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Abstract— We investigate the coordination of autonomous ve-
hicles (AVs) and intelligent human vehicles (IHVs) for merging
on a two-lane road. An IHV is equipped with an automated
system with advisory directives to the human driver to optimize
its maneuver while communicating and collaborating with other
vehicles. For optimal coordination of the two vehicles, modeling
and incorporating stochasticity of the human driver’s actions
in the IHV is important. We introduce a method of cooperative
driving that considers multiple stochastic human parameters in
the IHV, such as human intent and human input transitions.
We also model the system to account for computational delays
and the driver’s ability to follow advisory directives. The
coordination actions for the AV and the IHV are generated in a
stochastic model predictive control (sMPC) framework. Using
simulated results, we demonstrate that the model considering
stochastic effects of the human driver’s actions performs better
and can mitigate the effect due to the driver’s inattentiveness
while merging.

I. INTRODUCTION

Autonomous vehicles (AVs) are entering our transportation
system at a fast pace. In the United States, there are expected
to be more than 2.1 million AVs operating by 2025 and 20.8
million by 2030 [1]. According to [2], more than 33 million
AVs will be sold globally in the year 2040, with 7.4 million
in the United States, 14.5 million in China, 5.5 million in
European markets, and 6.3 million in other global markets.
Although the number of AVs is expected to rise, AVs and
human-driven cars are anticipated to coexist throughout the
course of the following several decades. Cooperative driving
between human-driven vehicles and AVs has great potential
to increase transportation efficiency and safety in the near
future. Modeling human behaviors and including stochastic
factors of human actions are critical for effective vehicle
coordination in a mixed-traffic scenario.

Intelligent vehicles and their interaction with human
drivers have been a topic of interest to researchers over the
past decade. The authors in [3] use a chance-constrained
partially observable Markov decision process to generate
risk-bounded motion policies of AVs considering uncertainty
in the system from human intervention or road conditions.
In that paper, human interaction with intelligent vehicles
is modeled as a disturbance. In [4], the authors model
the interaction between the driver and the vehicle in an
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assistive driving system using hidden mode stochastic hybrid
systems. In the reference [5], authors employ partially ob-
servable Markov decision processes (POMDPs) as a unified
framework for modeling the human behavior, the machine
dynamics and the observation model in a human-in-the-loop
control of semi-autonomous vehicles.

There have been studies concerning cooperative driving
between connected vehicles. The authors in [6], formulate
lane-changing decision-making of AVs in a mixed-traffic
highway scenario using multi-agent reinforcement learning.
In [7], connected AVs are controlled such that they are able
to react properly to uncertain maneuvers of human-driven
vehicles. Using the Discrete Hybrid Stochastic Automata
(DHSA) [8] the authors in [9] develop a safe and efficient
traffic system for connected vehicle platooning. None of
these papers considers the scenario where the human driver
can be influenced through advisory commands to coordinate
with other AVs in a cooperative driving environment.

In this paper, we formulate cooperative driving between
an IHV and an AV in a cooperative driving environment.
Here an IHV is a human-driven vehicle equipped with an
intelligent copilot that communicates with other AVs and
IHVs and provides driving advice through voice. The objec-
tive is to optimize both the control inputs for the AV and the
advisory commands for the driver in the IHV and coordinate
their actions for lane merging. In [10], [11], we formulated
optimized cooperative driving between the IHV and the AV
without considering any uncertainties in human input or
human intent. And in [12], we formulated and experimented
with stochasticity in human state estimation. We improve the
formulation in [10], [11], [12] and introduce a comprehensive
system model to address various uncertainties that can arise
in a driving scenario, including uncertainty in the driver’s
intent and stochastic transitions in the driver’s actions. We
also incorporate a system delay and a reaction constant
into the formulation. The system delay addresses the lag in
real-time operations, and the reaction constant models the
human’s capacity to follow advisory commands. We provide
the simulation results of the method introduced and compare
these results with the simulation results of a system without
considering stochastic human input. With a Monte Carlo
simulation, we show that by considering stochasticity in
human actions, the two vehicles can achieve a shorter merge
time while satisfying all safety constraints, when compared
to the formulation without such stochasticity consideration.

