like CIFAR-10 or ImageNet. Further-
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Figure 8: The kernel density estimation (KDE) of malicious

and normal weights.

more, even if DPSGD is used, the attacker can still circum-

vent it by aggregating the noisy gradients over multiple FL

iterations and potentially cancelling out the added DP noise.

A detailed analysis on this can be found in Appendix E.

Detecting Malicious Weights is Challenging. The hard-

ness in detecting malicious weights can be evaluated by

examining the difference between malicious weights and

normal weights (i.e., the weights that could be obtained from

an honest server). Fig. 14 (Appendix) shows the distribution

of the normal weights together with the distribution of the

malicious weights when attacking under LDP protection

at ε = 2, 3, and 5, and they largely resemble one another.

Fig. 8 shows the 4 distributions using their respective kernel

density estimation (KDE), which is used to visualize the

shape of a data distribution, and represent the data using a

continuous probability density curve. We can see that the

malicious weights do not result in any abnormal distribu-

tion, making it indistinguishable from normal weights. This

implies that, by observing the distribution of model weights,

it is infeasible to determine whether the model weights have

been modified maliciously by our attack.
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A INFEASIBILITY OF LINEARITY FOR AMI

Suppose that, given the target data sample t ∈ R
d, there exists a W that can satisfy Eq. (4) for all x ̸= t. We choose

x1 = t1 + c and xi = ti for i > 1 and c > 0. Denoting w ≡Wi, from the second condition in Eq. (4), we have that:

w1c+

d
∑

j=1

wjtj ≤ 0 =⇒ −w1c ≥
d

∑

j=1

wjtj (13)

Likewise, choosing x′
1 = t1 − c and x′

i = ti for i > 1, from the second condition in Eq. (4), we have:

−w1c+
c

∑

j=1

wjtj ≤ 0 =⇒ w1c ≥
d

∑

j=1

wjtj (14)

As
∑d

j=1 wjtj > 0 by the first condition in Eq. (4), the two equations (13) and (14) contradicts one another. Therefore,

there exists no W that can satisfy Eq. (4) for all x ̸= t.

B PROOF OF THEOREM 1

Given the target sample t and any data samples x ̸= M(t, ε), the AMI attack AD,M
LDP is successful in determining the

membership of t if it can ensure that the chosen neuron is activated only by the LDP-preservingM(t, ε). Following the

expected output stability property in DP [Lecuyer et al., 2019], in which the expected value of an ε-LDP algorithm with

bounded output is not sensitive to small changes in the input, the trained attack AD,M
LDP is certifiably robust toM(·, ε) if the

following condition holds:
{

E
[

v(t)
]

> 0

E
[

v(x)
]

≤ 0, x ̸=M(t, ε)
(15)

where v(t) = h ·ReLU(WM(t, ε)) and v(x) = h ·ReLU(Wx) are the values of the chosen neuron, given the randomized

target sampleM(t, ε) and any other data samples x ̸=M(t, ε), respectively.

However, due to the potentially complex nature of the post-noise computation, we cannot precisely compute the expectations

in Eq. 8. We therefore resort to Monte Carlo sampling to estimate the expectations Ê(·). This estimation is obtained by

invokingM(·) multiple times with independent draws of the noise over the input. We denote vp(t) as the p draws ofM(t, ε)
from the target sample t and vq(x) as the q draws ofM(x, ε) from the sample x.

Denoting Range
(

v(·)
)

as the range of v(·), v(·) ∈ Range
(

v(·)
)

. In other words, v(·) is bounded in Range
(

v(·)
)

. Given a

broken probability δ, using Hoeffding’s inequality, with t ≥ 0 we have:

P
(

(
1

p

p
∑

i=1

v(t))− E[v(t)] ≥ t
)

= P
(1

p

p
∑

i=1

(

v(t)− E[v(t)]
)

≥ t
)

≤ exp
(

− 2pt2

1
p

∑p
i=1 Range

(

v(t)
)2

)

= exp
(

− 2pt2

Range
(

v(t)
)2

)

(16)

As mentioned in Section 4, we replace E[v(t)] in Eq. 16 with Ê[v(t)]. Given a broken probability δ, we have:

exp
(

− 2pt2

Range(v(t))2

)

= δ ⇔ t = Range
(

v(t)
)

√

− ln(δ)

2p
(17)

Similarly, with the non-target samples, we have:

t = Range
(

v(x)
)

√

− ln(δ)

2q
(18)
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By leveraging the Monte Carlo sampling for the expectation estimation, we can replace E
[

v(t)
]

with Ê
[

v(t)
]

= 1
p

∑

p vp(t)

and replace E
[

v(x)
]

with Ê
[

v(x)
]

= 1
q

∑

q vq(x), where p an q are the number of invocations of M(·) for t and x,

respectively.

