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ABSTRACT

We develop fast distribution-free conformal prediction algorithms for obtaining
multivalid coverage on exchangeable data in the batch setting. Multivalid cover-
age guarantees are stronger than marginal coverage guarantees in two ways: (1)
They hold even conditional on group membershipÐthat is, the target coverage
level 1−α holds conditionally on membership in each of an arbitrary (potentially
intersecting) group in a finite collection G of regions in the feature space. (2) They
hold even conditional on the value of the threshold used to produce the prediction
set on a given example. In fact multivalid coverage guarantees hold even when
conditioning on group membership and threshold value simultaneously.

We give two algorithms: both take as input an arbitrary non-conformity score and
an arbitrary collection of possibly intersecting groups G, and then can equip ar-
bitrary black-box predictors with prediction sets. Our first algorithm BatchGCP

is a direct extension of quantile regression, needs to solve only a single convex
minimization problem, and produces an estimator which has group-conditional
guarantees for each group in G. Our second algorithm BatchMVP is iterative,
and gives the full guarantees of multivalid conformal prediction: prediction sets
that are valid conditionally both on group membership and non-conformity thresh-
old. We evaluate the performance of both of our algorithms in an extensive set of
experiments.

1 INTRODUCTION

Consider an arbitrary distribution D over a labeled data domain Z = X × Y . A model is any
function h : X → Y for making point predictions. The traditional goal of conformal prediction
in the ªbatchº setting is to take a small calibration dataset consisting of labeled examples sampled
from D and use it to endow an arbitrary model h : X → Y with prediction sets Th(x) ⊆ Y that
have the property that these prediction sets cover the true label with probability 1 − α marginally
for some target miscoverage rate α: Pr(x,y)∼D[y ∈ Th(x)] = 1 − α. This is a marginal coverage
guarantee because the probability is taken over the randomness of both x and y, without conditioning
on anything. In the batch setting (unlike in the sequential setting), labels are not available when the
prediction sets are deployed. Our goal in this paper is to give simple, practical algorithms in the
batch setting that can give stronger than marginal guarantees Ð the kinds of multivalid guarantees
introduced by Gupta et al. (2022); Bastani et al. (2022) in the sequential prediction setting.

Following the literature on conformal prediction (Shafer and Vovk, 2008), our prediction sets are
parameterized by an arbitrary non-conformity score sh : Z → R defined as a function of the model
h. Informally, smaller values of sh(x, y) should mean that the label y ªconformsº more closely
to the prediction h(x) made by the model. For example, in a regression setting in which Y = R,
the simplest non-conformity score is sh(x, y) = |h(x) − y|. By now there is a large literature
giving more sophisticated non-conformity scores for both regression and classification problemsÐ
see Angelopoulos and Bates (2021) for an excellent recent survey. A non-conformity score function
sh(x, y) induces a distribution over non-conformity scores, and if τ is the 1 − α quantile of this
distribution (i.e. Pr(x,y)∼D[sh(x, y) ≤ τ ] = 1 − α), then defining prediction sets as T τ

h (x) = {y :
sh(x, y) ≤ τ ] gives 1−α marginal coverage. Split conformal prediction (Papadopoulos et al., 2002;
Lei et al., 2018) simply finds a threshold τ that is an empirical 1− α quantile on the calibration set,
and then uses this to deploy the prediction sets T τ

h (x) defined above. Our goal is to give stronger
coverage guarantees, and to do so, rather than learning a single threshold τ from the calibration set,
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we will learn a function f : X → R mapping unlabeled examples to thresholds. Such a mapping f

induces prediction sets defined as follows: T f
h (x) = {y : sh(x, y) ≤ f(x)}.

Our goal is to find functions f : X → R that give valid conditional coverage guarantees of two
sorts. Let G be an arbitrary collection of groups: each group g ∈ G is some subset of the feature
domain g ∈ 2X about which we make no assumption and we write g(x) = 1 to denote that x is a
member of group g. An example x might be a member of multiple groups in G. We want to learn
a function f that induces group conditional coverage guaranteesÐi.e. such that for every g ∈ G:

Pr(x,y)∼D[y ∈ T f
h (x)|g(x) = 1] = 1 − α. Here we can think of the groups as representing e.g.

demographic groups (broken down by race, age, gender, etc) in settings in which we are concerned
about fairness, or representing any other categories that we think might be relevant to the domain
at hand. Since our functions f now map different examples x to different thresholds f(x), we
also want our guarantees to hold conditional on the chosen thresholdÐwhich we call a threshold
calibrated guarantee. This avoids algorithms that achieve their target coverage rates by overcovering
for some thresholds and undercovering with others Ð for example, by randomizing between full

and empty prediction sets. That is, we have: Pr(x,y)∼D[y ∈ T f
h (x)|g(x) = 1, f(x) = τ ] = 1 − α

simultaneously for every g ∈ G and every τ ∈ R. If f is such that its corresponding prediction sets

T f
h (x) satisfy both group and threshold conditional guarantees simultaneously, then we say that it

promises full multivalid coverage.

1.1 OUR RESULTS

We design, analyze, and empirically evaluate two algorithms: one for giving group conditional
guarantees for an arbitrary collection of groups G, and the other for giving full multivalid coverage
guarantees for an arbitrary collection of groups G. We give PAC-style guarantees (Park et al., 2019),
which means that with high probability over the draw of the calibration set, our deployed prediction
sets have their desired coverage properties on the underlying distribution. Thus our algorithms
also offer ªtraining-conditional coverageº in the sense of Bian and Barber (2022). We prove our
generalization theorems under the assumption that the data is drawn i.i.d. from some distribution,
but note that De Finetti’s theorem (Ressel, 1985) implies that our analysis carries over to data drawn
from any exchangeable distribution (see Remark C.1).

Group Conditional Coverage: BatchGCP We first give an exceedingly simple algorithm

BatchGCP (Algorithm 1) to find a model f that produces prediction sets T f
h that have group

conditional (but not threshold calibrated) coverage guarantees. We consider the class of functions

F = {fλ : λ ∈ R
|G|}: each fλ ∈ F is parameterized by a vector λ ∈ R

|G|, and takes value:
fλ(x) = f0(x) +

∑

g∈G:g(x)=1 λg. Here f0 is some arbitrary initial model. Our algorithm simply

finds the parameters λ that minimize the pinball loss of fλ(x). This is a |G|-dimensional convex
optimization problem and so can be solved efficiently using off the shelf convex optimization meth-
ods. We prove that the resulting function fλ(x) guarantees group conditional coverage. This can
be viewed as an extension of conformalized quantile regression (Romano et al., 2019) which is also
based on minimizing pinball loss. It can also be viewed as an algorithm promising ªquantile mul-
tiaccuracyº, by analogy to (mean) multiaccuracy introduced in HÂebert-Johnson et al. (2018); Kim
et al. (2019), and is related to similar algorithms for guaranteeing multiaccuracy (Gopalan et al.,
2022b). Here pinball loss takes the role that squared loss does in (mean) multiaccuracy.

Multivalid Coverage: BatchMVP We next give a simple iterative algorithm BatchMVP (Algo-

rithm 2) to find a model f that produces prediction sets T f
h that satisfy both group and threshold

conditional guarantees simultaneously Ð i.e. full multivalid guarantees. It iteratively finds groups
g ∈ G and thresholds τ such that the current model fails to have the target coverage guarantees
conditional on g(x) = 1 and f(x) = τ , and then ªpatchesº the model so that it does. We show
that each patch improves the pinball loss of the model substantially, which implies fast convergence.
This can be viewed as an algorithm for promising ªquantile multicalibrationº and is an extension
of related algorithms for guaranteeing mean multicalibration (HÂebert-Johnson et al., 2018), which
offer similar guarantees for mean (rather than quantile) prediction. Once again, pinball loss takes
the role that squared loss takes in the analysis of mean multicalibration.
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Empirical Evaluation We implement both algorithms, and evaluate them on synthetic prediction
tasks, and on 10 real datasets derived from US Census data from the 10 largest US States using the
ªFolktablesº package of Ding et al. (2021). In our synthetic experiments, we measure group con-
ditional coverage with respect to synthetically defined groups that are constructed to be correlated
with label noise. On Census datasets, we aim to ensure coverage on population groups defined by
reported race and gender categories. We compare our algorithms to two other split conformal predic-
tion methods: a naive baseline which simply ignores group membership, and uses a single threshold,
and the method of Foygel Barber et al. (2020), which calibrates a threshold τg for each group g ∈ G,
and then on a new example x, predicts the most conservative threshold among all groups x belongs
to. We find that both of our methods obtain significantly better group-wise coverage and threshold
calibration than the baselines we compare to. Furthermore, both methods are very fast in practice,
only taking a few seconds to calibrate on datasets containing tens of thousands of points.

We have discussed the most closely related work; but see Appendix A for an extended discussion of
additional related work.

2 PRELIMINARIES

We study prediction tasks over a domain Z = X ×Y . X denotes the feature domain and Y the label
domain. We write G ⊆ 2X to denote a collection of subsets of X which we represent as indicator
functions g : X → {0, 1}. The label domain might e.g. be real valued (Y = R)Ðthe regression
setting, or consist of some finite unordered setÐthe multiclass classification setting.

Suppose there is a fixed distributionD ∈ ∆Z . Given such a distribution, we will writeDX to denote
the marginal distribution over features: DX ∈ ∆X induced by D. We will write DY(x) ∈ ∆Y to
denote the conditional distribution over labels induced by D when we condition on a particular
feature vector x. We sometimes overload the notation and write D(x) = DY(x).

Our uncertainty quantification is based on a bounded non-conformity score function s : X×Y → R.
Non-conformity score functions are generally defined with respect to some model hÐwhich is why
in the introduction we wrote shÐbut our development will be entirely agnostic to the specifics of the
non-conformity score function, and so we will just write s for simplicity. Without loss of generality,
we assume that the scoring function takes values in the unit interval: s(x, y) ∈ [0, 1] for any x ∈ X
and y ∈ Y . Given a distributionD overZ = X ×Y and a non-conformity score function s, we write
S to denote the induced joint distribution over feature vectors x and corresponding non-conformity
scores s(x, y). Analogously to ourD(x) notation, we write S(x) to denote the non-conformity score
distribution conditional on a particular feature vector x. Given a subset of the feature space B ⊂ X ,
we write S|B to denote the conditional distribution on non-conformity scores conditional on x ∈ B.
Finally, we assume that all non-conformity score distributions S(x) are continuous, which simplifies
our treatment of quantiles Ð note that if this is not the case already, it can be enforced by perturbing
non-conformity scores with arbitrarily small amounts of noise from a continuous distribution.

Definition 2.1. For any q ∈ [0, 1], we say that τ is a q-quantile of a (continuous) nonconformity
score distribution S if Pr(x,s)∼S [s ≤ τ ] = q.

Our convergence results will be parameterized by the Lipschitz parameter of the CDF of the under-
lying nonconformity score distribution. Informally speaking, a distribution with a Lipschitz CDF
cannot concentrate too much of its mass on an interval of tiny width. Similar assumptions are com-
monly needed in related work, and can be guaranteed by perturbing non-conformity scores with
noise Ð see e.g. the discussion in (Gupta et al., 2022; Bastani et al., 2022).

Definition 2.2. A conditional nonconformity score distribution S(x) is ρ-Lipschitz if we have
Prs∼S(x)[s ≤ τ ′] − Prs∼S(x)[s ≤ τ ] ≤ ρ(τ ′ − τ) for all 0 ≤ τ ≤ τ ′ ≤ 1. A nonconformity

score distribution S is ρ-Lipschitz if for each x ∈ X , S(x) is ρ-Lipschitz.