The rest of this paper is organized as follows. The system
modeling with incorporated delay is explained in Section II.
The human behavior modeling approach used for the formu-



lation is presented in Section III. In Section IV we present the
system constraints for the dynamic modeling. The sMPC for-
mulation is presented in Section V. An analysis of simulation
results using our optimization approach and a comparative
discussion are presented in Section VI. Conclusions and
future work are given in Section VII.

II. SYSTEM MODELLING WITH DELAY
INCORPORATION

We consider the lane merging coordination between IHVs
and AVs. To enable a safe and effective merge, it is important
to create the longitudinal gap between the two vehicles as
quickly as possible. While the motion of an AV can be
directly controlled, only the driver can have an impact on
the motion of an IHV. The driver’s action can be influenced
through advisory directives. To coordinate the motion of
the two vehicles, we propose a stochastic MPC (sMPC)
problem with state and control constraints, whose solution
provides the optimal advisory commands to the IHV and
the optimal autonomous controls to the AV. The merging
scenarios considered in this paper are illustrated in Figure 1.

Fig. 1. Two vehicle merging scenarios.

In this section, we discuss the models of vehicle dynamics
and the driver’s actions. We consider the following linear
dynamic model of an AV

xr
k+1 = Arxr

k +Brur
k, (1)

where the subscript k ∈ Z+ is the discrete-time index, the
longitudinal position and velocity with respect to the origin
are represented by xr

k ∈R2, Ar and Br are matrices of suitable
dimensions that define the AV dynamics, and ur ∈ R is the
input (acceleration) to the AV.

Whether the driver obeys the recommended commands
determines the IHV behavior. As a result, depending on a
binary decision variable xB

k ∈ {0,1}, the dynamics of the IHV
alternates between two dynamic systems: (1) following the
advisory command when the IHV is under advisory control
(xB

k = 1), and (2) not following the advisory command, which
denotes that the IHV is under human control (xB

k = 0). We
consider that the IHV’s models are provided by

IHV under human control: xh
k+1 = Ahxh

k +Bhuh
k , (2)

sa
k+1 = uh

k , (3)

IHV under advisory control: xh
k+1 = Ahxh

k +Bhsa
k , (4)

sa
k+1 = λ sa

k +(1−λ )ua
k , (5)

where Ah and Bh are matrices of suitable dimensions that
define the IHV dynamics, and uh

k ∈ R is the human input
and ua

k ∈ R is the advisory commands for the IHV.
Under advisory control, there is a delay as the human

driver tries to follow an advisory command. As a result, the
advisory command is implemented on the vehicle by the
human gradually rather than instantaneously. In addition, the
computation of the optimal commands after observing the
states of the vehicles and the announcement of the advisory
commands may cause further delays.

We use a first-order system (5) to account for such delay
effects. The state sa

k holds the input applied from the previous
step to account for that delay. The reaction constant λ ∈ [0,1)
represents how fast the human in the IHV is adapting to
the advisory action ua

k after it is announced. If λ = 0, the
driver applies the advised control command ua

k exactly at the
(k+ 1)th step. That is, the computation, the announcement,
and the driver’s tracking of the advisory commands are
assumed to be completed within one step. As λ → 1, the
driver’s response to the advisory action ua

k is further slowed
down. Note that (5) can be replaced by other human actuation
dynamics, such as the second order dynamics in [13], [14].

Let x̄h
k = [xh

k ;sa
k ]. We rewrite the IHV dynamics as

x̄h
k+1 =

(
Ah 0
0 0

)
x̄h

k +

(
Bh 0 Bh
1 1−λ λ

)uh
k(1− xB

k )
xB

k ua
k

xB
k sa

k

 .

(6)

Defining z̄1
k = uh

k(1−xB
k ), z̄2

k = xB
k ua

k , z̄3
k = xB

k sa
k , and the initial

states as xr
0 and xh

0, one can obtain the states and sa
k .

