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Abstract

We study the connection between multicalibration and boosting for squared error regression. First we

prove a useful characterization of multicalibration in terms of a “swap regret” like condition on squared

error. Using this characterization, we give an exceedingly simple algorithm that can be analyzed both

as a boosting algorithm for regression and as a multicalibration algorithm for a class H that makes use

only of a standard squared error regression oracle for H. We give a weak learning assumption on H that

ensures convergence to Bayes optimality without the need to make any realizability assumptions — giving

us an agnostic boosting algorithm for regression. We then show that our weak learning assumption on H

is both necessary and sufficient for multicalibration with respect to H to imply Bayes optimality. We also

show that if H satisfies our weak learning condition relative to another class C then multicalibration with

respect to H implies multicalibration with respect to C. Finally we investigate the empirical performance

of our algorithm experimentally using an open source implementation that we make available on GitHub1.

1 Introduction

We revisit the problem of boosting for regression, and develop a new agnostic regression boosting algorithm
via a connection to multicalibration. In doing so, we shed additional light on multicalibration, a recent
learning objective that has emerged from the algorithmic fairness literature [Hébert-Johnson et al., 2018]. In
particular, we characterize multicalibration in terms of a “swap-regret” like condition, and use it to answer
the question “what property must a collection of functions H have so that multicalibration with respect to H

implies Bayes optimality?”, giving a complete answer to problem asked by Burhanpurkar et al. [2021]. Using
our swap-regret characterization, we derive an especially simple algorithm for learning a multicalibrated
predictor for a class of functions H by reduction to a standard squared-error regression algorithm for H. The
same algorithm can also be analyzed as a boosting algorithm for squared error regression that makes calls
to a weak learner for squared error regression on subsets of the original data distribution without the need
to relabel examples (in contrast to Gradient Boosting as well as existing multicalibration algorithms). This
lets us specify a weak learning condition that is sufficient for convergence to the Bayes optimal predictor
(even if the Bayes optimal predictor does not have zero error), avoiding the kinds of realizability assumptions
that are implicit in analyses of boosting algorithms that converge to zero error. We conclude that ensuring
multicalibration with respect to H corresponds to boosting for squared error regression in which H forms
the set of weak learners. Finally we define a weak learning condition for H relative to a constrained class
of functions C (rather than with respect to the Bayes optimal predictor). We show that multicalibration
with respect to H implies multicalibration with respect to C if H satisfies the weak learning condition with
respect to C, which in turn implies accuracy at least that of the best function in C.

Multicalibration Consider a distribution D P ∆Z defined over a domain Z “ X ˆ R of feature vectors
x P X paired with real valued labels y. Informally, a regression function f : X Ñ R is calibrated if for every
v in the range of f , Epx,yq„Dry|fpxq “ vs “ v. In other words, fpxq must be an unbiased estimator of y,

1Our code repository can be found at https://github.com/Declancharrison/Level-Set-Boosting
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even conditional on the value of its own prediction. Calibration on its own is a weak condition, because
it only asks for f to be unbiased on average over all points x such that fpxq “ v. For example, the con-
stant predictor that predicts fpxq “ Epx,yq„Drys is calibrated. Thus calibration does not imply accuracy—a
calibrated predictor need not make predictions with lower squared error than the best constant predictor.
Calibration also does not imply that f is equally representative of the label distribution on different subsets
of the feature space X . For example, given a subset of the feature space G Ď X , even if f is calibrated, it
may be that f is not calibrated on the conditional distribution conditional on x P G—it might be e.g. that

Ery|fpxq “ v, x P Gs " v, and Ery|fpxq “ v, x R Gs ! v. To correct this last deficiency, Hébert-Johnson et al.
[2018] defined multi-calibration, which is a condition parameterized by a subset of groups G Ď X each defined
by an indicator function h : X Ñ t0, 1u in some class H. It asks (informally) that for each such h P H, and for
each v in the range of f , that Erhpxqpy´vq|fpxq “ vs “ 0. Since h is a binary indicator function for some set
G, this is equivalent to asking for calibration not just marginally over D, but simultaneously for calibration
over D conditional on x P G. Kim et al. [2019] and Gopalan et al. [2022] generalize multicalibration beyond
group indicator functions to arbitrary real valued functions h : X Ñ R. Intuitively, as H becomes a richer
and richer set of functions, multicalibration becomes an increasingly stringent condition. But if H consists
of the indicator functions for e.g. even a very large number of randomly selected subsets G Ď X , then the
constant predictor fpxq “ Epx,yq„Drys will still be approximately multicalibrated with respect to H. What
property of H ensures that multicalibration with respect to H implies that f is a Bayes optimal regression
function? This question was recently asked by Burhanpurkar et al. [2021] — and we provide a necessary and
sufficient condition.

Boosting for Regression Boosting refers broadly to a collection of learning techniques that reduce the
problem of “strong learning” (informally, finding an error optimal model) to a series of “weak learning” tasks
(informally, finding a model that has only a small improvement over a trivial model)—See Schapire and Fre-
und [2013] for a textbook treatment. The vast majority of theoretical work on boosting studies the problem
of binary classification, in which a weak learner is a learner that obtains classification error bounded below
1{2. Several recent papers Kim et al. [2019], Gopalan et al. [2022] have made connections between algorithms
for guaranteeing multicalibration and boosting algorithms for binary classification.

In this paper, we show a direct connection between multicalibration and the much less well-studied
problem of boosting for squared error regression [Friedman, 2001, Duffy and Helmbold, 2002]. There is not
a single established notion for what constitutes a weak learner in the regression setting (Duffy and Helmbold
[2002] introduce several different notions), and unlike boosting algorithms for classification problems which
often work by calling a weak learner on a reweighting of the data distribution, existing algorithms for
boosting for regression typically resort to calling a learning algorithm on relabelled examples. We give a
boosting algorithm for regression that only requires calling a squared error regression learning algorithm
on subsets of examples from the original distribution (without relabelling), which lets us formulate a weak
learning condition that is sufficient to converge to the Bayes optimal predictor, without making the kinds of
realizability assumptions implicit in the analysis of boosting algorithms that assume one can drive error to
zero.

1.1 Our Results

We focus on classes of real valued functions H that are closed under affine transformations — i.e. classes
such that if fpxq P H, then for any pair of constants a, b P R, pafpxq ` bq P H as well. Many natural classes
of models satisfy this condition already (e.g. linear and polynomial functions and regression trees), and any
neural network architecture that does not already satisfy this condition can be made to satisfy it by adding
two additional parameters (a and b) while maintaining differentiability. Thus we view closure under affine
transformations to be a weak assumption that is enforceable if necessary.

First in Section 3 we prove the following characterization for multicalibration over H, for any class H that
is closed under affine transformations. Informally, we show that a model f is multicalibrated with respect
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to H if and only if, for every v in the range of f :

E
px,yq„D

rpfpxq ´ yq2|fpxq “ vs ď min
hPH

E
px,yq„D

rphpxq ´ yq2|fpxq “ vs

(See Theorem 3.2 for the formal statement). This is a “swap regret”-like condition (as in Foster and Vohra
[1999] and Blum and Mansour [2005]), that states that f must have lower squared error than any model
h P H, even conditional on its own prediction. Using this characterization, in Section 4 we give an exceedingly
simple algorithm for learning a multicalibrated predictor over H given a squared error regression oracle
for H. The algorithm simply repeats the following over t rounds until convergence, maintaining a model
f : X Ñ t0, 1{m, 2{m, . . . , 1u with a discrete range with support over multiples of 1{m for some discretization
factor m:

1. For each level set v P t0, 1{m, 2{m, . . . , 1u, run a regression algorithm to find the ht
v P H that minimizes

squared error on the distribution D|pft´1pxq “ vq, the distribution conditional on ft´1pxq “ v.

2. Replace each level set v of ft´1pxq with ht
vpxq to produce a new model ft, and round its output to the

discrete range t0, 1{m, 2{m, . . . , 1u

Each iteration decreases the squared error of ft, ensuring convergence, and our characterization of multi-
calibration ensures that we are multicalibrated with respect to H at convergence. Compared to existing
multicalibration algorithms (e.g. the split and merge algorithm of Gopalan et al. [2022]), our algorithm is
exceptionally simple and makes use of a standard squared-error regression oracle on subsets of the original
distribution, rather than using a classification oracle or requiring example relabelling.

We can also view the same algorithm as a boosting algorithm for squared error regression. Suppose H (or
equivalently our weak learning algorithm) satisfies the following weak learning assumption: informally, that
on any restriction of D on which the Bayes optimal predictor is non-constant, there should be some h P H

that obtains squared error better than that of the best constant predictor. Then our algorithm converges
to the Bayes optimal predictor. In Section A we give uniform convergence bounds which guarantee that the
algorithm’s accuracy and multicalibration guarantees generalize out of sample, with sample sizes that are
linear in the pseudodimension of H.

We then show in Section 5 that in a strong sense this is the “right” weak learning assumption: Multical-
ibration with respect to H implies Bayes optimality if and only if H satisfies this weak learning condition.
This gives a complete answer to the question of when multicalibration implies Bayes optimality.

In Section 6, we generalize our weak learning condition to a weak learning condition relative to a con-
strained class of functions C (rather than relative to the Bayes optimal predictor), and show that if H satisfies
the weak learning condition relative to C, then multicalibration with respect to H implies multicalibration
with respect to C, and hence error that is competitive with the best model in C.

We give a fast, parallelizable implementation of our algorithm and in Section 7 demonstrate its con-
vergence to Bayes optimality on two-dimensional datasets useful for visualization, as well as evaluate the
accuracy and calibration guarantees of our algorithm on real Census derived data using the Folktables pack-
age Ding et al. [2021].

1.2 Additional Related Work

Calibration as a statistical objective dates back at least to Dawid [1982]. Foster and Vohra [1999] showed
a tight connection between marginal calibration and internal (equivalently swap) regret. We extend this
characterization to multicalibration. Multicalibration was introduced by Hébert-Johnson et al. [2018], and
variants of the original definition have been studied by a number of works [Kim et al., 2019, Jung et al.,
2021, Gopalan et al., 2022, Kim et al., 2022, Roth, 2022]. We use the ℓ2 variant of multicalibration studied
in Roth [2022]—but this definition implies all of the other variants of multicalibration up to a change in
parameters. Burhanpurkar et al. [2021] first asked the question “when does multicalibration with respect to
H imply accuracy”, and gave a sufficient condition: when H contains (refinements of) the levelsets of the

3



Bayes optimal regression function, together with techniques for attempting to find these. This can be viewed
as a “strong learning” assumption, in contrast to our weak learning assumption on H.

Boosting for binary classification was introduced by Schapire [1990] and has since become a major topic
of both theoretical and empirical study — see Schapire and Freund [2013] for a textbook overview. Both Kim
et al. [2019] and Gopalan et al. [2022] have drawn connections between algorithms for multicalibration and
boosting for binary classification. In particular, Gopalan et al. [2022] draw direct connections between their
split-and-merge multicalibration algorithm and agnostic boosting algorithms of Kalai [2004], Kanade and
Kalai [2009], Kalai et al. [2008]. Boosting for squared error regression is much less well studied. Freund and
Schapire [1997] give a variant of Adaboost (Adaboost.R) that reduces regression examples to infinite sets of
classification examples, and requires a base regressor that optimizes a non-standard loss function. Friedman
[2001] introduced the popular gradient boosting method, which for squared error regression corresponds to
iteratively fitting the residuals of the current model and then applying an additive update, but did not give
a theoretical analysis. Duffy and Helmbold [2002] give a theoretical analysis of several different boosting
algorithms for squared error regression under several different weak learning assumptions. Their algorithms
require base regression algorithms that can be called (and guaranteed to succeed) on arbitrarily relabelled
examples from the training distribution, and given their weak learning assumption, their analysis shows how
to drive the error of the final model arbitrarily close to 0. Weak learning assumptions in this style implicitly
make very strong realizabilty assumptions (that the Bayes error is close to 0), but because the weak learner
is called on relabelled samples, it is difficult to enunciate a weak learning condition that is consistent with
obtaining Bayes optimal error, but not better. The boosting algorithm we introduce only requires calling
a standard regression algorithm on subsets of the examples from the training distribution, which makes it
easy for us to define a weak learning condition that lets us drive error to the Bayes optimal rate without
realizability assumptions — thus our results can be viewed as giving an agnostic boosting algorithm for
regression.

