Dynamic Tensor Product Regression

Aravind Reddy* Zhao Song' Lichen Zhang?

Abstract

In this work, we initiate the study of Dynamic Tensor Product Regression. One has
matrices A; € R™ >4 A, € R™*% and alabel vector b € R™1+"4, and the
goal is to solve the regression problem with the design matrix A being the tensor
product of the matrices Ay, Ay, ..., Agie. min cpa,..a [[(A1®... @A)z—b]2.
At each time step, one matrix A; receives a sparse change, and the goal is to
maintain a sketch of the tensor product A; ® ... ® A, so that the regression
solution can be updated quickly. Recomputing the solution from scratch for each
round is very slow and so it is important to develop algorithms which can quickly
update the solution with the new design matrix. Our main result is a dynamic
tree data structure where any update to a single matrix can be propagated quickly
throughout the tree. We show that our data structure can be used to solve dynamic
versions of not only Tensor Product Regression, but also Tensor Product Spline
regression (which is a generalization of ridge regression) and for maintaining Low
Rank Approximations for the tensor product.

1 Introduction

The task of fitting data points to a line is well-known as the least-squares regression problem [Sti81],
which has a wide range of applications in signal processing [RGIY78], convex optimization [Bub15],
network routing [Mad13, Mad16], and training neural networks [BPSW21, SZZ21]. In this work,
we study a generalized version of least-squares regression where the design matrix A is a tensor
product of ¢ smaller matrices A1 ® Ay ® ... ® A,.

Tensor products have been extensively studied in mathematics and the physical sciences since
their introduction more than a century ago by Whitehead and Russell in their Principia Mathe-
matica [WR12]. They have been shown to have a humongous number of applications in several
areas of mathematics like applied linear algebra and statistics [VLOO]. In particular, machine learn-
ing applications include image processing [NKO06], multivariate data fitting [GVL13], and natural
language processing [PSA21]. Furthermore, regression problems involving tensor products arise in
surface fitting and multidimensional density smoothing [EMO06], and structured blind deconvolution
problems [OY05], among several other applications, as discussed in [DSSW18, DJS*19].

Solving tensor product regression in £3 norm [DJST 19, FFG22] to a (1 =+ ¢) precision takes time
O(>°%_ nnz(A;) + poly(dg/(6¢))), where each matrix A; € R"*% and d = dyds...d,, and
nnz(A) denotes the number of nonzero entries of A. However, these algorithms are inherently
static, meaning that even if there is a sparse (or low-rank) update to a single design matrix A;, it
needs to completely recompute the new solution from scratch. In modern machine learning appli-
cations, such static algorithms are not practical due to the fact that data points are always evolving
and recomputing the solution from scratch every time is computationally too expensive. Hence, it
is important to develop efficient dynamic algorithms that can adaptively update the solution. For
example, graphs for real-world network data are modeled as the tensor product of a large number of

*aravind.reddy@cs.northwestern.edu. Northwestern University.
"zsong@adobe . com. Adobe Research.
#1ichenz@mit . edu. MIT. (Author names in alphabetical order, equal contribution)

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

smaller graphs [LCK™10]. Many important problems on these graphs can be solved by regression
of the adjacency and Laplacian matrices of these graphs [ST04]. Real-world network data is always
time-evolving and so it is crucial to develop dynamic algorithms for solving regression problems
where the design matrix is a tensor product of a large number of smaller matrices. Hence, we ask
the following question:

Can we design a dynamic data structure for tensor product regression that can handle updates to
the design matrix and quickly updates the solution?

We provide a positive answer to the above question.

At the heart of our data structure is a binary tree that can maintain a succinct sketch of 4; ® ... ®
A, and supports an update to one of the matrices quickly. Such tree structures have been useful
in designing efficient sketching algorithms for tensor products of vectors [AKK ™20, SWYZ21].
However, the goal of these works has been in reducing the sketching dimension from an exponential
dependence on g to a polynomial dependence on ¢g. Their results can be directly generalized to
solving tensor product regression statically but not dynamically. In this work, we build upon the
tree structure to solve the Dynamic Tensor Product Regression problem and other related dynamic
problems like Dynamic Tensor Spline Regression and Dynamic Tensor Low Rank Approximation.
Our key observation is that updating the entire tree is efficient when a single leaf of the tree gets an
update: specifically, we only need to update the nodes which fall on the path from the leaf to the
root.