The key idea is to simultaneously ensure that the lower bound Ê
lb
[

v(t)
]

is larger than 0 and the upper bound Ê
ub
[

v(x)
]

is

smaller than or equal to 0 with a broken probability δ. That provides a certified guarantee for the Eq. (8) to hold. From

Eqs. 17 and 18, we can compute (1− δ)-confidence the lower bound Ê
lb
[

v(t)
]

and the upper bound Ê
ub
[

v(x)
]

, as follows:

Ê
lb
[

v(t)
]

≜ Ê
[

v(t)
]

− Range
(

v(t)
)

√

− ln(δ)

2p
(19)

Ê
ub
[

v(x)
]

≜ Ê
[

v(x)
]

+Range
(

v(x)
)

√

− ln(δ)

2q
(20)

By replacing the bounds in Eqs. 19 and 20 to the expectations in Eq. 15, we we derive the certified guarantee so that Eq.

(15) holds. In other words, The AMI attack AD,M
LDP is successful in inferring the membership of the target sample t in D if

the following condition is satisfied:

{

Ê
lb
[

v(t)
]

> 0

Ê
ub
[

v(x)
]

≤ 0, x ̸=M(t, ε)
(21)

Consequently, Theorem 1 holds.

C OME [Lyu et al., 2020] AND BITRAND [Lai et al., 2021]

Apart from applying LDP-preserving mechanisms in real values of inputs or gradients [Warner, 1965, Zhao et al., 2020,

Wang et al., 2019], there is a line of work introducing LDP-preserving mechanisms to inputs or embedding features

[Lai et al., 2021, Lyu et al., 2020, Arachchige et al., 2019]. In these mechanisms, they encode the original data or embedding

features into binary vectors, then apply the LDP mechanisms on top of the binary vectors, before training the local models.

In OME, each bit i is randomized differently depending on whether it is the odd or even bit or it is bit 0 or 1, as follows:

∀i ∈ [0, rl − 1] : P (v′x(i) = 1) =































p1X =
α

1 + α
, if i ∈ 2j, vx(i) = 1

p2X =
1

1 + α3
, if i ∈ 2j + 1, vx(i) = 1

qX =
1

1 + α exp( ε
rl )

, if vx(i) = 0

(22)

where ε the total privacy budget.

This mechanism is similar to the Utility enhancing randomization (UER) mechanism (Theorem III.4

[Arachchige et al., 2019]). As shown in [Arachchige et al., 2019, Lyu et al., 2020], model accuracy is almost con-

stant although ε is changed.

However, existing LDP mechanisms suffer from the curse of privacy composition in which excessive privacy budgets

are consumed proportionally to the large dimensions of input or embedded features [Arachchige et al., 2019], gradients

[Zhao et al., 2020, Wang et al., 2019], and training rounds [Zhao et al., 2020, Wang et al., 2019], causing loose privacy

protection or inferior model accuracy [Wagh et al., 2021].

To mitigate the curse of privacy composition and to optimize the trade-off among privacy and model utility, [Lai et al., 2021]

introduce bit-aware term i%l
l and a temperature α for better control of the randomization probabilities. In BITRAND, the

randomization probabilities are adaptively randomized such that ªbits with a more substantial impactº on model utility will
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have ºsmaller randomization probabilities (less noisy)º and vice-versa under the same privacy budget, as follows:

∀i ∈ [0, rl − 1] : P (v′x(i) = 1) =



















pX =
1

1 + α exp( i%l
l ε)

, if vx(i) = 1

qX =
α exp( i%l

l ε)

1 + α exp( i%l
l ε)

, if vx(i) = 0

(23)

where vx(i) ∈ {0, 1} is the value of vx at the bit i, v′x is the perturbed vector created by randomizing all the bits in vx, ε is a

privacy budget, and α is a parameter bounded with 0 < α ≤
√

ε+rl

2r
∑

l−1

i=0
exp(2 ε

l
i%l)

. The bit-aware term i%l
l to indicate the

location of bit i, which is associated with the sensitivity of the bit at that location, in its l-bit binary encoded vector among

rl concatenated binary bits.

D ADDITIONAL EXPERIMENTS

This section provides more details on the experimental settings, and presents additional experiments.

Settings. Our experiments in this paper are implemented using Python 3.8 and conducted on a single GPU-assisted

compute node that is installed with a Linux 64-bit operating system. The allocated resources include 8 CPU cores (AMD

EPYC 7742 model) with 2 threads per core, and 60GB of RAM. The node is also equipped with 8 GPUs (NVIDIA DGX

A100 SuperPod model), with 80GB of memory per GPU.