2 Preliminaries

We study prediction tasks over a domain Z “ X ˆY. Here X represents the feature domain and Y represents
the label domain. We focus on the bounded regression setting where Y “ r0, 1s (the scaling to r0, 1s is
arbitrary). We write D P ∆Z to denote a distribution over labelled examples, DX to denote the induced
marginal distribution over features, and write D „ Dn to denote a dataset consisting of n labelled examples
sampled i.i.d. from D. We will be interested in the squared error of a model f with respect to distribution
D, Epx,yq„Drpy ´ fpxqq2s. We abuse notation and identify datasets D “ tpx1, y1q, . . . , pxn, ynqu with the
empirical distribution over the examples they contain, and so we can write the empirical squared error over
D: as Epx,yq„Drpy ´ fpxqq2s “ 1

n

řn
i“1

pyi ´ fpxiqq2. When taking expectations over a distribution that is
clear from context, we will frequently suppress notation indicating the relevant distribution for readability.

We write Rpfq to denote the range of a function f , and when Rpfq is finite, use m to denote the cardinality
of its range: m “ |Rpfq|. We are interested in finding models that are multicalibrated with respect to a class
of real valued functions H. We use an ℓ2 notion of multicalibration as used in Roth [2022]:

Definition 2.1 (Multicalibration). Fix a distribution D P ∆Z and a model f : X Ñ r0, 1s that maps onto
a countable subset of its range. Let H be an arbitrary collection of real valued functions h : X Ñ R. We say
that f is α-approximately multicalibrated with respect to D and H if for every h P H:

K2pf, h,Dq “
ÿ

vPRpfq
Pr

px,yq„D

rfpxq “ vs
ˆ

E
px,yq„D

rhpxqpy ´ vq|fpxq “ vs
˙2

ď α.

We say that f is α-approximately calibrated if:

K2pf,Dq “
ÿ

vPRpfq
Pr

px,yq„D

rfpxq “ vs
ˆ

E
px,yq„D

rpy ´ vq|fpxq “ vs
˙2

ď α.
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If α “ 0, then we simply say that a model is multicalibrated or calibrated. We will sometimes refer to
K2pf,Dq as the mean squared calibration error of a model f .

Remark 2.2. When the functions hpxq have binary range, we can view them as indicator functions for some
subset of the data domain S Ď X , in which case multicalibration corresponds to asking for calibration condi-
tional on membership in these subsets S. Allowing the functions h to have real valued range is only a more
general condition. Our notion of approximate multicalibration takes a weighted average over the level sets v of
the predictor f , weighted by the probability that fpxq “ v. This is necessary for any kind of out of sample gen-
eralization statement — otherwise we could not even necessarily measure calibration error from a finite sam-
ple. Other work on multicalibration use related measures of multicalibration that we think of as ℓ1 or ℓ8 vari-
ants, that we can write as K1pf, h,Dq “ ř

vPRpfq Prpx,yq„Drfpxq “ vs
ˇ

ˇEpx,yq„Drhpxqpy ´ vq|fpxq “ vs
ˇ

ˇ and

K8pf, h,Dq “ maxvPRpfq Prpx,yq„Drfpxq “ vs
`

Epx,yq„Drhpxqpy ´ vq|fpxq “ vs
˘

. These notions are related

to each other: K2pf, h,Dq ď K1pf, h,Dq ď
a

K2pf, h,Dq and K8pf, h,Dq ď K1pf, h,Dq ď mK8pf, h,Dq
[Roth, 2022].

We will characterize the relationship between multicalibration and Bayes optimality.

Definition 2.3 (Bayes Optimal Predictor). Let f˚ : X Ñ r0, 1s. We say that f˚ is the Bayes optimal
predictor for D if:

E
px,yq„D

rpy ´ f˚pxqq2s ď min
f :XÑr0,1s

rpy ´ fpxqq2s

The Bayes Optimal predictor satisfies: f˚pxq “ Epx1,yq„D ry|x1 “ xs . We say that a function f : X Ñ r0, 1s
is γ-approximately Bayes optimal if

E
px,yq„D

rpy ´ fpxqq2s ď E
px,yq„D

rpy ´ f˚pxqq2s ` γ.

Throughout this paper, we will denote the Bayes optimal predictor as f˚.

3 A Characterization of Multicalibration

In this section we give a simple “swap-regret” like characterization of multicalibration for any class of functions
H that is closed under affine transformations:

Definition 3.1. A class of functions H is closed under affine transformations if for every a, b P R, if
hpxq P H then h1pxq :“ ahpxq ` b P H.

As already discussed, closure under affine transformation is a mild assumption: it is already satisfied by
many classes of functions H like linear and polynomial functions and decision trees, and can be enforced for
neural network architectures when it is not already satisfied by adding two additional parameters a and b

without affecting our ability to optimize over the class.
The first direction of our characterization states that if f fails the multicalibration condition for some

h P H, then there is some other h1 P H that improves over f in terms of squared error, when restricted to a
level set of f . The second direction states the opposite: if f is calibrated (but not necessarily multicalibrated),
and if there is some level set of f on which h improves over f in terms of squared error, then in fact f must
fail the multicalibration condition for h.

Theorem 3.2. Suppose H is closed under affine transformation. Fix a model f : X Ñ R and a levelset
v P Rpfq of f . Then:

1. If there exists an h P H such that:

Erhpxqpy ´ vq|fpxq “ vs ě α,

for α ą 0, then there exists an h1 P H such that:

Erpfpxq ´ yq2 ´ ph1pxq ´ yq2|fpxq “ vs ě α2

Erhpxq2|fpxq “ vs ,

5



2. If f is calibrated and there exists an h P H such that

Erpfpxq ´ yq2 ´ phpxq ´ yq2|fpxq “ vs ě α,

then:

Erhpxqpy ´ vq|fpxq “ vs ě α

2
.

Proof. We prove each direction in turn.

Lemma 3.3. Fix a model f : X Ñ R. Suppose for some v P Rpfq there is an h P H such that:

Erhpxqpy ´ vq|fpxq “ vs ě α

Let h1 “ v ` ηhpxq for η “ α

Erhpxq2|fpxq“vs . Then:

Erpfpxq ´ yq2 ´ ph1pxq ´ yq2|fpxq “ vs ě α2

Erhpxq2|fpxq “ vs

Proof. We calculate:

Erpfpxq ´ yq2 ´ ph1pxq ´ yq2|fpxq “ vs
“ Erpv ´ yq2 ´ pv ` ηhpxq ´ yq2|fpxq “ vs
“ Erv2 ´ 2vy ` y2 ´ pv ` ηhpxqq2 ` 2ypv ` ηhpxqq ´ y2|fpxq “ vs
“ Er2yηhpxq ´ 2vηhpxq ´ η2hpxq2|fpxq “ vs
“ Er2ηhpxqpy ´ vq ´ η2hpxq2|fpxq “ vs
ě 2ηα ´ η2 Erhpxq2|fpxq “ vs

“ α2

Erhpxq2|fpxq “ vs

Where the last line follows from the definition of η.

The first direction of Theorem 3.2 follows from Lemma 3.3, and the observation that since H is closed
under affine transformations, the function h1 defined in the statement of Lemma 3.3 is in H. Now for the
second direction.

Lemma 3.4. Fix a model f : X Ñ R. Suppose for some v P Rpfq there is an h P H such that:

Erpȳv ´ yq2 ´ phpxq ´ yq2|fpxq “ vs ě α,

where ȳv “ Ery | fpxq “ vs. Then it must be that:

Erhpxqpy ´ ȳvq|fpxq “ vs ě α

2

Proof. We calculate:
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E
px,yq„D

rhpxqpy ´ ȳvq|fpxq “ vs

“ E
px,yq„D

rhpxqy|fpxq “ vs ´ ȳv E
px,yq„D

rhpxq|fpxq “ vs

“ 1

2

ˆ

2 E
px,yq„D

rhpxqy|fpxq “ vs ´ 2ȳv E
px,yq„D

rhpxq|fpxq “ vs
˙

ě 1

2

ˆ

2 E
px,yq„D

rhpxqy|fpxq “ vs ´ 2ȳv E
px,yq„D

rhpxq|fpxq “ vs ´ E
px,yq„D

rphpxq ´ ȳvq2|fpxq “ vs
˙

“ 1

2

ˆ

E
px,yq„D

r2hpxqy ´ hpxq2 ´ ȳ2v |fpxq “ vs
˙

“ 1

2

ˆ

E
px,yq„D

r2hpxqy ´ hpxq2 ´ 2ȳvy ` ȳ2v |fpxq “ vs
˙

“ 1

2

ˆ

E
px,yq„D

rpȳv ´ yq2 ´ phpxq ´ yq2|fpxq “ vs
˙

ě α

2

where the 3rd to last line follows from adding and subtracting ȳ2v .

For any calibrated f it follows that v “ Ery | fpxq “ vs “ ȳv, and so for calibrated f we have that if

Erpv ´ yq2 ´ phpxq ´ yq2|fpxq “ vs ě α,

then:

Erhpxqpy ´ vq|fpxq “ vs ě α

2
.

4 An Algorithm (For Multicalibration And Regression Boosting)

We now give a single algorithm, and then show how to analyze it both as an algorithm for obtaining a
multicalibrated predictor f , and as a boosting algorithm for squared error regression.

Let m P N
` be a discretization term, and let r1{ms :“ t0, 1

m
, . . . , m´1

m
, 1u denote the set of points in r0, 1s

that are multiples of 1{m. We will learn a model f whose range is r1{ms, which we will enforce by rounding
its outputs to this range as necessary using the following operation:

Definition 4.1 (Roundpf ;mq). Let F be the family of all functions f : X Ñ R. Let Round : F ˆ N
` Ñ F

be a function such that Roundpf ;mq outputs h̃pxq “ minvPr1{ms |hpxq ´ v|.

Unlike other algorithms for multicalibration which make use of agnostic learning oracles for binary
classification, our algorithm makes use of an algorithm for solving squared-error regression problems over H:

Definition 4.2. AH is a squared error regression oracle for a class of real valued functions H if for every
D P ∆Z, AHpDq outputs a function h P H such that

h P arg min
h1PH

E
px,yq„D

rph1pxq ´ yq2s.

7



For example, if H is the set of all linear functions, then AH simply solves a linear regression problem
(which has a closed form solution). Algorithm 1 (LSBoost2)repeats the following operation until it no longer
decreases overall squared error: it runs squared error regression on each of the level-sets of ft, and then
replaces those levelsets with the solutions to the regression problems, and rounds the output to r1{ms.

We will now analyze the algorithm first as a multicalibration algorithm, and then as a boosting algorithm.
For simplicity, in this section we will analyze the algorithm as if it is given direct access to the distribution
D. In practice, the algorithm will be run on the empirical distribution over a dataset D „ Dn, and the
multicalibration guarantees proven in this section will hold for this empirical distribution. In Section A
we prove generalization theorems, which allow us to translate our in-sample error and multicalibration
guarantees over D to out-of-sample guarantees over D.

Algorithm 1: LSBoost(f, α,AH,D, B)

Let m “ 2B
α

.
Let f0 “ Roundpf ;mq, err0 “ Epx,yq„Drpf0pxq ´ yq2s,
err´1 “ 8 and t “ 0.
while perrt´1 ´ errtq ě α

2B
do

for each v P r1{ms do

Let Dt`1

v “ D|pftpxq “ vq.
Let ht`1

v “ AHpDt`1

v q.
Let:

f̃t`1pxq “
ÿ

vPr1{ms
✶rftpxq “ vs ¨ ht`1

v pxq ft`1 “ Roundpf̃t`1,mq

Let errt`1 “ Epx,yq„Drpft`1pxq ´ yq2s and t “ t ` 1.
Output ft´1.