Technical Contributions.

* We design a dynamic tree data structure DYNAMICTENSORTREE that maintains a succinct
representation of the tensor product A; ® ... ® A, and supports efficient updates to any of
the A;’s.

* Consequently, we develop a dynamic algorithm for solving Tensor Product Regression,
when one of the matrices A;’s is updated and we need to output an estimate of the new
solution to the regression problem quickly.

* We also show that we can use our DYNAMICTENSORTREE data-structure in a fast dynamic
algorithm to solve the Tensor Product Spline Regression problem, which is a generalization
of the classic Ridge Regression problem.

* We also initiate the study of Dynamic Tensor Low Rank Approximation, where the goal is to
maintain a low rank approximation (LRA) of the tensor product with dynamic updates, and
show how we can use our DYNAMICTENSORTREE data structure to solve this problem.

Roadmap. In section 2, we first discuss some related work. Then, we provide notation, some
background for our work, and the main problem formulation in section 3. In section 4, we provide
a technical overview of our paper. Following that, we provide our dynamic tree data structure in
section 5. We then show how it can be used for Dynamic Tensor Product Regression, Dynamic
Tensor Spline Regression, and Dynamic Tensor Low Rank Approximation in section 6. We end
with our conclusion and discuss some future directions in section 7.

2 Related Work

Sketching. Sketching techniques have many applications in numerical linear algebra, such as lin-
ear regression, low-rank approximation [CW 13, NN13, MM 13, BW14, RSW16, SWZ17, HLW17,
ALST18, BBB*19,IVWW19, SWZ19a, SWZ19b, MW21, WY22, CSTZ22], distributed problems
[WZ16, BWZ16], reinforcement learning [WZD"20, SSX21], projected gradient descent [XSS21],
training over-parameterized neural networks [SYZ21, SZZ21], tensor decomposition [SWZ19c],
clustering [EMZ21], cutting plane method [JLSW20], generative adversarial networks [XZZ18],
recommender systems [RRS™22], and linear programming [LSZ19, JSWZ21, SY21].

Dynamic Least-squares Regression. A dynamic version of the ordinary least-squares regression
problem (without a tensor product design matrix) was recently studied in [JPW22]. In their model,
at each iteration, a new row is prepended to the design matrix A and a new coordinate is prepended

to the vector b. To efficiently maintain the necessary parts of the design matrix and the solution, they
make use of a fast leverage score maintenance data structure by [CMP20] and achieve a running

time of O(nnz(A™)) + poly(d, =) where T is the number of time steps.

Tensor/Kronecker Product Problems. Many machine learning problems involve ten-
sor/Kronecker product computations such as, regression [HLW17, DSSW18, DJS*19], low-
rank approximation [SWZ19c], fast kernel computation [SWYZ21], semi-definite programming
[JKL 20, HIST21], and training over-parameterized neural networks [BPSW21, SZZ21]. Apart
from solving problems which directly involve tensor/Kronecker products, another line of research
focuses on constructing polynomial kernels efficiently so that the computation of various kernel
problems can be improved [AKK*20, SWYZ21].