If we could find a model f : X → [0, 1] that on each input x outputs a value f(x) that is a q-quantile
of the nonconformity score distribution S(x), this would guarantee true conditional coverage at rate
q: for every x, Pry[y ∈ T f (x)|x] = q, where T f (x) = {y : s(x, y) ≤ f(x)}. As this is generally
impossible, our aim will be to train models f that allow us to make similar claims Ð not conditional
on every x, but conditional on membership of x in some group g and on the value of f(x). To
facilitate learning models f with guarantees conditional on their output values, we will learn models
f whose range R(f) = {f(x) : x ∈ X} has finite cardinality m = |R(f)| <∞.
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3 ALGORITHMS

3.1 ALGORITHMIC PRELIMINARIES

In this section we establish lemmas that will be key to the analysis of both of the algorithms we give.
Both of our algorithms will rely on analyzing pinball loss as a potential function.

Definition 3.1. The pinball loss at target quantile q for threshold τ and nonconformity score s is

Lq(τ, s) = (s− τ)q · 1[s > τ ] + (τ − s)(1− q) · 1[s ≤ τ ].

We write PBS
q (f) = E

(x,s)∼S
[Lq(f(x), s)] for a model f : X → [0, 1] and nonconformity score

distribution S . When quantile q and/or distribution S is clear, we write PB, PBq , and/or PBS .

It is well known that pinball loss is minimized by the function that predicts for each x the target
quantile q of a conditional score distribution given x, but we will need a more refined set of state-
ments. First we define a model’s marginal quantile consistency error:

Definition 3.2. A q-quantile predictor f : X → R has marginal quantile consistency error α if∣
∣Pr(x,s)∼S [s ≤ f(x)]− q

∣
∣ = α. If α = 0, we say that f satisfies marginal q-quantile consistency.

Informally, we will need the pinball loss to have both a progress and an ªanti-progressº property:
If a model f is far from satisfying marginal quantile consistency, then linearly shifting it so that it
becomes marginal quantile consistent should reduce pinball loss substantially. Conversely, if it is
marginal quantile consistent, then perturbing it slightly should not increase pinball loss substantially.
The next lemma establishes these, under the assumption that the underlying distribution is Lipschitz.

Lemma 3.1. Fix any nonconformity score distribution S that is ρ-Lipschitz. Fix any model f :
X → R that has marginal quantile consistency error α with respect to target quantile q, and let
f ′(x) = f(x) + ∆ with ∆ chosen such that f ′ is marginal quantile consistent at quantile q. Then

−α|∆|+ α2

2ρ
≤ PBS

q (f
′)− PBS

q (f) ≤ −
α2

2ρ
.

We now define what will be a basic building block of our iterative algorithm for obtaining multivalid
coverage, and of the analysis of our algorithm for obtaining group conditional coverage. It is a
simple ªpatchº operation on a model, that shifts the model’s predictions by a constant term ∆ only
on those examples x that lie in some subset B of the feature space:

Definition 3.3 (Patch Operation). Given a model f , a subset B ⊆ X , and a value ∆ ∈ R define the
patched model f ′ = Patch(f,B,∆) to be such that

f ′(x) = f(x) + ∆ if x ∈ B, and f ′(x) = f(x) otherwise.

We next show that if we have a model f , and we can identify a large region B on which it is far
from satisfying marginal quantile consistency, then ªpatchingº the model so that it satisfies marginal
quantile consistency on S|B substantially improves its pinball loss.

Lemma 3.2. Given some predictor f : X → R, suppose we have a set of points B ⊆ X with

Pr
(x,s)∼S

[x ∈ B] ·
(

Pr
(x,s)∼S

[s ≤ f(x)|x ∈ B]− q

)2

≥ α and ∆ = argmin
∆′∈R

∣
∣
∣
∣

Pr
(x,s)∼S

[s ≤ f(x) + ∆′|x ∈ B]− q

∣
∣
∣
∣
.

Then, if S|B is continuous and ρ-Lipschitz, f ′ = Patch(f,B,∆) has PBS
q (f

′) ≤ PBS
q (f)− α

2ρ .

3.2 BATCHGCP: OBTAINING GROUP CONDITIONAL GUARANTEES

We now give an extremely simple algorithm BatchGCP (Batch Group-Conditional Predictor) that
obtains group conditional (but not threshold calibrated) prediction sets. BatchGCP only needs to
solve a single closed-form convex optimization problem. Specifically, Algorithm 1 takes as input an
arbitrary threshold model f and collection of groups G, and then simply minimizes pinball loss over
all linear combinations of f and the group indicator functions g ∈ G. This is a quantile-analogue of
a similar algorithm that obtains group conditional mean consistency (Gopalan et al., 2022b).
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Algorithm 1: BatchGCP(f,G, q,D)

Let λ∗ be a solution to the optimization problem:

argminλ E
(x,y)∼D

[

Lq

(

f̂(x;λ), s(x, y)
)]

where f̂(x;λ) ≡ f(x) +
∑

g∈G

λg · g(x)

Output f̂(x;λ∗)

Theorem 3.1. For any input model f , groups G, and q ∈ [0, 1], Algorithm 1 returns f̂(x;λ∗) with

Pr
(x,y)∼D

[

y ∈ T f̂ (x)|g(x) = 1
]

= q for every g ∈ G,

where T f̂ (x) = {y : s(x, y) ≤ f̂(x;λ∗)}. Furthermore, PBS
q (f̂(·;λ∗)) ≤ PBS

q (f).

The analysis is simple: if the optimal model f̂(x, λ∗) did not satisfy marginal quantile consistency
on some g ∈ G, then by Lemma 3.2, a patch operation on the set B(g) = {x : g(x) = 1} would
further reduce its pinball loss. By definition, this patch would just shift the model parameter λ∗

g and

yield a model f̂(x, λ′) for λ′ ̸= λ∗, falsifying the optimality of f̂(x, λ∗) among such models.

3.3 BATCHMVP: OBTAINING FULL MULTIVALID COVERAGE

In this section, we give a simple iterative algorithm BatchMVP (Batch Multivalid Predictor) that
trains a threshold model f that provides full multivalid coverage Ð i.e. that produces prediction
sets T f (x) that are both group conditionally valid and threshold calibrated. To do this, we start by
defining quantile multicalibration, a quantile prediction analogue of (mean) multicalibration defined
in HÂebert-Johnson et al. (2018); Gopalan et al. (2022a) .

Definition 3.4. The quantile calibration error of q-quantile predictor f : X → [0, 1] on group g is:

Q(f, g) =
∑

v∈R(f)

Pr
(x,s)∼S

[f(x) = v|g(x) = 1]
(

q − Pr
(x,s)∼S

[s ≤ f(x)|f(x) = v, g(x) = 1]
)2

.

We say that f is α-approximately q-quantile multicalibrated with respect to group collection G if

Q(f, g) ≤ α

Pr(x,s)∼S [g(x) = 1]
for every g ∈ G.

Conditional on membership in each group g, the quantile multicalibration error gives a bound on the
expected coverage error when conditioning both on membership in g and on a predicted threshold of
f(x) = v, in expectation over v. In particular, it implies (and is stronger than) the following simple
worst-case (over g and v) bound on coverage error conditional on both g(x) = 1 and f(x) = v:

Claim 3.1. If f is α-approximately quantile multicalibrated with respect to G and q, then
∣
∣
∣
∣

Pr
(x,y)∼D

[
y ∈ T f (x)|g(x) = 1, f(x) = v

]
− q

∣
∣
∣
∣
≤

√
α

√
Pr(x,s)∼S [g(x) = 1, f(x) = v]

for g ∈ G, v ∈ R(f).

Algorithm 2: BatchMVP(f, α, q,G, ρ,S,m)

Initialize t = 0, and define f0 as f0(x) = minv∈[ 1

m
] |v − f(x)| for x ∈ X .

while ft is not α-approximately q-quantile multicalibrated with respect to G do
Let Bt = {x : ft(x) = vt, gt(x) = 1}, where:

(vt, gt) ∈ argmax
(v,g)∈[ 1

m
]×G

Pr
(x,s)∼S

[ft(x) = v, g(x) = 1]

(

q − Pr
(x,s)∼S

[s ≤ ft(x)|ft(x) = v, g(x) = 1])

)2

Let: ∆t = argmin
∆∈[ 1

m
]

∣
∣
∣
∣

Pr
(x,s)∼S

[s ≤ ft(x) + ∆|x ∈ Bt]− q

∣
∣
∣
∣

Update ft+1 ← Patch (ft, Bt,∆t) and t← t+ 1.
Output ft.
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Algorithm 2 is simple: Given an initial threshold model f , collection of groups G, and target quan-
tile q, it repeatedly checks whether its current model ft satisfies α-approximate quantile multicali-
bration. If not, it finds a group gt and a threshold vt such that ft predicts a substantially incorrect
quantile conditional on both membership of x in gt and on ft(x) = vt Ð such a pair is guaranteed to
exist if ft is not approximately quantile multicalibrated. It then fixes this inconsistency and produces
a new model ft+1 with a patch operation up to a target discretization parameter m which ensures
that the range of ft+1 does not grow too large. Under the assumption that the non-conformity score
distribution is Lipschitz, each patch operation substantially reduces the pinball loss of the current
predictor, which ensures fast convergence to quantile multicalibration.

Theorem 3.2. Suppose S is ρ-Lipschitz and continuous, and m = 8ρ2

α . After T ≤ 32ρ3

α2 many
rounds, Algorithm 2 BatchMVP(f, α, q,G, ρ,S,m) returns fT such that

1. PBS
q (fT ) ≤ PBS

q (f0)− T α2

32ρ3 .

2. fT is α-approximately quantile multicalibrated with respect to G and q. In particular, via
Claim 3.1, we have for every g ∈ G and v ∈ R(f),
∣
∣
∣
∣

Pr
(x,y)∼D

[
y ∈ T fT (x)|g(x) = 1, fT (x) = v

]
− q

∣
∣
∣
∣
≤

√
α

√
Pr(x,s)∼S [g(x) = 1, fT (x) = v]

4 OUT OF SAMPLE GENERALIZATION

We have presented BatchGCP (Algorithm 1) and BatchMVP (2) as if they have direct access to
the true data distribution D. In practice, rather than being able to directly access the distribution,
we only have a finite calibration set D = (xi, yi)

n
i=1 of n data points sampled iid. from D. In

this section, we show that if we run our algorithms on the empirical distribution over the sample
D = (xi, yi)

n
i=1, then their guarantees hold not only for the empirical distribution over D but alsoÐ

with high probability Ð for the true distribution D. We include the generalization guarantees for
BatchGCP in Appendix C.3 and focus on generalization guarantees for BatchMVP.

At a high level, our argument proceeds as follows (although there are a number of technical com-
plications). For any fixed model f , by standard concentration arguments its in- and out-of-sample
quantile calibration error will be close with high probability for a large enough sample size. Our
goal is to apply concentration bounds uniformly to every model fT that might be output by our al-
gorithm, and then union bound over all of them to get a high probability bound for whichever model
happens to be output. Towards this, we show how to bound the total number of distinct models that
can be output as a function of T , the total number of iterations of the algorithm. This is possible
because at each round t, the algorithm performs a patch operation parameterized by a group gt ∈ G
(where |G| < ∞), a value vt ∈ [1/m], and an update value ∆t ∈ [1/m] Ð and thus only a finite
number of models ft+1 can result from patching the current model ft. The difficulty is that our
convergence analysis in Theorem 3.2 gives a convergence guarantee in terms of the smoothness pa-
rameter ρ of the underlying distribution, which will not be preserved on the empirical distribution
over the sample D drawn from D. Hence, to upper bound the number of rounds our algorithm can
run for, we need to interleave our generalization theorem with our convergence theorem, arguing
that at each stepÐtaken with respect to the empirical distribution over DÐwe make progress that
can be bounded by the smoothness parameter ρ of the underlying distribution D.

We first prove a high probability generalization bound for our algorithm as a function of the number
of steps T it converges in. This bound holds uniformly for all T , and so can be applied as a function
of the actual (empirical) convergence time T .

We let D = (xi, yi)
n
i=1 denote our sample, S = (xi, s(xi, yi))

n
i=1 our nonconformity score sample,

and S̃S denote the empirical distribution over S. When S is clear from the context, we just write S̃ .

