
ar
X

iv
:2

1
0
8
.0

3
8
3
7
v
3

[c

s.
L

G
]

 1
3
 O

ct
 2

0
2
2

Online Minimax Multiobjective Optimization:

Multicalibeating and Other Applications

Daniel Lee1, Georgy Noarov1, Mallesh Pai2, Aaron Roth1

1 University of Pennsylvania, 2 Rice University

daniellee@alumni.upenn.edu, gnoarov@seas.upenn.edu,

mallesh.pai@rice.edu, aaroth@cis.upenn.edu

October 14, 2022

Abstract

We introduce a simple but general online learning framework in which a learner plays against an
adversary in a vector-valued game that changes every round. Even though the learner’s objective is
not convex-concave (and so the minimax theorem does not apply), we give a simple algorithm that
can compete with the setting in which the adversary must announce their action first, with optimally
diminishing regret. We demonstrate the power of our framework by using it to (re)derive optimal bounds
and efficient algorithms across a variety of domains, ranging from multicalibration to a large set of no
regret algorithms, to a variant of Blackwell’s approachability theorem for polytopes with fast convergence
rates. As a new application, we show how to “(multi)calibeat” an arbitrary collection of forecasters —
achieving an exponentially improved dependence on the number of models we are competing against,
compared to prior work.

1 Introduction

We introduce and study a simple but powerful framework for online adversarial multiobjective minimax
optimization. At each round t, an adaptive adversary chooses an environment for the learner to play in,
defined by a convex compact action set X t for the learner, a convex compact action set Yt for the adversary,
and a d-dimensional continuous loss function ℓt : X t×Yt → [−1, 1]d that, in each coordinate, is convex in the
learner’s action and concave in the adversary’s action. The learner then chooses an action, or distribution
over actions, xt, and the adversary responds with an action yt. This results in a loss vector ℓt(xt, yt), which
accumulates over time. The learner’s goal is to minimize the maximum accumulated loss over each of the d

dimensions: maxj∈[d]

(
∑T

t=1 ℓ
t
j(x

t, yt)
)

.

One may view the environment chosen at each round t as defining a zero-sum game in which the learner
wishes to minimize the maximum coordinate of the resulting loss vector. The objective of the learner in the
stage game in isolation can be written as:1

wt
L = inf

xt∈X t
max
yt∈Yt

(

max
j∈[d]

ℓtj(x
t, yt)

)

.

Unfortunately, although ℓtj is convex-concave in each coordinate, the maximum over coordinates does not
preserve concavity for the adversary. Thus the minimax theorem does not hold, and the value of the game
in which the learner moves first (defined above) is larger than the value of the game in which the adversary
moves first— that is, wt

L > wT
A, where wt

A is defined as:

1 A brief aside about the “inf max max” structure of wt
L: since each ℓtj is continuous, so is maxj ℓ

t
j , and hence maxy(maxj ℓ

t
j)

is attained on the compact set Yt. However, maxy(maxj ℓtj) may not be a continuous function of x and therefore the infimum

over X t need not be attained.

1

wt
A = sup

yt∈Yt

min
xt∈X t

(

max
j∈[d]

ℓtj(x
t, yt)

)

.

Nevertheless, fixing a series of T environments chosen by the adversary, this defines in hindsight an aspira-
tional quantity WT

A =
∑T

t=1 w
t
A, summing the adversary-moves-first value of the constituent zero sum games.

Despite the fact that these values are not individually obtainable in the stage games, we show that they are
approachable on average over a sequence of rounds, i.e., there is an algorithm for the learner that guarantees
that against any adversary,

max
j∈[d]

(

1
T

T∑

t=1

ℓtj(x
t, yt)

)

≤ 1
TW

T
A + 4

√
2 ln d
T .

Our derivation is elementary and based on a minimax argument, and is a development of a game-theoretic
argument from the calibration literature due to Hart [2020] and Fudenberg and Levine [1999].2 The generic
algorithm plays actions at every round t according to a minimax equilibrium strategy in a surrogate game
that is derived both from the environment chosen by the adversary at round t, as well as from the history
of play so far on previous rounds t′ < t. The loss in the surrogate game is convex-concave (and so we may
apply minimax arguments), and can be used to upper bound the loss in the original games.

We then show that this simple framework can be instantiated to derive a wide array of optimal bounds,
and that the corresponding algorithms can be derived in closed form by solving for the minimax equilibrium
of the corresponding surrogate game. Despite its simplicity, our framework has a number of applications to
online learning— we sketch these below.

“Multi-Calibeating”: Foster and Hart [2021] recently introduced the notion of “calibeating” an arbitrary
online forecaster: making online calibrated predictions about an adversarially chosen sequence of inputs
that are guaranteed to have lower squared error than an arbitrary predictor f , where the improvement in
error approaches f ’s calibration error in hindsight. Foster and Hart give two methods for calibeating an
arbitrary collection of predictors F simultaneously, but these methods have an exponential and polynomial
dependence in their convergence bounds on |F|, respectively.

Using our framework, we can derive optimal online bounds for online multicalibration [Hébert-Johnson et al.,
2018, Gupta et al., 2022], and as an application, obtain bounds for calibeating arbitrary collection of models
with only a logarithmic dependence on |F|. Our algorithm naturally extends to the more general problem
of online “multi-calibeating” — i.e. combining the goals of online multicalibration and calibeating. Namely,
we give an algorithm for making real-valued predictions given contexts from some space Θ. The algorithm is
parameterized by (i) a collection G ⊆ 2Θ of (arbitrary, potentially intersecting) subsets of Θ that we might
envision to represent e.g. different demographic groups in a setting in which we are making predictions about
people; and (ii) an arbitrary collection of predictors F . We promise that our predictions are calibrated not
just overall, but simultaneously within each group g ∈ G — and moreover, that we calibeat each predictor
f ∈ F not just overall, but simultaneously within each group g ∈ G. We do this by proving an online
analogue of what Hébert-Johnson et al. [2018] call a “do no harm” property in the batch setting using a
similar technique: multicalibrating with respect to the level sets of the predictors.

Fast Polytope Blackwell Approachability: We give a variant of Blackwell’s Approachability Theo-
rem [Blackwell, 1956] for approaching a polytope. Standard methods approach a set in Euclidean distance,
at a rate polynomial in the payoff dimension. In contrast, we give a dimension-independent approachability
guarantee: we approximately satisfy all halfspace constraints defining the polytope, after logarithmically
many rounds in the number of constraints, a significant improvement over a polynomial dimensional depen-
dence in many settings. It is equivalent to the results of Perchet [2015], which show that the negative orthant
R

d
≤0 is approachable in the ℓ∞ metric with a log(d) dependence in the convergence rate. This result follows

immediately from a specialization of our framework that does not require changing the environment at each
round, highlighting the connection between our framework and approachability. We remark that approacha-
bility has been extended in a number of ways in recent years [Mannor et al., 2014a,b, Perchet and Mannor,

2This argument was extended in Gupta et al. [2022] to obtain fast rates and explicit algorithms for multicalibration and
multivalidity.

2

2013]. However most of our other applications take advantage of the flexibility of our framework to play a
different game at each round (which can be defined by context) with potentially different action sets, and so
do not directly follow from Blackwell approachability. Therefore, while many of our regret bounds could be
derived from approachability to the negative orthant by enlarging the action space exponentially to simulate
aspects of our framework, this approach would not easily lead to efficient algorithms.

Recovering Expert Learning Bounds: Algorithms and optimal bounds for various expert learning
problems fall naturally out of our framework as corollaries. This includes external regret [Vovk, 1990,
Littlestone and Warmuth, 1994], internal and swap regret [Foster and Vohra, 1998, Hart and Mas-Colell,
2000, Blum and Mansour, 2007], adaptive regret [Littlestone and Warmuth, 1994, Hazan and Seshadhri,
2009, Adamskiy et al., 2012], sleeping experts [Freund et al., 1997, Blum, 1997, Blum and Mansour, 2007,
Kleinberg et al., 2010], and the recently introduced multi-group regret [Blum and Lykouris, 2020, Rothblum and Yona,
2021]. Multi-group regret refers to a contextual prediction problem in which the learner gets contexts from
Θ before each round. It is parameterized by a collection of groups G ⊆ 2Θ: e.g., if the predictions concern
people, G may represent an arbitrary, intersecting set of demographic groups. Here the “experts” are different
models that make predictions on each instance; the goal is to attain no-regret not just overall, but also on
the subset of rounds corresponding to contexts from each g ∈ G. Multi-group regret, like multicalibration,
is one of the few solution concepts in the algorithmic fairness literature known not to involve tradeoffs with
overall accuracy [Globus-Harris et al., 2022]. Blum and Lykouris [2020] derived their algorithm for online
multigroup regret via a reduction to sleeping experts, and Gupta et al. [2022] derived their algorithm for
online multicalibration via a direct argument. Here we derive online algorithms for both multicalibration
and multigroup regret as corollaries of the same fundamental framework.

1.1 Additional Related Work

Papers by Azar et al. [2014] and Kesselheim and Singla [2020] study a related problem: an online setting
with vector-valued losses, where the goal is to minimize the ℓ∞ norm of the accumulated loss vector (they
also consider other ℓp-norms). However, they study an incomparable benchmark that in our notation would

be written as minx∗∈X maxj∈[d]
1
T

∑T
t=1 ℓj(x

∗, yt) (which is well-defined in their setting, where loss functions
ℓt = ℓ and action sets X t = X ,Yt = Y are fixed throughout the interaction). On the one hand, this
benchmark is stronger than ours in the sense that the maximum over coordinates is taken outside the sum
over time, whereas our benchmark considers a “greedy” per-round maximum. On the other hand, in our
setting the game can be different at every round, so our benchmark allows a comparison to a different action
at each round rather than a single fixed action. In the setting of Kesselheim and Singla [2020], it is impossible
to give any regret bound to their benchmark, so they derive an algorithm obtaining a log(d) competitive ratio
to this benchmark. In contrast, our benchmark admits a regret bound. Hence, our results are quite different
in kind despite the outward similarity of the settings: none of our applications follow from their theorems
(since in all of our applications, we derive regret bounds).

A different line of work [Rakhlin et al., 2010, 2011] takes a very general minimax approach towards
deriving bounds in online learning, including regret minimization, calibration, and approachability. Their
approach is substantially more powerful than the framework we introduce here (e.g. it can be used to derive
bounds for infinite dimensional problems, and characterizes online learnability in the sense that it can also be
used to prove lower bounds). However, it is also correspondingly more complex, and requires analyzing the
continuation value of a T round dynamic program. Such analyses are generally technically challenging; as an
example, a recent line of work by Drenska and Kohn [2020] and Kobzar et al. [2020] considers a Rakhlin et
al.-style minimax formulation of the standard experts problem, and shows how to find nonlinear PDE-based
minimax solutions for the Learner and the Adversary that can be optimal not just asymptotically in the
number of experts (dimensions) d, but also nonasymptotically for small d such as 2 or 3; their PDE approach
is also conducive to bounding not just the maximum regret across dimensions, but also more general functions
of the individual dimensions’ losses.

Overall, results derived from the Rakhlin et al. framework (with some notable exceptions, including

3

Rakhlin et al. [2012]) are generically nonconstructive, whereas our framework is simple and inherently con-
structive, in that the algorithm derives from repeatedly solving a one-round stage zero-sum game. Relative
to this literature, we view our framework as a “user-friendly” power tool that can be used to derive a wide
variety of algorithms and bounds without much additional work — at the cost of not being universally
expressive.

2 General Framework

2.1 The Setting

A Learner (she) plays against an Adversary (he) over rounds t ∈ [T] := {1, . . . , T }. Over these rounds, she
accumulates a d-dimensional loss vector (d ≥ 1), where each round’s loss vector lies in [−C,C]d for some
C > 0. At each round t, the Learner and the Adversary interact as follows:

1. Before round t, the Adversary selects and reveals to the Learner an environment comprising:

(a) The Learner’s and Adversary’s respective convex compact action sets X t, Yt embedded into a
finite-dimensional Euclidean space;

(b) A continuous vector loss function ℓt(·, ·) : X t × Yt → [−C,C]d, with each ℓtj(·, ·) : X t × Yt →
[−C,C] (for j ∈ [d]) convex in the 1st and concave in the 2nd argument.

2. The Learner selects some xt ∈ X t.

3. The Adversary observes the Learner’s selection xt, and responds with some yt ∈ Yt.

4. The Learner suffers (and observes) the loss vector ℓt(xt, yt).

The Learner’s objective is to minimize the value of the maximum dimension of the accumulated loss vector
after T rounds—in other words, to minimize: maxj∈[d]

∑

t∈[T] ℓ
t
j(x

t, yt).
To benchmark the Learner’s performance, we consider the following quantity at each round t:

Definition 2.1 (The Adversary-Moves-First (AMF) Value at Round t). The Adversary-Moves-First value
of the game defined by the environment (X t,Yt, ℓt) at round t is:

wt
A := sup

yt∈Yt

min
xt∈X t

(

max
j∈[d]

ℓtj(x
t, yt)

)

.

If the Adversary had to reveal yt first and the Learner could best respond, wt
A would be the smallest value of

the maximum coordinate of ℓt she could guarantee. However, the function maxj∈[d] ℓ
t
j(x

t, yt) is not convex-
concave (as the max does not preserve concavity); hence the minimax theorem does not apply, making this
value unobtainable for the Learner, who is in fact obligated to reveal xt first. However, we can define regret
to a benchmark given by the cumulative AMF values of the games:

Definition 2.2 (Adversary-Moves-First (AMF) Regret). On transcript πt={(X s,Ys, ℓs), xs, ys}ts=1, we define
the Learner’s Adversary Moves First (AMF) Regret for the jth dimension at time t to be:

Rt
j(π

t) :=

t∑

s=1

ℓsj(x
s, ys)−

t∑

s=1

ws
A.

The overall AMF Regret is then defined as follows: Rt(πt) = maxj∈[d]R
t
j .

3

Again, the game played at each round is not convex-concave, so we cannot get RT ≤ 0. Instead, we will
aim to obtain sublinear AMF regret, worst-case over adaptive adversaries: RT = o(T).

3We will generally elide the dependence on the transcript and simply write Rt
j and Rt.

4

2.2 General Algorithm

Our algorithmic framework will be based on a natural idea: instead of directly grappling with the maximum
coordinate of the cumulative vector valued loss, we upper bound the AMF regret with a one-dimensional
“soft-max” surrogate loss function, which the algorithm will then aim to minimize.

Definition 2.3 (Surrogate loss). Fixing a parameter η ∈ (0, 1), we define our surrogate loss function (that
implicitly depends on the transcript πt through the respective round t) as:

Lt :=
∑

j∈[d]

exp
(
ηRt

j

)
for t ∈ [T], and L0 := d.

This surrogate loss tightly bounds the AMF regret RT = maxj∈[d]R
T
j :

Lemma 2.1. The Learner’s AMF Regret is upper bounded using the surrogate loss as: RT ≤ lnLT

η .

Next we observe a simple but important bound on the per-round increase in the surrogate loss.

Lemma 2.2. For any t, any transcript through round t, and any η ≤ 1
2C , it holds that:

Lt ≤
(
4η2C2 + 1

)
Lt−1 + η

∑

j∈[d]

exp
(
ηRt−1

j

)
·
(
ℓtj
(
xt, yt

)
− wt

A

)
.

The proof is very simple (see Appendix A.1): we write out the quantity Lt − Lt−1, use the definition of
AMF regret Rt, and then bound Lt − Lt−1 via the inequality ex ≤ 1 + x+ x2 for |x| ≤ 1.

We now exploit Lemma 2.2 to bound the final surrogate loss LT and obtain a game-theoretic algorithm
for the Learner that attains this bound. While the above steps should remind the reader of a standard
derivation of the celebrated Exponential Weights algorithm via bounding a log-sum-exp potential function,
the next lemma is the novel ingredient that makes our framework significantly more general by relying on
Sion’s powerful generalization of the Minimax Theorem to convex-concave games.

Lemma 2.3. For any η ≤ 1
2C , the Learner can ensure that the final surrogate loss is bounded as:

LT ≤ d
(
4η2C2 + 1

)T
.

Proof sketch; see Appendix A.1. Define, for t ∈ [T], continuous convex-concave functions ut : X t×Yt → R by:
ut(x, y) :=

∑

j∈[d] exp
(
ηRt−1

j

) (
ℓtj(x, y)− wt

A

)
. If the Learner can ensure ut(xt, yt) ≤ 0 on all rounds t ∈ [T]

regardless of the Adversary’s play, then Lemma 2.2 implies Lt ≤
(
4η2C2 + 1

)
Lt−1 for all t ∈ [T], leading to

the desired bound on LT . Due to the continuous convex-concave nature of each ut (inherited from the loss
coordinates ℓtj), we can apply Sion’s Minimax Theorem to conclude that: minxt∈X t maxyt∈Yt ut (xt, yt) =
maxyt∈Yt minxt∈X t ut (xt, yt) .
In words, the Learner has a so-called minimax-optimal strategy xt, that achieves (worst-case over all yt ∈ Yt)
value ut(xt, yt) as low as if the Adversary moved first and the Learner could best-respond. But in the
latter counterfactual scenario, using the definitions of ut and the Adversary-moves-first value wt

A, we can
easily see that by best-responding to the Adversary, the Learner would always guarantee herself value ≤ 0:
that is, maxyt∈Yt minxt∈X t ut (xt, yt) ≤ 0. Thus, minxt∈X t maxyt∈Yt ut (xt, yt), and so by playing minimax-
optimally at every round t ∈ [T], the Learner will guarantee ut (xt, yt) ≤ 0 for all t, leading to the desired
regret bound.