3 Preliminaries

3.1 Notation

For any natural number n, we use [n] to denote the set {1,2,...,n}. We use E[] to denote expec-
tation of a random variable if it exists. We use 1[-] and Pr|[-] to denote the indicator function and
probability of an event respectively. For any natural numbers a, b, ¢, we use Tmat (@, b, ¢) to denote
the time it takes to multiply two matrices of sizes a x b and b x c. For a vector =, we use ||z||2
to denote its ¢5 norm. For a matrix A, we use ||A|| 7 to denote its Frobenius norm. For a matrix
A, we use AT to denote the transpose of A. Given two matrices A € R™M*d1 gnd B € R™2%dz,
we use A ® B to denote their tensor product (which is also referred to as Kronecker product), i.e.,
(A® B)iy+(is—1)m1 j1+(Ga—1)-dr = Aiy,j1 - Bi,,j, For example, for 2 x 2 matrices A and B,

a11biy aitbiz abir aizbia
{1111 a12:| {auB 61123] a11bar a11baz aizbar a12b22

a1 ag anB ax»nB az1b11 ag1bia agbin agbia
a21bar a21baz agabar a22b22

We use () to denote tensor product of more than two matrices, i.e., @7_, 4, = A1 ® A3 ®- - ® A,.
For non-negative real numbers a and b, we use a = (1 £ e)btodenote (1 —¢)-b<a < (1+¢)-b.
For a real matrix A, we use 0;(A) to denote its i-th largest singular value. For any function f, we

use O(f) to denote O(fpoly(log f)).

3.2 Problem Formulation

In this section, we define our task. We start with the static version of tensor product regression.

Definition 3.1 (Static version). In the /5 Tensor Product Regression problem, we are given matrices
Ay, Ay, ..., A, where A; € R™*di and b € R™™2-"a_ Let us define n = ning. ..ng and
d = dyds...d,. The goal is to output = € R? such that we minimize the objective:

[(A1 ® Ap @ -+ @ Ag)z — bl|2

Our dynamic version of {5 Tensor Product Regression involves updating one of the matrices A; with
an update matrix B. We formally define the problem as follows:

Definition 3.2 (Dynamic version). In the Dynamic ¢ Tensor Product Regression problem, we are
given matrices Ay, As, ..., A, where A; € R"*% a sequence {(i1, B1), (i2, B2), ..., (iT, Br)}
with i, € [q], B; € R™+*%: for all t € [T, and the goal is to design a data structure with the
following procedures:

* INITIALIZE: The data structure initializes A4, ..., A, and maintains an approximation to
q
ioq A
* UPDATE: At time step ¢, given an index i; and an update matrix B, the data-structure
needs to update A;, < A;, + By, and maintain an approximation to 4; ® ... ® (4;, +

B)®...® A,

* QUERY: The data structure outputs a vector 2 € R? such that
q q
1) A4z = bll2 = (12) min () Ai)a = bl
i=1 v i=1

Note that although we don’t discuss updates to the vector b in our model, they are easy to implement
in our data-structure. In addition to the standard regression problem, we also consider the spline
regression (which is a generalization of ridge regression) and low rank approximation problems. We
will provide the definitions for these problems in their respective sections.

4 Technical Overview

The two main design considerations for our data structure are as follows: 1). We want a data structure
that stores a skerch of the tensor product, this has the advantage of having a smaller storage space and
a faster time to form the tensor product. 2). The update time to one of the matrices A; should be fast,
ideally we want to remove the linear dependence on ¢q. With these two goals in mind, we introduce
a dynamic tree data structure that satisfies both of them simultaneously, building on the sketch of
[AKK™20]. Specifically, we use each leaf of the tree to represent S; A;, a sketch of the base matrix
that only has m rows instead of n rows, where m is proportional to the small dimension d. Each
internal node represents a sketch of the Tensor product of its two children. To speed up computation,
we adapt tensor-typed sketching matrices to avoid the need to explicitly form the Tensor product of
the two children. The root of the tree will store a sketch for the tensor product Q?_, A;.

We point out that in order for this tree to work, we need to apply an independent sketching matrix
to each tree node. Since there are 2¢ — 1 nodes in total, we will still have a dependence on g in
the initialization phase (which will be dominated by the d term). However, during the update phase,
our tree has a clear advantage: if one of the leaves has been updated, we only need to propagate the
change along the path to root. Since the height of the tree is at most O(log ¢), we remove the linear
dependence on ¢ in the update phase. This is the key insight for obtaining a faster update time using
our dynamic data structure. Moreover, the correctness follows naturally from the guarantee of the
tree: as shown in [AKK™20], the tree itself is an Oblivious Subspace Embedding (OSE) for matrices
of proper size, hence, it also preserves the subspace after updating one of the leaves. Figure 1 is an
example tree for tensor product of 4 matrices.