Theorem 4.1. Suppose S is ρ-Lipschitz and S ∼ Sn. Suppose BatchMVP(f, α, q,G, ρ, S̃S ,m)
(Algorithm 2) runs for T rounds and outputs model fT . Then fT is α′-approximately q-quantile
multicalibrated with respect to G on S with probability 1− δ, where

α′ = α+ 21

√
√
√
√3ρ2

(

ln( 4π
2T 2

3δ ) + T ln(ρ
4|G|
α2 )

)

2αn
+

12ρ2( 4π
2T 2

3δ ) + T ln(ρ
4|G|
α2 ))

αn
.
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Figure 1: Performance comparisons across different conformal prediction methods. Groupwise
coverage is on the left, and mean prediction-set size by group is on the right (averaged over 50
runs). Error bars show standard deviation.

We then prove a worst-case upper bound on the convergence time T , which establishes a worst-case
PAC style generalization bound in combination with Theorem 4.1. We remark that although the
theorem contains a large constant, in our experiments, our algorithm halts after a small number of
iterations T (See Sections 5 and D), and we can directly apply Theorem 4.1 with this empirical value
for T .

Theorem 4.2. Suppose S is ρ-Lipschitz and continuous, m = ρ2

2α , and our calibration set
S ∼ Sn consists of n iid. samples drawn from S , where n is sufficiently large: n ≥
92928

(

ln
(

128ρ3

α2δ

)

+ 8ρ3

α2 ln
(

ρ4|G|
α2

))

max
(

ρ4

4α4 ,
ρ6

α4

)

. Then BatchMVP(f, α, q,G, ρ, S̃S ,m) (Al-

gorithm 2) halts after T ≤ 8ρ3

α2 rounds with prob. 1− δ.

Formal generalization arguments are in Appendix C. Theorems 4.1, 4.2 are proved in Appendix C.4.

5 EXPERIMENTS

5.1 A SYNTHETIC REGRESSION TASK

We first consider a linear regression problem on synthetic data drawn from a feature domain of 10
binary features and 90 continuous features, with each binary feature drawn uniformly at random,
and each continuous feature drawn from a normal distribution N (0, σ2

x). The 10 binary features
are used to define 20 intersecting groups, each depending on the value of a single binary feature.
An input’s label is specified by an ordinary least squares model with group-dependent noise as:

y = ⟨θ, x⟩ + N
(

0, σ2 +
∑10

i=1 σ
2
i xi

)

, where each term σ2
i is associated with one binary feature.

We set σ2
i = i for all i ∈ [10]. So the more groups an input x is a member of, the more label noise

it has, with larger index groups contributing larger amounts of label noise.

We generate a dataset {(xi, yi)} of size 40000 using the above-described model, and split it evenly
into training and test data. The training data is further split into training data of size 5000 (with which
to train a least squares regression model f ) and calibration data of size 15000 (with which to calibrate
our various conformal prediction methods). Given the trained predictor f , we use non-conformity
score s(x, y) = |f(x) − y|. Next, we define the set of groups G = {g1, g2, · · · , g20} where for
each j ∈ [20], gj = {x ∈ X | x⌊(j+1)/2⌋ ≡2 j + 1}. We run Algorithm 1 (BatchGCP) and
Algorithm 2 (BatchMVP with m = 100 buckets) to achieve group-conditional and full multivalid
coverage guarantees respectively, with respect to G with target coverage q = 0.9. We compare the
performance of these methods to naive split-conformal prediction (which, without knowledge of G,
uses the calibration data to predict a single threshold) and the method of Foygel Barber et al. (2020)
which predicts a threshold for each group in G that an input x is part of, and chooses the most
conservative one.
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Figure 2: The left figure plots group-wise calibration error (averaged over 50 runs), weighted by
group size. Error bars show standard deviation. The right figure is a scatterplot of the number of
points associated with each threshold-group pair (g, τi) against the average coverage conditional on
that pair for all g ∈ G and all τi in a grid, over all tested conformal prediction methods (consolidating
results over all 50 runs). Target coverage is q = 0.9.

Figures 1 and 2 present results over 50 runs of this experiment. Notice that both BatchGCP and
BatchMVP achieve close to the desired group coverage across all groupsÐwith BatchGCP achiev-
ing nearly perfect coverage and BatchMVP sometimes deviating from the target coverage rate by
as much as 1%. In contrast, the method of Foygel Barber et al. (2020) significantly overcovers
on nearly all groups, particularly low-noise groups, and naive split-conformal starts undercover-
ing and overcovering on high-noise and low-noise groups respectively as the expected label-noise
increases. Group-wise calibration error is high across all groups but the last using the method of
Foygel Barber et al. (2020), and naive split-conformal has low calibration error on groups where in-
clusion/exclusion reflects less fluctuation in noise, and higher calibration error in groups where there
is much higher fluctuation in noise based on inclusion. Both BatchGCP and BatchMVP have lower
group calibration errors Ð interestingly, BatchGCP appears to do nearly as well as BatchMVP in
this regard despite having no theoretical guarantee on threshold calibration error. A quantile mul-
ticalibrated predictor must have low coverage error conditional on groups g and thresholds τi that
appear frequently, and may have high coverage error for pairs that appear infrequentlyÐbehavior
that we see in BatchMVP in Figure 2. On the other hand, for both naive split conformal prediction
and the method of Foygel Barber et al. (2020), we see high mis-coverage error even for pairs (g, τi)
containing a large fraction of the probability mass.

We fix the upper-limit of allowed iterations T for BatchMVP to 1000, but typically the algorithm
converges and halts in many fewer iterations. Across the 50 runs of this experiment, the average
number of iterations T taken to converge was 45.54± 14.77.

5.2 AN INCOME PREDICTION TASK ON CENSUS DATA

We also compare our methods to naive split conformal prediction and the method of Foygel Barber
et al. (2020) on real data from the 2018 Census American Community Survey Public Use Microdata,
compiled by the Folktables package (Ding et al., 2021). This dataset records information about
individuals including race, gender and income. In this experiment, we generate prediction sets for a
person’s income while aiming for valid coverage on intersecting groups defined by race and gender.

The Folktables package provides datasets for all 50 US states. We run experiments on state-wide
datasets: for each state, we split it into 60% training data Dtrain for the income-predictor, 20%
calibration data Dcalib to calibrate the conformal predictors, and 20% test data Dtest. After training
the income-predictor f on Dtrain, we use the non-conformity score s(x, y) = |f(x) − y|. There
are 9 provided codes for race1 and 2 codes for sex (1. Male, 2. Female) in the Folktables data. We

11. White alone, 2. Black or African American alone, 3. American Indian alone, 4. Alaska Native alone,
5. American Indian and Alaska Native tribes specified; or American Indian or Alaska Native, not specified and
no other races, 6. Asian alone, 7. Native Hawaiian and other Pacific Islander alone, 8. Some Other Race alone,
9. Two or More Races.

8
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Figure 3: Performance across different conformal prediction methods on Folktables California data.
Groupwise coverage is on the left, and mean prediction-set sizes for each group are on the right
(averaged over 50 rounds). Error bars show standard deviation.

Figure 4: The left figure plots group-wise calibration error, weighted by group size (averaged over
50 runs). Error bars show standard deviation. The right figure is a scatterplot of the number of points
associated with each threshold-group pair (g, τi) against the average coverage conditional on that
pair for all g ∈ G and all τi in a grid, over all tested conformal prediction methods (consolidating
results over all 50 runs). Target coverage is q = 0.9.

define groups for five out of nine race codes (disregarding the four with the least amount of data)
and both sex codes. We run all four algorithms (naive split-conformal, the method of Foygel Barber
et al. (2020), BatchGCP, and BatchMVP with m = 300 buckets) with target coverage q = 0.9.

We ran this experiment on the 10 largest states. Figure 3 and Figure 4 present comparisons of the
performance of all four algorithms on data taken from California, averaged over 50 different runs.
Results on all remaining states are presented in Appendix D.2.

Just as in the synthetic experiments, both BatchGCP and BatchMVP achieve excellent coverage
across all groupsÐin fact now, we see nearly perfect coverage for both BatchGCP and BatchMVP,
with BatchGCP still obtaining slightly better group conditional coverage. In contrast, naive split-
conformal prediction undercovers on certain groups and overcovers on others, and the method of
Foygel Barber et al. (2020) significantly overcovers on some groups (here, group 4 and 7). The
conservative approach also generally yields prediction sets of much larger size. We see also that
BatchMVP achieves very low rates of calibration error across all groups, outperforming BatchGCP
in this regard. Calibration error is quite irregular across groups for both naive split-conformal pre-
diction and for the method of Foygel Barber et al. (2020), being essentially zero in certain groups
and comparatively much larger in others. The average number of iterations T BatchMVP converged
in was 10.64± 1.12.

Reproducibility statement The full Python implementations of BatchGCP and BatchMVP can
be found in the supplementary zip. Jupyter notebooks that implement each of our experiments are
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also included in the supplementary zip. For details on our experiments, such as how we generate
the data, what conformal scores we use, how we instantiate BatchMVP and BatchGCP, please see
Section 5 and Appendix D, as well as the corresponding Jupyter notebooks. Proofs of all theoretical
results are included, either in the main body of the paper or in the designated Appendices.
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A ADDITIONAL RELATED WORK

Conformal prediction (see Shafer and Vovk (2008); Angelopoulos and Bates (2021) for excellent
surveys) has seen a surge of activity in recent years. One large category of recent work has been
the development of sophisticated non-conformity scores that yield compelling empirical coverage in
various settings when paired with split conformal prediction (Papadopoulos et al., 2002; Lei et al.,
2018). This includes Romano et al. (2019) who give a nonconformity score based on quantile re-
gression, Angelopoulos et al. (2020) and Romano et al. (2020b) who give nonconformity scores
designed for classification, and Hoff (2021) who gives a nonconformity score that leads to Bayes
optimal coverage when data is drawn from the assumed prior distribution. This line of work is com-
plementary to ours: we give algorithms that can be used as drop-in replacements for split conformal
prediction, and can make use of any of these nonconformity scores.

Another line of work has focused on giving group conditional guarantees. Romano et al. (2020a)
note the need for group-conditional guarantees with respect to demographic groups when fairness
is a concern, and propose separately calibrating on each group in settings in which the groups are
disjoint. Foygel Barber et al. (2020) consider the case of intersecting groups, and give an algorithm
that separately calibrates on each group, and then uses the most conservative group-wise threshold
when faced with examples that are members of multiple groups Ð the result is that this method
systematically over-covers. The kind of ªmultivalidº prediction sets that we study here were first
proposed by Jung et al. (2021) in the special case of prediction intervals: but the algorithm given by
Jung et al. (2021), based on calibrating to moments of the label distribution and using Chebyshev’s
inequality, also generally leads to over-coverage. Gupta et al. (2022) gave a theoretical derivation
of an algorithm to obtain tight multivalid prediction intervals in the sequential adversarial setting,
and Bastani et al. (2022) gave a practical algorithm to obtain tight multivalid coverage in the general
case Ð also in the sequential adversarial setting. Although the sequential setting is more difficult
in the sense that it makes no distributional assumptions, it also requires that labels be available after
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predictions are made at test time, in contrast to the batch setting that we study, in which labels are not
available. Gupta et al. (2022) give an online-to-batch reduction that requires running the sequential
algorithm on a large calibration set, saving the algorithm’s internal state at each iteration, and then
deploying a randomized predictor that randomizes over the internal state of the algorithm across
all rounds of training. This is generally impractical for large datasets; in contrast we give a direct,
simple, deterministic predictor in the batch setting.