The stochastic transitions of the binary human state xB
k are

modeled by a stochastic finite state machine (sFSM). Denote
by uB

k ∈ {0,1} the on/off action of an advisory control at time
step k. We model the transition probability of xB

k+1 given xB
k

and uB
k using first-order Markov assumption. There are 8

different possibilities for transitions.
The probability of an event wi

k denoted by p[wi
k] needs

to be estimated. A list of all possible transitions are pre-
sented in our previous work [10]. We let the probability of
transitioning to an advisory action be denoted by p[w2

k ] =
p[xB

k+1 = 1|xB
k = 0,uB

k = 1] = pt . Then the probability of
not transitioning to advisory can be calculated as, p[w1

k ] =
p[xB

k+1 = 0|xB
k = 0,uB

k = 1] = 1− pt . We also let the prob-
ability of continuously following the advisory control be
p[w6

k ] = p[xB
k+1 = 1|xB

k = 1,uB
k = 1] = p f . The pt and p f

may be learned from human-in-the-loop experiments. Then
the probability of not continuously following the advisory
becomes, p[w5

k ] = p[xB
k+1 = 0|xB

k = 1,uB
k = 1] = 1− p f . The

rest of the possible transitions become deterministic.
Combining all the stochastic events, the following transi-

tion model can be constructed:

xB
k =

k−1

∑
j=0

uB
j +C

k−1

∑
j=0

w j,∀k ≥ 1, (7)

where C = [−1 0 −1 0] and w j = [w1
j w2

j w5
j w6

j ]
⊤.



III. STOCHASTIC HUMAN INPUT MODELING
Equations (1) and (6) model the state transitions of the AV

and the IHV. To predict the motion of the IHV, a predictive
model of the human actions uh

k is needed. One can assume a
constant model, i.e., uh

k+1 = uh
k . However, the constant model

does not take into consideration stochasticity of the human
actions. By monitoring human actions using onboard sensors,
we can construct a better model of uk

h. In this section, we
discuss an HMM approach to modeling the human driver
input uk

h and how to incorporate the HMM into our system
model.

A. Human Behavior modeling using HMM

For a human driver driving forward, we classify the
driver’s actions into three categories through an HMM-based
action recognition model, speeding up (su), slowing down
(sd), and normally driving (sc). Define the current human
action as ak ∈A= {sd , sc, su}. The human action recognition
model integrates three HMMs for the three aforementioned
actions to generate a probability distribution P(ak).

Each HMM consists of five elements, transition probability
matrix MT , initial probability matrix MI , emission proba-
bility matrix ME , hidden states S, and observations O. The
observations O are sequences of driving data including veloc-
ity and pedal percentage collected from a driving simulation
testbed. The K-means algorithm is used for clustering the
data into one dimensional symbols. The transition probability
matrices MT and emission probability matrices ME are
trained based on the Baum-Welch algorithm [15].

For the inference, the input sequence is converted into a
formatted input sequence through the K-means clustering.
The likelihood probabilities of the sequence fitting each
HMM are calculated and normalized into a probability dis-
tribution matrix. The trained transition matrix P(Sk+1|Sk,ak)
and the emission probability matrix P(uh

k |Sk,ak) are used to
calculate the human input transition probability P(uh

k+1|uh
k),

where uh
k denotes the input acceleration at kth time step. We

include a detailed derivation of P(uh
k+1|uh

k) in [16].

B. Incorporating the HMM

The HMM model described in the previous section gives
us the human input transition model from one discretized in-
put to another. Let the possible human actions be discretized
as [v1,v2, . . . ,vn]⊤ ∈ Rn and the current discretized human
input be one hot encoded by Qk = [q1

k ,q
2
k , . . . ,q

n
k ]
⊤ where n

is the number of discretized actions and each element qi
k ∈

{0,1}, ∀ i ∈ {1,2, . . . ,n}. Here, only one element in qh
k is 1,

and qi
k = 1 indicates uh

k = vi where vi is the corresponding
discrete value of uh. Thus, we have

uh
k =

[
v1 v2 . . . vn

]
Qk. (8)