4.1 Analysis as a Multicalibration Algorithm

Theorem 4.3. Fix any distribution D P ∆Z, any model f : X Ñ r0, 1s, any α ă 1, any class of real valued
functions H that is closed under affine transformations, and a squared error regression oracle AH for H.
For any bound B ą 0 let:

HB “ th P H : max
xPX

hpxq2 ď Bu

be the set of functions in h with squared magnitude bounded by B. Then LSBoostpf, α,AH,D, Bq (Algorithm
1) halts after at most T ď 2B

α
many iterations and outputs a model fT´1 such that fT´1 is α-approximately

multicalibrated with respect to D and HB.

Remark 4.4. Note the form of this theorem — we do not promise multicalibration at approximation param-
eter α for all of H, but only for HB — i.e. those functions in H satisfying a bound on their squared value.
This is necessary, since H is closed under affine transformations. To see this, note that if Erhpxqpy´vqs ě α,
then it must be that Erc ¨ hpxqpy ´ vqs ě c ¨ α. Since h1pxq “ chpxq is also in H by assumption, approximate
multicalibration bounds must always also be paired with a bound on the norm of the functions for which we
promise those bounds.

Proof. Since f0 takes values in r0, 1s and y P r0, 1s, we have err0 ď 1, and by definition errT ě 0 for all T .
By construction, if the algorithm has not halted at round t it must be that errt ď errt´1 ´ α

2B
, and so the

algorithm must halt after at most T ď 2B
α

many iterations to avoid a contradiction.
It remains to show that when the algorithm halts at round T , the model fT´1 that it outputs is α-

approximately multi-calibrated with respect to D and HB . We will show that if this is not the case, then
errT´1 ´ errT ą α

2B
, which will be a contradiction to the halting criterion of the algorithm.

2LSBoost can be taken to stand for either “Level Set Boost" or “Least Squares Boost”, at the reader’s discretion.
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Suppose that fT´1 is not α-approximately multicalibrated with respect to D and HB . This means there
must be some h P HB such that:

ÿ

vPr1{ms
Pr

px,yq„D

rfT´1pxq “ vs
ˆ

E
px,yq„D

rhpxqpy ´ vq|fT´1pxq “ vs
˙2

ą α

For each v P r1{ms define

αv “ Pr
px,yq„D

rfT´1pxq “ vs
ˆ

E
px,yq„D

rhpxqpy ´ vq|fT´1pxq “ vs
˙2

So we have
ř

vPr1{ms αv ą α.
Applying the 1st part of Theorem 3.2 we learn that for each v, there must be some hv P H such that:

ErpfT´1pxq ´ yq2 ´ phvpxq ´ yq2|fT´1pxq “ vs ą 1

Erhpxq2|fT´1pxq “ vs ¨ αv

Prpx,yq„DrfT´1pxq “ vs

ě 1

B

αv

Prpx,yq„DrfT´1pxq “ vs

where the last inequality follows from the fact that h P HB Now we can compute:

E
px,yq„D

rpfT´1pxq ´ yq2 ´ pf̃T pxq ´ yq2s

“
ÿ

vPr1{ms
Pr

px,yq„D

rfT´1pxq “ vs E
px,yq„D

rpfT´1pxq ´ yq2 ´ pf̃T pxq ´ yq2|fT´1pxq “ vs

“
ÿ

vPr1{ms
Pr

px,yq„D

rfT´1pxq “ vs E
px,yq„D

rpfT´1pxq ´ yq2 ´ phT
v pxq ´ yq2|fT´1pxq “ vs

ě
ÿ

vPr1{ms
Pr

px,yq„D

rfT´1pxq “ vs E
px,yq„D

rpfT´1pxq ´ yq2 ´ phvpxq ´ yq2|fT´1pxq “ vs

ě
ÿ

vPr1{ms

αv

B

ą α

B

Here the third line follows from the definition of f̃T and the fourth line follows from the fact hv P H and
that hT

v minimizes squared error on DT
v amongst all h P H.

Finally we calculate:

errT´1 ´ errT

“ E
px,yq„D

rpfT´1pxq ´ yq2 ´ pfT pxq ´ yq2s

“ E
px,yq„D

rpfT´1pxq ´ yq2 ´ pf̃T pxq ´ yq2s ` E
px,yq„D

rpf̃T pxq ´ yq2 ´ pfT pxq ´ yq2s

ą α

B
` E

px,yq„D

rpf̃T pxq ´ yq2 ´ pfT pxq ´ yq2s

ą α

B
´ 1

m

ě α

2B

where the last equality follows from the fact that m ě 2B
α

.
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The 2nd inequality follows from the fact that for every pair px, yq:

pf̃T pxq ´ yq2 ´ pfT pxq ´ yq2 ě ´ 1

m

To see this we consider two cases. Since y P r0, 1s, if f̃T pxq ą 1 or f̃T pxq ă 0 then the Round operation
decreases squared error and we have pf̃T pxq ´ yq2 ´ pfT pxq ´ yq2 ě 0. In the remaining case we have
fT pxq P r0, 1s and ∆ “ f̃T pxq ´ fT pxq is such that |∆| ď 1

2m
. In this case we can compute:

pf̃T pxq ´ yq2 ´ pfT pxq ´ yq2 “ pfT pxq ` ∆ ´ yq2 ´ pfT pxq ´ yq2

“ 2∆pfpxq ´ yq ` ∆2

ě ´2|∆| ` ∆2

ě ´ 1

m

4.2 Analysis as a Boosting Algorithm

We now analyze the same algorithm (Algorithm 1) as a boosting algorithm designed to boost a “weak
learning” algorithm AH to a strong learning algorithm. Often in the boosting literature, a “strong learning”
algorithm is one that can obtain accuracy arbitrarily close to perfect, which is only possible under strong
realizability assumptions. In this paper, by “strong learning”, we mean that Algorithm 1 should output
a model that is close to Bayes optimal, which is a goal we can enunciate for any distribution D without
needing to make realizability assumptions. (Observe that if the Bayes optimal predictor has zero error, then
our meaning of strong learning corresponds to the standard meaning, so our analysis is only more general).

We now turn to our definition of weak learning. Intuitively, a weak learning algorithm should return a
hypothesis that makes predictions that are slightly better than trivial whenever doing so is possible. We
take “trivial” predictions to be those of the best constant predictor as measured by squared error — i.e.
the squared error obtained by simply returning the label mean. A “weak learning” algorithm for us can be
run on any restriction of the data distribution D to a subset S Ď X , and must return a hypothesis with
squared error slightly better than the squared error of the best constant prediction, whenever the Bayes
optimal predictor f˚ has squared error slightly better than a constant predictor; on restrictions for which
the Bayes optimal predictor also does not improve over constant prediction, our weak learning algorithm is
not required to do better either.

Traditionally, “weak learning” assumptions do not distinguish between the optimization ability of the
algorithm and the representation ability of the hypothesis class it optimizes over. Since we have defined a
squared error regression oracle AH as exactly optimizing the squared error over some class H, we will state
our weak learning assumption as an assumption on the representation ability of H—but this is not important
for our analysis here. To prove Theorem 4.6 we could equally well assume that AH returns a hypothesis
h that improves over a constant predictor whenever one exists, without assuming that h optimizes squared
error over all of H.

Definition 4.5 (Weak Learning Assumption). Fix a distribution D P ∆Z and a class of functions H. Let
f˚pxq “ Ey„Dpxqrys denote the true conditional label expectation conditional on x. We say that H satisfies
the γ-weak learning condition relative to D if for every S Ď X with Prx„DX

rx P Ss ą 0, if:

Erpf˚pxq ´ yq2|x P Ss ă min
cPR

Erpc ´ yq2|x P Ss ´ γ

then there exists an h P H such that:

Erphpxq ´ yq2|x P Ss ă min
cPR

Erpc ´ yq2|x P Ss ´ γ

When γ “ 0 we simply say that H satisfies the weak learning condition relative to D.
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Observe why our weak learning assumption is “weak”: the Bayes optimal predictor f˚ may improve
arbitrarily over the best constant predictor on some set S in terms of squared error, but in this case we only
require of H that it include a hypothesis that improves by some γ which might be very small.

Since the γ-weak learning condition does not make any requirements on H on sets for which f˚pxq
improves over a constant predictor by less than γ, the best we can hope to prove under this assumption is
γ-approximate Bayes optimality, which is what we do next.

Theorem 4.6. Fix any distribution D P ∆Z, any model f : X Ñ r0, 1s, any γ ą 0, any class of real valued
functions H that satisfies the γ-weak learning condition relative to D, and a squared error regression oracle
AH for H. Let α “ γ and B “ 1{γ (or any pair such that α{B “ γ2). Then LSBoostpf, α,AH,D, Bq halts
after at most T ď 2

γ2 many iterations and outputs a model fT´1 such that fT´1 is 2γ-approximately Bayes
optimal over D:

E
px,yq„D

rpfT´1pxq ´ yq2s ď E
px,yq„D

rpf˚pxq ´ yq2s ` 2γ

where f˚pxq “ Epx,yq„Drys is the function that minimizes squared error over D.

Proof. At each round t before the algorithm halts, we have by construction that errt ď errt´1 ´ α
2B

, and

since the squared error of f0 is at most 1, and squared error is non-negative, we must have T ď 2B
α

“ 2

γ2 .

Now suppose the algorithm halts at round T and outputs fT´1. It must be that errT ą errT´1 ´ γ2

2
.

Suppose also that fT´1 is not 2γ-approximately Bayes optimal:

E
px,yq„D

rpfT´1pxq ´ yq2 ´ pf˚pxq ´ yq2s ą 2γ

We can write this condition as:
ÿ

vPr1{ms
PrrfT´1pxq “ vs ¨ E

px,yq„D

rpfT´1pxq ´ yq2 ´ pf˚pxq ´ yq2|fT´1pxq “ vs ą 2γ

Define the set:

S “ tv P r1{ms : E
px,yq„D

rpfT´1pxq ´ yq2 ´ pf˚pxq ´ yq2|fT´1pxq “ vs ě γu

to denote the set of values v in the range of fT´1 such that conditional on fT´1pxq “ v, fT´1 is at least
γ-sub-optimal. Since we have both y P r0, 1s and fT´1pxq P r0, 1s, for every v we must have that ErpfT´1pxq´
yq2 ´ pf˚pxq ´ yq2|fT´1pxq “ vs ď 1. Therefore we can bound:

2γ ă
ÿ

vPr1{ms
PrrfT´1pxq “ vs ¨ E

px,yq„D

rpfT´1pxq ´ yq2 ´ pf˚pxq ´ yq2|fT´1pxq “ vs

ď Pr
px,yq„D

rx P Ss ` p1 ´ Pr
px,yq„D

rx P Ssqγ

Solving we learn that:

Pr
px,yq„D

rx P Ss ě 2γ ´ γ

p1 ´ γq ě 2γ ´ γ “ γ

Now observe that by the fact that H is assumed to satisfy the γ-weak learning assumption with respect
to D, at the final round T of the algorithm, for every v P S we have that hT

v satisfies:

E
px,yq„D

rpfT´1pxq ´ yq2 ´ phT
v pxq ´ yq2|fT´1pxq “ vs ě γ

Let ẽrrT “ Epx,yq„Drpf̃T pxq ´ yq2s Therefore we have:

errT´1 ´ ẽrrT “
ÿ

vPr1{ms
Pr

px,yq„D

rfT´1pxq “ vs E
px,yq„D

rpfT´1pxq ´ yq2 ´ phT
v pxq ´ yq2|fT´1pxq “ vs

ě Pr
px,yq„D

rfT´1pxq P Ssγ

ě γ2

11



We recall that |ẽrrT ´ errT | ď 1{m “ γ2

2
and so we can conclude that

errT´1 ´ errT ě γ2

2

which contradicts the fact that the algorithm halted at round T , completing the proof.