Our algorithms can be viewed as learning quantile multiaccurate predictors and quantile multicali-
brated predictors respectively Ð by analogy to multiaccuracy Kim et al. (2019) and multicalibration
HÂebert-Johnson et al. (2018) which are defined with respect to means instead of quantiles. Their
analysis is similar, but with pinball loss playing the role played by squared error in (mean) multical-
ibration. This requires analyzing the evolution of pinball loss under Lipschitzness assumptions on
the underlying distribution, which is a complication that does not arise for means. More generally,
our goals for obtaining group conditional guarantees for intersecting groups emerge from the litera-
ture on ªmultigroupº fairness Ð see e.g. (Kearns et al., 2018; HÂebert-Johnson et al., 2018; Kearns
et al., 2019; Rothblum and Yona, 2021; Dwork et al., 2019; Globus-Harris et al., 2022)

B MISSING DETAILS FROM SECTION 3

B.1 MISSING DETAILS FROM SECTION 3.1

Lemma B.1. Fix any x ∈ X and τ ∈ [0, 1].

E
s∼S(x)

[
dLq(f(x) + τ, s)

dτ

]

=

∫

[0,1]

dLq(f(x) + τ, s)

dτ
dS(x) = Pr

s∼S(x)
[s ≤ f(x) + τ ]− q

Proof.

E
s∼S(x)

[
dLq(f(x) + τ), s

dτ

]

=

∫ 1

0

d

dτ
Lq(f(x) + τ, s)dS(x)

=

∫ τ

0

d

dτ
Lq(f(x) + τ, s)dS(x) +

∫ 1

τ

d

dτ
Lq(f(x) + τ, s)dS(x)

=

∫ τ

0

(1− q)dS(x)−
∫ 1

τ

qdS(x)

= Pr
s∼S(x)

[s ≤ τ ]− q

Lemma 3.1. Fix any nonconformity score distribution S that is ρ-Lipschitz. Fix any model f :
X → R that has marginal quantile consistency error α with respect to target quantile q, and let
f ′(x) = f(x) + ∆ with ∆ chosen such that f ′ is marginal quantile consistent at quantile q. Then

−α|∆|+ α2

2ρ
≤ PBS

q (f
′)− PBS

q (f) ≤ −
α2

2ρ
.

Proof.

PBS
q (f

′)− PBS
q (f)

=

∫

X×[0,1]

Lq(f(x) + ∆, s)− Lq(f(x), s)S(dx, ds)

=

∫

X×[0,1]

∫ ∆

0

dLq(f(x) + τ, s)

dτ
dτS(dx, ds)

=

∫ ∆

0

∫

X×[0,1]

dLq(f(x) + τ, s)

dτ
S(dx, ds)dτ

=

∫ ∆

0

(

E
x∼DX

[

Pr
s∼S(x)

[s ≤ f(x) + τ ]− q

])

dτ
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=

∫ ∆

0

(

Pr
(x,s)∼S

[s ≤ f(x) + τ ]− q

)

dτ

=

∫ ∆

0

Pr
(x,s)∼S

[s ≤ f(x) + τ ]dτ −∆q

where the fourth equality follows from Lemma B.1.

For convenience, write HS,f (τ) = Pr(x,s)∼S [s ≤ f(x) + τ ]. Note that

∫ ∆

0

HS,f (τ)dτ =

∫ ∆

0

Pr
(x,s)∼S

[s ≤ f(x) + τ ]dτ

=

∫ ∆

0

Pr
(x,s)∼S

[s ≤ f ′(x)−∆+ τ ]dτ

= −
∫ −∆

0

Pr
(x,s)∼S

[s ≤ f ′(x) + τ ]dτ

= −
∫ −∆

0

HS,f ′(τ)dτ,

as instead of sweeping the area under the curve from f(x) to f(x)+∆, we can sweep the area under
the curve from f ′(x) to f ′(x)−∆ because f ′(x) = f(x) + ∆.

Lemma B.2. Fix any conformity score distribution S that is ρ-Lipschitz, ∆ > 0, and f : X → R.
Then we have

HS,f (0)∆ +
(HS,f (∆)−HS,f (0))

2

2ρ

≤
∫ ∆

0

HS,f (τ)dτ

≤ HS,f (∆)∆−
(
(HS,f (∆)−HS,f (0))

2

2ρ

)

.

Proof. For simplicity write H(τ) = HS,f (τ). Note that H(τ) is a non-negative function that is
increasing in τ .

First, we find an upper bound the area. The maximum area that can be achieved is when there’s

a linear rate of increase from y = H(0) to y = H(∆) between x = 0 and x = H(∆)−H(0)
ρ as

depicted in Figure 5. The area measured via the integral can be calculated by subtracting the area of
the triangle from the area of the rectangle from x = 0 to x = ∆ and from y = 0 to y = H(∆).

∫ ∆

0

Pr
(x,s)∼S

[s ≤ f(x) + τ ]dτ

≤ H(∆)∆− (H(∆)−H(0))2

2ρ
.

Now, we find a lower bound of the area. The area under the curve is minimized when there’s a linear

increase from H(0) to H(∆) between x = ∆− H(∆)−H(0)
ρ and x = ∆. The area can be calculated

as the sum of the area of the rectangle from x = 0 to x = ∆ and from y = 0 to y = H(0) and the
area of the triangle.

∫ ∆

0

Pr
(x,s)∼S

[s ≤ f(x) + τ ]dτ

≥ H(0)∆ +
H(∆)−H(0)

2ρ
(H(∆)−H(0))
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H(0)

H(∆)

0 ∆
|H(∆)−H(0)|

ρ ∆− |H(∆)−H(0)|
ρ

Figure 5: Upper and lower bounding the local area under H . The max-area CDF curve is in dashed
blue, the min-area CDF curve is in solid purple.

Case (i) ∆ ≥ 0: We have HS,f (∆) = q and HS,f (0) = q − α.

PBq(f
′)− PBq(f) ≤ HS,f (∆)∆−

(
(HS,f (∆)−HS,f (0))

2

2ρ

)

−∆q

≤ −α2

2ρ
.

On the other hand,

PBq(f
′)− PBq(f) ≥ HS,f (0)∆ +

(HS,f (∆)−HS,f (0))
2

2ρ
−∆q

= (q − α)∆ +
α2

2ρ
−∆q

= −α∆+
α2

2ρ
.

Case (ii) ∆ < 0: We have we have HS,f (∆) = HS,f ′(0) = q and HS,f (0) = HS,f ′(∆′) = q+α
where ∆′ = −∆, we have

PBq(f
′)− PBq(f) = −

∫ −∆

0

HS,f ′(τ)dτ − q∆

= −
∫ ∆′

0

HS,f ′(τ)dτ − q∆

≤ −
(

HS,f ′(0)∆′ +
(HS,f ′(∆)−HS,f ′(0))2

2ρ

)

− q∆

≤ −α2

2ρ
.
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On the other hand, we have

PBq(f
′)− PBq(f) = −

∫ −∆

0

HS,f ′(τ)dτ − q∆

= −
∫ ∆′

0

HS,f ′(τ)dτ − q∆

≥ −
(

HS,f ′(∆′)∆′ −
(
(HS,f ′(∆′)−HS,f ′(0))2

2ρ

))

− q∆

= (q + α)∆ +
α2

2ρ

= α∆+
α2

2ρ
.

Lemma 3.2. Given some predictor f : X → R, suppose we have a set of points B ⊆ X with

Pr
(x,s)∼S

[x ∈ B] ·
(

Pr
(x,s)∼S

[s ≤ f(x)|x ∈ B]− q

)2

≥ α and ∆ = argmin
∆′∈R

∣
∣
∣
∣

Pr
(x,s)∼S

[s ≤ f(x) + ∆′|x ∈ B]− q

∣
∣
∣
∣
.

Then, if S|B is continuous and ρ-Lipschitz, f ′ = Patch(f,B,∆) has PBS
q (f

′) ≤ PBS
q (f)− α

2ρ .

Proof. Note that f ’s marginal quantile consistency error with respect to target quantile q as measured
on S|B is

∣
∣
∣
∣

Pr
(x,s)∼S|B

[s ≤ f(x)]− q

∣
∣
∣
∣
≥
√

α

Pr(x,s)∼S [x ∈ B]
.

Also, since S|B is continuous, we have

q = Pr
(x,s)∼S|B

[s ≤ f(x) + ∆].

In other words, f ′ satisfies marginal quantile consistency for q as measured on S|B.

Applying Lemma 3.1 to S|B, we have

PBS
q (f

′)− PBS
q (f)

= Pr
(x,s)∼S

[x ∈ B] · (PBS|B
q (f ′)− PBS|B

q (f))

≤ − Pr
(x,s)∼S

[x ∈ B] · α

2ρPr(x,s)∼S [x ∈ B]

= − α

2ρ
.

B.2 MISSING DETAILS FROM SECTION 3.2

Theorem 3.1. For any input model f , groups G, and q ∈ [0, 1], Algorithm 1 returns f̂(x;λ∗) with

Pr
(x,y)∼D

[

y ∈ T f̂ (x)|g(x) = 1
]

= q for every g ∈ G,

where T f̂ (x) = {y : s(x, y) ≤ f̂(x;λ∗)}. Furthermore, PBS
q (f̂(·;λ∗)) ≤ PBS

q (f).

Proof. Suppose f̂(x;λ∗) is not marginally quantile consistent on some g′ ∈ G Ð i.e.
Pr(x,s)[g

′(x) = 1] · (Pr(x,s)∼S [s ≤ f(x)|g′(x) = 1] − q)2 > 0. In other words, there exists
some ∆ ̸= 0 such that

Pr
(x,s)∼S

[s ≤ f(x) + ∆|g′(x) = 1] = q.
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Suppose we patch f̂(·;λ∗)

f ′ = Patch(f̂(·;λ∗), g′,∆)

which can be re-written as

f ′(x) = f̂(x;λ∗) + ∆ · ✶[g′(x) = 1]

= f(x) +




∑

g∈G

λg · g(x)



+∆ · ✶[g′(x) = 1]

= f(x) +
∑

g∈G

λ′
g · g(x)

where λ′
g′ = λ∗

g′ +∆ and λ′
g = λ∗

g for all other g ̸= g′.

Lemma 3.2 yields

PBS
q (f̂(·, λ′))− PBS

q (f̂(·;λ∗)) < 0

which contradicts the fact that λ∗ is an optimal solution to minλ E(x,y)∼D

[

Lq

(

f̂(x;λ), y
)]

.

B.3 MISSING DETAILS FROM SECTION 3.3

Claim 3.1. If f is α-approximately quantile multicalibrated with respect to G and q, then
∣
∣
∣
∣

Pr
(x,y)∼D

[
y ∈ T f (x)|g(x) = 1, f(x) = v

]
− q

∣
∣
∣
∣
≤

√
α

√
Pr(x,s)∼S [g(x) = 1, f(x) = v]

for g ∈ G, v ∈ R(f).

Proof . Consider any g ∈ G.

Q(f, g) =
∑

v∈R(f)

Pr
(x,s)∼S

[f(x) = v|g(x) = 1]

(

q − Pr
(x,s)∼S

[s ≤ f(x)|f(x) = v, g(x) = 1]

)2

≤ α

Pr(x,s)∼S [g(x) = 1]

In particular, since each term in the sum is non-negative, we must have for every v ∈ R(f):

Pr
(x,s)∼S

[f(x) = v|g(x) = 1]

(

q − Pr
(x,s)∼S

[s ≤ f(x)|f(x) = v, g(x) = 1]

)2

≤ α

Pr(x,s)∼S [g(x) = 1]

Dividing both sides by Pr(x,s)∼S [f(x) = v|g(x) = 1] we see that this is equivalent to:

(

q − Pr
(x,s)∼S

[s ≤ f(x)|f(x) = v, g(x) = 1]

)2

≤ α

Pr(x,s)∼S [g(x) = 1, fT (x) = v]

Taking the square root yields our claim.

Theorem 3.2. Suppose S is ρ-Lipschitz and continuous, and m = 8ρ2

α . After T ≤ 32ρ3

α2 many
rounds, Algorithm 2 BatchMVP(f, α, q,G, ρ,S,m) returns fT such that

1. PBS
q (fT ) ≤ PBS

q (f0)− T α2

32ρ3 .