In fact, via a simple algebraic transformation (see Appendix A.1) taking advantage of the values wt
A

being independent of the actions xt, yt, we can explicitly express the Learner’s minimax optimal strategies

at all rounds as: argmin
x∈X t

max
y∈Yt

ut(x, y) = argmin
x∈X t

max
y∈Yt

∑

j∈[d]

exp(η
∑t−1

s=1 ℓsj(x
s,ys))

∑

i∈[d]

exp(η
∑t−1

s=1 ℓsi (x
s,ys))

ℓtj(x, y). Together with the

5

proof of Lemma 2.3, this immediately gives the following algorithm for the Learner that achieves the desired
bound on LT (and thus, as we will show, on the AMF regret RT).

Algorithm 1: General Algorithm for the Learner that Achieves Sublinear AMF Regret

for rounds t = 1, . . . , T do

Learn adversarially chosen X t,Yt, and loss function ℓt(·, ·).

Let χt
j :=

exp
(

η
∑t−1

s=1 ℓ
s
j(x

s, ys)
)

∑

i∈[d] exp
(

η
∑t−1

s=1 ℓ
s
i (x

s, ys)
) for j ∈ [d].

Play xt ∈ argmin
x∈X t

max
y∈Yt

∑

j∈[d]

χt
j · ℓtj(x, y).

Observe the Adversary’s selection of yt ∈ Yt.

Theorem 2.1 (AMF Regret guarantee of Algorithm 1). For any T ≥ ln d, Algorithm 1 with learning rate

η =
√

ln d
4TC2 obtains, against any Adversary, AMF regret bounded by: RT ≤ 4C

√
T ln d.

Indeed, using Lemma 2.1, then Lemma 2.3, then 1 + x ≤ ex, and finally settingη =
√

ln d
4TC2 , we get:

RT ≤ lnLT

η ≤
ln
(

d(4η2C2+1)T
)

η ≤ ln(d exp(4Tη2C2))
η = ln d

η + 4TC2η = 4C
√
T ln d.

Remark 2.1. Our framework is easy to adapt to the setting where the Learner randomizes, at each round,
amongst a finite set of actions At (i.e. X t = ∆At), and wishes to obtain in-expectation and high-probability
AMF regret bounds. This is useful in all our applications below. Additionally, our AMF regret bounds are
robust to the Learner playing only an approximate (rather than exact) minimax strategy at each round: we
use this to derive our simple multicalibration algorithm below. See Appendix A.2 for both these extensions.

3 Deriving No-X-Regret Algorithms from Our Framework

The core of our framework — the Adversary-Moves-First regret — is strictly more general than a very large
variety of known regret notions including: external, internal, swap, adaptive, sleeping-experts, multigroup,
and wide-range (Φ) regret. Specifically, in Appendix E, we use our framework to derive simple O(

√
T)-regret

algorithms for what we call subsequence regret, which encapsulates all these regret forms. In each of these
cases, our generic algorithm is efficient, and often specializes (by computing a minimax equilibrium strategy
in closed form) to simple combinatorial algorithms that had been derived from first principles in prior work.
We note that in any problem that involves context or changing action spaces (as the sleeping experts problem
does), we are taking advantage of the flexibility of our framework to present a different environment at every
round, which distinguishes our framework from more standard Blackwell approachability arguments. In fact,
as we will see in Section 5 below, our framework recovers fast Blackwell approachability as a special case.

For our general subsequence regret algorithms, please see Appendix E. Now, as a warm-up application
of our framework, we directly instantiate it for the simplest case of obtaining O(

√
T) external regret.

Simple Learning From Expert Advice: External Regret In the classical experts learning setting
Littlestone and Warmuth [1994], the Learner has a set of pure actions (“experts”) A. At the outset of each
round t ∈ [T], the Learner chooses a distribution over experts xt ∈ ∆A. The Adversary then comes up with
a vector of losses rt = (rta)a∈A ∈ [0, 1]A corresponding to each expert. Next, the Learner samples at ∼ xt,
and experiences loss corresponding to the expert she chose: rtat . The Learner also gets to observe the entire
vector of losses rt for that round. The goal of the Learner is to achieve sublinear external regret — that is,
to ensure that the difference between her cumulative loss and the loss of the best fixed expert in hindsight
grows sublinearly with T : RT

ext(π
T) :=

∑

t∈[T] r
t
at −minj∈A

∑

t∈[T] r
t
j = o(T).

6

Theorem 3.1. Fix a finite pure action set A for the Learner and a time horizon T ≥ ln |A|. Then, an
instantiation of our framework’s Algorithm 2 lets the Learner achieve the following regret bounds:

EπT

[
RT

ext

(
πT
)]

≤ 4
√

T ln |A|, and RT
ext

(
πT
)
≤ 8

√

T ln |A|
δ with prob. 1− δ.

Proof. We instantiate (the probabilistic version of) our framework (see Section A.2.1).
At all rounds, the Learner’s pure action set is A, and the Adversary’s strategy space is the convex and

compact set [0, 1]|A|, from which each round’s collection (rta)a∈A of all actions’ losses is selected. Next, we
define a |A|-dimensional loss function ℓt = (ℓtj)j∈A, where each coordinate loss ℓtj expresses the regret of the
Learner’s chosen action a relative to action j ∈ A:

ℓtj(a, r
t) = rta − rtj , for a ∈ A, rt ∈ [0, 1]|A|.

By Theorem A.1, E
[

maxj∈A

∑

t∈[T] ℓ
t
j(a

t, rt)−∑t∈[T] w
t
A

]

≤ 4
√

T ln |A|, where wt
A is the AMF value

at round t. Using this AMF regret bound, we can bound the Learner’s external regret as:

E

[
RT

ext

]
= E

[

max
j∈A

∑

t∈[T]
rtat − rtj

]

= E

[

max
j∈A

∑

t∈[T]
ℓtj(a

t, rt)

]

≤ 4
√

T ln |A|+
∑

t∈[T]
wt

A.

It thus remains to show that the AMF value wt
A ≤ 0 for all t. This holds, since if the Learner knew the

Adversary’s choice of losses (rta)a∈A before round t, then picking the action a ∈ A with the smallest loss
rta would get her 0 regret in that round. 4 This gives the in-expectation regret bound; the high-probability
bound follows in the same way from Theorem A.2.

A bound of
√

T ln |A| is optimal for external regret in the experts learning setting, and so serves to
witness the optimality of our framework’s general AMF regret bound in Theorem 2.1.

In fact, the above instantiation of Algorithm 2 yields the classical Exponential Weights algorithm

Littlestone and Warmuth [1994]: at each round t, the action at is sampled with Pr[at = j] ∼ exp
(

−η
∑t−1

s=1 r
s
j

)

,

for j ∈ A. We denote this distribution by EWη(π
t−1) ∈ ∆(A).

Indeed, given the above defined loss ℓt, the Learner solves the following problem at each round:

xt ∈ argmin
x∈∆A

max
rt∈[0,1]|A|

∑

j∈A

χt
j E
a∼x

[rta − rtj],

where χt
j =

exp(η
∑t−1

s=1(r
s
as−rsj))

∑

i∈A exp(η
∑t−1

s=1(r
s
as−rsi))

=
exp(−η

∑t−1
s=1 rsj)

∑

i∈A exp(−η
∑t−1

s=1 rsi)
. That is, the per-coordinate weights (χt

j)j∈A

themselves form the Exponential Weights distribution with rate η.
For any choice of rt by the Adversary, the quantity inside the expectation, ℓtj(a, r

t) = rta − rtj , is anti-
symmetric in a and j: that is, ℓtj(a, r

t) = −ℓta(j, rt). Due to this antisymmetry, no matter which rt gets

selected by the Adversary, by playing a ∼ EWη(π
t−1) the Learner obtains Ea,j∼EWη(πt−1)

[
rta − rtj

]
= 0,

thus achieving the value of the game. It is also easy to see that xt = EWη(π
t−1) is the unique choice of

xt that guarantees nonnegative value, hence Algorithm 2, when specialized to the external regret setting, is
equivalent to the Exponential Weights Algorithm 5.

4Formally, for any vector of actions’ losses rt, define a∗
rt

:= argmina∈A rta, and notice that

min
a∈A

max
j∈A

ℓtj(a, r
t) ≤ max

j∈A
ℓtj

(

a∗
rt
, rt

)

= max
j∈A

(

rta∗
rt

− rtj

)

= min
a∈A

rta − min
j∈A

rtj = 0.

Hence, the AMF value is indeed nonpositive at each round: wt
A = sup

rt∈[0,1]|A|

min
a∈A

maxj∈A ℓtj(a, r
t) ≤ 0.

7

4 Multicalibration and Multicalibeating

We now apply our framework to derive an online contextual prediction algorithm which simultaneously
satisfies a (potentially very large) family of strong adversarial accuracy and calibration conditions. Namely,
given an arbitrarily complex family G of subsets of the context space (we call them “groups”, a term from
the fairness literature), the predictor will be both calibrated and accurate on each group g ∈ G (that is, over
those online rounds when the context belongs to g).

The accuracy benchmark that we aim to satisfy was recently proposed by Foster and Hart [2021], who
called it calibeating: given any collection F of online forecasters, the goal is (intuitively) to “beat” the
(squared) error of each f ∈ F by at least the calibration score of f .

In Section 4.1, we use our framework to rederive the online multigroup calibration (known as multical-
ibration) algorithm of Gupta et al. [2022]. In Section 4.2, we show that by appropriately augmenting the
original collection of groups G, this algorithm will, in addition to multicalibration, calibeat any family of
predictors f ∈ F on every group g ∈ G, which we call multicalibeating.

4.1 Multicalibration

Setting There is a feature (or context) space Θ encoding the set of possible feature vectors representing
individuals θ ∈ Θ. There is also a label space [0, 1]. At every round t ∈ [T]:

1. The Adversary announces a particular individual θt ∈ Θ, whose label is to be predicted;

2. The Learner predicts a label distribution xt over [0, 1];

3. The Adversary observes xt, and fixes the true label distribution yt over [0, 1];

4. The (pure) guessed label at ∼ xt and the (pure) true label bt ∼ yt are sampled.

Objective: Multicalibration The Learner is initially given an arbitrary collection G ⊆ 2Θ of protected
population groups. Her goal, multicalibration, is empirical calibration not just marginally over the whole
population, but also conditionally on individual membership in each g ∈ G. Formally, for any n ≥ 1 we let
the n-bucketing of the label interval [0, 1] be its partition into subintervals [0, 1/n), . . . , [1−2/n, 1−1/n), [1−
1/n, 1]. The ith of these intervals (buckets) is denoted Bi

n.

Definition 4.1 ((α, n)-Multicalibration with respect to G). Fix a real α > 0 and an integer n ≥ 1. Given
the transcript of the interaction {(at, bt)}t∈[T], the Learner’s sequence of guessed labels {at}t∈[T] is (α, n)-
multicalibrated with respect to the collection of groups G if:

1

T

∣
∣
∣
∣
∣

T∑

t=1

1θt∈g · 1at∈Bi
n
· (bt − at)

∣
∣
∣
∣
∣
≤ α, for every group g ∈ G and every bucket Bi

n (for i ∈ [n]).

Using our framework, we now derive the guarantee on α that matches that of Gupta et al. [2022].

Theorem 4.1 (Multicalibration). Fix a family of groups G, a time horizon T ≥ ln(2|G|n), and any nat-
ural n, r ≥ 1. Then, our framework’s Algorithm 2 can be instantiated as Algorithm 3 to produce (α, n)-
multicalibrated predictions w.r.t. G, where α satisfies (over transcript randomness):

E[α] ≤ 1
rn + 4

√
ln(2|G|n)

T and Pr
[

α ≤ 1
rn + 8

√

1
T ln

(
2|G|n

δ

)]

≥ 1− δ ∀ δ ∈ (0, 1).

Sketch. Setting up the game: The adversary’s strategy space is Y = [0, 1]. The learner will randomize
over Ar = {0, 1/(rn), 2/(rn), . . . , 1}, for any choice of integer r ≥ 1 (this will ensure continuity of the loss
functions that we are about to define), i.e., her strategy space is X = ∆Ar.

8

Loss functions: The definition of multicalibration consists of 2|G|n constraints (one for each ± sign, group

g, and bucket i) of the following form: ± 1
T

∑T
t=1 1θt∈g · 1at∈Bi

n
· (bt − at) ≤ α. Thus, we define (for each

t ∈ [T], σ = ±1, g, and i) a loss function over (at, bt) ∈ Ar ×Y as: ℓti,g,σ(a
t, bt) := σ · 1θt∈g · 1at∈Bi

n
· (bt− at).

Now, defining a 2|G|n dimensional loss vector ℓt :=
(
ℓti,g,σ

)

i∈[n],g∈G,σ∈{−1,1}
for each t ∈ [T] recasts multical-

ibration in our framework as requiring that maxi∈[n],g∈G,σ∈{−1,1}

∑T
t=1 ℓ

t
i,g,σ(a

t, bt) ≤ αT.
Bounding the AMF regret: To bound the Adversary-Moves-First value with these loss functions, suppose

the Adversary announces bt ∈ [0, 1]. Then, we easily see that by (deterministically) responding with at =
argmina∈Ar

|bt − a|, for all σ, g, i, ℓti,g,σ(a
t, bt) ≤ 1

2rn . Hence,

wt
A = sup

bt∈[0,1]

min
xt∈∆Ar

max
i∈[n],g∈G,σ∈{−1,1}

E
at∼xt

[
ℓti,g,σ

(
at, bt

)]
≤ 1

2rn for every t ∈ [T].

Now, for T ≥ ln(2|G|n), the AMF regret RT = maxi∈[n],g∈G,σ∈{−1,1}

∑T
t=1 ℓ

t
i,g,σ(a

t, bt) −∑T
t=1 w

t
A, by our

framework’s guarantees, satisfies E[RT] ≤ 4
√

T ln(2|G|n) over the Learner’s randomness. Since
∑T

t=1 w
t
A ≤

T
2rn , we get E[maxi∈[n],g∈G,σ∈{−1,1}

∑T
t=1 ℓ

t
i,g,σ(a

t, bt)] ≤ T
2rn + 4

√

T ln(2|G|n).
This gives (α, n)-multicalibration with E[α] ≤ 1

T

(
T
2rn + 4

√

T ln(2|G|n)
)

= 1
2rn + 4

√
ln(2|G|n)

T . The high-

probability bound on α is obtained similarly.
Simplifying Learner’s algorithm: To attain the AMF value wt

A = 1
2rn at each round, our framework

has the Learner solve a linear program (that encodes her minimax strategy). However, she can obtain the
almost optimal value 1

rn without solving an LP: this observation gives Algorithm 3 (see Appendix B). The
guarantees on α only differ from optimal ones by replacing 1

2rn → 1
rn .

4.2 Multicalibeating

We now give an approach to “beating” arbitrary collections of online forecasters via online multicalibration.
The goal, called calibeating by Foster and Hart [2021] who introduce the problem, is to make calibrated
forecasts that are more accurate than each of an arbitrary set of forecasters, by exactly the calibration
error in hindsight of that forecaster. They achieve optimal calibeating bounds for a single forecaster, but
their extension to calibeating multiple forecasters incurs at least a polynomial dependence on the number
of forecasters. We achieve a logarithmic dependence on the number of forecasters. Additionally, we are
able to simultaneously calibeat forecasters on all (big enough) subgroups in some set G, with still only a
logarithmic dependence on |G| and the number of forecasters in the group-wise convergence bound. We call
this multicalibeating. We now give an overview of our setting, results, and techniques. For full details, see
Appendix C.

Setting The Learner (predictor a = {at}t∈[T]) and the Adversary (true labels b = {bt}t∈[T]) interact in the
same way as in Section 4.1, but the Adversary additionally reveals to the Learner a finite set of forecasters
F , where each f ∈ F is a function f : Θ → Df . Here Df ⊂ [0, 1] is assumed to be a finite set of all possible
forecasts that f makes: it will characterize the level sets of f . We often suppress the dependence on the
transcript, denoting f t ∈ Df the forecast at time t.

The Learner’s goal is to “improve on” the forecasts of all f ∈ F , for some suitable scoring of the predictions.
We measure the Learner’s and the forecasters’ accuracy via the squared error, alternatively known as the
Brier score.

Definition 4.2 (Brier Score). The Brier score of a forecaster f over all rounds t ∈ [T] is defined as:
Bf(πT) := 1

T

∑

t∈[T](f
t − bt)2.

The Brier score can be decomposed into so-called calibration and refinement parts. The former quantifies
the extent to which the predictor is calibrated, while the latter expresses the average amount of variance in
predictions within every calibration bucket.

9

To define this decomposition, we need some extra notation. We denote by Si the subsequence of days
on which the Learner’s prediction is in bucket i.5 Similarly, Sd(f) (eliding (f) when clear from context)
denotes days on which forecaster f predicts d. We let Sd

i (f) = Si ∩ Sd(f). Finally, we use bars to indicate
average predictions over given subsequences. For instance, ā(S) is the Learner’s average prediction over a
given subsequence S.

Definition 4.3 (Calibration and Refinement). The calibration score K and refinement score R of a forecaster
f over the full transcript πT are defined as:

Kf (πT) :=
1

T

∑

d∈Df

|Sd|(d− b̄(Sd))2, Rf (πT) :=
1

T

∑

d∈Df

∑

t∈Sd
(bt − b̄(Sd))2.

Fact 1 (Calibration-Refinement Decomposition of Brier Score [DeGroot and Fienberg, 1983]). Bf(πT) =
Kf (πT) +Rf (πT).

The goal of calibeating is to beat the forecaster’s Brier score by an amount equal to its calibration score.
Or equivalently, to attain a Brier score (almost) equal to the refinement score of the forecaster.

Definition 4.4 (Calibeating). The Learner’s predictor a is said to τ -calibeat a forecaster f if: Ba(πT) ≤
Rf (πT) + τ.