5 When Multicalibration Implies Accuracy

We analyzed the same algorithm (Algorithm 1) as both an algorithm for obtaining multicalibration with
respect to H, and, when H satisfied the weak learning condition given in Definition 4.5, as a boosting
algorithm that converges to the Bayes optimal model. In this section we show that this is no coincidence:
multicalibration with respect to H implies Bayes optimality if and only if H satisfies the weak learning
condition from Definition 4.5,

First we define what we mean when we say that multicalibration with respect to H implies Bayes opti-
mality. Note that the Bayes optimal model f˚pxq is multicalibrated with respect to any set of functions, so
it is not enough to require that there exist Bayes optimal functions f that are multicalibrated with respect
to H. Instead, we have to require that every function that is multicalibrated with respect to H is Bayes
optimal:

Definition 5.1. Fix a distribution D P ∆Z. We say that multicalibration with respect to H implies Bayes
optimality over D if for every f : X Ñ R that is multicalibrated with respect to D and H, we have:

E
px,yq„D

rpfpxq ´ yq2s “ E
px,yq„D

rpf˚pxq ´ yq2s

Where f˚pxq “ Ey„Dpxqrys is the function that has minimum squared error over the set of all functions.

Recall that when the weak learning parameter γ in Definition 4.5 is set to 0, we simply call it the “weak
learning condition” relative to D. We first state and prove our characterization for the exact case when
γ “ 0, because it leads to an exceptionally simple statement. We subsequently extend this characterization
to relate approximate Bayes optimality and approximate multicalibration under quantitative weakenings of
the weak learning condition.

Theorem 5.2. Fix a distribution D P ∆Z. Let H be a class of functions that is closed under affine
transformation. Multicalibration with respect to H implies Bayes optimality over D if and only if H satisfies
the weak learning condition relative to D.

Proof. To avoid measurability issues we assume that models f have a countable range (which is true in
particular whenever X is countable).

First we show that if H satisfies the weak learning condition relative to D, then multicalibration with
respect to H implies Bayes optimality over D. Suppose not. Then there exists a function f that is multical-
ibrated with respect to D and H, but is such that:

E
px,yq„D

rpfpxq ´ yq2s ą E
px,yq„D

rpf˚pxq ´ yq2s

By linearity of expectation we have:
ÿ

vPRpfq
Prrfpxq “ vs ¨ E

px,yq„D

rpfpxq ´ yq2 ´ pf˚pxq ´ yq2|fpxq “ vs ą 0

In particular there must be some v P Rpfq with Prx„DX
rfpxq “ vs ą 0 such that:

E
px,yq„D

rpfpxq ´ yq2|fpxq “ vs ą E
px,yq„D

rpf˚pxq ´ yq2|fpxq “ vs

12



Let S “ tx : fpxq “ vu. Observe that if H is closed under affine transformation, the constant function
hpxq “ 1 is in H, and hence multicalibration with respect to H implies calibration. Since f is calibrated, we
know that:

E
px,yq„D

rpv ´ yq2|x P Ss “ min
cPR

E
px,yq„D

rpc ´ yq2|x P Ss

Thus by the weak learning assumption there must exist some h P H such that:

Erpv ´ yq2 ´ phpxq ´ yq2|x P Ss “ Erpfpxq ´ yq2 ´ phpxq ´ yq2|fpxq “ vs ą 0

By Theorem 3.2, there must therefore exist some h1 P H such that:

E
px,yq„D

rh1pxqpy ´ vq|fpxq “ vs ą 0

implying that f is not multicalibrated with respect to D and H, a contradiction.
In the reverse direction, we show that for any H that does not satisfy the weak learning condition with

respect to D, then multicalibration with respect to H and D does not imply Bayes optimality over D. In
particular, we exhibit a function f such that f is multicalibrated with respect to H and D, but such that:

E
px,yq„D

rpfpxq ´ yq2s ą E
px,yq„D

rpf˚pxq ´ yq2s

Since H does not satisfy the weak learning assumption over D, there must exist some set S Ď X with
Prrx P Ss ą 0 such that

E
px,yq„D

rpf˚pxq ´ yq2|x P Ss ă min
cPR

E
px,yq„D

rpc ´ yq2|x P Ss

but for every h P H:

E
px,yq„D

rphpxq ´ yq2|x P Ss ě min
cPR

E
px,yq„D

rpc ´ yq2|x P Ss
.

Let cpSq “ Epx,yq„Dry|x P Ss. We define fpxq as follows:

fpxq “
#

f˚pxq x R S

cpSq x P S

We can calculate that:

E
px,yq„D

rpfpxq ´ yq2s

“ Pr
px,yq„D

rx P Ss E
px,yq„D

rpcpSq ´ yq2|x P Ss ` Pr
px,yq„D

rx R Ss E
px,yq„D

rpf˚pxq ´ yq2|x R Ss

ą Pr
px,yq„D

rx P Ss E
px,yq„D

rpf˚pxq ´ yq2|x P Ss ` Pr
px,yq„D

rx R Ss E
px,yq„D

rpf˚pxq ´ yq2|x R Ss

“ E
px,yq„D

rpf˚pxq ´ yq2s

In other words, f is not Bayes optimal. So if we can demonstrate that f is multicalibrated with respect to
H and D we are done. Suppose otherwise. Then there exists some h P H and some v P Rpfq such that

E
px,yq„D

rhpxqpy ´ vq|fpxq “ vs ą 0

By Theorem 3.2, there exists some h1 P H such that:

E
px,yq„D

rph1pxq ´ yq2|fpxq “ vs ă E
px,yq„D

rpfpxq ´ yq2|fpxq “ vs
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We first observe that it must be that v “ cpSq. If this were not the case, by definition of f we would
have that:

E
px,yq„D

rph1pxq ´ yq2|fpxq “ vs ă E
px,yq„D

rpf˚pxq ´ yq2|fpxq “ vs

which would contradict the Bayes optimality of f˚. Having established that v “ cpSq we can calculate:

E
px,yq„D

rph1pxq ´ yq2|fpxq “ cpSqs

“ Pr
px,yq„D

rx P Ss E
px,yq„D

rph1pxq ´ yq2|x P Ss `

Pr
px,yq„D

rx R S, fpxq “ cpSqs E
px,yq„D

rph1pxq ´ yq2|x R S, fpxq “ cpSqs

ě Pr
px,yq„D

rx P Ss E
px,yq„D

rph1pxq ´ yq2|x P Ss `

Pr
px,yq„D

rx R S, fpxq “ cpSqs E
px,yq„D

rpfpxq ´ yq2|x R S, fpxq “ cpSqs

where in the last inequality we have used the fact that by definition, fpxq “ f˚pxq for all x R S, and so is
pointwise Bayes optimal for all x R S.

Hence the only way we can have Epx,yq„Drph1pxq ´ yq2|fpxq “ cpSqs ă Epx,yq„Drpfpxq ´ yq2|fpxq “ cpSqs
is if:

E
px,yq„D

rph1pxq ´ yq2|x P Ss ă E
px,yq„D

rpcpSq ´ yq2|x P Ss

But this contradicts our assumption that H violates the weak learning condition on S, which completes the
proof.

We now turn our attention to deriving a relationship between approximate multicalibration and approx-
imate Bayes optimality. To do so, we’ll introduce an even weaker weak learning condition that has one
additional parameter ρ, lower bounding the mass of sets S that we can condition on while still requiring
the weak learning condition to hold. We remark that Algorithm 1 can be analyzed as a boosting algorithm
under this weaker weak learning assumption as well, with only minor modifications in the analysis.

Definition 5.3 ( pγ, ρq-weak learning condition). Fix a distribution D P ∆Z and let H be a class of arbitrary
real-valued functions. We say that H satisfies the pγ, ρq-weak learning condition for D if the following holds.
For every set S Ď X such that Prx„DX

rx P Ss ą ρ, if

E
px,yq„D

rpf˚ ´ yq2 | x P Ss ă E
px,yq„D

rpȳS ´ yq2 | x P Ss ´ γ,

where ȳS “ Epx,yq„Dry | x P Ss, then there exists h P H such that

E
px,yq„D

rphpxq ´ yq2 | x P Ss ă E
px,yq„D

rpȳS ´ yq2 | x P Ss ´ γ.

We may now prove our theorem showing that approximate multicalibration with respect to a class H

implies approximate Bayes optimality if and only if H satisfies the pγ, ρq-weak learning condition. We recall
Remark 4.4, which notes that we must restrict approximate multicalibration to a bounded subset of H, as
we will assume that H is closed under affine transformation.

Theorem 5.4. Fix any distribution D P ∆Z, any model f : X Ñ r0, 1s, and any class of real valued functions
H that is closed under affine transformation. Let:

H1 “ th P H : max
xPX

hpxq2 ď 1u

14



be the set of functions in H upper-bounded by 1 on X . Let m “ |Rpfq|, γ ą 0, and α ď γ3

16m
. Then if H

satisfies the pγ, γ{mq-weak learning condition and f is α-approximately multicalibrated with respect to H1 on
D, then f has squared error

E
px,yq„D

rpfpxq ´ yq2s ď E
px,yq„D

rpf˚ ´ yq2s ` 3γ.

Conversely, if H does not satisfy the pγ, γ{mq-weak learning condition, there exists a model f : X Ñ r0, 1s
that is α-approximately multicalibrated with respect to H1 on D, for α “ γ, and is perfectly calibrated on D,
but f has squared error

E
px,yq„D

rpfpxq ´ yq2s ě E
px,yq„D

rpf˚ ´ yq2s ` γ2{m.

Proof. We begin by arguing that α-approximate multicalibration with respect to H1 on D implies approxi-
mate Bayes optimality when H satisfies the pγ, γ{mq-weak learning condition. Suppose not, and there exists
a function f that is α-multicalibrated with respect to H1, but

E
px,yq„D

rpf˚ ´ yq2s ă E
px,yq„D

rpfpxq ´ yq2s ´ 3γ.

Then there must exist some v P Rpfq such that Prpx,yq„Drfpxq “ vs ą γ{m and

E
px,yq„D

rpf˚ ´ yq2 | fpxq “ vs ă E
px,yq„D

rpfpxq ´ yq2 | fpxq “ vs ´ 2γ.

We observe that since H is closed under affine transformation, the constant function hpxq “ 1 is in H, and
so α-approximate multicalibration with respect to H1 implies α-approximate calibration as well. Thus by
definition,

Prrfpxq “ vs ¨
ˆ

E
px,yq„D

rv ´ y | fpxq “ vs
˙2

ď α.

Letting ȳv “ Ery | fpxq “ vs, our lower-bound that Prrfpxq “ vs ą γ{m gives us that pv ´ ȳvq2 ă αm{γ ď
`

γ
4

˘2
. We now use this upper-bound on calibration error in conjuction with our lower-bound on distance

from Bayes optimality to show that the squared error of the constant predictor ȳv must also be far from
Bayes optimal.

E
px,yq„D

rpf˚pxq ´ yq2 | fpxq “ vs ă E
px,yq„D

rpfpxq ´ yq2 | fpxq “ vs ´ 2γ

“ E
px,yq„D

rpv ´ ȳv ` ȳv ´ yq2 | fpxq “ vs ´ 2γ

“ E
px,yq„D

rpȳv ´ yq2 | fpxq “ vs ` pv ´ ȳvq2 ´ 2γ

ă E
px,yq„D

rpȳv ´ yq2 | fpxq “ vs ´ γ.

The pγ, γ{mq-weak learning condition then guarantees that there exists some h P H such that

E
px,yq„D

rph ´ yq2 | fpxq “ vs ă E
px,yq„D

rpȳv ´ yq2 | fpxq “ vs ´ γ.