The model accuracies in Figs. 5 and 11 are measured by evaluating the model on legitimate classification tasks. For the

CelebA dataset [Liu et al., 2015], the task is to classify whether a person is smiling or not based on face images. With regard

to the CIFAR-10 dataset [Krizhevsky et al., 2009], we use its original classification task with 10 classes. For the ImageNet

dataset [Deng et al., 2009], we extract a subset of 10 classes: tench, English springer, cassette player, chain saw, church,

French horn, garbage truck, gas pump, golf ball, and parachute1. Then, we evaluate the model performance on classifying

those 10 classes.

To obtain the feature embeddings of data samples, we use the pre-trained Resnet-18 model from Img2Vec2.

Attack performance without LDP. In this setting, the attack strategy in Fig. 2 requires the attacker to train the malicious

parameters h,W , which takes multiple local training epochs. Fig. 9 shows the attack success rate per local epoch with

2,000 neurons in the first layer (r = 2, 000). As can be seen, over time, the attack success rate reaches 100% across all three

datasets. Table 1 shows the average number of local training epochs needed to train those parameters to achieve the 100%

success rate, as we vary r. We observe that increasing r helps the attacker find the optimal parameters h,W faster. For

CIFAR-10, with r = 2, 000 neurons in the first layer, the attacker can easily train h,W within 50 epochs.
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Figure 9: Attack success rate of AMI during local epochs of training h,W . The success rate is represented via the advantage

(Adv), true positive rate (TPR), and true negative rate (TNR) according to Eq. 3. The baseline of random guessing is 0.5.

To understand the reason behind this behavior, we note that training h,W in this attack strategy is equivalent to finding a

non-linear decision boundary that overfits to the target sample t (Eq. 5), thereby distinguishing the target sample t from

1https://github.com/fastai/imagenette
2https://github.com/christiansafka/img2vec
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any other samples. Hence, increasing r raises the chance of over-fitting which, in turn, shortens the time to find h,W .

Furthermore, Table 1 indicates that as few as r = 5 neurons are needed to attain the 100% success rate, albeit the longer

training time.

Table 1: Number of local epochs needed to train h,W by the adversary A (Fig. 2) to obtain a 100% success rate. We vary

the number of neurons in the first layer (r) and get the average number of local epochs over multiple runs.

Dataset r No. of local epochs

CelebA

5 3585

500 763

1000 497

2000 297

ImageNet

5 1610

500 131

1000 88

2000 63

CIFAR-10

5 309

500 91

1000 54

2000 44

Attack performance under LDP. To shed light into how the privacy budget ε in the LDP mechanism, i.e., BitRand,

affects the AMI success rate, we visualize the distribution of the values of the chosen neuron associated with the target

and non-target samples. In Fig. 10a, with rigorous privacy budget (e.g., ε = 1), the mean values of the chosen neuron is

positive given the target samples and negative given the non-target samples. However, there is a notable overlap in the two

distributions of the target samples (i.e., red distribution) and the non-target samples (i.e., blue distribution). This makes the

attack difficult in distinguishing the target and non-target samples, based on the value of the chosen neuron. Consequently,

the attack success rate is moderate. On the other hand, when ε increases (Figs. 10b-10d), the distribution of the target

samples shift to the right, meanwhile the distribution of the non-target samples shift to the left. The shifts result in a less

overlap between the two distributions. As a result, when the privacy budget ε increases, the attack success rate of AMI

increases. We observe this phenomenon in all three datasets.

(a) ε = 1 (b) ε = 3 (c) ε = 5 (d) ε = 10

Figure 10: Histograms of the values of the chosen neuron when attacking against the BitRand mechanism with ε = 1, 3, 5,
and 10, respectively. The higher ε, the less overlapping distribution of the values of the chosen neuron, given the target

samples and the non-target samples. This indicates the higher attack success rate of AMI. These data samples are obtained

from the CelebA dataset.

In addition to evaluating the attack under the BitRand mechanism in Section 5, Fig. 11 shows our attack performance under

the OME mechanism [Lyu et al., 2020]. First, we observe the same phenomenon of OME as in [Arachchige et al., 2019,

Lyu et al., 2020] in which the model accuracy does not change much for ε ∈ [1, 10]. Second, our attack maintains a severe

success rate of about 90% for CelebA and CIFAR-10. More importantly, the attack success rate reaches more than 95% for

ImageNet. These results demonstrate that our AMI attack remains very effective even with low privacy budget ε when the

training set D is protected by the OME mechanism.