We also define one hot encoded Ek = [e1
k ,e

2
k , . . . ,e

n2

k ], where
each element event es

k ∈ {0,1}, ∀ s ∈ {1,2, . . . ,n2} indicates
the event of transitioning from qi

k = 1→ q j
k+1 = 1 where i, j ∈

{1,2, . . . ,n}. This transition forms the following inequalities:

q j
k+1 ≤−qi

k +1+ es
k, es

k ≤ qi
k, es

k ≤ q j
k+1. (9)

The transition probability of an event es
k is denoted by

P(es
k) = P(q j

k+1 = 1|qi
k = 1). Each such event will produce

similar constraints to (9). Since only one event es
k occurs in

the kth time step, we have

e1
k + e2

k + · · ·+ en2

k = 1. (10)

IV. SYSTEM CONSTRAINTS

To coordinate the motions of the IHV and the AV, we
consider the following four sets of constraints.

A. Merging constraints:

During the lane merging coordination, the longitudinal
position between the two vehicles must be more than a
threshold d > 0. The value of d is dependent on the relative
position of the two coordinating vehicles. To determine the
relative position between the two vehicles, binary variables
f rh
k and f hr

k are defined, which denote whether a vehicle is
in front or back. If AV is in front of IHV, then f rh

k = 1 and
f hr
k = 0. Otherwise f rh

k = 0 and f hr
k = 1. This relationship

forms the following inequalities.

xr
k,1 − xh

k,1 ≥−M̄ f hr
k , xr

k,1 − xh
k,1 ≤−ε +(M̄+ ε) f rh

k , (11)

and f rh
k + f hr

k = 1, (12)

where M̄ is a sufficiently large positive number and ε is a
small positive number.

Define binary variables mr
k and mh

k to indicate the merging
vehicle. If the AV is merging, mr

k = 1 and mh
k = 0. If the

IHV is merging, then mr
k = 0 and mh

k = 1. We also define
binary variables lrh

k ∈ {0,1} to indicate if the AV and IHV
are in the same lane. If they are in the same lane then
lrh
k = 1 otherwise lrh

k = 0. Let the safe following distance
be d f . For safe merging, we also consider additional rear
clearance dr while merging. The safe merging distance d
can be formulated using the following equation:

d = (1− lrh
k )(d f +mr

k f rh
k dr +mh

k f hr
k dr)+ lrh

k d f . (13)

Here, d is the longitudinal distance threshold that the two
vehicles should maintain right before a safe merging. If the
AV is merging from behind, we have mr

k = 1, mh
k = 0, lrh

k = 0,
f rh
k = 0, and f hr

k = 1. From (13), d = (1− 0)(d f + 1× 0×
dr)+ 0× d f = d f . If the AV is merging to the front of the
IHV, f rh

k = 1, f hr
k = 0, and the rest would be the same. Then

d = d f + dr. Similarly, if the IHV is merging from behind,
we obtain from (13) d = d f , and if the IHV is merging from
the front, d = d f +dr. Thus, (13) allows incorporation of an
additional clearance dr while merging in front of a vehicle.
If the two vehicles are in the same lane, they will keep a
following distance as d = d f .

To ensure the longitudinal distance between the two vehi-
cles is larger than d, the following constraint is considered:

|xr
k,1 − xh

k,1| ≥ d (14)

where xk,1 denotes the position state. Two binary variables
are defined, b1,k and b2,k which denote the satisfaction of the
formula (14). The detailed formulation can be found in [10].



B. State constraints:

The equations defining the new states z̄1
k , z̄2

k , z̄3
k and

their relationships with the states and inputs lead to the
state constraints. Using the mixed-logic dynamical (MLD)
systems formulations presented in [17], the state constraints
are formulated as inequalities.