2. fT is α-approximately quantile multicalibrated with respect to G and q. In particular, via
Claim 3.1, we have for every g ∈ G and v ∈ R(f),
∣
∣
∣
∣

Pr
(x,y)∼D

[
y ∈ T fT (x)|g(x) = 1, fT (x) = v

]
− q

∣
∣
∣
∣
≤

√
α

√
Pr(x,s)∼S [g(x) = 1, fT (x) = v]

Proof.
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(1) Marginal quantile consistency error in each round t: At any round t, if ft is not α-
approximately quantile multicalibrated with respect to G and q, we have

Pr
(x,s)∼S

[x ∈ Bt]

(

q − Pr
(x,s)∼S

[s ≤ ft(x)|x ∈ Bt])

)2

≥ α

m+ 1
≥ α

2m
:

as the average of m+ 1 elements is greater than α.

(2) Decomposing the patch operation into two patch operations: Write

∆̃t = argmin
∆∈[0,1]

∣
∣
∣
∣

Pr
(x,s)∼S

[s ≤ ft(x) + ∆|x ∈ Bt]− q

∣
∣
∣
∣

to denote how much we would have patched ft by if we actually optimized over the unit interval.
Then, we can divide the patch operation into two where

f̃t+1 = Patch
(

ft, Bt, ∆̃t

)

ft+1 = Patch
(

f̃t, Bt,∆t − ∆̃t

)

.

Now, we try to bound the change in the pinball loss separately:

PBS
q (ft+1)− PBS

q (ft) = (PBS
q (ft+1)− PBS

q (f̃t+1))
︸ ︷︷ ︸

(∗)

+(PBS
q (f̃t+1)− PBS

q (ft))
︸ ︷︷ ︸

(∗∗)

.

(2) Bounding (**): Lemma 3.2 yields

(∗∗) = PBS(f̃t+1)− PBS(ft) ≤ −
α

4ρm

(3) Bounding (*): Note that i
m ≤ ∆̃ ≤ i+1

m for some i ∈ [0, . . . ,m − 1]. Because the function
∆→ Pr(x,s)∼S|Bt

[s ≤ ft(x) + ∆] is an increasing function in ∆, we have
∣
∣
∣
∣

Pr
(x,s)∼S|Bt

[s ≤ ft(x) + ∆′]− q

∣
∣
∣
∣
<

∣
∣
∣
∣

Pr
(x,s)∼S|Bt

[

s ≤ ft(x) +
i

m

]

− q

∣
∣
∣
∣

for any ∆ <
i

m
∣
∣
∣
∣

Pr
(x,s)∼S|Bt

[s ≤ ft(x) + ∆′]− q

∣
∣
∣
∣
<

∣
∣
∣
∣

Pr
(x,s)∼S|Bt

[

s ≤ ft(x) +
i+ 1

m

]

− q

∣
∣
∣
∣

for any ∆ >
i+ 1

m
.

In other words, ∆t ∈ { i
m , i+1

m } so we have |∆t − ∆̃t| ≤ 1
m . Because S|Bt is ρ-Lipschitz and

f̃t+1(x) is q-quantile for S|Bt, we can bound the marginal quantile consistency error of ft+1 against
S|Bt as
∣
∣
∣
∣

Pr
(x,s)∼S|Bt

[s ≤ ft+1(x)]− q

∣
∣
∣
∣
=

∣
∣
∣
∣

Pr
(x,s)∼S|Bt

[s ≤ ft+1(x)]− Pr
(x,s)∼S|Bt

[s ≤ f̃t(x)− ∆̃t +∆t]

∣
∣
∣
∣
≤ ρ

m

as |∆t − ∆̃t| ≤ 1
m .

Note that ft+1(x) = f̃t+1(x) for x ̸∈ Bt and ft+1(x) = f̃t+1(x) + ∆t − ∆̃t for x ∈ Bt where

|∆t − ∆̃t| ≤ 1
m . Applying Lemma 3.1 with ∆ = ∆t − ∆̃t, α ≤ ρ

m , and (f, f ′) = (ft+1, f̃t+1), we
have that

PBS
q (ft+1)− PBS

q (f̃t+1) = Pr
(x,s)∼S

[x ∈ Bt] ·
(

PBS|Bt(ft+1)− PBS|Bt(f̃t+1)
)

≤ Pr
(x,s)∼S

[x ∈ Bt] ·
(

ρ

m

1

m
−
( ρ

m

)2 1

2ρ

)

≤ ρ

m2
.
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(4) Combining (*) and (**): We get

PBS
q (ft+1)− PBS

q (ft) ≤ −
α

4ρm
+

ρ

m2

= − α2

32ρ3
.

(5) Guarantees: It directly follows that

PBS
q (fT )− PBS

q (f0) ≤ T
α2

32ρ3
.

With 0 ≤ PBS
q (f) ≤ 1 for any f : X → [0, 1], we note that fT must be α-approximately quantile

multicalibrated with respect to G and q after at most 32ρ3

α2 many rounds.

C MISSING DETAILS FROM SECTION 4

C.1 ON THE I.I.D. VERSUS EXCHANGEABILITY ASSUMPTION

Remark C.1. In this section, we prove PAC-like generalization theorems for our algorithms under
the assumption that the data is drawn i.i.d. from some underlying distribution. Exchangeability is
a weaker condition than independence, and requires only that the probability of observing any se-
quence of data is permutation invariant. De Finetti’s representation theorem (Ressel, 1985) states
that any infinite exchangeable sequence of data can be represented as a mixture of constituent dis-
tributions, each of which is i.i.d. Thus, our generalization theorems carry over from the i.i.d. setting
to the more general exchangeable data setting: we can simply apply our theorems to each (i.i.d.)
mixture component in the De Finetti representation of the exchangeable distribution. If for every
mixture component, the model we learn has low quantile multicalibration error with probability
1 − δ when the data is drawn from that component, then our models with also have low quantile
multicalibration error with probability 1−δ in expectation over the choice of the mixture component.

C.2 HELPFUL CONCENTRATION BOUNDS

Theorem C.1 (Additive Chernoff Bound). Let {Xi}ni=1 be independent random variables bounded
such that for each i ∈ [n], Xi ∈ [0, 1]. Let Sn =

∑n
i=1 Xi denote their sum. Then for all ϵ > 0,

Pr
{Xi}n

i=1

[|Sn − E[Sn]| ≥ ϵ] ≤ 2 exp

(

−ϵ2

n

)

.

Theorem C.2 (Multiplicative Chernoff Bound). Let {Xi}ni=1 be independent random variables
bounded such that for each i ∈ [n], Xi ∈ [0, 1]. Let Sn =

∑n
i=1 Xi denote their sum. Then for all

η > 0,

Pr
{Xi}n

i=1

[|Sn − E[Sn]| ≥ η E[Sn]] ≤ 2 exp

(

−E[Sn]η
2

3

)

.

Lemma C.1. Fix any B ⊆ X . Given S = {(xi, si)}ni=1 ∼ Sn, we have

∣
∣
∣
∣
∣

1

n

n∑

i=1

✶[xi ∈ B]− Pr
(x,s)

[x ∈ B]

∣
∣
∣
∣
∣
≤

√

3 ln( 2δ ) PrS [x ∈ B]

n
.

Proof. This is just a direct application of the Chernoff bound (Theorem C.2) where we set η =
√

3 ln( 2

δ
)

nPrS [x∈B] .

Lemma C.2. Fix any B ⊆ X and f : X → [0, 1]. Given S = {(xi, si)}ni=1 ∼ Sn, we have

∣
∣
∣
∣
∣

1

n

n∑

i=1

✶[s ≤ f(x), xi ∈ B]− Pr
(x,s)

[s ≤ f(x), x ∈ B]

∣
∣
∣
∣
∣
≤

√

3 ln( 2δ ) PrS [s ≤ f(x), x ∈ B]

n
≤

√

3 ln( 2δ ) PrS [x ∈ B]

n
.
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Proof. This is just a direct application of the Chernoff bound (Theorem C.2) where we set η =
√

3 ln( 2

δ
)

nPrS [s≤f(x),x∈B] .

Lemma C.3. Fix any B ⊆ X and f : X → [0, 1]. Suppose

√
3 ln( 4

δ
)

nPr[x∈B] ≤ 1
2 . Given S ∼ Dn, we

have that with probability 1− δ
∣
∣
∣
∣
∣

Pr
(x,s)∼S̃|B

[s ≤ f(x)]− Pr
(x,s)∼S|B

[s ≤ f(x)]

∣
∣
∣
∣
∣
≤ 5

√

3 ln( 4δ )

nPrS [x ∈ B]

Proof. Note that

Pr
(x,s)∼S̃|B

[s ≤ f(x)] =
1
n

∑n
i=1 ✶[si ≤ f(xi), xi ∈ B]
1
n

∑n
i=1 ✶[xi ∈ B]

.

Lemma C.1 and C.2 together give us that with probability 1− δ,
∣
∣
∣
∣
∣

1

n

n∑

i=1

✶[si ≤ f(xi), xi ∈ B]− Pr
(x,s)

[s ≤ f(x), x ∈ B]

∣
∣
∣
∣
∣
≤

√

3 ln( 4δ ) PrS [s ≤ f(x), x ∈ B]

n
≤

√

3 ln( 4δ ) PrS [x ∈ B]

n

∣
∣
∣
∣
∣

1

n

n∑

i=1

✶[xi ∈ B]− Pr
(x,s)

[x ∈ B]

∣
∣
∣
∣
∣
≤

√

3 ln( 4δ ) PrS [x ∈ B]

n
.

With ϵ =

√
3 ln( 4

δ
) PrS [x∈B]

n , we can show that

Pr
(x,s)∼S̃|B

[s ≤ f(x)]

=
1
n

∑n
i=1 ✶[si ≤ f(xi), xi ∈ B]
1
n

∑n
i=1 ✶[xi ∈ B]

≤ PrS [s ≤ f(x), x ∈ B] + ϵ

PrS [x ∈ B]− ϵ

=
PrS [s ≤ f(x), x ∈ B] + ϵ

PrS [x ∈ B]
(

1− ϵ
PrS [x∈B]

)

≤
︸︷︷︸

(∗)

(

1 +
2ϵ

PrS [x ∈ B]

)(
PrS [s ≤ f(x), x ∈ B] + ϵ

PrS [x ∈ B]

)

≤ Pr
S|B

[s ≤ f(x)] +
ϵ

PrS [x ∈ B]
+

2ϵ

PrS [x ∈ B]
+

2ϵ2

PrS [x ∈ B]2

≤ Pr
S|B

[s ≤ f(x)] + 3

√

3 ln( 4δ )

nPrS [x ∈ B]
+ 2

3 ln( 4δ )

nPrS [x ∈ B]

≤
︸︷︷︸

(∗∗)

Pr
S|B

[s ≤ f(x)] + 5

√

3 ln( 4δ )

nPrS [x ∈ B]

where for (*), we rely on the assumption that

√
3 ln( 4

δ
)

nPr[x∈B] ≤ 1
2 to apply the inequality 1/(1− x) ≤

(1+2x) for 0 ≤ x ≤ 1/2 and for (**), we rely on
3 ln( 4

δ
)

nPrS [x∈B] ≤ 1 to get

√
3 ln( 4

δ
)

nPrS [x∈B] ≥
3 ln( 4

δ
)

nPrS [x∈B] .

Lemma C.4. Fix any B ⊆ X and f : X → [0, 1]. Suppose

√
3 ln( 4

δ
)

nPr[x∈B] ≤ 1
2 . Given S ∼ Dn, we

have that with probability 1− δ
∣
∣
∣
∣
∣
∣

(

q − Pr
(x,s)∼S|B

[s ≤ f(x)]

)2

−
(

q − Pr
(x,s)∼S̃|B

[s ≤ f(x)]

)2
∣
∣
∣
∣
∣
∣

≤ 20

√

3 ln( 4δ )

nPrS [x ∈ B]
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for any q ∈ [0, 1].