We will now extend the definition of calibeating simultaneously along two natural directions. First, we
will want to calibeat multiple forecasters at once. The second extension is that we will want to calibeat the
forecasters not just overall, but also on each of the subsequences corresponding to each “population group”
g ∈ G in a given family of subpopulations G ⊆ 2Θ.

Definition 4.5 (Multicalibeating). Given a family of forecasters F , groups G ⊆ 2Θ, and a mapping β :
F ×G → R≥0, the Learner’s predictor a is an (F ,G, β)-multicalibeater if for every g ∈ G: Ba(πT |{t:θt∈g}) ≤
minf∈F

{
Rf (πT |{t:θt∈g}) + β(f, g)

}

Note that ({f}, {Θ}, β(f,Θ) := τ)-multicalibeating is equivalent to τ -calibeating a forecaster f .
We first show how to calibeat a single forecaster (Definition 4.4). The modularity of multicalibration will

then let us easily extend this result to multiple forecasters and population subgroups.
The idea is to show that if our predictor is multicalibrated with respect to the level sets of f , then we

achieve calibeating. Hébert-Johnson et al. [2018] give a similar bound in the batch setting. We denote the
collection of level sets of f as: S(f) := {θ ∈ Θ : f(θ) = d}d∈Df

.

Theorem 4.2 (Calibeating One Forecaster). Suppose that the Learner’s predictions a are (α, n)-multicalibrated
on the collection of groups S(f)∪{Θ}. Then the Learner is (α, n)-calibrated on Θ, and she (αn(|Df |+2)+ 2

n)-
calibeats forecaster f .

Proof sketch. We show that a has small calibration score, and refinement score close to that of f .
Step 1: Replace Ba with a surrogate Brier score Ba

n. Consider a (pseudo-)predictor ã given by ãt = ā(Siat)
for t ∈ [T] (where iat is the bucket of at). That is, whenever at ∈ Bi

n, ãt predicts the average of a over
all such rounds s ∈ [T] that as ∈ Bi

n. This is a pseudo-predictor, as the bucket averages of a are unknown
until after round T . Thus, ã has precisely n level sets, unlike a. Now, we define Ba

n,Ka
n,Ra

n to be the Brier,
calibration, and refinement scores of ã. We can show Ba ≤ Ba

n + 1/n, allowing us to switch to bounding the
more manageable Brier loss Ba

n = Ka
n +Ra

n.
Step 2: Bound the surrogate calibration score Ka

n. Since the Learner is (α, n)-calibrated on the domain
Θ, the calibration error per level set is at most α. There are n level sets, so Ka

n ≤ αn.
Step 3: Bound the surrogate refinement score Ra

n. We connect Rf and Ra
n via a joint refinement

score: Rf×a, which measures the average variance of the partition generated by all intersections of the
level sets of a and f . The finer the partition, the smaller the refinement score, so Rf ≥ Rf×a. Next,
informally, multicalibration ensures that a has already “captured” most of the variance explained by f .
Therefore, refining a’s level sets by f does little to reduce variance. More precisely, we show that Ra

n ≤
Rf×a + αn(|Df |+ 1) + 1

n . Combining with our previous inequality, we have: Ra
n ≤ Rf + αn(|Df |+ 1) + 1

n .
Combining the above, we get: Ba ≤ Ra

n +Ka
n + 1

n ≤ (Rf + αn(|Df |+ 1) + 1
n) + αn+ 1

n .
5Note that Si depends implicitly on the bucketing parameter n and the transcript πT .

10

Calibeating many forecasters Generalizing the above construction, we can easily calibeat any collection
of forecasters F on the entire context space Θ: it suffices to ask for multicalibration with respect to the

level sets of all forecasters, i.e.
(
⋃

f∈F S(f)
)

∪ {Θ}. Theorem 4.2 applies separately to each f ; the only

degradation in the guarantees will come in the form of a larger α, since we are asking for multicalibration
with respect to more groups than before. But this effect will be small, since α depends on the number of
required groups |G′| as O(

√

ln |G′|). See Corollary C.2.
However, to fully satisfy Definition 4.5 of multicalibeating, we need to calibeat all f ∈ F on all groups

g ∈ G in a given collection G ⊆ 2Θ. For that, we simply extend the above construction by requiring
multicalibration with respect to all pairwise intersections of the forecasters’ level sets with the groups g ∈ G.
By further augmenting this collection with the protected groups G themselves, we finally achieve our ultimate
goal: simultaneous multicalibeating and multicalibration.

Theorem 4.3 (Multicalibeating + Multicalibration). Let G ⊆ 2Θ, and F some set of forecasters f : Θ → Df .

The multicalibration algorithm on G′ :=
(
⋃

f∈F{g ∩ S : (g, S) ∈ G × S(f)}
)

∪ G with parameters r, n ≥ 1,

after T rounds, attains expected (F ,G, β)-multicalibeating, where: 6
E[β(f, g)] ≤ 2

n +
|Df |+2

r·|S(g)|/T + 4n(|Df | +

2)

√

1
|S(g)|2/T ln

(

2n|G|(1 +∑f |Df |)
)

∀ f ∈ F , g ∈ G,

while maintaining (α, n)-multicalibration on G, with: E[α] ≤ 1
rn + 4

√

1
T ln

(

2n|G|(1 +∑f |Df |)
)

.

In particular, for any group g occurring more than T−1/2 of the time, we asymptotically converge to
1
n -calibeating as T → ∞, thus combining the goals of online multicalibration and multigroup regret.

5 Polytope Blackwell Approachability

Consider a setting where the Learner and the Adversary are playing a repeated game with vector-valued
payoffs, in which the Learner always goes first and aims to force the average payoff over the entire interaction
to approach a given convex set. Blackwell’s Theorem [1956] states that a convex set is approachable if and
only if it is response-satisfiable (roughly, for any choice of the Adversary, the Learner has a response forcing
the one-round payoff inside the convex set). The rate of approachability typically depends on the dimension
of the payoff vectors.

This is a specialization of our framework to a case in which the environment is fixed at every round. Thus
our framework can be used to obtain a dimension-independent rate bound in the fundamental case where
the approachable set is a convex polytope. Our bound is only logarithmic in the polytope’s number of facets,
and is achievable via an efficient convex-programming based algorithm.

Let us formalize our setting. In rounds t = 1, 2, . . ., the Learner and the Adversary play a repeated game.
Their respective pure strategy sets are A and Y, where A is a finite set and Y ⊆ R

m (for some integer m ≥ 1)
is convex and compact. The game’s utility function is λ-dimensional (for some integer λ ≥ 1), continuous,
concave in the second argument, and is denoted by u : A × Y → R

λ. At each round t, the Learner plays a
mixed strategy xt ∈ ∆A, the Adversary responds with some yt ∈ Y, and the Learner then samples a pure
action at ∼ xt. This gives rise to the utility vector u(at, yt). The average play up to any round t ≥ 1 is then
defined as ūt = 1

t

∑t
s=1 u(a

s, ys).
The target convex set that the Learner wants to approach is a polytope P(H) ⊆ R

λ, defined as the
intersection of a finite collection of halfspaces H = (hα,β), where for any given α ∈ R

λ, β ∈ R we denote
hα,β = {x ∈ R

λ : 〈α, x〉 − β ≤ 0}. Finally, by way of normalization, consider any two dual norms || · ||p and
|| · ||q.We require, first, that ||α||p ≤ 1 and |β| ≤ 1 for each halfspace hα,β ∈ H; and second, that the payoffs
be in the || · ||q-unit ball: ||u(a, y)||q ≤ 1 for a ∈ A, y ∈ Y.

6S(g) denotes the subsequence of days on which a group g occurs, suppressing dependence on transcript.

11

Theorem 5.1 (Polytope Blackwell Approachability). Suppose the target convex polytope P(H) is response-
satisfiable, in the sense that for any Adversary’s action y ∈ Y, the Learner has a mixed response x ∈ ∆A
that places the expected payoff inside P(H): that is, Ea∼x[u(a, y)] ∈ P(H).

Then, P(H) is approachable, both in expectation and with high probability with respect to the transcript of
the interaction. Namely, the Learner has an efficient convex programming based algorithm which guarantees
both following conditions simultaneously:

1. For any margin ǫ > 0, the average play ūt up to any round t ≥ 64 ln |H|
ǫ2 will satisfy E

[
maxhα,β∈H (〈α, ūt〉 − β)

]
≤

ǫ.

2. For any δ ∈ (0, 1), the average play ūt up to any round t ≥ ln |H| will satisfy maxhα,β∈H (〈α, ūt〉 − β) ≤

16

√

1
T ln

(
|H|
δ

)

with probability at least 1− δ.

Acknowledgments

We thank Ira Globus-Harris, Chris Jung, and Kunal Talwar for helpful conversations at an early stage of
this work. Supported in part by NSF grants AF-1763307, FAI-2147212, CCF-2217062, and CCF-1934876
and the Simons collaboration on algorithmic fairness.

References

Dmitry Adamskiy, Wouter M Koolen, Alexey Chernov, and Vladimir Vovk. A closer look at adaptive regret.
In International Conference on Algorithmic Learning Theory, pages 290–304. Springer, 2012.

Yossi Azar, Uriel Felge, Michal Feldman, and Moshe Tennenholtz. Sequential decision making with vector
outcomes. In Proceedings of the 5th conference on Innovations in Theoretical Computer Science, pages
195–206, 2014.

David Blackwell. An analog of the minimax theorem for vector payoffs. Pacific Journal of Mathematics, 6
(1):1–8, 1956.

Avrim Blum. Empirical support for winnow and weighted-majority algorithms: Results on a calendar schedul-
ing domain. Machine Learning, 26(1):5–23, 1997.

Avrim Blum and Thodoris Lykouris. Advancing subgroup fairness via sleeping experts. In Innovations in
Theoretical Computer Science Conference (ITCS), volume 11, 2020.

Avrim Blum and Yishay Mansour. From external to internal regret. Journal of Machine Learning Research,
8(6), 2007.

Morris H. DeGroot and Stephen E. Fienberg. The comparison and evaluation of forecasters. The Statistician,
32:12–22, 1983.

Nadejda Drenska and Robert V Kohn. Prediction with expert advice: A pde perspective. Journal of
Nonlinear Science, 30(1):137–173, 2020.

Devdatt P Dubhashi and Alessandro Panconesi. Concentration of measure for the analysis of randomized
algorithms. Cambridge University Press, 2009.

Dean P Foster and Sergiu Hart. “calibeating”: Beating forecasters at their own game.
https://www.ma.huji.ac.il/~hart/papers/calib-beat.pdf, 2021.

Dean P Foster and Rakesh V Vohra. Asymptotic calibration. Biometrika, 85(2):379–390, 1998.

12

Yoav Freund, Robert E Schapire, Yoram Singer, and Manfred K Warmuth. Using and combining predictors
that specialize. In Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, pages
334–343, 1997.

Drew Fudenberg and David K Levine. An easier way to calibrate. Games and Economic Behavior, 29(1-2):
131–137, 1999.

Ira Globus-Harris, Michael Kearns, and Aaron Roth. Beyond the frontier: Fairness without accuracy loss.
arXiv preprint arXiv:2201.10408, 2022.

Amy Greenwald and Amir Jafari. A general class of no-regret learning algorithms and game-theoretic
equilibria. In Learning theory and kernel machines, pages 2–12. Springer, 2003.

Varun Gupta, Christopher Jung, Georgy Noarov, Mallesh M. Pai, and Aaron Roth. Online Multivalid
Learning: Means, Moments, and Prediction Intervals. In 13th Innovations in Theoretical Computer Science
Conference (ITCS 2022), pages 82:1–82:24, 2022.

Sergiu Hart. Calibrated forecasts: The minimax proof, 2020. URL
http://www.ma.huji.ac.il/~hart/papers/calib-minmax.pdf.

Sergiu Hart and Andreu Mas-Colell. A simple adaptive procedure leading to correlated equilibrium. Econo-
metrica, 68(5):1127–1150, 2000.

Elad Hazan and Comandur Seshadhri. Efficient learning algorithms for changing environments. In Proceed-
ings of the 26th Annual International Conference on Machine Learning, pages 393–400, 2009.

Ursula Hébert-Johnson, Michael Kim, Omer Reingold, and Guy Rothblum. Multicalibration: Calibration
for the (computationally-identifiable) masses. In International Conference on Machine Learning, pages
1939–1948. PMLR, 2018.

Thomas Kesselheim and Sahil Singla. Online learning with vector costs and bandits with knapsacks. In
Conference on Learning Theory, pages 2286–2305. PMLR, 2020.

Robert Kleinberg, Alexandru Niculescu-Mizil, and Yogeshwer Sharma. Regret bounds for sleeping experts
and bandits. Machine Learning, 80(2):245–272, 2010.

Vladimir A Kobzar, Robert V Kohn, and Zhilei Wang. New potential-based bounds for prediction with
expert advice. In Conference on Learning Theory, pages 2370–2405. PMLR, 2020.

Ehud Lehrer. A wide range no-regret theorem. Games and Economic Behavior, 42(1):101–115, 2003.

Nick Littlestone and Manfred K Warmuth. The weighted majority algorithm. Information and computation,
108(2):212–261, 1994.

Shie Mannor, Vianney Perchet, and Gilles Stoltz. Approachability in unknown games: Online learning meets
multi-objective optimization. In Conference on Learning Theory, pages 339–355. PMLR, 2014a.

Shie Mannor, Vianney Perchet, and Gilles Stoltz. Set-valued approachability and online learning with partial
monitoring. The Journal of Machine Learning Research, 15(1):3247–3295, 2014b.

Vianney Perchet. Exponential weight approachability, applications to calibration and regret minimization.
Dynamic Games and Applications, 5(1):136–153, 2015.

Vianney Perchet and Shie Mannor. Approachability, fast and slow. In Conference on Learning Theory, pages
474–488. PMLR, 2013.

T.E.S. Raghavan. Zero-sum two-person games. In R.J. Aumann and S. Hart, editors, Handbook of Game
Theory with Economic Applications, volume 2 of Handbook of Game Theory with Economic Applications,
chapter 20, pages 735–768. Elsevier, 1994. URL https://ideas.repec.org/h/eee/gamchp/2-20.html.

13

Alexander Rakhlin, Karthik Sridharan, and Ambuj Tewari. Online learning: Random averages, combinatorial
parameters, and learnability. Advances in Neural Information Processing Systems, 23:1984–1992, 2010.

Alexander Rakhlin, Karthik Sridharan, and Ambuj Tewari. Online learning: Beyond regret. In Proceedings
of the 24th Annual Conference on Learning Theory, pages 559–594. JMLR Workshop and Conference
Proceedings, 2011.

Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Relax and randomize: from value to algorithms.
In Proceedings of the 25th International Conference on Neural Information Processing Systems-Volume 2,
pages 2141–2149, 2012.

Guy N Rothblum and Gal Yona. Multi-group agnostic pac learnability. arXiv preprint arXiv:2105.09989,
2021.

Volodimir G Vovk. Aggregating strategies. Proc. of Computational Learning Theory, 1990, 1990.

A The General Framework with Extensions to Probabilistic and

Approximate Learners: Full Proofs and Algorithms

A.1 Omitted Proofs from Section 2

Proof of Lemma 2.1. After taking the log and dividing by η, this lemma follows from the following chain:

exp
(
ηRT

)
= exp

(

ηmax
j∈[d]

RT
j

)

= exp

(

max
j∈[d]

ηRT
j

)

= max
j∈[d]

exp
(
ηRT

j

)
≤
∑

j∈[d]

exp
(
ηRT

j

)
= LT .

Proof of Lemma 2.2. By definition of the surrogate loss,we have:

Lt − Lt−1 =
∑

j∈[d]

exp
(
ηRt

j

)
−
∑

j∈[d]

exp
(
ηRt−1

j

)
,

=
∑

j∈[d]

exp
(
ηRt−1

j + η
(
ℓtj
(
xt, yt

)
− wt

A

))
−
∑

j∈[d]

exp
(
ηRt−1

j

)
,

=
∑

j∈[d]

exp
(
ηRt−1

j

) (
exp

(
η
(
ℓtj
(
xt, yt

)
− wt

A

))
− 1
)
.

Using the fact that exp(x)− 1 ≤ x+ x2 for |x| ≤ 1, we have, for η · 2C ≤ 1,

≤
∑

j∈[d]

exp
(
ηRt−1

j

) (

η
(
ℓtj(x

t, yt)− wt
A

)
+ η2

(
ℓtj(x

t, yt)− wt
A

)2
)

,

≤ η
∑

j∈[d]

exp
(
ηRt−1

j

) (
ℓtj
(
xt, yt

)
− wt

A

)
+ η2(2C)2Lt−1.

Proof of Lemma 2.3. We begin by recalling that L0 = d. Thus, the desired bound on LT follows via
Lemma 2.2 and a telescoping argument, if only we can show that for every t ∈ [T] the Learner has an
action xt ∈ X t which guarantees that for any yt ∈ Yt,

η
∑

j∈[d]

exp
(
ηRt−1

j

) (
ℓtj(x

t, yt)− wt
A

)
≤ 0.

14

To this end, we define a zero-sum game between the Learner and the Adversary, with action space X t for the
Learner and Yt for the Adversary, and with the objective function (which the Adversary wants to maximize
and the Learner wants to minimize):

ut(x, y) :=
∑

j∈[d]

exp
(
ηRt−1

j

) (
ℓtj(x, y)− wt

A

)
, for all x ∈ X t, y ∈ Yt.