By Lemma 3.4, the fact that h improves on the squared loss of ȳv by an additive factor γ, on the set of x
such that fpxq “ v, implies that Erhpxqpy ´ ȳvq | fpxq “ vs ą γ{2. Because f is α-approximately calibrated
on D, we can use the existence of such an h to witness a failure of multicalibration:

Erhpy ´ vq | fpxq “ vs
“ Erhpxqpy ´ ȳv ` ȳv ´ vq | fpxq “ vs
“ Erhpxqpy ´ ȳvq | fpxq “ vs ` Erhpxqpȳv ´ vq | fpxq “ vs
ą γ{2 ´ |ȳv ´ v|
ą γ{4.
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Then

Prrfpxq “ vs ¨
ˆ

E
px,yq„D

rhpxqpy ´ vq | fpxq “ vs
˙2

ą γ3

16m
,

contradicting our assumption that f is α-approximately multicalibrated with respect to H1 for α ă γ3

16m
.

Therefore approximate multicalibration with respect to H1 must imply that f is approximately Bayes opti-
mal.

It remains to show the other direction, that α-approximate multicalibration with respect to a class H1

implies approximate Bayes optimality only if H satisfies the pγ, γ{mq-weak learning condition. If this claim
were not true for the stated parameters, then there must exist a class H such that every predictor f that:

• is α-approximately multicalibrated with respect to H1

• is perfectly calibrated on D

• has range with cardinality |Rpfq| “ m

also has squared error within γ2{m of Bayes optimal, but H does not satisfy the weak learning condition.
We will show that no such class exists by defining, for any class H not satisfying the weak learning condition,
a predictor f that is α-approximately multicalibrated with respect to that class, but has squared error that
is not within γ2{m of Bayes optimal.

Recall that if a class H does not satisfy the pγ, γ{mq-weak learning condition, then there must be some
set SH such that Prrx P SHs ą γ{m, there does not exist an h P H such that

E
px,yq„D

rph ´ yq2 | x P SHs ă E
px,yq„D

rpȳSH
´ yq2 | x P SHs ´ γ,

but for the Bayes optimal predictor, it holds that its squared loss satisfies

E
px,yq„D

rpf˚ ´ yq2 | x P SHs ă E
px,yq„D

rpȳSH
´ yq2 | x P SHs ´ γ,

where ȳSH
“ Ery | x P SHs. For some hypothesis class H not satisfying the weak learning condition, and

associated set SH, let fH be defined as follows:

fHpxq “
#

f˚pxq, x R SH

ȳSH
, x P SH.

.

Note that, because fH is constant on SH, there must be some v P Rpfq such that the level set Sv “ tx P
X : fpxq “ vu contains SH. To see that fH is α-approximately multicalibrated with respect to H1, we first
consider the contribution to multicalibration error from the level sets not containing SH. For all h P H and
v P Rpfq such that v ‰ ȳSH

,

E
px,yq„D

rhpxqpy ´ fHpxqq | fHpxq “ vs “ E
px,yq„D

rhpxqpy ´ f˚pxqq | fHpxq “ vs

“ E
x„Dx

E
y„Dypxq

rhpxqy | fHpxq “ vs ´ E
x„Dx

rhpxqf˚pxq | fHpxq “ vs

“ E
x„Dx

E
y„Dypxq

rhpxqy | fHpxq “ vs ´ E
x„Dx

E
y„Dypxq

rhpxqy | fHpxq “ vs

“ 0.

For the level set Sv for which SH Ď Sv, we know from the argument above that the elements x P SvzSH

contribute nothing to the multicalibration error, as fpxq “ f˚pxq on these elements. So,

E
px,yq„D

rhpxqpy ´ fHpxqq | fpxq “ vs “ Pr
x„DX

rx P SHs ¨ E
px,yq„D

rhpxqpy ´ ȳSH
q | x P SHs

` Pr
x„DX

rx R SHs ¨ E
px,yq„D

rhpxqpy ´ f˚pxqq | x P SvzSHs

“ Pr
x„DX

rx P SHs ¨ E
px,yq„D

rhpxqpy ´ ȳSH
q | x P SHs
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Therefore if fH is not α-approximately multicalibrated with respect to H1 on D, it must be the case that
there exists some h P H1 such that Erhpxqpy´ ȳSH

q | x P SHs ą ?
α. Then by Theorem 3.2, there must exist

a h1 P H such that

E
px,yq„D

rpȳSH
´ yq2 ´ ph1pxq ´ yq2 | x P SHs ą α “ γ.

But SH was defined to be a subset of X for which no such h1 exists and for which Prrx P SHs ą γ{m. This
would contradict our assumption that H does not satisfy the pγ, γ{mq-weak learning condition on D, and
therefore fH is α-approximately multicalibrated with respect to H1 on D.

It remains to prove that fH is far from Bayes optimal.

E
px,yq„D

rpfHpxq ´ yq2s “ Pr
x„DX

rx P SHs E
px,yq„D

rpȳSH
´ yq2 | x P SHs ` Prrx R SHs E

px,yq„D

rpf˚pxq ´ yq2 | x R SHs

ě Pr
x„DX

rx P SHs
ˆ

E
px,yqD

rpf˚ ´ yq2 | x P SHs ` γ

˙

` Prrx R SHs E
px,yq„D

rpf˚pxq ´ yq2 | x R SHs

“ E
px,yq„D

rpf˚ ´ yq2s ` γ Pr
x„DX

rx P SHs

ě E
px,yq„D

rpf˚ ´ yq2s ` γ2{m.

6 Weak Learners With Respect to Constrained Classes

Thus far we have studied function classes H that satisfy a weak learning condition with respect to the Bayes
optimal predictor f˚. But we can also study function classes H that satisfy a weak learning condition defined
with respect to another constrained class of real valued functions.

Definition 6.1 (Weak Learning Assumption Relative to C). Fix a distribution D P ∆Z and two classes of
functions H and C. We say that H satisfies the γ-weak learner condition relative to C and D if for every
S Ď X with Prx„DX

rx P Ss ą 0, if:

min
cPC

E
px,yq„D

rpcpxq ´ yq2 | x P Ss ă E
px,yq„D

rpȳS ´ yq2 | x P Ss ´ γ,

where ȳS “ Epx,yq„Dry | x P Ss, then there exists h P H such that

E
px,yq„D

rphpxq ´ yq2 | x P Ss ă E
px,yq„D

rpȳS ´ yq2 | x P Ss ´ γ.

When γ “ 0 we simply say that H satisfies the weak learning condition relative to C and D.

We will show that if a predictor f is multicalibrated with respect to H, and H satisfies the weak learning
assumption with respect to C, then in fact:

1. f is multicalibrated with respect to C, and

2. f has squared error at most that of the minimum error predictor in C.

In fact, Gopalan et al. [2022] show that if f is multicalibrated with respect to C, then it is an omnipredictor
for C, which implies that f has loss no more than the best function cpxq P C, where loss can be measured
with respect to any Lipschitz convex loss function (not just squared error). Thus our results imply that to
obtain an omnipredictor for C, it is sufficient to be multicalibrated with respect to a class H that satisfies
our weak learning assumption with respect to C.

Theorem 6.2. Fix a distribution D P ∆Z and two classes of functions H and C that are closed under affine
transformations. Then if f : X Ñ r0, 1s is multicalibrated with respect to D and H, and if H satisfies the
weak learning condition relative to C and D, then in fact f is multicalibrated with respect to D and C as well.
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Proof. We assume for simplicity that f has a countable range (which is without loss of generality e.g.
whenever X is countable). Suppose for contradiction that f is not multicalibrated with respect to C and D.
In this case there must be some c P C such that:

ÿ

vPRpfq
Prrfpxq “ vs

ˆ

E
px,yq„D

rcpxqpy ´ vq|fpxq “ vs
˙2

ą 0

Since C is closed under affine transformations (and so both c and ´c are in C), there must be some c1 P C

and some v P Rpfq with Prrfpxq “ vs ą 0 such that:

E
px,yq„D

rc1pxqpy ´ vq|fpxq “ vs ą 0

Therefore, by the first part of Theorem 3.2, there must be some c2 P C such that:

E
px,yq„D

rpc2pxq ´ yq2|fpxq “ vs ă E
px,yq„D

rpv ´ yq2|fpxq “ vs

Since H is closed under affine transformations, the function hpxq “ 1 is in H and so multicalibration with
respect to H implies calibration. Thus v “ ȳSv

for Sv “ tx : fpxq “ vu. Therefore, the fact that H satisfies
the weak learning condition relative to C and D implies that there must be some h P H such that:

E
px,yq„D

rphpxq ´ yq2|fpxq “ vs ă E
px,yq„D

rpv ´ yq2|fpxq “ vs

Finally, the second part of Theorem 3.2 implies that:

E
px,yq„D

rhpxqpy ´ vq|fpxq “ vs ą 0

which is a violation of our assumption that f is multicalibrated with respect to H and D, a contradiction.

Theorem 6.3. Fix a distribution D P ∆Z and two classes of functions H and C. Then if f : X Ñ r0, 1s is
calibrated and multicalibrated with respect to D and H, and if H satisfies the weak learning condition relative
to C and D, then:

E
px,yq„D

rpfpxq ´ yq2s ď min
cPC

E
px,yq„D

rpcpxq ´ yq2s

Proof. We assume for simplicity that f has a countable range (which is without loss of generality e.g.
whenever X is countable). Suppose for contradiction that there is some c P C such that:

E
px,yq„D

rpcpxq ´ yq2s ă E
px,yq„D

rpfpxq ´ yq2s

Then there must be some v P Rpfq with Prrfpxq “ vs ą 0 and:

E
px,yq„D

rpcpxq ´ yq2|fpxq “ vs ă E
px,yq„D

rpv ´ yq2|fpxq “ vs

Since f is calibrated, v “ ȳSv
for Sv “ tx : fpxq “ vu. Therefore, the fact that H satisfies the weak learning

condition relative to C and D implies that there must be some h P H such that:

E
px,yq„D

rphpxq ´ yq2|fpxq “ vs ă E
px,yq„D

rpv ´ yq2|fpxq “ vs

Finally, the second part of Theorem 3.2 implies that:

E
px,yq„D

rhpxqpy ´ vq|fpxq “ vs ą 0

which is a violation of our assumption that f is multicalibrated with respect to H and D, a contradiction.
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We now turn to approximate versions of these statements. To do so, we need a refined version of one
direction of Theorem 3.2 that shows us that if f witnesses a failure of multicalibration with respect to some
h P H, then there is another function h1 P H that can be used to improve on f ’s squared error, while
controlling the norm of h1.

Lemma 6.4. Suppose H is closed under affine transformation. Fix a model f : X Ñ r0, 1s, a levelset
v P Rpfq, and a bound B ą 0. Then if there exists an h P H such that maxxPX hpxq2 ď B and

Erhpxqpy ´ vq|fpxq “ vs ě α,

for α ě 0, then there exists an h1 P H such that maxxPX h1pxq2 ď p1 `
?
B
α

q2 and:

Erpfpxq ´ yq2 ´ ph1pxq ´ yq2|fpxq “ vs ě α2

B
.

Proof. Let h1pxq “ v ` ηhpxq where η “ α

Erhpxq2|fpxq“vs , as in Theorem 3.2. Because hpxq2 is uniformly

bounded by B on X , it follows that Erhpxq2s ď B, and we have already shown in the proof of Theorem 3.2
that this implies

Erpfpxq ´ yq2 ´ ph1pxq ´ yq2|fpxq “ vs ě α2

B
.

It only remains to bound maxxPX h1pxq2. We begin by lower-bounding Erhpxq2 | fpxq “ vs in terms of α.

Erhpxq2 | fpxq “ vs ě Erhpxq | fpxq “ vs2

ě Erhpxqpy ´ vq | fpxq “ vs2

ě α2.

It follows that η ď 1{α, and so

max
xPX

h1pxq2 “ max
xPX

pv ` ηhpxqq2

ď p1 ` η
?
Bq2

ď
˜

1 `
?
B

α

¸2

.

We will also need a parameterized version of our weak learning condition. Recalling Remark 4.4, for
approximate multicalibration to be meaningful with respect to a class that is closed under affine transfor-
mation, we must specify a bounded subset of that class with respect to which a predictor is approximately
multicalibrated. Then to show that approximate multicalibration with respect to one potentially unbounded
class implies approximate multicalibration with respect to another, we will need to specify the subsets of
each class with respect to which a predictor is claimed to be approximately multicalibrated. This motivates
a parameterization of our previous weak learning condition relative to a class C. We will need to assume that
whenever there is a B-bounded function in C that improves over the best constant predictor on a restriction
of D, there also exists a B-bounded function in H that improves on the restriction as well.