C. sFSM transition constraints:

The state transitions defined in the sFSM are enforced
in these constraints. Let δ 1

k = xB
k uB

k . Then the stochastic
transitions form the following inequality constraints:

w1
k +w2

k ≤ uB
k −δ

1
k , w1

k +w2
k ≥ uB

k −δ
1
k , (15)

w5
k +w6

k ≤ δ
1
k , w5

k +w6
k ≥ δ

1
k , (16)

−xB
k +δ

1
k ≤ 0, −uB

k +δ
1
k ≤ 0, (17)

uB
k + xB

k ≤ 1+δ
1
k , (18)

D. Chance constraints:

Chance constraints are used to reject trajectories that only
occur with a small probability from the set of possible
solutions. The possible human input transition events are
given by Ek = [e1

k e2
k . . . en2

k ]⊤ and the transition probabili-

ties are p =
[

p[e1
k ] p[e2

k ] . . . p[en2

k ]
]⊤

. Thus, the chance
constraint can be computed as

K−1

∑
k=0

∑
i=1,2,...,n2

ei
k ln(p[ei

k])≥ ln(p̃e), (19)

where p̃e ∈ [0,1] is the human input probability bound. This
chance constraint (19) enforces that human input trajectory
E realizes with at least p̃e probability.

Similarly, for the possible human state transition events,
given by wk and the chance constraint can be formulated as,

K−1

∑
k=0

∑
i=1,2,5,6

wi
k ln(p[wi

k])≥ ln(p̃w) (20)

enforcing that w realizes with at least p̃w ∈ [0,1] probability.

V. STOCHASTIC MPC FORMULATION

The goal of the sMPC is to optimize the decision variables
at each time step k to minimize a cost function designed
by preference while satisfying all the constraints required to
model the coordination of the IHV and the AV. The different
components of the sMPC formulation are discussed below.

A. Decision variables

For a look ahead window of K, the decision vari-
ables are summarized as θk ∈ Rnt in the form θk =
[ur

k ua
k z̄1

k z̄2
k z̄3

k uB
k wk δ 1

k bk q1
k q2

k . . . qn
k e1

k e2
k . . . en2

k frh
k fhr

k ]
where ur

k =
[
ur

k, ur
k+1, · · · , ur

k+K−1
]

and all the other
decision variables are defined similarly. The total number of
decision variables is denoted by nt . The continuous variables
are ur

k, ua
k , and zu

k while the rest are binary. Note that among
all these decision variables, the AV input ur

k and the IHV
advisory commands ua

k along with the advisory state uB
k are

the control inputs entering the system dynamics.

B. Constraints

The equality and inequality constraints mentioned above
are linear in decision variable θk, and can be formulated as

Gkθk ≤ gk, (21)

where Gk ∈ Rnc×nt and gk ∈ Rnc×1 where nc is the total
number of constraints.

C. Cost function

We take into account five goals in the cost function, which
are, minimize the control inputs, minimize the time to reach
the merging distance, maximize the speed of AV and IHV,
minimize the number of advisory directives and maximize
the probability of the stochastic events. The objective func-
tion of the sMPC is the sum of these five functions, which
can be represented as

J(θk) = θ
⊤
k Qθk + c⊤θk, (22)

where Q ∈ Rnt×nt and c ∈ R1×nt are the designed objective
weights for the system.

D. Optimization problem

Assuming the human state xB
k is a known parameter, the

optimization problem can be formulated as

min
θk

J(θk), s.t. Gkθk ≤ gk. (23)

However, whether the driver follows the advisory control
may only be estimated, e.g., via monitoring the driver’s per-
formance. Thus, xB

k may only be estimated by a probability
distribution. To address the uncertainty in the estimated xB

k ,
we formulate two sets of optimization problems and optimize
the decision variables for two different conditions. If the
human is following the advisory command, i.e., xB

k = 1,
the optimized decision variables are denoted as θ 1

k . If the
human is not following the advisory command, i.e., xB

k = 0,
the optimized decision variables are denoted by θ 0

k . Let
the probability of the IHV driver following the advisory
command at time step k be PB

k = p[xB
k = 1] and the probability

of the driver not following, p[xB
k = 0], as 1−PB

k . We then
define the following optimization problem:

min
θ 0

k ,θ
1
k

= PB
k
(
J(θ 1

k )
)
+(1−PB

k )
(
J(θ 0

k )
)