Recall from the definition of our framework that X t,Yt are convex, compact and finite-dimensional, as
well as that each ℓtj is continuous, convex in the first argument, and concave in the second argument. Since
ut is defined as an affine function of the individual coordinate functions ℓtj, u

t is also convex-concave and
continuous. This means that we may invoke Sion’s Minimax Theorem:

Fact 2 (Sion’s Minimax Theorem). Given finite-dimensional convex compact sets X ,Y, and a continuous
function f : X × Y → R which is convex in the first argument and concave in the second argument, it holds
that

min
x∈X

max
y∈Y

f(x, y) = max
y∈Y

min
x∈X

f(x, y).

Using Sion’s Theorem to switch the order of play (so that the Adversary is compelled to move first), and
then recalling the definition of wt

A (the value of the maximum coordinate value of ℓt that the Learner can
obtain when the Adversary is compelled to move first), we obtain:7

min
xt∈X t

max
yt∈Yt

ut
(
xt, yt

)
= max

yt∈Yt
min
xt∈X t

ut
(
xt, yt

)

= max
yt∈Yt

min
xt∈X t

∑

j′∈[d]

exp
(

ηRt−1
j′

)

·
(
ℓtj′
(
xt, yt

)
− wt

A

)
,

≤ sup
yt∈Yt

min
xt∈X t

∑

j′∈[d]

exp
(

ηRt−1
j′

)

·max
j∈[d]

(
ℓtj
(
xt, yt

)
− wt

A

)
,

=
∑

j′∈[d]

exp
(

ηRt−1
j′

)

· sup
yt∈Yt

min
xt∈X t

max
j∈[d]

(
ℓtj
(
xt, yt

)
− wt

A

)
,

=
∑

j′∈[d]

exp
(

ηRt−1
j′

)

·
(
wt

A − wt
A

)
,

= 0.

Thus, the Learner can ensure that Lt ≤
(
4η2C2 + 1

)
Lt−1 by playing at every round t:

xt ∈ argmin
x∈X t

max
y∈Yt

ut(x, y).

This concludes the proof.

An equivalent description of Learner’s space of minimax optimal strategies at each round t
We observe that the Learner’s optimal action at each round, derived in the proof, can be expressed without

7Note that in the third step, maxyt∈Yt turns into supyt∈Yt . This is because after each
(

ℓt
j′

(

xt, yt
)

− wt
A

)

is replaced with

maxj
(

ℓtj
(

xt, yt
)

− wt
A

)

, the maximum over y generally becomes unachievable (recall Footnote 1).

15

any reference to the quantities wt
A:

xt ∈ argmin
x∈X t

max
y∈Yt

∑

j∈[d]

exp(ηRt−1
j)(ℓtj(x, y)− wt

A),

= argmin
x∈X t

max
y∈Yt

∑

j∈[d]

exp(ηRt−1
j)ℓtj(x, y),

= argmin
x∈X t

max
y∈Yt

∑

j∈[d]

exp
(

η
∑t−1

s=1 ℓ
s
j(x

s, ys)
)

ℓtj(x, y)

exp
(

η
∑t−1

s=1 w
s
A

) ,

= argmin
x∈X t

max
y∈Yt

∑

j∈[d]

exp

(

η

t−1∑

s=1

ℓsj(x
s, ys)

)

ℓtj(x, y),

= argmin
x∈X t

max
y∈Yt

∑

j∈[d]

exp
(

η
∑t−1

s=1 ℓ
s
j(x

s, ys)
)

∑

i∈[d] exp
(

η
∑t−1

s=1 ℓ
s
i (x

s, ys)
) ℓtj(x, y).

The weights placed on the loss coordinates ℓsj(x
t, yt) in the final expression form a probability distribution

which should remind the reader of the well known Exponential Weights distribution.

A.2 Extensions

Before presenting applications of our framework, we pause to discuss two natural extensions that are called
for in some of our applications. Both extensions only require very minimal changes to the notation in
Section 2.1 and to the general algorithmic framework in Section 2.2.

We begin by discussing, in Section A.2.1, how to adapt our framework to the setting where the Learner
is allowed to randomize at each round amongst a finite set of actions, and wishes to obtain probabilistic
guarantees for her AMF regret with respect to her randomness. This will be useful in all three of our
applications.

We then proceed to show, in Section A.2.2, that our AMF regret bounds are robust to the case in which
at each round, the Learner, who is playing according to the general Algorithm 1 given above, computes
and plays according to an approximate (rather than exact) minimax strategy. This is useful for settings
where it may be desirable (for computational or other reasons) to implement our algorithmic framework
approximately, rather than exactly. In particular, in one of our applications — mean multicalibration, which
is discussed in Section 4.1 — we will illustrate this point by deriving a multicalibration algorithm that has
the Learner play only extremely (computationally and structurally) simple strategies, at the cost of adding
an arbitrarily small term to the multicalibration bounds, compared to the Learner that plays the exact
minimax equilibrium.

A.2.1 Performance Bounds for a Probabilistic Learner

So far, we have described the interaction between the Learner and the Adversary as deterministic. In many
applications, however, the convex action space for the Learner is the simplex over some finite set of base
actions, representing probability distributions over actions. In this case, the Adversary chooses his action in
response to the probability distribution over base actions chosen by the Learner, at which point the Learner
samples a single base action from her chosen distribution.

We will use the following notation. The Learner’s pure action set at time t is denoted by At. Before
each round t, the Adversary reveals a vector valued loss function ℓt : At ×Yt → [−C,C]d. At the beginning
of round t, the Learner chooses a probabilistic mixture over her action set At, which we will usually denote
as xt ∈ ∆At; after the Adversary has made his move, the Learner samples her pure action at for the round,
which is recorded into the transcript of the interaction.

16

The redefined vector valued losses ℓt now take as their first argument a pure action a ∈ At. We extend
this to X t := ∆At as ℓt(xt, yt) := Eat∼xt [ℓt(at, yt)] for any xt ∈ ∆At. In this notation, holding the second
argument fixed, the loss function is linear (hence convex and continuous) and has a convex, compact domain
(the simplex ∆At). Using this extended notation, it is now easy to see how to define the probabilistic analog
of the AMF value.

Definition A.1 (Probabilistic AMF Value).

wt
A := sup

yt∈Yt

min
xt∈X t

max
j∈[d]

ℓtj(x
t, yt) = sup

yt∈Yt

min
xt∈∆At

max
j∈[d]

E
at∼xt

[
ℓtj(a

t, yt)
]
.

For a more detailed discussion of the probabilistic setting, please refer to Appendix A.3.

Adapting the algorithm to the probabilistic Learner setting Above, Algorithm 1 was given for the
deterministic case of our framework. In the probabilistic setting, when computing the probability distribution
for the current round, the Learner should take into account the realized losses from the past rounds. We
present the modified algorithm below.

Algorithm 2: General Algorithm for the Probabilistic Learner

for rounds t = 1, . . . , T do

Learn adversarially chosen At,Yt, and vector loss function ℓt(·, ·) : At × Yt → [−C,C]d.
Let

χt
j :=

exp
(

η
∑t−1

s=1 ℓ
s
j(a

s, ys)
)

∑

i∈[d] exp
(

η
∑t−1

s=1 ℓ
s
i (a

s, ys)
) for j ∈ [d].

Select a mixed action xt ∈ ∆At, where

xt ∈ argmin
x∈∆At

max
y∈Yt

∑

j∈[d]

χt
j · ℓtj(x, y).

Observe the Adversary’s selection of yt ∈ Yt.
Sample pure action at ∼ xt.

Probabilistic performance guarantees Algorithm 2 provides two crucial blackbox guarantees to the
probabilistic Learner. First, the guarantees on Algorithm 1 from Theorem 2.1 almost immediately translate
into a bound on the expected AMF regret of the Learner who uses Algorithm 2, over the randomness in her
actions. Second, a high-probability AMF regret bound, also over the Learner’s randomness, can be derived
in a straightforward way.

Theorem A.1 (In-Expectation Bound). Given T ≥ ln d, Algorithm 2 with learning rate η =
√

ln d
4TC2

guarantees that ex-ante, with respect to the randomness in the Learner’s realized outcomes, the expected
AMF regret is bounded as:

E

[
RT
]
≤ 4C

√
T ln d.

Proof Sketch. Using Jensen’s inequality to switch expectations and exponentials, it is easy to modify the
proof of Lemma 2.1 to obtain the following in-expectation bound:

E

[
RT
]
≤ lnE

[
LT
]

η
.

The rest of the proof is similar to the proofs of Lemma 2.2 and Lemma 2.3.

17

Theorem A.2 (High-Probability Bound). Fix any δ ∈ (0, 1). Given T ≥ ln d, Algorithm 2 with learning rate

η =
√

ln d
4TC2 guarantees that the AMF regret will satisfy, with ex-ante probability 1 − δ over the randomness

in the Learner’s realized outcomes,

RT ≤ 8C

√

T ln

(
d

δ

)

.

Proof Sketch. The proof proceeds by constructing a martingale with bounded increments that tracks the
increase in the surrogate loss LT , and then using Azuma’s inequality to conclude that the final surrogate loss
(and hence the AMF regret) is bounded above with high probability. For a detailed proof, see Appendix A.3.

A.2.2 Performance Bounds for a Suboptimal Learner

Our general Algorithms 1 and 2 involve the Learner solving a convex program at each round in order to
identify her minimax optimal strategy. However, in some applications of our framework it may be necessary
or desirable for the Learner to restrict herself to playing approximately minimax optimal strategies instead
of exactly optimal ones. This can happen for a variety of reasons:

1. Computational efficiency. While the convex program that the Learner must solve at each round
is polynomial-sized in the description of the environment, one may wish for a better running time
dependence — e.g. in settings in which the action space for the Learner is exponential in some other
relevant parameter of the problem. In such cases, we will want to trade off run-time for approximation
error in the minimax equilibrium computation at each round.

2. Structural simplicity of strategies. One may wish to restrict the Learner to only playing “simple”
strategies (for example, distributions over actions with small support), or more generally, strategies
belonging to a certain predefined strict subset of the Learner’s strategy space. This subset may only
contain approximately optimal minimax strategies.

3. Numerical precision. As the convex programs solved by the Learner at each round generally have
irrational coefficients (due to the exponents), using finite-precision arithmetic to solve these programs
will lead to a corresponding precision error in the solution, making the computed strategy only approx-
imately minimax optimal for the Learner. This kind of approximation error can generally be driven to
be arbitrarily small, but still necessitates being able to reason about approximate solutions.

Given a suboptimal instantiation of Algorithm 1 or 2, we thus want to know: how much worse will its
achieved regret bound be, compared to the existential guarantee? We will now address this question for both
the deterministic setting of Sections 2.1 and 2.2, and the probabilistic setting of Section A.2.1.

Recall that at each round t ∈ [T], both Algorithm 1 and Algorithm 2 (with the weights χt
j defined

accordingly) have the Learner solve for the minimizer x of the function ψt : X t → [−C,C] defined as:

ψt(x) := max
y∈Yt

∑

j∈[d]

χt
j · ℓtj(x, y).

The range of ψt is [−C,C] as indicated, since it is a linear combination of loss coordinates ℓtj(x, y) ∈ [−C,C],
where the weights (χt

1, . . . , χ
t
d) form a probability distribution over [d].

Now suppose the Learner ends up playing actions x1, . . . , xT which do not necessarily minimize the
respective objectives ψt(·). The following definition helps capture the degree of suboptimality in the Learner’s
play at each round.

Definition A.2 (Achieved AMF Value Bound). Consider any round t ∈ [T], and suppose the Learner plays
action xt ∈ X t at round t. Then, any number

wt
bd ∈

[
ψt(xt), C

]

is called an achieved AMF value bound for round t.

18

This definition has two aspects. Most importantly, wt
bd upper bounds the Learner’s achieved objective

function value at round t. Furthermore, we restrict wt
bd to be ≤ C — otherwise it would be a meaningless

bound as the Learner gets objective value ≤ C no matter what xt she plays.
We now formulate the desired bounds on the performance of a suboptimal Learner. The upshot is

that for a suboptimal Learner, the bounds of Theorems 2.1, A.1, A.2 hold with each wt
A replaced with the

corresponding achieved AMF bound wt
bd.

Theorem A.3 (Bounds for a Suboptimal Learner). Consider a Learner who does not necessarily play
optimally at all rounds, and a sequence w1

bd, . . . , w
T
bd of achieved AMF value bounds.

In the deterministic setting, the Learner achieves the following regret bound analogous to Theorem 2.1:

max
j∈[d]

T∑

t=1

ℓtj(x
t, yt) ≤

T∑

t=1

wt
bd + 4C

√
T ln d.

In the probabilistic setting, the Learner achieves the following in-expectation regret bound analogous to
Theorem A.1:

E

[

max
j∈[d]

T∑

t=1

ℓtj(a
t, yt)

]

≤
T∑

t=1

wt
bd + 4C

√
T ln d,

and the following high-probability bound analogous to Theorem A.2:

max
j∈[d]

T∑

t=1

ℓtj(a
t, yt) ≤

T∑

t=1

wt
bd + 8C

√

T ln

(
d

δ

)

with probability ≥ 1− δ, for any δ ∈ (0, 1).

Proof Sketch. We use the deterministic case for illustration. The main idea is to redefine the Learner’s regret
to be relative to her achieved AMF value bounds (wt

bd)t∈[T] rather than the AMF values (wt
A)t∈[T]. Namely,

we let Rt
bd := maxj∈[d] (R

t
bd)j , where (Rt

bd)j :=
∑t

s=1 ℓ
s
j(x

s, ys) −∑t
s=1 w

s
bd. The surrogate loss is defined

in the same way as before, namely Lt
bd :=

∑

j∈[d] exp
(

η · (Rt
bd)j

)

.

First, Lemma 2.1 still holds: RT
bd ≤

(
lnLT

bd

)
/η, with the same proof. Lemma 2.2 also holds after replacing

each wt
A with wt

bd: namely, Lt
bd ≤

(
4η2C2 + 1

)
Lt−1
bd + η

∑

j∈[d] exp
(

η
(
Rt−1

bd

)

j

)

·
(
ℓtj (x

t, yt)− wt
bd

)
. The

proof is almost the same: we formerly used wt
A ≤ C, and now use that wt

bd ≤ C by Definition A.2.
Now, following the proofs of Lemma 2.3 and Theorem 2.1, to obtain the declared regret bound it suffices

to show for t ∈ [T] that the Learner’s action xt guarantees
∑

j∈[d] exp
(

η
(
Rt−1

bd

)

j

)

·
(
ℓtj (x

t, yt)−wt
bd

)
≤ 0, no

matter what yt is played by the Adversary. For any yt ∈ Yt, we can rewrite this objective as:

∑

j∈[d]

exp
(

η
(
Rt

bd

)

j

)

·
(
ℓtj
(
xt, yt

)
− wt

bd

)
=

∑

i∈[d] exp
(

η
∑t−1

s=1 ℓ
s
i (x

s, ys)
)

exp
(
∑t−1

s=1 w
s
bd

)

∑

j∈[d]

χt
j ·
(
ℓtj(x

t, yt)− wt
bd

)
.

It now follows that action xt achieves
∑

j∈[d]

exp
(

η
(
Rt−1

bd

)

j

)

·
(
ℓtj (x

t, yt)−wt
bd

)
≤ 0, from observing that:

∑

j∈[d]

χt
j ·
(
ℓtj(x

t, yt)− wt
bd

)
=
∑

j∈[d]

χt
j · ℓtj(xt, yt)− wt

bd ≤ ψt(xt)− wt
bd ≤ 0,

where the final inequality holds since the Learner achieves AMF value bound wt
bd at round t.

A.3 Omitted Proofs and Details from Section A.2.1: Bounds for the Probabilis-

tic Learner

First, we define our probabilistic setting, emphasizing the differences to the deterministic protocol. At each
round t ∈ [T], the interaction between the Learner and the Adversary proceeds as follows:

19

1. At the beginning of each round t, the Adversary selects an environment consisting of the following,
and reveals it to the Learner:

(a) The Learner’s simplex action set X t = ∆At, where At is a finite set of pure actions;

(b) The Adversary’s convex compact action set Yt, embedded in a finite-dimensional Euclidean space;

(c) A vector valued loss function ℓt(·, ·) : At × Yt → [−C,C]d. Every dimension ℓtj(·, ·) : At × Yt →
[−C,C] (where j ∈ [d]) of the loss function is continuous and concave in the second argument.

2. The Learner selects some xt ∈ X t;

3. The Adversary observes the Learner’s selection xt, and chooses some action yt ∈ Yt in response;

4. The Learner’s action xt ∈ ∆At is interpreted as a mixture over the pure actions in At, and an outcome
at ∈ At is sampled from it; that is, at ∼ xt.

5. The Learner suffers (and observes) ℓt(at, yt), the loss vector with respect to the outcome at.

Thus, the probabilistic setting is simply a specialization of our framework to the case of the Learner’s action
set being a simplex at each round.

Unlike in the above deterministic setting, where the transcript through any round t was defined as
{(xt, yt)}ts=1, in the present case we define the transcript through round t as

πt := {(a1, y1), . . . , (at, yt)},

that is, the transcript now records the Learner’s realized outcomes rather than her chosen mixtures at all
rounds. Furthermore, we will denote by Πt the set of transcripts through round t, for t ∈ [T].

Now, let us fix any Adversary Adv (that is, all of the Adversary’s decisions through round T). With
respect to this fixed Adversary, any algorithm for the Learner (defined as the collection of the Learner’s
decision mappings {πt−1 → ∆At}t∈[T] for all rounds) induces an ex-ante distribution PAdv over the set of
transcripts ΠT .

Now, we give two types of probabilistic guarantees on the performance of Algorithm 2, namely, an in-
expectation bound and a high-probability bound. Both bounds hold for any choice of Adversary Adv, and
are ex-ante with respect to the algorithm-induced distribution PAdv over the final transcripts.