Figure 1: A tree for sketching the tensor product of 4 matrices Ay, Ao, A3 and A4. The leaves use
sketches of type Thase and internal nodes use sketches of type Spase- The algorithm starts to apply
T; to each matrix A;, and then propagates them up the tree.

With this data structure, we provide efficient algorithms for dynamic Tensor product regression,
dynamic Tensor Spline regression, and dynamic Tensor low rank approximation. For all these prob-
lems, we do not explicitly maintain the solutions, rather, we use our tree to quickly update a sketch
of the design matrix. In the query phase (when we need to actually solve the regression problems),
we use this sketch of updated design matrix to quickly compute the solution.

S Dynamic Tree Data Structure

In this section, we introduce our data structure, which contains INITTIALIZE and UPDATE procedures.
We’ll define task-specific QUERY procedures later. We defer proofs in this section to Appendix B.
We start with an outline of Algorithm 1.

Algorithm 1 Our dynamic tree data structure

data structure DYNAMICTENSORTREE > Theorem 5.1

members

¥
Jio € R™*4* for (0 < ¢ <loggand 0 < k < q/2¢ -1 > ¢ is the level of the tree.
end members

procedure INITIALIZE(A; € R >4 A, € R"¥d m € N, Chase, Thase)
for / =0 — logg do
for k =0 — ¢/2° — 1do
if £ = 0 then
Choose a C), € R™*"™ from Chase. > Chase can be COUNTSKETCH, SRHT or

TeYReRNans e

—_—

OSNAP.

Jie < CrAyp

else)

Choose a Ty, ¢ € R™*™ from Thase- > Thase can be TENSORSKETCH or
TENSORSRHT.
15: Jo ¢ Thoo(Jor -1 @ Jok+1,0-1) > Sketch of tensor product of its children
16: end if
17: end for
18: end for
19: end procedure
20:
21: procedure UPDATE(i € [q], B € R"i*di)
22: for { = 0 — log(q) do

— = =
Eri

23: if / = 0 then

24: JoY + CiB

25: Jio < Jio+ irjgw

26: else

27: Ff/‘glu — Tk,g(Jf‘f/z,z,q 1 ® Jl’i/zl—l“+17g_1) > Sibling is to the left also
sometimes

28: Jrijeere < Jrijeee + Jf‘ie/‘g” y > Sketch of tensor product of its children

29: end if

30: end for

31: end procedure

Outline of Tree: For simplicity, let us assume that the number of matrices ¢ is a power of 2. Also,
let us assume that all the matrices are of the same dimension n; X dy. The output is a matrix of
dimension m x d where m = poly(q, d,s~2). First, we apply ¢ independent base sketch matrices
(such as COUNTSKETCH (Def. A.6), SRHT (Def. A.8)) {I; € R™*™ i € [q]} to each of the
matrices A, Ag, ..., A,. After this step, all the leaf nodes are of size m x d;. Then, we have
a tree of height logq. Let us use £ = 0 — logq to represent the level of the tree nodes where

¥4
¢ = 0 represents the leaves and ¢ = log ¢ represents the root node. Let us use Ji , € R4 o
denote the matrix stored at the node &, ¢. For leaf nodes, we choose base sketches T, € R™*"t
and compute Jj, o = T, Ai. At each internal node, we use a sketch for tensor-typed inputs (such
as TENSORSKETCH (Def. A.7) or TENSORSRHT (Def. A.5)), apply it to its two children. The
sketching matrix S; € Rmxmz, and it can be applied to its two inputs fast, obtaining a running

time of O(m) instead of O(m?2). We inductively compute the tree all the way up to the root for
initialization. Note that at the root, we end up with a matrix of size m x d, which is significantly
smaller than the tensor product n x d.