(24)

s.t. PB
k Gk

∣∣∣
xB

k =1
θ

1
k ≤ PB

k gk

∣∣∣
xB

k =1
, (25)

(1−PB
k )Gk

∣∣∣
xB

k =0
θ

0
k ≤ (1−PB

k )gk

∣∣∣
xB

k =0
, (26)[

ur
k ua

k uB
k

]⊤ ∣∣∣
xB

k =1
=
[
ur

k ua
k uB

k

]⊤ ∣∣∣
xB

k =0
. (27)

The constraint (27) means that the control inputs to be
implemented on the AV and the IHV must be the same for
the two possible scenarios xB

k = 1 and xB
k = 0.

Applying this optimization algorithm in a receding horizon
fashion with the constraints and defined objective, we get the
sMPC solution, which consists of the control inputs applied
to the AV and the advisory commands communicated to the
IHV at each time step.



VI. SIMULATION RESULTS

We implement the aforementioned sMPC method in sim-
ulations. We use a double integrator model for the vehicle
dynamics. The optimization produces the input for the AVs
and the advisory command for the IHVs until the safe
merging distance d is achieved. For all the simulations,
the size of the look-ahead window is K = 15 and each
time step is 0.8 seconds. The above-mentioned formulation
is programmed as a mixed integer optimization problem
in Python. Then the problem is solved using the Gurobi
optimizer [18]. The simulations were run in Python on a
computer with Intel(R) Core i7-3770 CPU @ 3.40GHz with
16GB RAM and NVIDIA GeForce GT 630 graphics card.

We use the learned emission and transition probability
matrices mentioned in Section III-A to create a human
input probability model p(uh

k+1|uh
k) where the number of

discretized inputs is 59 with a range of [−3.9,1.9] m/s2.
We denote that model as the original transition model To ∈
R59×59. For faster calculation in the sMPC we compress
To from R59×59 to R12×12 and denote it as the compressed
transition model Tc ∈R12×12. To imitate the behavior of the
real driver, we use the To as the true human driver model.
In the sMPC, we use the model Tc to optimize and predict
the merging of the vehicles.

A. Coordination of two vehicles

We simulate the coordination for the scenario in Fig. 1
with the following initial conditions: the initial longitudinal
distance between the two vehicles di f = 0 m, and the
probability of transitioning to advisory action pt = 0.99.
The initial probability of human following the advisory with
increasing time steps is PB

0 = [0.0,0.9,0.9, . . . ]. The d f is set
to 7m, and for the two vehicle scenario we set dr to 0m.

Figure 2 shows the simulated optimization results for
different initial IHV inputs. The predicted and actual human
behaviors are plotted together for comparison. The prediction
has some error but the optimization calculates the best
merging action satisfying all the constraints. In both of
these simulations, λ = 0.0, which means the human exactly
follows the advisory command with one-step delay.

Fig. 2. Simulated optimization results for initial IHV acceleration -1.5m/s2

(left column) for initial IHV acceleration 1.5m/s2(right column).

In a real-life scenario, λ ̸= 0 due to latency in human
adaptation to the advisory command. The effect of λ is
demonstrated in Figure 3. In this figure, the initial IHV

acceleration is 0 m/s2, and the rest of the initial conditions
are kept the same as in Figure 2. When λ = 0.0 the optimiza-
tion ends at 4.8 sec while when λ = 0.2 the optimization
ends at 5.6 sec. The merge happens faster with λ = 0.0.
With increasing λ , the human driver’s capacity to follow the
advisory command is reduced. As a result, the optimization
takes longer to reach the merging condition.

Fig. 3. Simulated optimization results for initial IHV acceleration 0m/s2

with λ = 0.0 (left column) with λ = 0.2 (right column).

In our previous work [10] we used a constant velocity
(CV) model for human action prediction in the sMPC
algorithm. To assess the performance of the HMM model
for human action prediction, we conduct Monte Carlo sim-
ulations of 20 random variations of human inputs. For the
same initial conditions, the performances of the optimization
with human input prediction using the compressed HMM
(cHMM) model and the CV model are presented in Table I.
The average time for merging is denoted by tavg.