Proof.
∣
∣
∣
∣
∣
∣

(

q − Pr
(x,s)∼S|B

[s ≤ ft(x)]

)2

−
(

q − Pr
(x,s)∼S̃|B

[s ≤ ft(x)]

)2
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
2q

(

Pr
S̃|B

[s ≤ f(x)]− Pr
S|B

[s ≤ f(x)]

)

+

(

Pr
S|B

[s ≤ f(x)]2 − Pr
S̃|B

[s ≤ f(x)]2

)∣
∣
∣
∣
∣

≤ 2

∣
∣
∣
∣
∣
Pr
S|B

[s ≤ f(x)]− Pr
S̃|B

[s ≤ f(x)]

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

(

Pr
S|B

[s ≤ f(x)]− Pr
S̃|B

[s ≤ f(x)]

)(

Pr
S|B

[s ≤ f(x)] + Pr
S̃|B

[s ≤ f(x)]

)∣
∣
∣
∣
∣

≤ 4

∣
∣
∣
∣
∣
Pr
S|B

[s ≤ f(x)]− Pr
S̃|B

[s ≤ f(x)]

∣
∣
∣
∣
∣

≤ 20

√

3 ln( 4δ )

nPrS [x ∈ B]
.

where we use Lemma C.3 for the last inequality.

Lemma C.5. Fix B ⊆ X , v ∈ [ 1m ], g ∈ G, and f : X → [0, 1]. Given S ∼ Dn, we have with
probability 1− δ
∣
∣
∣
∣
∣
∣

Pr
(x,s)∼S

[x ∈ B]

(

q − Pr
(x,s)∼S|B

[s ≤ f(x)]

)2

− Pr
(x,s)∼S̃

[x ∈ B]

(

q − Pr
(x,s)∼S̃|B

[s ≤ f(x)]

)2
∣
∣
∣
∣
∣
∣

≤ 21

√

3 ln( 8δ ) PrS [x ∈ B]

n
+

12 ln( 8δ )

n
.

Proof. First, Suppose

√
3 ln( 8

δ
)

nPrS [x∈B] >
1
2 . Then, with probability 1− δ,

Pr
(x,s)∼S̃

[B]

(

q − Pr
(x,s)∼S̃|B

[s ≤ f(x)]

)2

≤



 Pr
(x,s)∼S

[B] +

√

3 ln( 2δ ) PrS [x ∈ B]

n





(

q − Pr
(x,s)∼S̃|B

[s ≤ f(x)]

)2

Lemma C.1

≤ Pr
(x,s)∼S

[B] +

√

3 ln( 8δ ) PrS [x ∈ B]

n

(

q − Pr
(x,s)∼S̃|B

[s ≤ f(x)]

)2

≤ 1

≤ 12 ln( 8δ )

n
+

√

3 ln( 8δ ) PrS [x ∈ B]

n

√

3 ln( 8δ )

nPrS [x ∈ B]
>

1

2
.

On the other hand, we have

Pr
(x,s)∼S

[B]

(

q − Pr
(x,s)∼S|B

[s ≤ f(x)]

)2

≤ Pr
(x,s)∼S

[B] ≤ 12 ln( 8δ )

n
.

Because |a− b| ≤ max(a, b) for a, b ∈ [0, 1], we have
∣
∣
∣
∣
∣
∣

Pr
(x,s)∼S

[B]

(

q − Pr
(x,s)∼S|B

[s ≤ f(x)]

)2

− Pr
(x,s)∼S̃

[B]

(

q − Pr
(x,s)∼S̃|B

[s ≤ f(x)]

)2
∣
∣
∣
∣
∣
∣
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≤

√

3 ln( 8δ ) PrS [x ∈ B]

n
+

12 ln( 8δ )

n
.

Now, suppose otherwise:

√
3 ln( 8

δ
)

nPr[x∈B] ≤ 1
2 . Then, Lemma C.1 and C.4 promise us that with proba-

bility 1− δ,

Pr
(x,s)∼S̃

[B]

(

q − Pr
(x,s)∼S̃|B

[s ≤ f(x)]

)2

≤
(

Pr
(x,s)∼S

[B] + ϵ1

)((

q − Pr
(x,s)∼S|B

[s ≤ f(x)]

)2

+ ϵ2

)

≤ Pr
(x,s)∼S

[B]

(

q − Pr
(x,s)∼S|B

[s ≤ f(x)]

)2

+ Pr
(x,s)∼S

[B]ϵ2 + ϵ1 + ϵ1ϵ2

where ϵ1 =

√
3 ln( 4

δ
) PrS [x∈B]

n . and ϵ2 = 20
√

3 ln( 8

δ
)

nPrS [x∈B] .

We can show that

Pr
(x,s)∼S

[B]ϵ2 + ϵ1 + ϵ1ϵ2

≤ 21

√

3 ln( 8δ ) PrS [x ∈ B]

n
+

3 ln( 8δ )

n
.

The opposite direction works the same way.

C.3 OUT OF SAMPLE GUARANTEES FOR BATCHGCP

Theorem C.3. Suppose S is ρ-Lipschitz, and write f̂(·;λ∗) = BatchGCP(f,G, q,D) and

f̂(·;λ∗
D) = BatchGCP(f,G, q,D) given some D = {(xi, yi)}ni=1 drawn from D. Then we have

with probability 1− δ over the randomness of drawing D from D
∣
∣
∣
∣

Pr
(x,y)∼D

[y ∈ T f̂(·,λ∗

D
)(x)|g(x = 1)]− q

∣
∣
∣
∣
≤
√

α′

Pr[g(x) = 1]

where T f̂(·,λ∗

D
)(x) = {y : s(x, y) ≤ f̂(x;λ∗

D)}, q′ = max(q, 1 − q), b = ⌈max(||λ∗||2, ||λ∗
D||2)⌉,

and α′ = 24ρbq′
√

ln(π2b2

3δ
)+|G| ln(1+2n)

2n .

Proof. Fix some B ∈ N. For any fixed λ where ||λ||2 ≤ B, the Chernoff Bound (Theorem C.1) with
rescaling gives us that with probability 1 − δ over the randomness of drawing D = {(xi, yi)}ni=1
from D,

∣
∣
∣
∣
∣

1

n

n∑

i=1

Lq(f̂(xi;λ), yi)− E
(x,y)∼D

[Lq(f̂(x;λ), y)]

∣
∣
∣
∣
∣
≤ 4q′B

√

ln( 2δ )

2n
(1)

as λ→ Lq(f̂(x, λ), y) is q′-Lipschitz.

We now show how to union bound the above concentration over all λ where ||λ||2 ≤ B. To do so,
we first create a finite ϵ-net for a ball of radius B and union-bound over each λ in the net. Then we
can argue that due to the Lipschitzness of the pinball loss Lq , the empirical pinball loss with respect
to each λ that is in the ball must be concentrated around its distributional loss.

We fist provide the standard ϵ-net argument:

Lemma C.6. Fix ϵ ∈ R and B ∈ N. There exists a RB = {λ1, . . . , λkB
} where kB ≤

(
1 + 2B

ϵ

)|G|

such that the following holds true: for every λ where ||λ||2 ≤ B, there exists j ∈ [k] such that
||λ− λj ||2 ≤ ϵ.
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Proof. For simplicity, write PB = {λ ∈ R
|G| : ||λ||2 ≤ B}.

We say that a set R ⊆ R
|G| is an ϵ-net of PB if for every λ ∈ PB , there exists λ′ ∈ R such that

||λ− λ′||2 ≤ ϵ.

Without loss of generality, we suppose B = 1. Since an ϵ
B -cover of P1 can be scaled up to an

ϵ-cover of PB Ð i.e. given R1 which is an ϵ
B -cover of P1, the following set RB = {B ·λ : λ ∈ R1}

is an ϵ-cover of PB .

Now, choose a set R to be a maximally ϵ-separated subset of P1: for every u, v ∈ B, ||u − v|| ≥ ϵ
and no set R′ such that R ⊂ R′ has this property.

Due to its maximal property, R must be an ϵ-cover for P1. Otherwise, it means that there exists
some point u ∈ P1 such that for every v ∈ R ||u − v|| > ϵ. Note that R ∪ {u} would still be an
ϵ-separate subset of P1, contradicting the maximality of R.

Due to the ϵ-separability of R, we have that the balls centered at each u ∈ R with radius of ϵ
2 is all

disjoint, meaning the sum of the volume of these balls is the volume of their union. On the other
hand, we have that they all lie in a ball of radius 1 + ϵ

2 , P1+ ϵ

2
. Therefore, we have

vol(P ϵ

2
) · |R| ≤ vol(P1+ ϵ

2
).

Since vol(Pc) = c|G| · vol(P1), we have that

|R| ≤ (1 + ϵ
2 )

|G|

( ϵ2 )
|G|

=

(

1 +
2

ϵ

)|G|

.

By union-bounding inequality (1) over RB , we have that with probability 1− δ

max
j∈[kB ]

∣
∣
∣
∣
∣

1

n

n∑

i=1

Lq(f̂(xi;λj), yi)− E
(x,y)∼D

[Lq(f̂(x;λj), y)]

∣
∣
∣
∣
∣
≤ 4q′B

√

ln( 2kB

δ )

2n
.

Using q′-Lipschitzness of Lq , we can further show that for any λ where ||λ||2 ≤ B, we have
∣
∣
∣
∣
∣

1

n

n∑

i=1

Lq(f̂(xi;λ), yi)− E
(x,y)∼D

[Lq(f̂(x;λ), y)]

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

1

n

n∑

i=1

Lq(f̂(xi;λ), yi)−
1

n

n∑

i=1

Lq(f̂(xi;λj), yi) +
1

n

n∑

i=1

Lq(f̂(xi;λj), yi)]

+ E
(x,y)∼D

[Lq(f̂(x;λj), y)]− E
(x,y)∼D

[Lq(f̂(x;λj), y)]− E
(x,y)∼D

[Lq(f̂(x;λ), y)]

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

1

n

n∑

i=1

Lq(f̂(xi;λ), yi)−
1

n

n∑

i=1

Lq(f̂(xi;λj), yi)]

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

1

n

n∑

i=1

Lq(f̂(xi;λj), yi))]− E
(x,y)∼D

[Lq(f̂(x;λj), y]

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

E
(x,y)∼D

[Lq(f̂(x;λj), y)])]− E
(x,y)∼D

[Lq(f̂(x;λ), y)]

∣
∣
∣
∣
∣

≤ 2ϵq′ + 4q′B

√

ln( 2δ ) + ln(kB)

2n

= 2ϵq′ + 4q′B

√

ln( 2δ ) + |G| ln(1 + 2B
ϵ )

2n
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where j is chosen such that ||λ − λj ||2 ≤ ϵ and we can find such j because RB is an ϵ-net for the
ball of radius B.

Setting ϵ = B
n yields

≤ 2Bq′

n
+ 4q′B

√

ln( 2δ ) + |G| ln(1 + 2n)

2n
≤ 6Bq′

√

ln( 2δ ) + |G| ln(1 + 2n)

2n

for sufficiently large n.

We set δb =
6δ

π2b2 so that
∑∞

b=1 δb = δ. In other words, with probability 1− δ, we have simultane-
ously over all b ∈ N and λ where ||λ||2 ≤ b

∣
∣
∣
∣
∣

1

n

n∑

i=1

Lq(f̂(xi;λ), yi)− E
(x,y)∼D

[Lq(f̂(x;λ), y)]

∣
∣
∣
∣
∣
≤ 6bq′

√

ln(π
2b2

3δ ) + |G| ln(1 + 2n)

2n
.

In other words, the final output λ∗
D from BatchGCP and λ∗ which is the optimal solution with

respect to the true distribution D must be such that
∣
∣
∣
∣
∣

1

n

n∑

i=1

Lq(f̂(xi;λ
∗
D), yi)− E

(x,y)∼D
[Lq(f̂(x;λ

∗
D), y)]

∣
∣
∣
∣
∣
≤ 6bq′

√

ln(π
2b2

3δ ) + |G| ln(1 + 2n)

2n

∣
∣
∣
∣
∣

1

n

n∑

i=1

Lq(f̂(xi;λ
∗), yi)− E

(x,y)∼D
[Lq(f̂(x;λ

∗), y)]

∣
∣
∣
∣
∣
≤ 6bq′

√

ln(π
2b2

3δ ) + |G| ln(1 + 2n)

2n
.

where b = ⌈max(||λ∗||2, ||λ∗
D||2)⌉. In other words,

E
(x,y)∼D

[Lq(f̂(x;λ
∗
D), y)]− E

(x,y)∼D
[Lq(f̂(x;λ

∗), y)] ≤ 12bq′

√

ln(π
2b2

3δ ) + |G| ln(1 + 2n)

2n
.