Theorem A.1 (In-Expectation Bound). Given T ≥ ln d, Algorithm 2 with learning rate η =
√

ln d
4TC2

guarantees that ex-ante, with respect to the randomness in the Learner’s realized outcomes, the expected
AMF regret is bounded as:

E

[
RT
]
≤ 4C

√
T ln d.

As mentioned in Section A.2.1, the proof of Theorem A.1 is much the same as the proofs of Theorem 2.1
and the helper Lemmas 2.1, 2.2, 2.3, with the exception of using Jensen’s inequality to switch the order of
taking expectations when necessary. We omit further details.

Theorem A.2 (High-Probability Bound). Fix any δ ∈ (0, 1). Given T ≥ ln d, Algorithm 2 with learning rate

η =
√

ln d
4TC2 guarantees that the AMF regret will satisfy, with ex-ante probability 1 − δ over the randomness

in the Learner’s realized outcomes,

RT ≤ 8C

√

T ln

(
d

δ

)

.

Proof. Throughout this proof, we put tildes over random variables to distinguish them from their realized
values. For instance, π̃t is the random transcript through round t, while πt is a realization of π̃t. Also, we
explicitly specify the dependence of the surrogate loss Lt on the (random or realized) transcript.

20

Consider the following random process {Z̃t}, defined recursively for t = 0, 1, . . . , T and adapted to the
sequence of random variables π̃1, . . . , π̃T . We let Z̃0 := 0 deterministically, and for t ∈ [T] we let

Z̃t := Z̃t−1 + lnLt
(
π̃t
)
− E

π̃t

[
lnLt

(
π̃t
)
|π̃t−1

]
.

It is easy to see that for all t ∈ [T], we have E
π̃t

[

Z̃t|π̃t−1
]

= Z̃t−1, and thus {Z̃t} is a martingale.

We next show that this martingale has bounded increments. In brief, this follows from {Z̃t} being defined
in terms of the logarithm of the surrogate loss.

Lemma A.1. The martingale {Z̃t} has bounded increments: |Z̃t − Z̃t−1| ≤ 4ηC for all t ∈ [T].

Proof. It suffices to establish the bounded increments property for an arbitrary realization of the process.
Towards this, fix the full transcript πT of the interaction, and consider any round t ∈ [T].

Recall from the definition of the surrogate loss that

Lt(πt) =
∑

j∈[d]

exp
(
ηRt−1

j

(
πt−1

))
· exp

(
η
(
ℓtj(a

t, yt)− wt
A

))
.

Thus, noting that
∣
∣ℓtj(a

t, yt)− wt
A

∣
∣ ≤ 2C for all j ∈ [d], we have

Lt(πt)

Lt−1(πt−1)
=

Lt(πt)
∑

j∈[d] exp(ηR
t−1
j (πt−1))

∈ [exp (−η · 2C) , exp (η · 2C)] .

Taking the logarithm yields
∣
∣lnLt

(
πt
)
− lnLt−1(πt−1)

∣
∣ ≤ 2ηC.

In fact, this argument shows that
∣
∣lnLt(πt

′)− lnLt−1(πt−1)
∣
∣ ≤ 2ηC for any transcript πt

′ that equals πt−1

on the first t− 1 rounds. Hence, taking the expectation over π̃t conditioned on πt−1, we obtain:

∣
∣
E

[
lnLt

(
π̃t
)
|πt−1

]
− lnLt−1(πt−1)

∣
∣ ≤ 2ηC.

To conclude the proof, it now suffices to observe that:

|Zt − Zt−1| =
∣
∣lnLt

(
πt
)
− E[lnL

t
(
π̃t
)
|πt−1]

∣
∣

≤
∣
∣lnLt(πt)− lnLt−1

(
πt−1

)∣
∣ +
∣
∣lnLt−1

(
πt−1

)
− E

[
lnLt

(
π̃t
)
|πt−1

]∣
∣

≤ 2ηC + 2ηC = 4ηC.

Having established that {Z̃t} is a martingale with bounded increments, we can now apply the following
concentration bound (see e.g. Dubhashi and Panconesi [2009]).

Fact 3 (Azuma’s Inequality). Fix ǫ>0. For any martingale {Z̃t}Tt=0 with |Z̃t−Z̃t−1|≤ξ for t∈ [T],

Pr
[

Z̃T − Z̃0 ≥ ǫ
]

≤ exp

(

− ǫ2

2ξ2T

)

.

We instantiate this bound for our martingale with Z̃0 = 0, ξ = 4ηC, and ǫ = ξ
√

2T ln 1
δ = 4ηC

√

2T ln 1
δ ,

and obtain that for any δ ∈ (0, 1),

Z̃T ≤ 4ηC

√

2T ln
1

δ
with prob. 1− δ. (1)

21

At this point, let us express Z̃T as follows:

Z̃T =

T∑

t=1

(

lnLt
(
π̃t
)
−E
π̃t

[
lnLt

(
π̃t
)
|π̃t−1

]
)

= lnLT
(
π̃T
)
−lnL0−

T∑

t=1

(

E
π̃t

[
lnLt

(
π̃t
)
|π̃t−1

]
−lnLt−1

(
π̃t−1

)
)

.

Now, with an eye toward bounding the latter sum, observe that for t ∈ [T],

E
π̃t

[
lnLt(π̃t)|π̃t−1

]
− lnLt−1(π̃t−1) ≤ ln E

π̃t

[
Lt(π̃t)|π̃t−1

]
− lnLt−1

(
π̃t−1

)

≤ ln
((
4η2C2 + 1

)
Lt−1

(
π̃t−1

))
− lnLt−1(π̃t−1)

= ln(4η2C2 + 1)

≤ 4η2C2.

Here, the first step is via Jensen’s inequality and the last step is via ln(1 + x) ≤ x for x > −1. The second
step holds since we can show (via reasoning similar to Lemma 2.3) that for any T ≥ ln d, at each round

t ∈ [T] Algorithm 2 with learning rate η =
√

ln d
4TC2 achieves:

E
π̃t

[
Lt(π̃t)|π̃t−1

]
≤ (4η2C2 + 1)Lt−1(π̃t−1).

Combining the above observations with Bound 1 and recalling L0=d yields, with probability≥1−δ,

Z̃T ≤ 4ηC

√

2T ln
1

δ
⇐⇒lnLT (π̃T)− ln d−

T∑

t=1

(

E
π̃t
[lnLt(π̃t)|π̃t−1]− lnLt−1(π̃t−1)

)

≤ 4ηC

√

2T ln
1

δ

⇐⇒lnLT (π̃T) ≤ ln d+

T∑

t=1

(

E
π̃t
[lnLt(π̃t)|π̃t−1]− lnLt−1(π̃t−1)

)

+ 4ηC

√

2T ln
1

δ

=⇒ lnLT (π̃T) ≤ ln d+ 4η2C2T + 4ηC

√

2T ln
1

δ
.

Using the last inequality, with η =
√

ln d
4TC2 , and the fact that RT

(
π̃T
)
≤ LT (π̃T)

η (which is easy to

deduce via Lemma 2.1), we thus obtain the desired high-probability AMF regret bound. Specifically, with
probability 1− δ we have:

RT
(
π̃T
)
≤ LT

(
π̃T
)

η
≤ ln d

η
+ 4ηC2T + 4C

√

2T ln
1

δ
= 2

√
4C2T ln d+ 4C

√

2T ln
1

δ

= 4C
√
T

(
√
ln d+

√

2 ln
1

δ

)

≤ 4C
√
T ·

√
2 ·
√

ln d+ 2 ln
1

δ
≤ 8C

√

T ln
d

δ
.

In the last line, we used that
√
x+

√
y ≤

√
2
√
x+ y for x, y ≥ 0.

B Multicalibration: The Algorithm and Full Proofs

A simple and efficient algorithm for the Learner As mentioned in the proof sketch of Theorem 4.1,
in the setting of multicalibration, our framework’s general Algorithm 2 has a particularly simple approximate
version (originally derived in Gupta et al. [2022]) that lets the Learner (almost) match the above bounds on
the multicalibration constant α. This approximate algorithm is very efficient and has “low” randomization:

22

namely, at each round the Learner plays an explicitly given distribution which randomizes over at most two
points in Ar.

Algorithm 3: Simple Multicalibrated Learner

for t = 1, . . . , T do

Observe θt.
For each i ∈ [n], compute:

Ci
t−1 :=

∑

g∈G: θt∈g

exp

(

η

t−1∑

s=1

ℓsi,g,+1 (a
s, bs)

)

− exp

(

−η
t−1∑

s=1

ℓsi,g,+1 (a
s, bs)

)

.

if Ci
t−1 > 0 for all i ∈ [n] then

Predict at = 1.
else if Ci

t−1 < 0 for all i ∈ [n] then

Predict at = 0.
else

Find j ∈ [n− 1] such that Cj
t−1 · Cj+1

t−1 ≤ 0.
Define qt ∈ [0, 1] as follows (using the convention that 0/0 = 1):

qt :=
∣
∣
∣C

j+1
t−1

∣
∣
∣ /
(∣
∣
∣C

j+1
t−1

∣
∣
∣+
∣
∣
∣C

j
t−1

∣
∣
∣

)

.

Sample at = j
n − 1

rn with probability qt and at = j
n with probability 1− qt.

Theorem B.1. Algorithm 3 achieves the multicalibration guarantees of Theorem 4.1.

Proof. Let us instantiate the generic probabilistic Algorithm 2 with our current set of loss functions. In
parallel with the notation of Algorithm 2, for any bucket i, group g and σ ∈ {−1,+1}, we define

χt
i,g,σ :=

1

Zt
exp

(

η
t−1∑

s=1

ℓsi,g,σ(a
s, bs)

)

,

where

Zt :=
∑

i′∈[n],g′∈G,σ′=±1

exp

(

η

t−1∑

s=1

ℓsi′,g′,σ′(as, bs)

)

.

In this notation, at each round t ∈ [T], the Learner has to solve the following zero-sum game:

xt ∈ argmin
x∈∆Ar

max
b∈[0,1]

E
a∼x

[
ξt (a, b)

]
,

where we define

ξt(a, b) :=
∑

i∈[n],g∈G,σ∈{−1,1}

χt
i,g,σ · ℓti,g,σ(a, b) for a ∈ Ar, b ∈ [0, 1].

For any a, let ia denote the unique bucket index i ∈ [n] such that a ∈ Bi
n. Substituting

ℓti,g,σ(a, b) = σ · 1θt∈g · 1a∈Bi
n
· (b− a),

we see that most terms in the summation disappear, and what remains is precisely

ξt(a, b) =
∑

g∈G: θt∈g

∑

σ∈{−1,1}

χt
ia,g,σ · σ(b − a) = (b − a) · C

ia
t−1

Zt
,

23

where Cia
t−1 = Zt

∑

g∈G:θt∈g

χt
ia,g,+1 − χt

ia,g,−1 is as defined in the pseudocode for Algorithm 3.

Crucially, for any distribution x chosen by the Learner, her attained utility after the Adversary best-
responds has a simple closed form. Namely, given any x played by the Learner, we have

max
b∈[0,1]

E
a∼x

[
ξt (a, b)

]
=

1

Zt

(

max
b∈[0,1]

(

b · E
a∼x

[
Cia

t−1

]
)

− E
a∼x

[
a · Cia

t−1

]
)

,

=
1

Zt

(

max

(

E
a∼x

[
Cia

t−1

]
, 0

)

− E
a∼x

[
a · Cia

t−1

]
)

.

With this in mind, the Learner can easily achieve value 0 in the following two cases. When Ci
t−1 > 0

for all i ∈ [n], playing a = 1 deterministically gives: max

(

E
a∼x

[
Cia

t−1

]
, 0

)

− E
a∼x

[
a · Cia

t−1

]
= E

a∼x

[
Cia

t−1

]
−

E
a∼x

[
Cia

t−1

]
= 0. When Ci

t−1 < 0 for all i ∈ [n], she can play a = 0 deterministically, ensuring that

max

(

E
a∼x

[
Cia

t−1

]
, 0

)

− E
a∼x

[
a · Cia

t−1

]
= 0− 0 = 0.

In the final case, when there are nonpositive and nonnegative quantities among {Ci
t−1}i∈[n], note that

there exists an intermediate index j ∈ [n − 1] such that Cj
t−1 · Cj+1

t−1 ≤ 0. Then, it is easy to check that qt,
as defined in Algorithm 3, satisfies

qtCj
t−1 + (1− qt)Cj+1

t−1 = 0.

Using this relation, we obtain that when the Learner plays at = j
n − 1

rn with probability qt and at = j
n with

probability 1− qt, she accomplishes value

max
b∈[0,1]

E
at

[
ξt
(
at, b

)]
=

1

Zt

(

max
(

E

[

C
iat

t−1

]

, 0
)

− E

[

at · Ciat

t−1

])

=
1

Zt

(

max
(

qt · Cj
t−1 + (1− qt)Cj+1

t−1 , 0
)

−
(

qt
(
j
n − 1

rn

)
Cj

t−1 + (1 − qt) j
nC

j+1
s

))

=
1

Zt
· 1

rn
Cj

t−1,

and thus, recalling that Ct−1
j = Zt

∑

g∈G:θt∈g χ
t
j,g,+1 − χt

j,g,−1, we obtain

max
b∈[0,1]

E
at

[
ξt
(
at, b

)]
=

1

rn

∑

g∈G:θt∈g

χt
j,g,+1 − χt

j,g,−1 ≤ 1

rn

∑

i∈[n],g∈G,σ=±1

χt
i,g,σ =

1

rn
,

where the last line is due to the quantities χi,g,σ forming a probability distribution.
Therefore, in the language of Section A.2.2, the Learner who uses Algorithm 3 guarantees herself achieved

AMF value bounds

wt
bd =

1

rn
for t ∈ [T].

Hence, by Theorem A.3, our (suboptimal) Learner achieves the claimed multicalibration bounds.

C Multicalibeating: Full Statements and Proofs

C.1 Calibeating a Single Forecaster: Proof of Theorem 4.2

Proof of Theorem 4.2. For the exposition of this full proof, we will employ some probabilistic notation that
we have not seen in the main Section 4.2. We briefly define it here.

For any subsequence S ⊆ [T] of rounds, t ∼ S denotes a uniformly random round in S. We denote
the empirical distributions of the values of f , a, (f, a) on S ⊆ [T] by Df (S),Da(S),Df×a(S) (or simply
Df ,Da,Df×a when S = [T]). In this notation, we e.g. have Rf (πT) = Ed∼Df [Vart∼Sd [bt]].

24

Our quantity of interest, the Brier score Ba of the Learner’s predictions a, is inconvenient to handle:
indeed, the calibration-refinement decomposition of Ba is of little utility since the Learner’s predictions can
take arbitrary real values (in particular, they might all be distinct, in which case the refinement score would
be 0, and all of the Brier score would be contained in the calibration error). Instead, we define a convenient
surrogate notion of bucketed Brier/calibration/refinement score.

Ka
n(π

T) :=
1

T

∑

i∈[n]

|Si|(ā(Si)− b̄(Si))
2.

Ra
n(π

T) :=
1

T

∑

i∈[n]

∑

t∈Si

(bt − b̄(Si))
2 =

1

T

∑

i∈[n]

|Si|Var
t∈Si

[bt] = E
i∼Di

[Var
t∼Si

[bt]].

Ba
n(π

T) := Ka
n(π

T) +Ra
n(π

T).

The following lemma shows that as long as n is large enough, the surrogate Brier score is a good estimate
of the true Brier score of our predictions (i.e. our squared error).

Lemma C.1. Ba ≤ Ba
n + 1

n .

Proof. We first compute that the original Brier score Ba equals

Ba :=
1

T

T∑

t=1

(at − bt)2 =
1

T

n∑

i=1

∑

t∈Si

(at − bt)2 =
1

T

n∑

i=1

|Si|
∑

t∈Si

1

|Si|
(at − bt)2.

The inner sum is the expectation, over the transcript, of (at − bt)2 conditioned on at ∈ Bi
n, so we can write:

Ba =
1

T

n∑

i=1

|Si| E
t∼Si

[(at − bt)2].

We can decompose the expected value as:

E
t∼Si

[(at − bt)2] = (E
t∼Si

[at − bt])2 + Var
t∼Si

[at − bt].

By linearity of expectation, the expectation-squared term satisfies:

(E
t∼Si

[at − bt])2 = (ā(Si)− b̄(Si))
2.

Meanwhile, the variance term can be upper bounded using the following fact:

Fact 4. For any random variables X,Y :

Var[X + Y] = Var[X] + Var[Y] + 2Cov(X,Y) ≤ Var[X] + Var[Y] + 2
√

Var[X] Var[Y].

where the inequality follows from an application of Cauchy-Schwartz.

Instantiating X = at and Y = −bt, and upper bounding
√

Var[X] ≤ 1
2n ,
√

Var[Y] ≤ 1
2 , we get:

Var
t∼Si

[at − bt] ≤ Var
t∼Si

[at] + Var
t∼Si

[bt] + 2
√

Var
t∼Si

[at] Var
t∼Si

[bt],

≤ 1

(2n)2
+ Var

t∼Si

[bt] +
1

2n
,

≤ Var
t∼Si

[bt] +
1

n
.

25

Putting the above back together gives the desired bound on the difference of Ba and Ba
n:

Ba =
1

T

n∑

i=1

|Si| E
t∼Si

[(at − bt)2],

≤ 1

T

n∑

i=1

|Si|
(

(ā(Si)− b̄(Si))
2 + Var

t∼Si

[bt] +
1

n

)

,

=
1

T

n∑

i=1

|Si|(ā(Si)− b̄(Si))
2 +

1

T

n∑

i=1

|Si| Var
t∼Si

[bt] +
1

n
,

= Ka
n +Ra

n +
1

n
.

Having shown that the surrogate Brier score Ba
n closely approximates the Learner’s original score Ba, we

can now focus on bounding the calibration and refinement scores associated with Ba
n.