TABLE I
MONTE CARLO SIMULATION RESULTS FOR CV AND CHMM MODELS.

Model λ pt pB
0 tavg

CV
0.0 0.99 [0,0.9,0.9,. . . ] 5.6

0.5 [0,0.6,0.6,. . . ] 5.558

0.7 0.99 [0,0.9,0.9,. . . ] 6.358
0.5 [0,0.6,0.6,. . . ] 7.073

cHMM
0.0 0.99 [0,0.9,0.9,. . . ] 5.432

0.5 [0,0.6,0.6,. . . ] 5.642

0.7 0.99 [0,0.9,0.9,. . . ] 6.189
0.5 [0,0.6,0.6,. . . ] 5.095

In Table I, for each model in the Monte-Carlo simulation,
λ is increased and pt and pB

0 are decreased to simulate
the effect of the human driver’s decreasing attention and
willingness to follow advisory commands. We observe that,
with λ = 0.0, the average time to merge for the CV model
and the cHMM model does not differ much. However, with
λ = 0.7 and reduced pt and pB

0 , the average merging time
increases for the CV model while the average merging
time for the cHMM model decreases. This is because the
cHMM predicts human actions more accurately than the
CV model, which is then incorporated in the optimization
process. With a higher λ , the less attentive to the advisory
commands the human gets, the more effective the cHMM
model becomes at optimizing the merge compared to the
CV model. This indicates that the inclusion of human action



prediction using cHMM helps the optimization process to
minimize the merging time for human drivers who pay less
attention to advisory commands and have a lower willingness
to follow advisory commands.

B. Coordination of three vehicles

The sMPC method is also implemented to simulate the
three vehicles’ coordination in Figure 1 to demonstrate its
effectiveness. The probability of transitioning to advisory
action is pt = 0.99. The initial probability of human fol-
lowing the advisory with increasing time steps is PB

0 =
[0.0,0.9,0.9, . . . ]. The λ is set as 0.0 and the initial IHV
acceleration 0m/s2. For safe merging d f is 7m, and dr is
3m. The initial longitudinal distance between the IHV and
AV1 is di f1 and between the IHV and AV2 is di f2.

We illustrate two cases in Figure 4, where AV1 is merging.
In the left figure, the distance between the IHV and AV1 is
−4m, and the distance between the IHV and AV2 is −9m.
From the velocities of the vehicles, it is seen that the IHV
accelerates, the AV2 keeps a steady velocity and the AV1
slows down to merge from behind. In the right figure, the
distance between the IHV and AV1 is 0m and the distance
between the IHV and AV2 is −4m. Here we see that the
IHV and the AV2 both accelerate, and the AV1 decelerates
to merge from behind.

The advisory in the left scenario is not turned on. This is
because the distance between AV1 and the IHV is higher,
and the predicted action of the IHV is sufficient for the
optimal merging. Thus, there is no advisory given to the IHV.
However, in the right scenario, where the distance between
AV1 and the IHV is 0m, the IHV’s predicted action is not
sufficient. Therefore, in the initial steps, advisory inputs are
given to the IHV for faster acceleration.

Fig. 4. Simulated optimization results with di f1 =−4m and di f2 =−9m
(left column) with di f1 = 0m and di f2 =−4m (right column).

VII. CONCLUSIONS

We present an sMPC formulation for coordinating the mo-
tion of IHVs and AVs for optimal merging. The formulation
incorporates stochastic elements of a human driver, such as
uncertainty in human’s intent and stochastic human actions.
Additionally, it accounts for both system and human delays.

The solution to the sMPC provides optimal inputs for the
AVs and optimal advisory commands for the IHVs. Our
simulations demonstrate the effectiveness of the proposed
formulation and illustrate improved merging actions when
compared to a system without human input prediction. Future
work includes experimenting with more complex driving sce-
narios and improving the models of human driver behaviors.
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