Now, for the sake of contradiction, suppose that there exists some g ∈ G such that

Pr
(x,s)∼S

[g(x) = 1] ·
(

q − Pr
(x,s)∼S

[s ≤ f̂(x;λ∗
D)|g(x) = 1]

)2

> α′

where α′ = 24ρbq′
√

ln(π2b2

3δ
)+|G| ln(1+2n)

2n .

Then, Lemma 3.2 tells us that we can decrease the true pinball loss with respect to λ∗
D by at least α′

2ρ

by patching B = {x : g(x) = 1}. However, that cannot be the case that as that would mean there
exists λ′ such that

E
(x,y)∼D

[Lq(f̂(x;λ
′), y)] < E

(x,y)∼D
[Lq(f̂(x;λ

∗), y)]

where λ′ is such that λ′
g = λ∗

D,g for all g′ ̸= g and λ′
g is chosen to satisfy

q = Pr
(x,y)∼D

[f(x) + λ′
g|g(x) = 1].

This is a contradiction as we have already defined

λ∗ = argmin
λ

E
(x,y)∼D

[Lq(f̂(x;λ), y)].

C.4 OUT OF SAMPLE GUARANTEES FOR BATCHMVP

C.4.1 OUT-OF-SAMPLE QUANTILE MULTICALIBRATION BOUND FOR FIXED T

Theorem 4.1. Suppose S is ρ-Lipschitz and S ∼ Sn. Suppose BatchMVP(f, α, q,G, ρ, S̃S ,m)
(Algorithm 2) runs for T rounds and outputs model fT . Then fT is α′-approximately q-quantile
multicalibrated with respect to G on S with probability 1− δ, where

α′ = α+ 21

√
√
√
√3ρ2

(

ln( 4π
2T 2

3δ ) + T ln(ρ
4|G|
α2 )

)

2αn
+

12ρ2( 4π
2T 2

3δ ) + T ln(ρ
4|G|
α2 ))

αn
.
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Proof . For each t ∈ N, define δt = δ · 6
π2 · 1

t2 . Note that

∞∑

t=1

δt = δ
6

π2

∞∑

t=1

1

t2
= δ

as
∑∞

t=1
1
t2 = π2

6 .

Fixed any t ∈ N and δ. Union-bounding Lemma C.5 over g ∈ G and f ∈ Ct, we have that for any
g ∈ G, with probability 1− δ,

∑

v∈R(ft)

Pr
(x,s)∼S

[ft(x) = v, g(x) = 1]

(

q − Pr
(x,s)∼S

[s ≤ ft(x)|ft(x) = v, g(x) = 1]

)2

≤
∑

v∈R(ft)

Pr
(x,s)∼S̃

[ft(x) = v, g(x) = 1]

(

q − Pr
(x,s)∼S̃

[s ≤ ft(x)|ft(x) = v, g(x) = 1]

)2

+
∑

v∈R(ft)

21

√

3
(
ln( 8δ ) + t ln(4m2|G|)

)
PrS [ft(x) = v, g(x) = 1]

n
+

12(ln( 8δ ) + t ln(4m2|G|))
n

︸ ︷︷ ︸

(∗)

.

We can further bound (∗) as

(∗) ≤
∑

v∈R(ft)

21

√

3
(
ln( 8δ ) + t ln(4m2|G|)

)
PrS [ft(x) = v, g(x) = 1]

n
+ 2m

12(ln( 8δ ) + t ln(4m2|G|))
n

≤
︸︷︷︸

(∗∗)

α+ 21

√

3
(
ln( 8δ ) + t ln(4m2|G|)

) PrS [g(x)=1]
|R(ft)|

n
|R(f)|2 + 12ρ2(ln( 8δ ) + t ln(4m2|G|))

αn

≤ 21

√

3
(
ln( 8δ ) + t ln(4m2|G|)

)
|R(ft)|

n
+

12ρ2(ln( 8δ ) + T ln(4m2|G|))
αn

= 21

√

3ρ2
(
ln( 8δ ) + t ln(4m2|G|)

)

4αn
+

12ρ2(ln( 8δ ) + t ln(4m2|G|))
αn

= 21

√
√
√
√3ρ2

(

ln( 8δ ) + t ln(ρ
4|G|
α2 )

)

2αn
+

12ρ2(ln( 8δ ) + t ln(ρ
4|G|
α2 ))

αn

where we used |R(ft)| = m + 1 ≤ 2m and m = ρ2

2α . Inequality (∗∗) follows from the fact that

h(z) =

√
3t(ln( 8

δ
)+t ln(4m2|G|))·z

n is concave and so the optimization problem
∑|R(ft)|

i=1 h(zi) where
∑|R(ft)|

i=1 zi = PrS(g(x) = 1) is maximized at zi =
PrS(g(x)=1)

|R(ft)|
for each i ∈ [|R(ft)|].

In other words, with probability 1− δ = 1−∑∞
t=1 δt, we simultaneously have for every t ∈ N

∑

v∈R(ft)

Pr
(x,s)∼S

[ft(x) = v, g(x) = 1]

(

q − Pr
(x,s)∼S

[s ≤ ft(x)|ft(x) = v, g(x) = 1]

)2

≤
∑

v∈R(ft)

Pr
(x,s)∼S̃

[ft(x) = v, g(x) = 1]

(

q − Pr
(x,s)∼S̃

[s ≤ ft(x)|ft(x) = v, g(x) = 1]

)2

+ 21

√
√
√
√3ρ2

(

ln( 8
δt
) + t ln(ρ

4|G|
α2 )

)

2αn
+

12ρ2(ln( 8
δt
) + t ln(ρ

4|G|
α2 ))

αn
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≤
∑

v∈R(ft)

Pr
(x,s)∼S̃

[ft(x) = v, g(x) = 1]

(

q − Pr
(x,s)∼S̃

[s ≤ ft(x)|ft(x) = v, g(x) = 1]

)2

+ 21

√
√
√
√3ρ2

(

ln( 4π
2t2

3δ ) + t ln(ρ
4|G|
α2 )

)

2αn
+

12ρ2( 4π
2t2

3δ ) + t ln(ρ
4|G|
α2 ))

αn
.

Finally, when our algorithm halts at round T , fT is α-approximately multicalibrated with respect to

its empirical distribution S̃ . Therefore, we have

∑

v∈R(fT )

Pr
(x,s)∼S

[fT (x) = v, g(x) = 1]

(

q − Pr
(x,s)∼S

[s ≤ fT (x)|fT (x) = v, g(x) = 1]

)2

≤ α+ 21

√
√
√
√3ρ2

(

ln( 4π
2t2

3δ ) + t ln(ρ
4|G|
α2 )

)

2αn
+

12ρ2( 4π
2t2

3δ ) + t ln(ρ
4|G|
α2 ))

αn
.

C.4.2 SAMPLE COMPLEXITY OF MAINTAINING CONVERGENCE SPEED OF BATCHMVP

We write C0 = {f0} and

Ct+1 =






ft+1 :

ft+1(x) = Patch(ft, B(v, g),∆) where B(v, g) = {x : ft(x) = v, g(x) =
1}
for all ft ∈ Ct, v ∈

[
1
m

]
, g ∈ G,∆ ∈

[
1
m

]
].







to denote the set of all possible models ft we could obtain at round t of Algorithm 2 regardless of
what dataset S = {(xi, si)}ni=1 is used as input.

Lemma C.7. Fixing the initial model f0, the number of distinct models ft that can arise at round t
of Algorithm 2 (quantified over all possible input datasets S) is upper bounded by:

|Ct| = ((m+ 1)2|G|)t ≤ (4m2|G|)t.

Proof. The proof is by induction on t ∈ N. By construction we have |C0| = 1. Now, note that

|Ct+1| = (m+1)2|G||Ct| because we consider all possible combinations of ft ∈ Ct, v ∈
[
1
m

]
, g ∈ G,

and ∆ ∈
[
1
m

]
. Therefore, if |Ct| = ((m+1)2|G|)t for some t, then |Ct+1| = ((m+1)2|G|)t+1.

Theorem 4.2. Suppose S is ρ-Lipschitz and continuous, m = ρ2

2α , and our calibration set
S ∼ Sn consists of n iid. samples drawn from S , where n is sufficiently large: n ≥
92928

(

ln
(

128ρ3

α2δ

)

+ 8ρ3

α2 ln
(

ρ4|G|
α2

))

max
(

ρ4

4α4 ,
ρ6

α4

)

. Then BatchMVP(f, α, q,G, ρ, S̃S ,m) (Al-

gorithm 2) halts after T ≤ 8ρ3

α2 rounds with prob. 1− δ.

Proof . Fix any round t. Because ft is not α-approximately quantile multicalibrated with respect to

G and q on S̃ , we have

Pr
(x,s)∼S̃

[x ∈ Bt]

(

q − Pr
(x,s)∼S̃

[s ≤ ft(x)|x ∈ Bt])

)2

≥ α

m+ 1
≥ α

2m
.

Now, the patch operation in this can be decomposed into the following:

vt → vt +∆∗ where q = Pr
(x,s)∼S|Bt

[s ≤ ft(x) + ∆∗]

vt +∆∗ → vt + ∆̃∗ where ∆̃∗ = arg min
v∈[1/m]

|v −∆∗|

vt + ∆̃∗ → vt +∆t.

25



Under review as a conference paper at ICLR 2023

For convenience, we write

f∗
t (x) = ft(x) + ∆∗ · ✶[x ∈ Bt]

f̃∗
t (x) = ft(x) + ∆̃∗ · ✶[x ∈ Bt]

ft+1(x) = ft(x) + ∆t · ✶[x ∈ Bt]

Now, we show that we decrease the empirical pinball loss PBS̃ as we go from ft to ft+1 in each
round t with high probability.

(1) ft → f∗
t : First, we can show progress in terms of the pinball loss on S and then by a Chernoff

bound, we can show that we have made significant progress on S̃ with high probability. More
specifically, we must have decreased the pinball loss with respect to S|Bt by going from vt to
vt + ∆∗. Note that ∆∗ is chosen to satisfy the target quantile q with respect to S|Bt and S is
ρ-Lipschitz.

Because the empirical quantile error was significant for (vt, gt), we can show that the true quan-
tile error must have been significant. By union bounding Lemma C.5 over all f ∈ Ct and using
Lemma C.7 to bound the cardinality of Ct, we have with probability 1− δ

∣
∣
∣
∣
∣
∣

Pr
(x,s)∼S

[Bt]

(

q − Pr
(x,s)∼S|Bt

[s ≤ ft(x)]

)2

− Pr
(x,s)∼S̃

[Bt]

(

q − Pr
(x,s)∼S̃|Bt

[s ≤ ft(x)]

)2
∣
∣
∣
∣
∣
∣

≤ 21

√

3 ln( 8|Ct|
δ ) PrS [x ∈ B]

n
+

12 ln( 8|Ct|
δ )

n

≤ 21

√

3
(
ln( 8δ ) + t ln(4m2|G|)

)
PrS [x ∈ B]

n
+

12
(
ln( 8δ ) + t ln(4m2|G|)

)

n

≤ 22

√

12
(
ln( 8δ ) + t ln(4m2|G|)

)

n

as long n ≥ 12
(
ln( 8δ ) + t ln(4m2|G|)

)
. In other words, we have

Pr
(x,s)∼S

[Bt]

(

q − Pr
(x,s)∼S|Bt

[s ≤ ft(x)]

)2

≥ α

2m
− 22

√

12
(
ln( 8δ ) + t ln(4m2|G|)

)

n
.