Definition 6.5 (B-Bounded Weak Learning Assumption Relative to C). Fix a distribution D P ∆Z and
two classes of functions H and C. Fix a bound B ą 0 and let HB and CB denote the sets

HB “ th P H : max
xPX

hpxq2 ď Bu

and
CB “ tc P C : max

xPX
cpxq2 ď Bu
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respectively. We say that H satisfies the B-bounded γ-bounded weak learning condition relative to C and D

if for every S Ď X with Prx„DX
rx P Ss ą 0, if:

min
cPCB

E
px,yq„D

rpcpxq ´ yq2 | x P Ss ă E
px,yq„D

rpȳS ´ yq2 | x P Ss ´ γ,

where ȳS “ Ery | x P Ss, then there exists h P HB such that

E
px,yq„D

rphpxq ´ yq2 | x P Ss ă E
px,yq„D

rpȳS ´ yq2 | x P Ss ´ γ.

Theorem 6.6. Fix a distribution D P ∆Z and two classes of functions H and C that are closed under affine

transformations. Fix αC , B ą 0. Let B1 “ p1`
b

2B
αC

q2 and γ “ αC

4B
. Fix a function f : X Ñ r0, 1s that maps

into a countable subset of its range, and let m “ |Rpfq|, αH ă α3

C

29mB12 , and α ă αCγ
2

32mB12 . Then if

• H satisfies the B1-bounded γ-weak learning condition relative to C and D

• f is αH-approximately multicalibrated with respect to D and HB1

• f is α-approximately calibrated on D,

then f is αC-approximately multicalibrated with respect to D and CB.

Proof. Suppose not and there exists some c P CB such that

ÿ

vPRpfq
Pr

x„Dx

rfpxq “ vs ¨
ˆ

E
px,yq„D

rcpxqpy ´ vq | fpxq “ vs
˙2

ą αC .

Then there must exist some v P Rpfq such that Prrfpxq “ vs ą αC

2m
and

E
px,yq„D

rcpxqpy ´ vq | fpxq “ vs2 ą αC{2.

Because C is closed under affine transformations, CB is closed under negation, so there must also exist some
c1 P CB such that

E
px,yq„D

rc1pxqpy ´ vq | fpxq “ vs ą
a

αC{2.

Then Lemma 3.3 shows that there is a c2 P Cp1`
b

2B
αC

q2 “ CB1 such that

E
px,yq„D

rpy ´ fpxqq2 ´ py ´ c2pxqq2 | fpxq “ vs ě αC

2B
“ 2γ.

Because f is α-calibrated on D, by definition we have

Pr
x„Dx

rfpxq “ vs ¨
ˆ

E
px,yq„D

rv ´ y | fpxq “ vs
˙2

ă α.

Letting ȳv “ Ery | fpxq “ vs, our lower-bound that Prrfpxq “ vs ą αC

2m
gives us that pv ´ ȳvq2 ă 2αm

αC
ď

γ2

16B12 ă γ. So, because v is close to ȳv, we can show the squared error of f must be close to the squared
error of ȳv on this level set.

E
px,yq„D

rpy ´ fpxqq2 | fpxq “ vs “ E
px,yq„D

rpy ´ ȳv ` ȳv ´ fpxqq2 | fpxq “ vs

“ E
px,yq„D

rpy ´ ȳvq2 ` 2py ´ ȳvqpȳv ´ vq | fpxq “ vs ` pȳv ´ vq2

“ E
px,yq„D

rpy ´ ȳvq2 | fpxq “ vs ` pȳv ´ vq2

ă E
px,yq„D

rpy ´ ȳvq2 | fpxq “ vs ` γ.
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Then, because the squared error of c2 on this level set is much less than the squared error of f , we find that
c2 must also have squared error less than that of ȳv:

E
px,yq„D

rpy ´ ȳvq2 ´ py ´ c2pxqq2 | fpxq “ vs ą E
px,yq„D

rpy ´ fpxqq2 ´ γ ´ py ´ c2pxqq2 | fpxq “ vs

ě 2γ ´ γ

“ γ

We assumed H satisfies the B1-bounded γ-weak learning condition relative to C, so this gives us a function
h P HB1 such that

E
px,yq„D

rpy ´ ȳvq2 ´ py ´ hpxqq2 | fpxq “ vs ą γ.

Then Lemma 3.3 shows that

Erhpxqpy ´ ȳvq | fpxq “ vs ą γ{2.
So h witnesses a failure of multicalibration of f , since it follows that

Erhpxqpy ´ vq | fpxq “ vs “ Erhpxqpy ´ ȳvq | fpxq “ vs ` Erhpxqpȳv ´ vq | fpxq “ vs
ą γ{2 ´ B1 |ȳv ´ v|

ě γ{2 ´ B1γ

4B1

“ γ{4

and so

Pr
x„Dx

rfpxq “ vs
ˆ

E
px,yq„D

rhpxqpy ´ vq | fpxq “ vs
˙2

ą αCγ
2

32m
ą αH,

contradicting αH-approximate multicalibration of f on HB1 and D.

In Gopalan et al. [2022], Gopalan, Kalai, Reingold, Sharan, and Wieder show that any predictor that is
approximately multicalibrated for a class H and distribution D can be efficiently post-processed to approxi-
mately minimize any convex, Lipschitz loss function relative to the class H. The theorem we have just proved
can now be used to extend their result to approximate loss minimization over any other class C, so long as
H satisfies the B-bounded γ-weak learning assumption relative to C. Intuitively, this follows from the fact
that if f is approximately multicalibrated with respect to H on D, it is also approximately multicalibrated
with respect to C. However, the notion of approximate multicalibration adopted in Gopalan et al. [2022]
differs from the one in this work. So, to formalize our intuition above, we will first state the covariance-based
definition of approximate multicalibration appearing in Gopalan et al. [2022] and prove a lemma relating it
to our own. We note that, going forward, we will restrict ourselves to distributions D over X ˆ t0, 1u, as in
this case the two definitions of approximate multicalibration are straightforwardly connected.

Definition 6.7 (Approximate Covariance Multicalibration Gopalan et al. [2022]). Fix a distribution D over
X ˆ t0, 1u and a function f : X Ñ r0, 1s that maps onto a countable subset of its range, denoted Rpfq. Let
H be an arbitrary collection of real valued functions h : X Ñ R. Then f is α-approximately covariance
multicalibrated with respect to H on D if

ÿ

vPRpfq
Pr

x„DX

rfpxq “ vs ¨
ˇ

ˇErphpxq ´ h̄vqpy ´ ȳvq | fpxq “ vs
ˇ

ˇ ď α,

where h̄v “ Erhpxq | fpxq “ vs and ȳv “ Ery | fpxq “ vs.

Lemma 6.8. Fix a distribution D over X ˆ t0, 1u and a class of functions on X , H. Let HB denote the
subset

HB “ th P H : max
xPX

hpxq2 ď Bu.
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Fix a function f : X Ñ r0, 1s that maps onto a countable subset of its range, denoted Rpfq. Then if f is
α-approximately multicalibrated with respect to HB on D, then f is p?

αp1`
?
Bqq-approximately covariance

multicalibrated. That is, for all h P HB, f satisfies
ÿ

vPRpfq
Prrfpxq “ vs ¨

ˇ

ˇErphpxq ´ h̄vqpy ´ ȳvq | fpxq “ vs
ˇ

ˇ ď
?
αp1 `

?
Bq.

Proof.
ÿ

vPRpfq
Prrfpxq “ vs¨

ˇ

ˇErphpxq ´ h̄vqpy ´ ȳvq | fpxq “ vs
ˇ

ˇ

“
ÿ

vPRpfq
Prrfpxq “ vs ¨

ˇ

ˇErhpxqy | fpxq “ vs ´ ȳvh̄v

ˇ

ˇ

“
ÿ

vPRpfq
Prrfpxq “ vs ¨

ˇ

ˇErhpxqy | fpxq “ vs ´ vh̄v ` vh̄v ´ ȳvh̄v

ˇ

ˇ

“
ÿ

vPRpfq
Prrfpxq “ vs ¨

ˇ

ˇErhpxqpy ´ vq | fpxq “ vs ` h̄vpv ´ ȳvq
ˇ

ˇ

ď
ÿ

vPRpfq
Prrfpxq “ vs ¨

`

|Erhpxqpy ´ vq | fpxq “ vs| `
ˇ

ˇh̄vpv ´ ȳvq
ˇ

ˇ

˘

ď
?
α `

?
B

ÿ

vPRpfq
Prrfpxq “ vs ¨ |v ´ ȳv|

ď
?
αp1 `

?
Bq.

where the second inequality follows from the fact that Erxs ď
a

Erx2s and the bound maxxPX hpxq2 ď B.

We now recall a theorem of Gopalan et al. [2022], showing that approximate covariance multicalibration
with respect to a class H implies approximate loss minimization relative to H, for convex, Lipschitz losses.

Theorem 6.9. Fix a distribution D over X ˆ t0, 1u and a class of real-valued functions on X , H. Fix a
function f : X Ñ r0, 1s that maps onto a countable subset of its range, denoted Rpfq. Let L be a class of
functions on t0, 1u ˆ R that are convex and L-Lipschitz in their second argument. If f is α-approximately
covariance multicalibrated with respect to HB on D, then for every ℓ P L there exists an efficient post-
processing function kℓ such that

E
px,yq„D

rℓpy, kℓpfpxqqqs ď min
hPHB

E
px,yq„D

rℓpy, hpxqqs ` 2αL.

Corollary 6.10. Fix a distribution D over X ˆ t0, 1u and two classes of real-valued functions on X that
are closed under affine transformation, H and C. Fix a function f : X Ñ r0, 1s that maps onto a countable
subset of its range, denoted Rpfq. Let L be a class of functions on t0, 1u ˆR that are convex and L-Lipschitz

in their second argument. Fix αC , B ą 0. Let B1 “ p1 `
b

2B
αC

q2 and γ “ αC

4B
. Let αH ă α3

C

29mB12 , and

α ă αCγ
2

32mB12 . Then if

• H satisfies the B1-bounded γ-weak learning condition relative to C and D

• f is αH-approximately multicalibrated with respect to D and HB1

• f is α-approximately calibrated on D,

then for every ℓ P L there exists an efficient post-processing function kℓ such that

E
px,yq„D

rℓpy, kℓpfpxqqqs ď min
cPCB

E
px,yq„D

rℓpy, cpxqqs ` 2L
?
αCp1 `

?
Bq.

22



Figure 1: The update process at round t with m level sets during training.

Proof. We have from Theorem 6.6 that given the assumed conditions, f will be αC-approximately multicali-
brated with respect to CB on D. It follows from Lemma 6.8 that f is

?
αCp1`

?
Bq-approximately covariance

multicalibrated with respect to CB on D. The result of Gopalan et al. [2022] then gives us that for all ℓ P L,
there exists an efficient post-processing function kℓ such that

E
px,yq„D

rℓpy, kℓpfpxqqqs ď min
cPCB

E
px,yq„D

rℓpy, cpxqqs ` 2L
?
αCp1 `

?
Bq.

7 Empirical Evaluation

In this section, we study Algorithm 1 empirically via an efficient, open-source Python implementation of our
algorithm on both synthetic and real regression problems. Our code is available here: https://github.com/
Declancharrison/Level-Set-Boosting. An important feature of Algorithm 1 which distinguishes it from
traditional boosting algorithms is the ability to parallelize not only during inference, but also during training.
Let ft be the model maintained by Algorithm 1 at round t with m level sets. Given a data set X, ft creates
a partition of X defined by Xt`1

i “ tx|ftpxq “ viu. Since the Xi are disjoint, each call ht`1

i “ AHpXt`1

i q
can be made on a separate worker followed by a combine and round operation to obtain f̃t`1 and ft`1

respectively, as shown in Figure 1. A parallel inference pass at round t works nearly identically, but uses the
historical weak learners ht`1

i obtained from training and applies them to each set Xt`1

i .