Calibration: Our multicalibration condition on Θ implies that |Si|
T |b̄(Si) − ā(Si)| ≤ α for i ∈ [n]. The

calibration score bound then follows directly.

Ka
n =

1

T

∑

i∈[n]

|Si|(b̄(Si)− ā(Si))
2 ≤ 1

T

∑

i∈[n]

|Si||b̄(Si)− ā(Si)| ≤
∑

i∈[n]

α = αn.

Refinement: We claim that the Learner’s surrogate refinement score relates to the refinement score of
the forecaster f as follows:

Ra
n ≤ Rf + αn(|Df |+ 1) +

1

n
.

The proof proceeds in two steps, connecting Rf and Ra via a quantity we call Rf×a.

Definition C.1 (Joint Refinement Score).

Rf×a := E
d,i∼Df×a

[Var
t∼Sd

i

[bt]] =
1

T

∑

d∈Df ,i∈[n]

|Sd
i | Var

t∼Sd
i

[bt].

Recall that refinement score, although we defined it for a forecaster, is really a property of a partition of
the days. It’s equally well defined if, instead of partitioning by days on which a forecaster makes a certain
forecast, we partition on say, even and odd days, or sunny vs cloudy vs rainy vs snowy days. Or, in the case
of Definition C.1, the partition {Sd

i }i∈[n],d∈D.
First, note that the joint refinement score of a and f is no worse than the refinement score of f .

Observation 1. Rf ≥ Rf×a.

Intuitively this should make sense, since {Sd
i } is a refinement of f ’s level sets by a’s level sets. If a is

“useful”, then this inequality would be strict, as combining with a would explain away more of the variance.
Refining by a cannot decrease the amount of variance captured by the partition.

Reversing our perspective, we can think of {Sd
i } as a refinement of a’s level sets by f ’s level sets. The

key idea is to use multicalibration to show that refining by f is not “useful." Multicalibration ensures us that
almost all of f ’s explanatory power is captured by a.

Observation 2. Ra
n = Rf×a + Ei∼Da [Vard∼Df(Si)[b̄(S

d
i)]].

Observation 3. The extra error term is small: Ei∼Da [Vard∼Df(Si)[b̄(S
d
i)]] ≤ αn(|D|+ 1) + 1

n .

26

Combining these three observations will give us our desired refinement score bound:

Ra
n(b) ≤ Rf + αn(|D|+ 1) +

1

n
.

We therefore now prove these observations one by one.

Proof of Observation 1. We recall the following fact from probability:

Fact 5 (Law of Total Variance). For any random variables W,Z : Ω → R in a probability space,

Var[Z] = E[Var[Z|W]] + Var[E[Z|W]].

In particular, since variance is always non-negative:

Var[Z] ≥ E[Var[Z|W]].

For each fixed d, we instantiate this fact with Ω = Sd (equipped with the discrete σ-algebra and uniform
distribution). Z(t) := bt and W (t) := iat , the unique i s.t. at ∈ Bi

n. This gives us:

Var
t∼Sd

[bt] ≥ E
i∼Da(Sd)

[Var
t∼Sd

[bt|at ∈ Bi
n]] = E

i∼Da(Sd)
[Var
t∼Sd

i

[bt]].

Since this is true for all d, the inequality continues to hold in expectation over the d’s:

Rf = E
d∼Df

[Var
t∼Sd

[bt]] ≥ E
d,i∼Df×a

[Var
t∼Sd

i

[bt]] = Rf×a.

Proof of Observation 2. Recall the definition of bucketed refinement:

Ra
n = E

i∼Da
[Var
t∼Si

[bt]].

To relate this back to Rf×a, we instantiate Fact 5 again, but flipping the roles of f and a: we take the
underlying spaces to be the sequences Si defined by calibrated buckets, and let W , the variable we condition
on, be the level sets of f .

For any fixed i representing a level set of a, Fact 5 tells us:

Var
t∼Si

[bt] = E
d∼Df(Si)

[Var
t∼Si

[bt|f t = d]] + Var
d∼Df(Si)

[E
t∼Si

[bt|f t = d]] = E
d∼Df(Si)

[Var
t∼Sd

i

[bt]] + Var
d∼Df (Si)

[b̄(Sd
i)].

Like before, we take the expectation over all i ∈ [n], giving us the desired result:

Ra
n = E

i∼Da
[Var
t∼Si

[bt]] = E
d,i∼Df×a

[Var
t∼Sd

i

[bt]] + E
i∼Da

[Var
d∼Df (Si)

[b̄(Sd
i)]] = Rf×a + E

i∼Da
[Var
d∼Df(Si)

[b̄(Sd
i)]].

Proof of Observation 3. We have to bound the extra error term:

E
i∼Da

[Var
d∼Df (Si)

[b̄(Sd
i)]].

In words, this is the expected variance of the true averages on Sd
i , conditioned on the buckets i. Intuitively, if

these true averages vary a lot, then the calibration error on the Sd
i s must be large since the prediction on each

27

of the Sd
i s is (close to) i/n; in particular, they are almost constant across d. Conversely, if multicalibration

error is low, then the variance must be low as well. Formally,

E
i∼Da

[Var
d∼Df (Si)

[b̄(Sd
i)]] =

∑

i∈[n]

|Si|
T

(Var
d
[E
t∼Sd

i

[bt]]),

=
∑

i∈[n]

|Si|
T

(
∑

d∈D

|Sd
i |

|Si|
(b̄(Sd

i)− b̄(Si))
2),

=
∑

i,d

|Sd
i |
T

(b̄(Sd
i)− b̄(Si))

2,

≤
∑

i,d

|Sd
i |
T

|b̄(Sd
i)− b̄(Si)|,

≤
∑

i,d

|Sd
i |
T

(|b̄(Sd
i)− ā(Sd

i)|+ |ā(Sd
i)− ā(Si)|+ |ā(Si)− b̄(Si)|),

≤
∑

i,d

|Sd
i |
T

(Tα/|Sd
i |+

1

n
+ Tα/|Si|),

≤ 1

n
+
∑

i

α+
∑

i,d

α,

=
1

n
+ αn(|D| + 1).

The first line is just expanding out the definition. In the third line, we upperbound square with absolute value,
since all values are at most 1. In the forth line, we break apart the error term into the difference between
our average prediction on Sd

i and the true average (upperbounded by Tα/|Sd
i |, by calibration guarantees

w.r.t S(f)), the difference between our prediction on Sd
i and our average prediction on Si (which is upper

bounded by 1/n, the size of our bucketing), and the difference between our average prediction on Si and the
true average (upperbounded by Tα/|Si|).

We have shown that Ka
n ≤ αn, and our three observations have given us that Ra

n(b) ≤ Rf+αn(|D|+1)+ 1
n .

Combining these results and Lemma C.1, we obtain the desired bound: Ba ≤ Rf + αn(|D| + 2) + 2
n . This

concludes the proof of Theorem 4.2.

C.2 Applying Theorem 4.2: Explicit Rates and Multiple Forecasters

First, we show how to instantiate Theorem 4.2 with our efficiently achievable multicalibration guarantees on
α of Theorem 4.1.

Corollary C.1. When run with parameters r, n ≥ 1 on the collection G′ := S(f)∪{Θ}, the multicalibration
algorithm (Algorithm 3) τ-calibeats f , where

E[τ] ≤
2

n
+ n(|Df |+ 2)

(

1

rn
+ 4

√

ln(2(|Df |+ 1)n)

T

)

,

and for any δ ∈ (0, 1), with probability 1− δ,

τ ≤ 2

n
+ n(|Df |+ 2)

(

1

rn
+ 8

√

1

T
ln

(
2(|Df |+ 1)n

δ

))

.

28

The calibration error overall of the algorithm is bounded, for any δ ∈ (0, 1), as:

E[Ka
n] ≤

1

r
+ 4n

√

ln(2(|Df |+ 1)n)

T
and Ka

n ≤ 1

r
+ 8n

√

1

T
ln

(
2(|Df |+ 1)n

δ

)

w. prob. 1− δ.

Proof. Using our online multicalibration guarantees, we get (by Theorem B.1):

E[α] ≤
1

rn
+ 4

√

ln(2(|Df |+ 1)n)

T
,

and, for any δ ∈ (0, 1), with probability 1− δ:

α ≤ 1

rn
+ 8

√

1

T
ln

(
2(|Df |+ 1)n

δ

)

,

Plugging this into the result from Theorem 4.2:

Ba −Rf ≤ αn(|D|+ 2) +
2

n
,

we obtain the desired in-expectation bound on τ :

E[τ] ≤
2

n
+ n(|Df |+ 2)E[α] ≤

2

n
+ n(|Df |+ 2)

(

1

rn
+ 4

√

ln(2(|Df |+ 1)n)

T

)

.

We can do so similarly for the high probability bound, so that with probability 1− δ:

τ ≤ 2

n
+ n(|Df |+ 2)

(

1

rn
+ 8

√

1

T
ln

(
2(|Df |+ 1)n

δ

))

.

Finally, the overall calibration error follows directly by plugging in for α.

The main utility in our approach to calibeating is that it easily extends to multicalibeating. As a warm up,
we start by deriving calibration with respect to an ensemble of forecasters. The main result then combines
this with calibeating on groups to attain the multicalibeating from Definition 4.5.

Calibeating an ensemble of forecasters Since our result above is based on bounds on multicalibration,
we can easily extend it to calibeating an ensemble of forecasters F by asking for multicalibration with respect
to the level sets of all forecasters. More formally, define the groups as:

⋃

f∈F

S(f)

 ∪ {Θ}.

Theorem 4.2 applies separately to each f . The only degradation comes in the α, since we’re asking for
multicalibration with respect to more groups. But this effect is small, since the dependence on the number
of groups is only O(

√

ln |G|).

Corollary C.2 (Ensemble Calibeating). On groups G′ :=
(
⋃

f∈F S(f)
)

∪{Θ}, the multicalibration algorithm

with parameters r, n ≥ 1, after T rounds attains (F , {Θ}, β)-multicalibeating with

E[β(f,Θ)] ≤ 2

n
+ n(|Df |+ 2)

1

rn
+ 4

√

ln(2(1 +
∑

f ′∈F Df ′)n)

T

 .

29

Proof. We instantiate Theorem B.1 with group collection size |G′| = 1 +
∑

f ′∈F |Df ′ | to conclude that the
multicalibrated algorithm achieves (α, n)-multicalibration, with

E[α] ≤
1

rn
+ 4

√

ln(2(1 +
∑

f ′∈F Df ′)n)

T
.

Now, ∀f ∈ F : S(f) ∪ {Θ} ⊆ G′ for every f ∈ F , so we can instantiate Theorem 4.2 for every forecaster
f ∈ F to give us:

Ba −Rf ≤ αn(|Df |+ 2) +
2

n
∀ f ∈ F .

Plugging in the in-expectation bound on α, we conclude:

E[β(f,Θ)] ≤ E[α] · n(|Df |+ 2) +
2

n
≤ 2

n
+ n(|Df |+ 2)

1

rn
+ 4

√

ln(2(1 +
∑

f ′∈F Df ′)n)

T

 .

C.3 Multicalibeating + Multicalibration Theorem 4.3: Full Statement and

Proof

Recall that for every group g ∈ G, we let S(g) denote the subsequence of days on which g occurs, where the
transcript is left implicit.

Theorem C.1 (Multicalibeating + Multicalibration: Full version with high-probability bounds). Let G ⊆
2Θ, and F some set of forecasters f : Θ → Df . The multicalibration algorithm on G′ :=

(
⋃

f∈F{g ∩ S : (g, S) ∈ G × S(f)}
)

∪
G with parameters r, n ≥ 1, after T rounds, attains expected (F ,G, β)-multicalibeating, where: 8

E[β(f, g)] ≤
2

n
+

|Df |+ 2

r · |S(g)|/T + 4n(|Df |+ 2)

√

1

|S(g)|2/T ln
(

2n|G|(1 +∑f |Df |)
)

∀ f ∈ F , g ∈ G,

while maintaining (α, n)-multicalibration on the original collection G, with:

E[α] ≤
1

rn
+ 4

√

1

T
ln
(

2n|G|(1 +∑f |Df |)
)

.

We also have the corresponding high probability bounds. For any δ ∈ (0, 1), with probability 1− δ:

β(f, g) ≤ 2

n
+

|Df |+ 2

r · |S(g)|/T + 8n(|Df |+ 2)

√

1

|S(g)|2/T ln

(
2n|G|(1 +

∑

f |Df |)
δ

)

∀ f ∈ F , g ∈ G,

and on the original collection G, the multicalibration constant α satisfies, with probability 1− δ,

α ≤ 1

rn
+ 8

√

1

T
ln

(
2n|G|(1 +∑f |Df |)

δ

)

.

Proof. We begin with a preliminary observation that translates our overall multicalibration assumptions into
guarantees over the individual sequences S(g), for g ∈ G.

Observation 4. Let a be (α, n)-multicalibrated on groups G′ over the entire time sequence [T]. Then, for

any g, on the subsequence of days S(g) the predictor a is
(

α T
|S(g)| , n

)

-multicalibrated with respect to groups
(
⋃

f∈F S(f)
)

∪ {Θ}.
8S(g) denotes the subsequence of days on which a group g occurs, suppressing dependence on transcript.

30

Proof. Let g ∈ G be some particular group. Also, fix any f ∈ F and S ∈ S(f)∪{Θ}. Using multicalibration
guarantees (Definition 4.1), we have that for every i ∈ [n]:

∣
∣
∣
∣
∣
∣

∑

t∈S(g): θt∈S and at∈Bi
n

bt − at

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∑

t∈[T]: θt∈g∩S and at∈Bi
n

bt − at

∣
∣
∣
∣
∣
∣

≤ αT =

(

α
T

|S(g)|

)

|S(g)|.

The first equality is by definition of S(g); in particular, θt ∈ g ∩ S ⇐⇒ t ∈ S(g) ∧ θt ∈ S. This concludes
the proof of our observation.

With this observation in hand, the proof is again a direct application of Theorem 4.2.
We can instantiate Theorem B.1 with groups G′ to conclude that the multicalibrated algorithm achieves

(α, n)-multicalibration, with (choosing any δ ∈ (0, 1)):

E[α] ≤
1

rn
+ 4

√

ln(2|G′|n)
T

, and α ≤ 1

rn
+ 8

√

1

T
ln

(
2|G′|n
δ

)

w. prob. 1− δ.

where |G′| = |G|+ |G|(∑f Df) = |G|(1 +∑f Df).

Now, fix any g ∈ G and f ∈ F . By our observation above, we are α T
|S(g)| multicalibrated w.r.t. S(f)∪{Θ}

on the sequence of days on which g occurs. Therefore, we can instantiate Theorem 4.2:

Ba(πT |{t:θt∈g})−Rf (πT |{t:θt∈g}) ≤
2

n
+ n(|Df |+ 2)α

T

|S(g)| .

Inserting the above bounds on α yields our in-expectation and high-probability bounds on β(·, ·).
Additionally, the theorem posits that the predictor is also (α, n)-multicalibrated on the base collection

of subgroups G. Indeed, we have included the family G into the collection G′, hence the predictor will be
(α, n)-multicalibrated on G.

D Blackwell Approachability: The Algorithm and Full Proofs

of Theorem 5.1. We instantiate our probabilistic framework of Section A.2.1. The Learner’s and Adversary’s
action sets are inherited from the underlying Polytope Blackwell game.

Defining the loss functions. For all t = 1, 2, . . ., we consider the following losses:

ℓthα,β
(x, y) := 〈α, u(x, y)〉 − β, for hα,β ∈ H, x ∈ X , y ∈ Y,

where here and below the notational convention is that for x ∈ X , y ∈ Y, u(x, y) := Ea∼x[u(a, y)]. The

coordinates of the resulting vector loss ℓtH(x, y) :=
(

ℓthα,β
(x, y)

)

hα,β∈H
correspond to the collection H of the

halfspaces that define the polytope. By Holder’s inequality, each vector loss function ℓtH ∈ [−2, 2]d — this
follows because we required that for some p, q with 1

p + 1
q = 1, the family H is p-normalized, and the range

of u is contained in Bd
q . In addition, each ℓthα,β

is continuous and convex-concave by virtue of being a linear
function of the continuous and affine-concave function u.

Bounding the Adversary-Moves-First value. We observe that for t ∈ [T], the AMF value wt
A ≤ 0. Indeed,

if the Adversary moves first and selects any yt ∈ Y, then by the assumption of response satisfiability, the
Learner has some xt ∈ X guaranteeing that u(xt, yt) ∈ P (H). The latter is equivalent to ℓthα,β

(xt, yt) =

〈α, u(xt, yt)〉 − β ≤ 0 for all hα,β ∈ H, letting us conclude that for any round t,

wt
A = sup

yt∈Y
min
xt∈X

(

max
hα,β∈H

ℓthα,β
(xt, yt)

)

≤ 0.

31

Applying AMF regret bounds. Given this instantiation of our framework, Theorem A.1 implies that for any
response satisfiable Polytope Blackwell game, the Learner can use Algorithm 2 (instantiated with the above
loss functions) to ensure that after any round T ≥ ln |H|,

E

 max
hα,β∈H

∑

t∈[T]

(〈
α, u

(
at, yt

)〉
− β

)

 ≤ E

 max
hα,β∈H

∑

t∈[T]

ℓthα,β
(at, yt)−

T∑

t=1

wt
A

 ≤ 8
√

T ln |H|,

where the expectation is with respect to the Learner’s randomness. Given this guarantee, we obtain, using
the definition of ūT , that

max
hα,β∈H

E

[〈
α, ūT

〉
− β

]
≤ 8

√

ln |H|
T

.