If n ≥ 92928m2(ln( 8

δ
)+t ln(4m2|G|))
α2 , then we have

Pr
(x,s)∼S

[Bt]

(

q − Pr
(x,s)∼S|Bt

[s ≤ ft(x)]

)2

≥ α

4m
.

As f∗
t achieves the target quantile q against S|Bt and the quantile error was at least α

4m , applying
Lemma 3.2 yields

PBS(f∗
t )− PBS(ft) ≤ −

α

8mρ
.

(2) f∗
t → f̃∗

t : Recall that ∆̃∗ results from rounding ∆∗ to the nearest grid point in [ 1m ]. Because
S|Bt is ρ-Lipschitz and ft(·)+∆∗ satisfies the target quantile q for S|Bt, we can bound the marginal

quantile consistency error of ft(·) + ∆̃∗ against S|Bt as

∣
∣
∣
∣

Pr
(x,s)∼S|Bt

[s ≤ ft(x) + ∆̃∗]− q

∣
∣
∣
∣
=

∣
∣
∣
∣

Pr
(x,s)∼S|Bt

[s ≤ ft(x) + ∆̃∗]− Pr
(x,s)∼S|Bt

[s ≤ ft(x)−∆∗]

∣
∣
∣
∣
≤ ρ

2m

as |∆∗ − ∆̃∗| ≤ 1
2m .
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Note that f∗
t (x) = f̃∗

t (x) for x ̸∈ Bt and f∗
t (x) = f̃t+1(x) + (∆̃∗ − ∆∗) for x ∈ Bt where

|∆̃∗ −∆∗| ≤ 1
2m . Applying Lemma 3.1 with ∆ = ∆̃∗ −∆∗, α ≤ ρ

2m , and (f, f ′) = (f̃∗
t , f

∗
t ), we

have that

PBS
q (f̃

∗
t )− PBS

q (f
∗
t ) = Pr

(x,s)∼S
[x ∈ Bt] ·

(

PBS|Bt(f̃∗
t )− PBS|Bt(f∗

t )
)

≤ Pr
(x,s)∼S

[x ∈ Bt] ·
(

ρ

2m

1

2m
−
( ρ

2m

)2 1

2ρ

)

≤ ρ

8m2
.

We have so far shown that with probability 1− δ,

PBS(ft+1)− PBS(ft)

=
(

PBS(ft+1)− PBS(f̃∗
t )
)

+
(

PBS(f̃∗
t )− PBS(f∗

t )
)

+
(
PBS(f∗

t )− PBS(ft)
)

≤
(

PBS(ft+1)− PBS(f̃∗
t )
)

+
ρ

8m2
− α

8mρ

By union boudning the Chernoff bound (Theorem C.1) over Ct+1, we can show that PBS̃(f) con-
centrates around PBS(f) for every f ∈ Ct: with probabiliy 1− δ, we simultaneously have

∣
∣
∣PBS̃(ft)− PBS(ft)

∣
∣
∣ ≤

√

ln( 2δ ) + t ln(4m2|G|)
2n

∣
∣
∣PBS̃(f̃∗

t )− PBS(f̃∗
t )
∣
∣
∣ ≤

√

ln( 2δ ) + t ln(4m2|G|)
2n

∣
∣
∣PBS̃(ft+1)− PBS(ft+1)

∣
∣
∣ ≤

√

ln( 2δ ) + t ln(4m2|G|)
2n

as ft, f̃
∗
t , ft+1 ∈ Ct+1.

In other words, we have with probability 1− 2δ

PBS̃(ft+1)− PBS̃(ft)

≤
(

PBS̃(ft+1)− PBS̃(f̃∗
t )
)

+
ρ

8m2
− α

4mρ
+ 4

√

ln( 2δ ) + t ln(4m2|G|)
2n

.

(3) f̃∗
t → ft+1: Because ∆t is chosen to minimize with respect to the empirical distribution out

of grid points [1/m], we can show that the pinball loss against the empirical distribution S̃ must be

lower for ft+1 than f̃∗
t .

We can calculate the derivative of the pinball loss with respect to the patch ∆ as

d

d∆
PBS̃|Bt(ft(·) + ∆)

=
dE(x,s)∼S̃|Bt

[Lq(ft(x) + ∆, s)]

d∆

=
1

|Bt|
d

d∆

∑

i:xi∈Bt

Lq(ft(xi) + ∆, si)

=
1

|Bt|




∑

i:xi∈Bt,si≤ft(xi)+∆

d

d∆
Lq(ft(xi) + ∆, si) +

∑

i:xi∈Bt,si>ft(xi)+∆

d

d∆
Lq(ft(xi) + ∆, si)
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=
1

|Bt|




∑

i:xi∈Bt,si≤ft(xi)+∆

(1− q)−
∑

i:xi∈Bt,si>ft(xi)+∆

q





=
1

|Bt|
|{i : xi ∈ Bt, si ≤ ft(xi) + ∆}| − q

= Pr
(x,s)∼S̃|Bt

[s ≤ ft(x) + ∆]− q.

Because PBS̃|Bt(ft(·)+∆) is convex in ∆, minimizing this function is equivalent to minimizing the

absolute value of its derivative, which is how ∆t is set. Therefore, PBS̃|Bt(ft(·)+∆) is minimized
at ∆t. Hence, we have with probability 1−2δ (δ to argue that there is significant quantile consistency
error on Bt with respect to S and δ to argue that the empirical pinall loss concentrates around its
expectation),

PBS̃(ft+1)− PBS̃(ft)

≤
(

PBS̃(ft+1)− PBS̃(f̃∗
t )
)

+
ρ

8m2
− α

8mρ
+ 4

√

ln( 2δ ) + t ln(4m2|G|)
2n

≤ ρ

8m2
− α

8mρ
+ 4

√

ln( 2δ ) + t ln(4m2|G|)
2n

≤ −α
2

4ρ3
+ 4

√

ln( 2δ ) + t ln(4m2|G|)
2n

as we have chosen m = ρ2

2α .

If n ≥ 512ρ6(ln( 2

δ
)+t ln(4m2|G|))
α4 , we have

PBS̃(ft+1)− PBS̃(ft) ≤ −
α2

8ρ3
.

Because we decrease the empirical pinball loss by α2

8ρ3 in each round with probability 1 − 2δ, we

have that with probability 1− 2δ · 8ρ3

α2 , the algorithm halts at round T = 8ρ3

α2 . If

n ≥ 92928

(

ln

(
8

δ

)

+
8ρ3

α2
ln(4m2|G|)

)

max

(
m2

α2
,
ρ6

α4

)

,

we satisfy all the requirements that we stated previous for n in each round t ∈ [T ].

If we set δ′ = 16ρ3

α2 δ, we have with probability 1 − δ′, the algorithm halts in T = 8ρ3

α2 where we
require

n ≥ 92928

(

ln

(
128ρ3

α2δ′

)

+
8ρ3

α2
ln(4m2|G|)

)

max

(
m2

α2
,
ρ6

α4

)

= 92928

(

ln

(
128ρ3

α2δ′

)

+
8ρ3

α2
ln

(
ρ4|G|
α2

))

max

(
ρ4

4α4
,
ρ6

α4

)

D ADDITIONAL EXPERIMENTS AND DISCUSSION

D.1 A DIRECT TEST OF GROUP CONDITIONAL QUANTILE CONSISTENCY AND QUANTILE

MULTICALIBRATION

In this section we abstract away the non-conformity score, and directly perform a direct evalua-
tion of the ability of BatchGCP and BatchMVP to offer group conditional and multivalid quantile
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Figure 6: Per-group coverage of BatchMVP (left) and BatchGCP (right) on a representative run.

Figure 7: Per-group calibration error of BatchMVP and BatchGCP on a representative run.

consistency guarantees. We produce a synthetic regression dataset defined to have a set of inter-
secting groups that are all relevant to label uncertainty. Specifically, the data {(xi, yi)}10000i=1 ∈
(Z+ × R)10000 is generated as follows. First, we define our group collection as G = {g1, . . . , g15},
where for each j = 1, . . . , 15, the group gj = {j, 2j, 3j, . . .} ⊂ Z+ contains all multiples of j.
Note that group g1 encompasses the entire covariate space, ensuring that our methods will explicitly
enforce marginal coverage in addition to group-wise coverage. Each xi is a random integer sampled

uniformly from the range [1, 5000). We let the corresponding label yi =
|y′

i
|

|y′

i
|+1 ∈ [0, 1], where y′i is

distributed as the sum of n(xi) i.i.d.N (0, 1) random variables, where n(xi) is the number of groups
that xi belongs to. After generating our data, we split it into 80% training data Dtrain and 20% test
data Dtest. We then run both methods on the group collection G, for target coverage q = 0.9, with
m = 100 buckets.

The group coverage obtained by both methods on a sample run can be seen in Figure 6. Generally,
both methods achieve target group-wise coverage level on all groups, with BatchMVP exhibiting
less variance in the attained coverage levels across different runs. Meanwhile, the group-wise quan-
tile calibration errors of both models are presented in Figure 7. Both BatchMVP and BatchGCP
are very well-calibrated on all groups, with calibration errors on the order of 10−3 Ð even though
unlike BatchMVP, the definition of BatchGCP does not enforce this constraint explicitly.

D.2 FURTHER COMPARISONS ON STATE CENSUS DATA

In Section 5.2 we performed an income-prediction task using census data (Ding et al. (2021)) from
the state of California to compare the performance of BatchGCP and BatchMVP against each
other, as well as against other regularly used conformal prediction methods. Here, we present results
of the same experiment using data from other US states. We selected the ten largest states (by
population data) to work with, of which California is one. Results for every state are averaged over
50 runs of the experiment, taking different random splits over the data (to form training, calibration,
and test sets) each time. The plots in Figure 8, Figure 9, Figure 10 and Figure 11 compare the
performance of all four methods with metrics such as group-wise coverage, prediction-set size, and
group-wise quantile calibration error.
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(a) Texas (b) New York (c) Florida

(d) Pennsylvania (e) Illinois (f) Ohio

(g) North Carolina (h) Georgia (i) Michigan

Figure 8: Results for group-wise coverage for nine different states (averaged over 50 runs) using
different methods of conformal prediction. Error bars show standard deviation.

D.2.1 HALTING TIME

Recall that our generalization theorem for BatchMVP is in terms of the number of iterations T
it runs for before halting. We prove a worst-case upper bound on T , but note that empirically
BatchMVP halts much sooner (and so enjoys improved theoretical generalization properties). Here
we report the average number of iterations T that BatchMVP runs for before halting on each state,
averaged over the 50 runs, together with the empirical standard deviation.

Texas: 10.84± 1.2059.
New York: 11.26± 1.2134
Florida: 12.06± 1.4752
Pennsylvania: 11.68± 2.3189
Illinois: 9.74± 1.4941
Ohio: 10.94± 1.7482
North Carolina: 13.22± 1.5138
Georgia: 12.18± 1.6454
Michigan: 11.24± 2.0353
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(a) Texas (b) New York (c) Florida

(d) Pennsylvania (e) Illinois (f) Ohio

(g) North Carolina (h) Georgia (i) Michigan

Figure 9: Results for group-wise average prediction set size for nine different states (averaged over
50 runs) using different methods of conformal prediction. Error bars show standard deviation.
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(a) Texas (b) New York (c) Florida

(d) Pennsylvania (e) Illinois (f) Ohio

(g) North Carolina (h) Georgia (i) Michigan

Figure 10: Results for group-wise calibration error (averaged over 50 runs). Error bars show stan-
dard deviation.
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(a) Texas (b) New York (c) Florida

(d) Pennsylvania (e) Illinois (f) Ohio

(g) North Carolina (h) Georgia (i) Michigan

Figure 11: Scatterplots of the number of points associated with each threshold-group pair (g, τi)
against the average coverage conditional on that pair for all g ∈ G and all τi in a grid, over all tested
conformal prediction methods (consolidating results over all 50 runs), for all nine states. Target
coverage is q = 0.9.
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