7.1 Prediction on Synthetic Data

From Theorem 5.2, we know that multicalibration with respect to a hypothesis class H satisfying our weak
learning condition implies Bayes optimality. To visualize the fast convergence of our algorithm to Bayes
optimality, we create two synthetic datasets; each dataset contains one million samples with two features.
We label these points using two functions, C0 and C1, defined below and pictured in Figure 2). We attempt
to learn the underlying function with Algorithm 1.

C0pxq “

$

’

’

’

&

’

’

’

%

px ` 1q2 ` py ´ 1q2, if x ď 0, y ě 0

px ´ 1q2 ` py ´ 1q2, if x ą 0, y ě 0

px ` 1q2 ` py ` 1q2, if x ď 0, y ă 0

px ´ 1q2 ` py ` 1q2, if x ą 0, y ă 0

(C0)
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C1pxq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

x ` 20xy2 cosp´8xq sinp8yq
´

p1.5x`4qpx`1q2
y`3

` py ´ 1q2
¯

, if x ď 0, y ě 0

x ` 20xy2 cosp8xq sinp8yq
´

p1.5x`4qpx´1q2
y`3

` py ´ 1q2
¯

, if x ą 0, y ě 0

x ` 20xy2 cosp´8xq sinp8yq
´

p1.5x`4qpx`1q2
y`3

` py ` 1q2
¯

, if x ď 0, y ă 0

x ` 20xy2 cosp8xq sinp8yq
´

p1.5x`4qpx´1q2
y`3

` py ` 1q2
¯

, if x ą 0, y ă 0

(C1)

In Figure 3, we show an example of Algorithm 1 learning C0 using a discretization of five-hundred level
sets and a weak learner hypothesis class of depth one decision trees. Each image in figure 3 corresponds to
the map produced by Algorithm 1 at the round listed in the top of the image. As the round count increases,
the number of non-empty level sets increases until each level set is filled, at which point the updates become
more granular. The termination round titled ‘final round’ occurs at T “ 199 and paints an approximate
map of C0. The image titled ‘out of sample’ is the map produced on a set of one million points randomly
drawn outside of the training sample, and shows that Algorithm 1 is in fact an approximation of the Bayes
Optimal C0.

Figure 2: C0 maps x1, x2 P r´2, 2s to four cylindrical cones symmetric about the origin. C1 maps x1, x2 P
r´1, 1s to a hilly terrain from a more complex function.

Figure 4 plots the same kind of progression as Figure 3, but with a more complicated underlying function
C1 using a variety of weak learner classes. We are able to learn this more complex surface out of sample
with all base classes except for linear regression, which results in a noisy out-of-sample plot.

7.2 Prediction on Census Data

We evaluate the empirical performance of Algorithm 1 on US Census data compiled using the Python
folktables package Ding et al. [2021]. In this dataset, the feature space consists of demographic information
about individuals (see Table 1), and the labels correspond to the individual’s annual income.
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Figure 3: Evolution of Algorithm 1 learning C0.

feature description feature description
AGEP age POBP place of birth
COW class of worker RELP relationship
SCHL education level WKHP work hours per week
MAR marital status SEX binary sex
OCCP occupation RAC1P race

Table 1: Features included in income prediction task.

We cap income at $100,000 and then rescale all labels into r0, 1s. On an 80/20% train-test split with
500,000 total samples, we compare the performance of Algorithm 1 with Gradient Boosting with two perfor-
mance metrics: mean squared error (MSE), and mean squared calibration error (MSCE). For less expressive
weak learner classes (such as DT(1), see Figure 5), Algorithm 1 has superior MSE out of sample compared to
Gradient Boosting through one hundred rounds while maintaining significantly lower MSCE, and converges
quicker. However, as the weak learning class becomes more expressive (e.g. increasing decision tree depths),
Algorithm 1 is more prone to overfitting than gradient boosting (see Figure 6).

25



Figure 4: Stages of Algorithm 1 learning C1 with linear regression (LR) and varying depth d decision trees
(DT(d)). In the out of sample plot for linear regression, points are not mapped to their proper position,
implying C1 cannot be learned by boosting linear functions. All other hypothesis classes eventually converge
to C1.
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Figure 5: Comparison of Algorithm 1 (LS) and Gradient Boosting (GB), both using depth 1 regression trees.
* indicates termination round of Algorithm 1.

In Table 2, we compare the time taken to train n weak learners with Algorithm 1 and with scikit-learn’s
version of Gradient Boosting on our census data. Recall that our algorithm trains multiple weak learners
per round of boosting, and so comparing the two algorithms for a fixed number of calls to the weak learner
is distinct from comparing them for a fixed number of rounds. Because models output by Algorithm 1 may
be more complex than those produced by Gradient Boosting run for the same number of rounds, we use
number of weak learners trained as a proxy for model complexity, and compare the two algorithms holding
this measure fixed. We see the trend for Gradient Boosting is linear with respect to number of weak learners,
whereas Algorithm 1 does not follow the same linear pattern upfront. This is due to not being able to fully
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leverage parallelization of training weak learners in early stages of boosting. At each round, Algorithm 1
calls the weak learner on every large enough level set of the current model, and it is these independent calls
that can be easily parallelized. However, in the early rounds of boosting the model may be relatively simple,
and so many level sets may be sparsely populated. As the model becomes more expressive over subsequent
rounds, the weak learner will be invoked on more sets per round, allowing us to fully utilize parallelizability.

# Weak Learners
DT(1) DT(2) DT(3)

LS GB Faster? LS GB Faster? LS GB Faster?
50 level sets

100 9.11 11.97 X 5.86 23.01 X 6.88 32.92 X

300 18.70 35.81 X 14.90 69.17 X 15.64 102.14 X

500 27.00 58.19 X 21.74 115.65 X 24.77 169.90 X

1000 46.73 116.49 X 42.92 231.74 X 46.38 336.89 X

100 level sets
100 7.18 11.97 X 5.29 23.01 X 5.06 32.92 X

300 13.08 35.81 X 13.55 69.17 X 14.72 102.14 X

500 21.20 58.19 X 19.57 115.65 X 21.79 169.90 X

1000 41.99 116.49 X 36.26 231.74 X 40.92 336.89 X

300 level sets
100 5.87 11.97 X 9.18 23.01 X 6.54 32.92 X

300 13.21 35.81 X 17.46 69.17 X 11.13 102.14 X

500 19.05 58.19 X 22.20 115.65 X 19.64 169.90 X

1000 32.80 116.49 X 36.61 231.74 X 27.12 336.89 X

Table 2: Time (in seconds) comparison of Algorithm 1 (LS) with fifty level sets and Gradient Boosting to
train certain numbers of estimators for various weak learner classes.

In Figure 6, we measure MSE and MSCE for Algorithm 1 and Gradient Boosting over rounds of training
on our census data. Again, we note that one round of Algorithm 1 is not equivalent to one round of Gradient
Boosting, but intend to demonstrate error comparisons and rates of convergence. For the linear regression
plots, Gradient Boosting does not reduce either error since combinations of linear models are also linear. As
the complexity of the underlying model class increases, Gradient Boosting surpasses Algorithm 1 in terms
of MSE, though it does not minimize calibration error.

We notice that Algorithm 1, like most machine learning algorithms, is prone to overfitting when allowed.
Future performance hueristics we intend to investigate include validating updates, complexity penalties, and
weighted mixtures of updates.
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Figure 6: MSE and MSCE comparison of Algorithm 1 (LS) and Gradient Boosting (GB) on linear regression
and decision trees of varying depths. * indicates termination round of LS and occurs, from top to bottom,
at T “ 41, 23, 39, 20.
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A Generalization Bounds

Our analysis of Algorithm 1 assumed direct access to the data distribution D. In practice, we will run the
algorithm on the empirical distribution over a sample of n points D „ Dn. In this section, we show that
when we do this, so long as n is sufficiently large, both our squared error and our multicalibration guarantees
carry over from the empirical distribution over D to the distribution D from which D was sampled. Most
generalization bounds for multicalibration algorithms (e.g. Hébert-Johnson et al. [2018], Jung et al. [2021,
2022], Shabat et al. [2020]) are either stated and proven for finite classes H, or are proven for algorithms that
do not operate as empirical risk minimization algorithms, but instead gain access to a fresh sample of data
from the distribution at each iteration, or are proven for hypotheses classes that are fixed independently of
the algorithm. We have a different challenge: Like Hébert-Johnson et al. [2018], Jung et al. [2021] we study
an iterative algorithm whose final hypothesis class is not fixed up front, but implicitly defined as a function
of H. But we wish to study the algorithms as they are used—as empirical risk minimization algorithms—so
we do not want our analysis to depend on using a fresh sample of data at each iteration. And unlike the
analysis in Jung et al. [2022], for us H is continuously large (since it is closed under affine transformations),
so we cannot rely on bounds that depend on log |H|. Instead we give a uniform convergence analysis that
depends on the pseudo-dimension of our class of weak learners H:

Definition A.1. Pseudodimension[Pollard [2012]] Let H be a class of functions from X to R. We say that
a set S “ px1, . . . , xm, y1, . . . , ymq P Xm ˆR

m is pseudo-shattered by H if for any pb1, . . . , bmq P t0, 1um there
exists h P H such that @i, hpxiq ą y ðñ bi “ 1 The pseudodimension of H, denoted PdimpHq is the largest
integer m for which H pseudo-shatters some set S of cardinality m.

Although hypotheses in H are continuously valued, Algorithm 1 outputs functions that have finite range
r1{ms, and so we can view them as multi-class classification functions. Our analysis will proceed by study-
ing the generalization properties of these multiclass functions, which we will characterize using Natarajan
dimension:

Definition A.2 (Shattering for multiclass functions). Natarajan [1989], Shalev-Shwartz and Ben-David
[2014] A set C Ď X is shattered by H if there exists two functions f0, f1 : C Ñ rks such that

1. For every x P C, f0pxq ‰ f1pxq.

2. For every B Ď C there exists a function h P H such that

@x P B, hpxq “ f0pxq and @x P C B, hpxq “ f1pxq.

Definition A.3 (Natarajan dimension). Natarajan [1989], Shalev-Shwartz and Ben-David [2014] The Natara-
jan dimension of H, denoted NdimpHq, is the maximal size of a shattered set C Ď X .
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We can then rely the following standard uniform convergence bound for multiclass classification. This
statement is slightly modified from the result in Shalev-Schwartz and Ben-David to account for our use of
squared error. The result still holds on account of the fact that the Cherhoff bound only relies on the loss
function being bounded, and ours is indeed bounded between 0 and 1.

Theorem A.4 (Multiclass uniform convergence). Shalev-Shwartz and Ben-David [2014] Let ǫ, δ ą 0 and let
H be a class of functions h : X Ñ r1{ks such that the Natarajan dimension of H is d. Let D P ∆pX ˆ r0, 1sq
be an arbitrary distribution and let D “ tpx1, y1q, . . . , pxn, ynqupxi,yiq„D be a sample of n points from D.
Then for

n “ O

ˆ

d logpkq ` logp1{δq
ε2

˙

,

Pr

„

max
hPH

ˇ

ˇ

ˇ

ˇ

E
px,yq„D

rpy ´ hpxqq2s ´ E
px,yq„D

rpy ´ hpxqq2s
ˇ

ˇ

ˇ

ˇ

ě ǫs


ď δ.

Our strategy will be to bound the Natarajan dimension of the class of models that can be output by
Algorithm 1 in terms of the pseudodimension of the underlying weak learner, then apply the above uniform
convergence result. To do so, we will first use the following lemma, which bounds the Natarajan dimension
of functions that can be described as post-processings of binary valued-functions from a class of bounded
VC-dimension.

Lemma A.5. Shalev-Shwartz and Ben-David [2014] Suppose we have ℓ binary classifiers from binary class
Hbin and a rule r : t0, 1uℓ Ñ rks that determines a multiclass label according to the predictions of the ℓ binary
classifiers. Define the hypothesis class corresponding to this rule as

H “ trph1p¨q, . . . , hℓp¨qq : ph1, . . . , hℓq P pHbinqℓu.