Using T = T (ǫ) ≥ ln |H|, we have that for every hα,β ∈ H,

E

[〈

α, ūT (ǫ)
〉

− β
]

≤ 8

√

ln |H|
T (ǫ)

= 8

√

ln |H|
64 ln |H|/ǫ2 = ǫ.

This concludes the proof of our in-expectation guarantee for Polytope Blackwell games.
The high-probability statement follows directly from Theorem A.2, using C = 2.

An LP based algorithm when the Adversary has a finite pure strategy space. Algorithm 2, which
achieves the guarantees of Theorem 5.1, generally involves solving a convex program at each round. It is
worth pointing out that only a linear program will need to be solved at each round in the commonly studied
special case of Blackwell approachability where both the Learner and the Adversary randomize between
actions in their respective finite action sets A and B.

Formally, in the setting above, suppose additionally that the Adversary’s action space is Y = ∆B, where
B is a finite set of pure actions for the Adversary. At each round t, both the Learner and the Adversary
randomize over their respective action sets. First, the Learner selects a mixture xt ∈ ∆A, and then the
Adversary selects a mixture yt ∈ ∆B in response. Next, pure actions at ∼ xt and bt ∼ yt are sampled from
the chosen mixtures, and the vector valued utility in that round is set to u(at, bt).

In this fully probabilistic setting, at each round t Algorithm 2 has the Learner solve a normal-form
zero-sum game with pure action sets A,B, where the utility to the Adversary (the max player) is

ξt(a, b) :=
∑

hα,β∈H

exp

(

η
t−1∑

s=1

(〈α, u (as, bs)〉 − β)

)

· (〈α, u(a, b)〉 − β) for a ∈ A, b ∈ B. (2)

A standard LP-based approach to solving this zero-sum game (see e.g. Raghavan [1994]) is for the Learner
to select among distributions xt ∈ ∆A with the goal of minimizing the maximum payoff to the Adversary
over all pure responses b ∈ B. Writing this down as a linear program, we obtain the following algorithm:

Algorithm 4: Linear Programming Based Learner for Polytope Blackwell Approachability

for t = 1, . . . , T do

Choose a mixture xt = (xta)a∈A ∈ ∆A that solves the following linear program (where ξt(·, ·) is defined
in (2), and z is an unconstrained variable):

Minimize z

s.t. ∀b ∈ B : z ≥
∑

a∈A

xta ξ
t(a, b).

Sample at ∼ xt.

32

E No-X-Regret: Definitions, Examples, Algorithms, and Proofs

As a warmup, we begin this subsection by carefully demonstrating how to use our framework to derive bounds
and algorithms for the very fundamental external regret setting. Then, we derive the same types of existential
guarantees in the much more general subsequence regret setting. We then specialize these subsequence regret
bounds into tight bounds for various existing regret notions (such as internal, adaptive, sleeping experts,
and multigroup regret). We conclude this subsection by deriving a general no-subsequence-regret algorithm
which in turn specializes to an efficient algorithm in all of our applications.

E.1 Simple Learning From Expert Advice: External Regret

In the classical experts learning setting Littlestone and Warmuth [1994], the Learner has a set of pure actions
(“experts”) A. At the outset of each round t ∈ [T], the Learner chooses a distribution over experts xt ∈ ∆A.
The Adversary then comes up with a vector of losses rt = (rta)a∈A ∈ [0, 1]A corresponding to each expert.
Next, the Learner samples at ∼ xt, and experiences loss corresponding to the expert she chose: rtat . The
Learner also gets to observe the entire vector of losses rt for that round. The goal of the Learner is to achieve
sublinear external regret — that is, to ensure that the difference between her cumulative loss and the loss of
the best fixed expert in hindsight grows sublinearly with T :

RT
ext(π

T) :=
∑

t∈[T]

rtat −min
j∈A

∑

t∈[T]

rtj = o(T).

Theorem E.1. Fix a finite pure action set A for the Learner and a time horizon T ≥ ln |A|. Then,
Algorithm 2 can be instantiated to guarantee that the Learner’s expected external regret is bounded as

E
πT

[
RT

ext

(
πT
)]

≤ 4
√

T ln |A|,

and furthermore that for any δ ∈ (0, 1), with ex-ante probability 1− δ over the Learner’s randomness,

RT
ext

(
πT
)
≤ 8

√

T ln
|A|
δ
.

Proof. We instantiate our probabilistic framework (see Section A.2.1).

Defining the strategy spaces. We define the Learner’s pure action set at each round to be the set A, and
the Adversary’s strategy space to be the convex and compact set [0, 1]|A|, from which the Adversary chooses
each round’s collection (rta)a∈A of all actions’ losses.

Defining the loss functions. For d = |A|, we define a d-dimensional vector valued loss function ℓt = (ℓtj)j∈A,

where for every action j ∈ A, the corresponding coordinate ℓtj : A× [0, 1]|A| → [−1, 1] is given by

ℓtj(a, r
t) = rta − rtj , for a ∈ A, rt ∈ [0, 1]|A|.

It is easy to see that ℓtj(a, ·) is continuous and concave — in fact, linear — in the second argument for all
j, a ∈ A and t ∈ [T]. Furthermore, its range is [−C,C], for C = 1. This verifies the technical conditions
imposed by our framework on the loss functions.

Applying AMF regret bounds. We may now invoke Theorem A.1, which implies the following in-expectation
AMF regret bound after round T for the instantiation of Algorithm 2 with the just defined vector losses
(ℓt)t∈[T]:

E

max
j∈A

∑

t∈[T]

ℓtj(a
t, rt)−

∑

t∈[T]

wt
A

 ≤ 4C
√
T ln d = 4

√

T ln |A|,

33

where recall that wt
A is the Adversary-Moves-First (AMF) value at round t. Connecting the instantiated

AMF regret to the Learner’s external regret, we get:

E

[
RT

ext

]
= E

max
j∈A

∑

t∈[T]

rtat − rtj

 = E

max
j∈A

∑

t∈[T]

ℓtj(a
t, rt)

 ≤ 4
√

T ln |A|+
∑

t∈[T]

wt
A.

Bounding the Adversary-Moves-First value. To obtain the claimed in-expectation external regret bound,
it suffices to show that the AMF value at each round t ∈ [T] satisfies wt

A ≤ 0. Intuitively, this holds because
if at some round the Learner knew the Adversary’s choice of losses (rta)a∈A in advance, then she could
guarantee herself no added loss in that round by picking the action a ∈ A with the smallest loss rta.

Formally, for any vector of actions’ losses rt, define a∗rt := argmina∈A r
t
a, and notice that

min
a∈A

max
j∈A

ℓtj(a, r
t) ≤ max

j∈A
ℓtj
(
a∗rt , r

t
)
= max

j∈A

(

rta∗
rt

− rtj

)

= min
a∈A

rta −min
j∈A

rtj = 0.

The third step follows by definition of a∗rt . Hence, the AMF value is indeed nonpositive at each round:

wt
A = sup

rt∈[0,1]|A|

min
a∈A

max
j∈A

ℓtj(a, r
t) ≤ 0.

This completes the proof of the in-expectation external regret bound. The high-probability external regret
bound follows in the same way from Theorem A.2 of Section A.2.1.

A bound of
√

T ln |A| is optimal for external regret in the experts learning setting, and so serves to
witness the optimality of Theorem 2.1.

In fact, it is easy to demonstrate that in the external regret setting, the generic probabilistic Algorithm 2
amounts to the well known Exponential Weights algorithm (Algorithm 5 below) Littlestone and Warmuth
[1994]. To see this, note that Algorithm 2, when instantiated with the above defined loss functions, has the
Learner solve the following problem at each round:

xt ∈ argmin
x∈∆A

max
rt∈[0,1]|A|

∑

j∈A

exp
(

η
∑t−1

s=1(r
s
as − rsj)

)

∑

i∈A exp
(

η
∑t−1

s=1(r
s
as − rsi)

) E
a∼x

[rta − rtj],

= argmin
x∈∆A

max
rt∈[0,1]|A|

∑

j∈A

exp
(

−η∑t−1
s=1 r

s
j

)

∑

i∈A exp
(

−η∑t−1
s=1 r

s
i

) E
a∼x

[rta − rtj],

= argmin
x∈∆A

max
rt∈[0,1]|A|

E
a∼x,j∼EWη(πt−1)

[rta − rtj],

where we denoted the exponential weights distribution as

EWη(π
t−1) :=

exp

(

−η∑t−1
s=1 r

s
j

)

∑

i∈A exp
(

−η∑t−1
s=1 r

s
i

)

j∈A

∈ ∆A.

For any choice of rt by the Adversary, the quantity inside the expectation, ℓtj(a, r
t) = rta−rtj , is antisymmetric

in a and j: that is, ℓtj(a, r
t) = −ℓta(j, rt). Due to this antisymmetry, no matter which rt gets selected by the

Adversary, by playing a ∼ EWη(π
t−1) the Learner obtains

E
a,j∼EWη(πt−1)

[
rta − rtj

]
= 0,

34

thus achieving the value of the game. It is also easy to see that xt = EWη(π
t−1) is the unique choice of

xt that guarantees nonnegative value, hence Algorithm 2, when specialized to the external regret setting, is
equivalent to the Exponential Weights Algorithm 5.

Algorithm 5: The Exponential Weights Algorithm with Learning Rate η

for t = 1, . . . , T do

Sample at such that at = j with probability proportional to exp
(

−η∑t−1
s=1 r

s
j

)

, for j ∈ A.

E.2 Generalization to Subsequence Regret

Here, we present a generalization of the experts learning framework from which we will be able to derive our
other applications to no-regret learning problems. There is again a Learner and an Adversary playing over
the course of rounds t ∈ [T]. Initially, the Learner is endowed with a finite set of pure actions A. At each
round t, the Adversary restricts the Learner’s set of available actions for that round to some subset At ⊆ A.
The Learner plays a mixture xt ∈ ∆At over the available actions. The Adversary responds by selecting a
vector of losses (rta)a∈A ∈ [0, 1]|A| associated with the Learner’s pure actions. Next, the Learner samples a
pure action at ∼ xt.

Unlike in the standard setting, the Learner’s regret will now be measured not just on the entire sequence
of rounds 1, 2, . . . , T , but more generally on an arbitrary collection F of weighted subsequences f : [T]×A →
[0, 1]. The understanding is that for any f ∈ F , t ∈ [T], a ∈ At, the quantity f(t, a) is the “weight” with
which round t will be included in the subsequence if the Learner’s sampled action is a at that round. The
Learner does not need to know the subsequences ahead of time; instead the Adversary may announce the
values {f(t, a)}a∈At,f∈F to the Learner before the corresponding round t ∈ [T].

Definition E.1 (Subsequence Regret). Given a family of functions F , where each f ∈ F is a mapping
f : [T] ×A → [0, 1], chosen adaptively by the Adversary, and a set of finitely many pure actions A for the
Learner, consider a collection of action-subsequence pairs H ⊆ A×F .

The Learner’s subsequence regret after round T with respect to the collection H is defined by

RT
H(πT) := max

(j,f)∈H

∑

t∈[T]

f(t, at)
(
rtat − rtj

)
,

where πT = {(at, rt)}t∈[T] is the transcript of the interaction.

For intuition, suppose F = {1}, where 1 : [T]× A → [0, 1] satisfies 1(t, a) = 1 for all t, a. That is, the
only relevant subsequence is the entire sequence of rounds 1, 2, . . . , T . If we then set H = A×F , subsequence
regret specializes to the classical notion of (external) regret which was discussed above.

Moreover, we shall require the following condition on H and the action sets {At}t∈[T], which simply asks
that at each round, the Learner be responsible for regret only to currently available actions.

Definition E.2 (No regret to unavailable actions). A collection of action-subsequence pairs H, paired with
action sets {At}t∈[T], satisfy the no-regret-to-unavailable-actions property if at each round t ∈ [T], for every
f ∈ F such that (j, f) ∈ H for some j 6∈ At, it holds that f(t, a) = 0 for all a ∈ At.

It is worth noting that this condition is trivially satisfied whenever the Learner’s action set is invariant
across rounds (At = A for all t).

Theorem E.2. Consider a sequence of action sets {At}t∈[T] for the Learner, a collection H of action-
subsequence pairs, and a time horizon T ≥ ln |H|. If H and {At}t∈[T] satisfy no-regret-to-unavailable-actions,
then an appropriate instantiation of Algorithm 2 guarantees that the Learner’s expected subsequence regret is
bounded as

E
πT

[
RT

H

(
πT
)]

≤ 4
√

T ln |H|,

35

and furthermore, for any δ ∈ (0, 1), that with ex-ante probability 1− δ over the Learner’s randomness,

RT
H

(
πT
)
≤ 8

√

T ln
|H|
δ
.

Proof. We instantiate our probabilistic framework of Section A.2.1.

Defining the strategy spaces. At each round t, the Learner’s pure strategy set will be At, and the Adversary’s
strategy space will be the convex and compact set [0, 1]|A|.

Defining the loss functions. For all action-subsequence pairs (j, f) ∈ H, we define the corresponding loss
ℓt(j,f) : At × [0, 1]|A| → [−1, 1] as

ℓt(j,f)(a, r
t) = f(t, a)(rta − rtj), for a ∈ At, rt ∈ [0, 1]|A|.

It is easy to see that for all (j, f) ∈ H and each a ∈ At, the function ℓt(j,f)(a, ·) is continuous and concave

— in fact, linear — in the second argument, as well as bounded within [−C,C] for C = 1. Therefore, the
technical conditions imposed by our framework on the loss functions are met.

Bounding the Adversary-Moves-First value. At each round t, the AMF value wt
A = 0. Trivially, wt

A ≥ 0,
as the Adversary can always set rta = 0 for all a. Conversely, wt

A ≤ 0 as an easy consequence of the
no-regret-to-unavailable-actions property. To see this, for any vector of actions’ losses rt, define

a∗rt := argmin
a∈At

rta,

and notice that

wt
A = sup

rt∈[0,1]|A|

min
a∈At

(

max
(j,f)∈H

ℓt(j,f)(a, r
t)

)

,

= sup
rt∈[0,1]|A|

min
a∈At

max

(

max
(j,f)∈H:j∈At

ℓt(j,f)(a, r
t), 0

)

, (no regret to unavailable actions)

≤ sup
rt∈[0,1]|A|

max

(

max
(j,f)∈H:j∈At

ℓt(j,f)(a
∗
rt , r

t), 0

)

,

= sup
rt∈[0,1]|A|

max

(

max
(j,f)∈H:j∈At

f(t, a∗rt)(r
t
a∗
rt

− rtj), 0

)

,

≤ sup
rt∈[0,1]|A|

max

(

max
(j,f)∈H:j∈At

f(t, a∗rt)(r
t
j − rtj), 0

)

, (by definition of a∗rt)

= sup
rt∈[0,1]|A|

max (0, 0) ,

= 0.

We thus conclude that Theorems A.1 and A.2 apply (with C = 1 and all wt
A = 0) to the subsequence

regret setting, yielding the claimed in-expectation and high-probability regret bounds.

We now instantiate subsequence regret with various choices of subsequence families, in order to get
bounds and efficient algorithms for several standard notions of regret from the literature. For brevity, for
each notion of regret considered below we only exhibit the existential in-expectation guarantee for that
type of regret, and omit the corresponding high-probability bounds (which are all easily derivable from
Theorem A.2). We also point out that all in-expectation bounds cited below are efficiently achievable by
instantiating, with appropriate loss functions, the no-subsequence regret Algorithms 6 and 7 derived in the
following Section E.3.

36

In all no-regret settings discussed below, except for Sleeping Experts, the Learner has a pure and finite
action set A at every round t ∈ [T]; furthermore — as usual — the Adversary’s role at each round consists
in selecting the vector of per-action losses (rta)a∈A ∈ [0, 1]|A|.

Internal and Swap Regret To introduce the notion of internal regret [Foster and Vohra, 1998], consider
the following collection Mint ⊂ AA of mappings from the action set A to itself. Mint consists of the identity
map µid (such that µid(a) = a for all a ∈ A), together with all |A|(|A|−1) maps µi→j that pair two particular
actions: i.e., µi→j(i) = j, and µi→j(a) = a for a 6= i. The Learner’s internal regret is then defined as

RT
int := max

µ∈Mint

∑

t∈[T]

rtat − rtµ(at).

In other words, the Learner’s total loss is being compared to all possible counterfactual worlds, for i, j ∈ A,
in which whenever the Learner played some action i, it got replaced with action j (and other actions remain
fixed).

We can reduce the problem of obtaining no-internal-regret to the problem of obtaining no subsequence
regret for a simple choice of subsequences. Let us define the following set of subsequences: F := {fi : i ∈ A},
where each fi is defined to be the indicator of the subsequence where the Learner played action i — that is,
for all t ∈ [T], we let fi(t, a) = 1a=i. Then, we let H := A×F . By the in-expectation no-subsequence-regret
guarantee, we then have

E

 max
(j,f)∈H

∑

t∈[T]

f(t, at)
(
rtat − rtj

)

 ≤ 4
√

T ln |H| = 4
√

2T ln |A|,

since |H| = |A| · |F| = |A|2.
But observe that the Learner’s internal regret precisely coincides with the just defined instance of subse-

quence regret:

RT
int = max

µ∈Mint

∑

t∈[T]

rtat − rtµ(at) = max
i,j∈A

∑

t∈[T]:at=i

rti − rtj = max
j∈A

max
fi:i∈A

∑

t∈[T]

fi(t, a
t)(rtat − rtj)

= max
(j,f)∈H

∑

t∈[T]

f(t, at)(rtat − rtj).

Therefore, we have established the following existential in-expectation internal regret bound:

E

[
RT

int

]
≤ 4
√

2T ln |A|,

which is optimal.
The notion of swap regret, introduced in Blum and Mansour [2007], is strictly more demanding than

internal regret in that it considers strategy modification rules µ that can perform more than one action swap
at a time. Consider the set Mswap of all |A||A| swapping rules µ : A → A. The Learner’s swap regret is
defined to be the maximum of her regret to all swapping rules:

RT
swap := max

µ∈Mswap

∑

t∈[T]

rtat − rtµ(at).