Fig. 12 shows the certified guarantee of success for the CelebA, ImageNet, and CIFAR-10 datasets when the LDP-preserving

OME mechanism is used. We can derive a certified guarantee of success for our AMI attack given ε ≥ 1 with a small broken



Active Membership Inference Attack under Local Differential Privacy in Federated Learning

1 2 3 4 5 6 7 8 9 10

Privacy budget ε

0.5

0.6

0.7

0.8

0.9

1.0
A
tt
a
ck

su
cc
es
s
ra
te

Adv

TPR

TNR

0.5

0.6

0.7

0.8

M
o
d
el
a
cc
u
ra
cy

Model accuracy

(a) CelebA

1 2 3 4 5 6 7 8 9 10

Privacy budget ε

0.5

0.6

0.7

0.8

0.9

1.0

A
tt
a
ck

su
cc
es
s
ra
te

Adv

TPR

TNR

0.65

0.70

0.75

0.80

0.85

0.90

M
o
d
el
a
cc
u
ra
cy

Model accuracy

(b) ImageNet

1 2 3 4 5 6 7 8 9 10

Privacy budget ε

0.5

0.6

0.7

0.8

0.9

1.0

A
tt
a
ck

su
cc
es
s
ra
te

Adv

TPR

TNR

0.6

0.7

0.8

0.9

M
o
d
el
a
cc
u
ra
cy

Model accuracy

(c) CIFAR-10

Figure 11: Attack success rate of AMI under the OME mechanism on CelebA, ImageNet, and CIFAR-10 datasets. The

success rate is represented via the advantage (Adv), true positive rate (TPR), and true negative rate (TNR) according to Eq.

3. The baseline of random guessing is 0.5. The model accuracy illustrates the utility loss of the data when using LDP.

(a) CelebA (b) ImageNet (c) CIFAR-10

Figure 12: Certified guarantee of success for ε ∈ [1, 10] in OME [Lyu et al., 2020]: Expectation (solid lines), upper-bound,

and lower-bound (shaded areas surrounding the expectation) of the values of the chosen neuron.

probability 10−8. This result is consistent with our attack success rate reported in Fig. 11. In addition to the unaffected

model accuracy and attack success rate, the effect of the privacy budget ε is modest in the certified guarantee of success,

given ε ∈ [1, 10] used in OME.

E NOISY GRADIENTS WITH DPSGD

Aside from LDP where clients perturb their own local training data D before computing the gradients, another method is to

let clients add DP noise to their gradients using DPSGD [Abadi et al., 2016] before sending them to the server, hindering

the attacker from knowing the true value of the chosen neuron’s gradient gt. Nevertheless, recent work suggests that using

DPSGD makes it impossible to train models with reasonable accuracy for datasets like CIFAR-10 or ImageNet, even in a

non-distributed setting [Boenisch et al., 2021, Tramèr and Boneh, 2021].

Moreover, even when DPSGD is used to add noise to the gradients, we can leverage the fact that the FL training is done in

multiple iterations to circumvent this DP noise. In [Abadi et al., 2016], the DP noise is sampled from a zero-mean Gaussian

distribution with a standard deviation of σ =

√
2 ln(1.25/δ)

ε , where ε is the privacy budget and δ is a broken probability.

However, as the noise is zero-mean, averaging the noise samples over multiple iterations will cancel out the noise and reveal

the true value of the gradients. This is also referred to as the privacy composition problem in DP [Dwork et al., 2014].

Specifically, denoting g
(i)′

t = gt + zi (where zi ∼ N (0, σ2
I)) as the noisy gradient of the chosen neuron at iteration i, the

server can obtain the true gradient gt by averaging over multiple iterations, i.e., gt =
1
P

∑P
i=1 g

(i)′

t . From this gt, the attacker

can determine whether the target sample was used in at least one of those iterations, following the same principle in Section

3. Fig. 13a shows the number of iterations needed to eliminate the DP noise. Previous work shows that training a neural

network for CIFAR-10 up to a modest accuracy of 66.2% requires a privacy budget ε ≥ 7.53 [Tramèr and Boneh, 2021],

hence we evaluate with ε ≥ 7.5. When ε ≥ 8, we need less than 100 iterations.

To reduce the number of iterations, we can increase the number of chosen neurons in the second layer, and average the noisy

gradients over all of the chosen neurons. Simply speaking, having K chosen neurons would reduce the number of iterations
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(a) 1 chosen neuron (b) δ = 10−2

Figure 13: Number of iterations needed to eliminate DP noises. 13a shows the results for 1 chosen neuron, while 13b varies

the number of chosen neurons and fixes δ = 10−2.
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Figure 14: Histograms of the distribution of normal weights and malicious weights. 14a shows the normal weights, while

14b, 14c, and 14d show the malicious weights when attacking under BitRand with ε = 2, 3, and 5, respectively. The solid

blue line is the kernel density estimation (KDE).

by K-fold. Fig. 13b shows the number of iterations needed to eliminate the DP noise with multiple neurons. As can be

seen, with only 4 chosen neurons, we only need less than 60 iterations to cancel out the DP noise at ε = 7.5. With 8 chosen

neurons, the noise can be canceled out within 10 iterations.
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