Then, if d “ VCdimpHbinq,
NdimpHq ď 3ℓd logpℓdq.

Recall that the VC-dimension of a binary classifier is defined as follows:

Definition A.6 (VC-dimension). Vapnik and Chervonenkis [1971] Let H be a class of binary classifiers
h : X Ñ t0, 1u. Let S “ tx1, . . . , xmu and let ΠHpSq “ tphpx1q, . . . , hpxmqq : h P Hu Ď t0, 1um. We say
that S is shattered by H if ΠHpSq “ t0, 1um. The Vapnik-Chervonenkis (VC) dimension of H, denoted
VCdimpHq, is the cardinality of the largest set S shattered by H.

Lemma A.7. Let Hboost be the class of models output by RegressionMulticalibratepf, α,AH, ¨, Bq (Algorithm
1) for any input distribution D and let d be the pseudodimension of its input weak learner class H.

Ndim pHboostq ď 24pB{αq3d log
`

p2B{αq3d
˘

.

Proof. Let m be defined (as in RegressionMulticalibratepf, α,AH,D, Bq) to be 2B{α. Because our models
are always rounded to the nearest value in r1{ms, we can think of the model ft generated in every round
of the algorithm multiclass classification problems over m classes. We will show that our final model can
be written as a decision rule that maps the outputs of some ℓ Boolean classifiers to r1{ms, and that these
Boolean classifiers have VC dimension that is bounded by the pseudodimension of the weak learner class.
Then, we will apply Lemma A.5 to get an upper bound on the Natarajan dimension of the class of models
in terms of α,B, and the pseudodimension of the input weak learner class H.

Consider the initial round of the algorithm. We can convert our (rounded) initial regressor f0 to a series
of m Boolean thresholdings gv which return 1 when f0pxq ě v:

g0v “
#

1 if f0pxq ě v,

0 otherwise.
.
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These m Boolean thresholdings can then be mapped back to the original prediction over r1{ms using a
decision rule r : t0, 1um Ñ r1{ms which picks the largest of the thresholds that evaluates to 1, and assigns
that index to the prediction:

r0ptg0vuvPr1{msqpxq “ arg max
iPr1{ms

i✶rgvpxq “ 1s.

Note that since our initial predictor f0 was already rounded to take values in r1{ms, the largest v

such that f0pxq ě v will be exactly f0pxq, so r0 is exactly equivalent to f0. Similarly, at round t ` 1 of
RegressionMulticalibratepf, α,AH,D, Bq, we will show that the model ft`1 can be written as a decision rule
rt`1 over m ` pt ` 1qm2 binary classifiers g, where

gtv,i “
#

1 if ht
vpxq ě i ´ 1{p2mq,

0 otherwise.
,

Here, the thresholds measure halfway between each level set, as ht
vpxq has yet to be rounded to the

nearest level set. We can write a decision rule that maps these thresholds to classifications over r1{ms:

rt`1

`

rt, tgt`1

v,i ui,vPr1{ms
˘

pxq “
ÿ

vPr1{ms
✶rrtpxq “ vs arg max

iPr1{ms

`

i ¨ ✶rgt`1

v,i pxq “ 1s
˘

,

Now, we need to show that this decision rule evaluated at round t is equivalent to ft. We proceed
inductively. For our base case, we have already argued that our initial decision rule r0 is equivalent to the
classifier f0. Now, say that we have decision rule rt over binary classifiers g that is equivalent to model ft.
Then, we can write

rt`1

`

rt, tgt`1

v,i ui,vPr1{ms
˘

pxq “
ÿ

vPr1{ms
✶rrtpxq “ vs arg max

iPr1{ms

`

i ¨ ✶rgt`1

v,i pxq “ 1s
˘

,

“
ÿ

vPr1{ms
✶rftpxq “ vs arg max

iPr1{ms

`

i ¨ ✶rgt`1

v,i pxq “ 1s
˘

“
ÿ

vPr1{ms
✶rftpxq “ vs arg max

iPr1{ms

`

i ¨ ✶rht`1

v pxq ě i ´ 1{p2mqs
˘

“
ÿ

vPr1{ms
✶rftpxq “ vsRoundpht`1

v pxqq

“ ft`1pxq,

where the second line comes from the inductive hypothesis and the second to last line’s equality comes from
the fact that the largest i such that ht`1

v pxq ´ 1{p2mq ě i will be the exact rounded prediction of ht`1

v pxq.
Now, we need to show that at round t ` 1, the decision rule is a decision rule over m ` pt ` 1qm2 binary

classifiers. Note that our initial decision rule r0 has m “ m`0 ¨m2 binary classifiers. Say that at round t we
have a decision rule rt over m ` tm2 classifiers. In the following round, we build m2 new Boolean classifiers
gv, i for v, i P r1{ms. So, at round t ` 1 we have m ` tm2 ` m2 “ m ` pt ` 1qm2 classifiers total.

From Theorem 4.3, we know that Algorithm 1 halts after at most T ď 2B{α rounds, at which point it
outputs model fT´1. So, we can rewrite fT´1 as a decision rule rT´1 composed of at most m` pT ´ 1qm2 ă
Tm2 Boolean models. Plugging in our bound for T and definition of m, this gives us a decision rule rT´1

composed of at most
`

2B
α

˘3

Boolean classifiers.
Let G be the class of Boolean threshold functions over H, i.e. functions g : X Ñ t0, 1u such that

gpxq “
#

1 hpxq ě i

0 hpxq ă i,
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for some h P H and i P R. Say that the VC-dimension of G is d1. Then, applying lemma A.5, it follows that

NdimpHboostq ď 3

ˆ

2B

α

˙3

d1 log

˜

ˆ

2B

α

˙3

d1
¸

,

“ 24

ˆ

B

α

˙

d1 log

˜

ˆ

2B

α

˙3

d1
¸

.

Now, it remains to show that we can bound the VC-dimension of these thresholding functions by the
pseudodimension of the weak learner class H. Note that G as we have defined it above is a richer hypothesis
class than the actual class of thresholding functions used in the above analysis, because it can threshold
at any value in R rather than being restricted to r1{ms. Thus, its VC dimension can only be greater than
the VC dimension of the class of threshold functions over H restricted to r1{ms, and hence an upper bound
on the VC dimension of G in terms of the pseudodimension of H will also be an upper bound on the VC
dimension of the restricted class of threshold functions.

Let d be the pseudodimension of H, and say that d ă d1. By the definition of VC-dimension, t0, 1ud`1

must be shattered by G. I.e., for any set of d ` 1 points x1, . . . , xd`1 P X with arbitrary labels b1, . . . , bd`1,
there is some hypothesis g P G that realizes those labels on px1, . . . , xd`1q. Consider the function g that,
given the d ` 1 points in X , realizes the labels b1, . . . , bd`1. By the construction of G, g is a thresholding of
some function h P H at some point i. So, there is be some i P R such that hpxiq ą i ñ bi “ 1 and such that
bi “ 1 ñ hpxiq ą i. But this means that t0, 1ud`1 is pseudo-shattered by H, and thus the pseudodimension
of H is not d. Thus, it cannot be the case that d ă d1, and hence d1 ď d, i.e. the VC dimension of G is
bounded above by the pseudodimension of H. Plugging this bound into the above bound on the Natarajan
dimension gives us that

NdimpHboostq ď 24

ˆ

B

α

˙

d1 log

˜

ˆ

2B

α

˙3

d1
¸

,

ď 24

ˆ

B

α

˙

d log

˜

ˆ

2B

α

˙3

d

¸

.

Now, we can state the following uniform convergence theorem for our final model.

Theorem A.8 (Squared Error Generalization for Algorithm 1.). Let ǫ, δ, α,B ą 0. Let Hboost be the class of
models that can be output by RegressionMulticalibratepf, α,AH, ¨, Bq (Algorithm 1) for any input distribution
D and let d be the pseudodimension of its input weak learner class H. Let D “ tpx1, y1q, . . . , pxn, ynqupxi,yiq„D

be a sample of n points drawn i.i.d. from D. Then if

n “ O

ˆ

dB3 log2pdB{αq
α3ǫ2

` logp1{δq
ǫ2

˙

Pr

„

max
hPHboost

ˇ

ˇ

ˇ

ˇ

E
px,yq„D

rpy ´ hpxqq2s ´ E
px,yq„D

rpy ´ hpxqq2s
ˇ

ˇ

ˇ

ˇ

ě ǫs


ď δ.

Proof. This follows directly from Theorem A.4 and the bound on the Natarajan dimension in Lemma A.7.

We also would like to know that our multicalibration guarantees are generalizable. Rather than doing a
bespoke analysis here, we can rely on the connection that we have established between failure of multicali-
bration and ability to improve squared error and argue that if the final hypothesis output by the algorithm
was not multicalibrated with high probability then it would be possible to improve its squared error out-of-
sample. Thus, by our previous generalization result for squared error, it would be possible to improve the
squared error in-sample as well, giving us a contradiction.
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Theorem A.9 (Multicalibration generalization guarantee). Let ǫ, δ, α,B ą 0 and consider the model fT´1

output by RegressionMulticalibratepf, α,AH, D,Bq for some sample D of n points drawn i.i.d. from distri-
bution D such that

n “ O

ˆ

dB3 log2pdB{αq
α3ǫ2

` logp1{δq
ǫ2

˙

Then if ǫ ď α
4B

, with probability greater than or equal to 1 ´ 2δ it follows that fT´1 is 2α-approximately
multicalibrated with respect to the distribution D.

Proof. Let D “ tpx1, y1q, . . . , pxn, ynqupxi,yiq„D. Consider the model fT´1 output by
RegressionMulticalibratepf, α,AH, D,Bq, and recall that within the run of the algorithm there was also a
model fT defined in the final round. Say that model fT´1 is not 2α-approximately multicalibrated with
respect to HB and the true distribution D.

Since the algorithm running on the sample halted, it must have been that the model in the final round
improved in squared error by less than α{p2Bq when measured with respect to the sample D:

E
px,yq„D

rpfT´1 ´ yq2s ´ E
px,yq„D

rpfT ´ yq2s ď pα{2Bq.

Consider what happens if we run the algorithm again, but with fT´1 as its initial model and now
with the underlying distribution as input rather than the sample of n points. Let f 1

T be the model found
in the first round of running this process RegressionMulticalibratepfT´1, α, AH,D, Bq. Since fT´1 is not
2α´approximately multicalibrated with respect to D and HB , then by an identical argument as in the proof
of Theorem 4.3, it it must be that a single round of the algorithm improves the squared error on D by at
least α{B. Thus, Epx,yq„DrpfT´1 ´ yq2s ´ Epx,yq„Drpf 1

T ´ yq2s ą α{B.
We know from our previous convergence bound, Theorem A.8, that with probability 1´δ, |Epx,yq„Drpf 1

T ´
yq2s ´ Epx,yq„DrpfT ´ yq2s| ă ǫ. So, f 1

T must with high probability also improve on the sample D:

α

B
ă E

px,yq„D

rpfT´1 ´ yq2s ´ E
px,yq„D

rpf 1
T ´ yq2s

ă E
px,yq„D

rpfT´1 ´ yq2s ´ E
px,yq„D

rpf 1
T ´ yq2s ` ǫ (with probability ě 1 ´ δ)

ă E
px,yq„D

rpfT´1 ´ yq2s ´ E
px,yq„D

rpf 1
T ´ yq2s ` 2ǫ (with probability ě 1 ´ 2δ)

ă α

2B
` 2ǫ,

where the last line comes from the fact that the error of f 1
T on D cannot be less than the error of fT on

D, or else the regression oracle would have found it. Now we have a contradiction: since we have set ǫ ď α
4B

,

α

B
ă α

2B
` 2

α

4B

“ α

B
.

So, it must follow that fT´1 is, with probability 1 ´ 2δ, 2α´approximately multicalibrated.
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