The interpretation is that the Learner’s total loss is being compared to the total loss of any remapping of
her action sequence.

An easy reduction shows that the swap regret is upper-bounded by |A| times the internal regret. For com-
pleteness, we provide the details of this reduction in Appendix E.4. The reduction implies an in-expectation
bound of 4|A|

√

2T ln |A| on swap regret, which, compared to the optimal bound ofO(
√

T |A| ln |A|) (see Blum and Mansour
[2007]), has suboptimal dependence on |A|.

37

Adaptive Regret In this setting, consider all contiguous time intervals within rounds 1, . . . , T , namely,
all intervals [t1, t2], where t1, t2 are integers such that 1 ≤ t1 ≤ t2 ≤ T . The Learner’s regret on each interval
[t1, t2] is defined as her total loss over the rounds t ∈ [t1, t2], minus the loss of the best action for that interval
in hindsight. The Learner’s adaptive regret is then defined to be her maximum regret over all contiguous
time intervals:

RT
adaptive := max

[t1,t2]:1≤t1≤t2≤T
max
j∈A

t2∑

t=t1

rtat − rtj .

We observe that adaptive regret corresponds to subsequence regret with respect to H := A × F , where
F := {f[t1,t2] : 1 ≤ t1 ≤ t2 ≤ T } is the collection of subinterval indicator subsequences — that is,
f[t1,t2](t, a) := 1t1≤t≤t2 for all t ∈ [T] and a ∈ A. Observe that |F| ≤ T 2, and therefore, the expected
regret upper bound for subsequence regret specializes to the following expected adaptive regret bound:

E

[
RT

adaptive

]
≤ 4
√

T ln(|A||F|) ≤ 4
√

T (ln |A|+ 2 lnT).

Sleeping Experts Following Blum and Mansour [2007], we define the sleeping experts setting as follows.
Suppose that the Learner is initially given a set of pure actions A, and before each round t, the Adversary
chooses a subset of pure actions At ⊆ A available to the Learner at that round — these are known as the
“awake experts”, and the rest of the experts are the “sleeping experts” at that round.

The Learner’s regret to each action j ∈ A is defined to be the excess total loss of the Learner during
rounds where j was “awake”, compared to the total loss of j over those rounds. Formally, the Learner’s
sleeping experts regret after round T is defined to be

RT
sleeping := max

j∈A

∑

t∈[T]:j∈At

rtat − rtj .

This is clearly an instance of subsequence regret — indeed, we may consider the family of subsequences
F := {fj : j ∈ A}, where fj(t, a) := 1j∈At for all j, a, t, and let H := {(j, fj)}j∈A. It is easy to verify that the
no-regret-to-unavailable-actions property holds, and thus the guarantees of the subsequence regret setting
carry over to this sleeping experts setting. In particular, the following existential in-expectation sleeping
experts regret bound holds:

E

[
RT

sleeping

]
≤ 4
√

T ln |A|,
which is also optimal in this setting.

Multi-Group Regret We imagine that before each round, the Adversary selects and reveals to the Learner
some context θt from an underlying feature space Θ. The interpretation is that the Learner’s decision at
round t will pertain to an individual with features θt. Additionally, there is a fixed collection G ⊂ 2Θ, where
each g ∈ G is interpreted as a (demographic) group of individuals within the population Θ. Here G may be
large and may consist of overlapping groups. The Learner’s goal is to minimize regret to each action a ∈ A
not just over the entire population, but also separately for each population group g ∈ G. Explicitly, the
Learner’s multi-group regret after round T is defined to be

RT
multi := max

g∈G
max
j∈A

∑

t∈[T]:θt∈g

rtat − rtj .

It is easy to see that multi-group regret corresponds to subsequence regret with H := A × F , where
F := {fg : g ∈ G} is the collection of group indicator subsequences — that is, fg(t, a) := 1θt∈g for all t, a.
Here we are taking advantage of the fact that the functions f on which subsequences are defined need not
be known to the algorithm ahead of time, and can be revealed sequentially by the Adversary, allowing us to
model adversarially chosen contexts. Therefore, multi-group regret inherits subsequence regret guarantees,
and in particular, we obtain the following existential in-expectation multi-group regret bound:

E

[
RT

multi

]
≤ 4
√

T ln(|A||G|).

38

Observe that this bound scales only as
√

ln |G| with respect to the number of population groups, which we
can therefore take to be exponentially large in the parameters of the problem.

E.3 Deriving No-Subsequence-Regret Algorithms

We now present a way to specialize Algorithm 2 to the setting of subsequence regret with no-regret-to-
unavailable-actions. At each round, instead of solving a convex-concave problem, the specialized algorithm
will only need to solve a polynomial-sized linear program.

Algorithm 6: Efficient No Subsequence Regret Algorithm for the Learner

for t = 1, . . . , T do

Learn the current set of feasible actions At (potentially selected by an Adversary).
Learn the values f(t, a) for every a ∈ At and f ∈ F (potentially selected by an Adversary).
Solve for xt = (xta)a∈At ∈ ∆At defined by the following linear inequalities for all a ∈ At:

xta
∑

(j,f)∈H

exp

(

η

t−1∑

s=1

ℓs(j,f)(a
s, rs)

)

f(t, a)−
∑

j∈At

xtj
∑

f :(a,f)∈H

exp

(

η

t−1∑

s=1

ℓs(a,f)(a
s, rs)

)

f(t, j) ≤ 0

Sample at ∼ xt.

Theorem E.3. Algorithm 6 implements Algorithm 2 in the subsequence regret setting, and achieves the
same guarantees.

Proof. In parallel to the notation of Algorithm 2, we define the following set of weights at round t ∈ [T]:

χt
(j,f) :=

1

Zt
exp

(

η

t−1∑

s=1

ℓs(j,f)(a
s, rs)

)

,

where

Zt :=
∑

(j,f)∈H

exp

(

η
t−1∑

s=1

ℓs(j,f)(a
s, rs)

)

.

When instantiated with our current set of loss functions, Algorithm 2 solves the following zero-sum game
at round t ∈ [T], where we denote ℓt(j,f)(x, r

t) := Ea∼x[ℓ
t
(j,f)(a, r

t)]:

xt ∈ argmin
x∈∆At

max
rt∈[0,1]|A|

∑

(j,f)∈H

χt
(j,f) · ℓt(j,f)

(
x, rt

)
.

By definition of the loss functions in the subsequence regret setting, the objective function is linear in the
Adversary’s choice of rt. Thus, let us rewrite the objective as a linear combination of (rta)a∈At :

∑

(j,f)∈H

χt
(j,f) · ℓt(j,f)(x, rt),

=
∑

(j,f)∈H

χt
(j,f)

∑

a∈At

xa · f(t, a) · (rta − rtj),

=
∑

(j,f)∈H

∑

a∈At

rta · xa · f(t, a) · χt
(j,f) −

∑

(j,f)∈H

∑

a∈At

rtj · xa · f(t, a) · χt
(j,f),

which, by the no-regret-to-unavailable actions property,

=
∑

a∈At

rta · xa
∑

(j,f)∈H

f(t, a) · χt
(j,f) −

∑

j∈At

rtj
∑

a∈At

xa
∑

f :(j,f)∈H

f(t, a) · χt
(j,f),

39

and now, swapping j and a in the second summation,

=
∑

a∈At

rta · xa
∑

(j,f)∈H

f(t, a) · χt
(j,f) −

∑

a∈At

rta
∑

j∈At

xj
∑

f :(a,f)∈H

f(t, j) · χt
(a,f),

=
∑

a∈At

rta

xa
∑

(j,f)∈H

f(t, a) · χt
(j,f) −

∑

j∈At

xj
∑

f :(a,f)∈H

f(t, j) · χt
(a,f)

︸ ︷︷ ︸

:=ca(x)

.

Thus, the zero-sum game played at round t has objective function
∑

a∈At

ca(x
t) · rta, where the coefficients

ca(x
t) do not depend on the Adversary’s action rt. Recall that this game has value at most wt

A = 0.
Hence, maxa∈At ca(x

t) ≤ 0 for any minimax optimal strategy xt for the Learner — since otherwise, if some
ca′(xt) > 0, the Adversary would get value ca′(xt) > 0 by setting rta′ = 1 and rta = 0 for a 6= a′. Conversely,
by playing xt such that max

a∈At
ca(x

t) ≤ 0, the Learner gets value ≤ 0, as rta ≥ 0 for all a.

Therefore, the Learner’s choice of xt is minimax optimal if and only if for all a ∈ At,

ca(x
t) ≤ 0 ⇐⇒ Zt · ca(xt) ≤ 0 ⇐⇒

xta
∑

(j,f)∈H

f(t, a) exp

(

η
t−1∑

s=1

ℓs(j,f)(a
s, rs)

)

−
∑

j∈At

xtj
∑

f :(a,f)∈H

f(t, j) exp

(

η
t−1∑

s=1

ℓs(a,f)(a
s, rs)

)

≤ 0.

This recovers Algorithm 6, concluding the proof.

Simplification for Action Independent Subsequences The above Algorithm 6 requires solving a
linear feasibility problem. This mirrors how existing algorithms for the special case of minimizing internal
regret operate (Blum and Mansour [2007]); recall that internal regret corresponds to subsequence regret for
a certain collection of |A| subsequences that depend on the Learner’s action in the current round t.

By contrast, if all of our subsequence indicators f ∈ F are action independent, that is, satisfy f(t, a) =
f(t, a′) for all a, a′ ∈ A and t ∈ [T], then it turns out that we can avoid solving a system of linear inequalities:
our equilibrium has a closed form. In what follows, we abuse notation and simply write f(t) for the value of
the subsequence f at round t.

Observe that if each f ∈ F is action independent, then we can rewrite our equilibrium characterization
in Algorithm 6 as the requirement that the Learner’s chosen distribution xt ∈ ∆At must satisfy, for each
a ∈ At (provided that f(t) 6= 0 for at least some f ∈ F), the following inequality:

xta ≤
∑

j∈At xtj
∑

f :(a,f)∈H f(t) exp
(

η
∑t−1

s=1 ℓ
s
(a,f)(a

s, rs)
)

∑

(j,f)∈H f(t) exp
(

η
∑t−1

s=1 ℓ
s
(j,f)(a

s, rs)
) ,

=

∑

f :(a,f)∈H f(t) exp
(

η
∑t−1

s=1 ℓ
s
(a,f)(a

s, rs)
)

∑

(j,f)∈H f(t) exp
(

η
∑t−1

s=1 ℓ
s
(j,f)(a

s, rs)
) .

Here the equality follows because xt ∈ ∆At is a probability distribution.
We now observe that setting each xta to be its upper bound, for a ∈ At, yields a probability distribution

over At, which is consequently the unique feasible solution to the above system. Hence, for action independent
subsequences, we have a closed-form implementation of Algorithm 6 that does not require solving a linear

40

feasibility problem:

Algorithm 7: An Efficient Learner for Action Independent Subsequences

for t = 1, . . . , T do

Learn the current set of feasible actions At and the values f(t) for every f ∈ F (potentially selected by
an Adversary).
Sample at ∼ xt, where for all a ∈ At,

xta =

∑

f :(a,f)∈H f(t) exp
(

η
∑t−1

s=1 ℓ
s
(a,f)(a

s, rs)
)

∑

(j,f)∈H f(t) exp
(

η
∑t−1

s=1 ℓ
s
(j,f)(a

s, rs)
) .

E.4 Omitted Reductions between Different Notions of Regret

Reducing swap regret to internal regret We can upper bound the swap regret by reusing the instance
of subsequence regret that we defined to capture internal regret. Recall that it was defined as follows. We
let F := {fi : i ∈ A}, where each fi is the indicator of the subsequence of rounds where the Learner played
action i — that is, for all t ∈ [T], we let f(t, a) = 1a=i. Then, we let H := A × F . We then obtained the
in-expectation regret guarantee

E

 max
(j,f)∈H

∑

t∈[T]

f(t, at)
(
rtat − rtj

)

 ≤ 4
√

2T ln |A|.

Returning to swap regret, note that for any fixed swapping rule µ : A → A, we have

∑

t∈[T]

rtat − rtµ(at) =
∑

i∈A

∑

t∈[T]:at=i

rtat − rtµ(i)

≤
∑

i∈A

max
j∈A

∑

t∈[T]:at=i

rtat − rtj

≤ |A|max
i∈A

max
j∈A

∑

t∈[T]:at=i

rtat − rtj

= |A| max
(j,f)∈H

∑

t∈[T]

f(t, at)
(
rtat − rtj

)
,

where in the last line we simply reparametrized the maximum over i ∈ A as the maximum over all f ∈ F .
Since the above holds for any µ ∈ Mswap, we have

Rt
swap = max

µ∈Mswap

∑

t∈[T]

rtat − rtµ(at) ≤ |A| max
(j,f)∈H

∑

t∈[T]

f(t, at)
(
rtat − rtj

)
,

and therefore, we conclude that there exists an efficient algorithm that achieves expected swap regret

E

[
RT

swap

]
≤ 4|A|

√

2T ln |A|.

Wide-range regret and its connection to subsequence regret The wide-range regret setting was first
introduced in Lehrer [2003] and then studied, in particular, in Blum and Mansour [2007] and Greenwald and Jafari
[2003]. It is quite general, and is in fact equivalent to the subsequence regret setting, up to a reparametriza-
tion.

Just as in the subsequence regret setting, imagine there is a finite family of subsequences F , where each
f ∈ F has the form f : [T]×A → [0, 1]. Moreover, suppose there is a finite family M of modification rules.

41

Each modification rule µ ∈ M is defined as a mapping µ : [T]×A → A, which has the interpretation that
if at time t, the Learner plays action at, then the modification rule modifies this action into another action
µ(t, at) ∈ A. Now, consider a collection of modification rule-subsequence pairs H ⊆ M×F . The Learner’s
wide-range regret with respect to H is defined as

RT
wide := max

(µ,f)∈H

∑

t∈[T]

f(t, at)
(

rtat − rtµ(t,at)

)

.

It is evident that wide-range regret has subsequence regret (when the Learner’s action set At = A for all
t ∈ [T]) as a special case, where each modification rule µ ∈ M always outputs the same action: that is, for
all t, at, we have µ(t, at) = j for some j ∈ A.

It is also not hard to establish the converse. Indeed, suppose we have an instance of no-wide-range-regret
learning with H ⊆ M×F , where M is a family of modification rules and F is a family of subsequences. Fix
any pair (µ, f) ∈ H. Then, let us define, for all j ∈ A, the subsequence

φ
(µ,f)
j : [T]×A → [0, 1] such that φ

(µ,f)
j (t, a) := f(t, a) · 1µ(t,a)=j for all t ∈ [T], a ∈ A.

Now, let us instantiate our subsequence regret setting with

Hwide :=
⋃

(µ,f)∈H

⋃

j∈A

(

j, φ
(µ,f)
j

)

.

Observe in particular that |Hwide| = |A| · |H|.
Computing the subsequence regret of this family Hwide, we have

RT
Hwide

= max
(µ,f)∈H

max
j∈A

∑

t∈[T]:µ(t,at)=j

f(t, at)(rtat − rtj).

Now, we have the following upper bound on the wide-range regret:

RT
wide = max

(µ,f)∈H

∑

t∈[T]

f(t, at)
(

rtat − rtµ(t,at)

)

= max
(µ,f)∈H

∑

j∈A

∑

t∈[T]:µ(t,at)=j

f(t, at)
(
rtat − rtj

)

≤ max
(µ,f)∈H

|A| max
j∈A

∑

t∈[T]:µ(t,at)=j

f(t, at)
(
rtat − rtj

)

= |A|RT
Hwide

.

Since our subsequence regret results imply the existence of an algorithm such that E
[
RT

Hwide

]
≤ 4
√

T ln |H ′| =
4
√

T (ln |A|+ ln |H|), we have the following expected wide-range regret bound:

E

[
RT

wide

]
≤ 4|A|

√

T (ln |A|+ ln |H|).

42

This figure "frog.jpg" is available in "jpg"
 format from:

http://arxiv.org/ps/2108.03837v3

	1 Introduction
	1.1 Additional Related Work

	2 General Framework
	2.1 The Setting
	2.2 General Algorithm

	3 Deriving No-X-Regret Algorithms from Our Framework
	4 Multicalibration and Multicalibeating
	4.1 Multicalibration
	4.2 Multicalibeating

	5 Polytope Blackwell Approachability
	A The General Framework with Extensions to Probabilistic and Approximate Learners: Full Proofs and Algorithms
	A.1 Omitted Proofs from Section 2
	A.2 Extensions
	A.2.1 Performance Bounds for a Probabilistic Learner
	A.2.2 Performance Bounds for a Suboptimal Learner

	A.3 Omitted Proofs and Details from Section A.2.1: Bounds for the Probabilistic Learner

	B Multicalibration: The Algorithm and Full Proofs
	C Multicalibeating: Full Statements and Proofs
	C.1 Calibeating a Single Forecaster: Proof of Theorem 4.2
	C.2 Applying Theorem 4.2: Explicit Rates and Multiple Forecasters
	C.3 Multicalibeating + Multicalibration Theorem 4.3: Full Statement and Proof

	D Blackwell Approachability: The Algorithm and Full Proofs
	E No-X-Regret: Definitions, Examples, Algorithms, and Proofs
	E.1 Simple Learning From Expert Advice: External Regret
	E.2 Generalization to Subsequence Regret
	E.3 Deriving No-Subsequence-Regret Algorithms
	E.4 Omitted Reductions between Different Notions of Regret