The running time guarantees of Algorithm 1, which we will prove in Appendix B, are as follows:

Theorem 5.1 (Running time of our main result. Informal version of Theorem B.1). There is an
algorithm (Algorithm 1) that has the following procedures:

o INITIALIZE(A; € R™>*d Ay € R2xdz A, € R™*% m € Ny, Chase, Thase):
Given matrices Ay € RM*4 Ay € Rm2xd2 A € R"*da q sketching dimen-
sion m, families of base sketches Ch,ase and Thse, the data-structure pre-processes in time
O(XL, nnz(4;) + gmd).

 UPDATE(i € [q], B € R™*%): Given a matrix B and an index i € |q|, the data structure
updates the approximationto A1 @ ... Q (A; + B) ® ... ® A, in time O(nnz(B) + md).
Remark 5.2. In our data structure, we only pay the linear ¢ term in INITIALIZATION (which will be
dominated by the term d), since we are maintaining a tree with 2¢ — 1 nodes, each node corresponds
to a matrix of m rows. In the UPDATE phase, we shave off the linear dependence on q. We also want
to point out that the sketching dimension m is typically at least linear on ¢, however, it only depends
on ¢, the small dimension d and the precision parameter ¢, hence it is far more efficient to use this
sketch representation compared to the original tensor product. Also, note that though we only design
a data structure for ¢ being a power of 2, it is not hard to generalize to ¢ being an arbitrary positive
integer via the technique introduced in [SWYZ21]. We only incur a log g factor by doing so.

The approximation guarantee for our dynamic tree, which follows from [AKK"20] and for which
we provide a brief sketch in Appendix B are as follows:

Theorem 5.3 (Approximation guarantee of our dynamic tree. Informal version of Theorem B.1).
Let 117 denote the sketching matrix generated by the dynamic tree, we then have that:

Hﬂq(® Azl =(1+ €)||(® Ai)zl|2.

Choices of parameter m: An important parameter to be chosen is the sketching dimension m.
Intuitively, it should depend polynomially on e =1, d, g. We list them in the following table.

Chase Thase m(dim) Init time

COUNTSKETCH | TENSORSKETCH | ¢ 2¢ - dim?® - (1/0) ¢, nnz(4;)
OSNAP TENSORSRHT | e ?¢? - dim - log(1/9) Zq ,nnz(A;)
OSNAP TENSORSRHT | £ 2¢ - dim? - log(1/9) nnz(A;)

Table 1: How different choices of Chase and Thase affect the sketching dimension m(dim) and
initialization time that depends on the choice of sketch. We note that the sketching dimension
m is a function of dim, the fundamental dimension of the problem. For example, dim = d for
tensor product regression and dim = k for k-low rank approximation. The sketching dimension
corresponds to the problem of computing an (g, 0, dim, d, n)-OSE.

Robustness against an Adaptive Adversary: An often encountered issue in dynamic algo-
rithms is the presence of an adaptive adversary [BKM*22]. Consider a sequence of update pairs
{(i, B;)}L_, in which the adversary can choose the pair (i, B;) based on the output of our data
structure on (¢ — 1, B;_1). Such an adversary model naturally captures many applications, in which
the data structure is used in an iterative process, and the input to the data structure depends on the
output from last iteration.

We will now describe how our data structure can be extended to handle an adaptive adversary. We
store all initial factor matrices Ay, ..., A,;. During an update, suppose we are given a pair (4, B;).
Instead of using the sketching matrices correspond to the i-th leaf during initialization, we instead
choose fresh sketching matrices along the path from the leaf to the root. Since the only randomness
being used is the sketching matrices along the path, by using fresh randomness, our data structure
works against adaptive adversary.

Such modification does not affect the update time too much: during each update, we need to apply
the newly-generated base sketch C}**" to both A; and B, incurring a time of O(nnz(A;) +nnz(B)).

Along the path, the data structure repeatedly apply 739" to its two children, which takes O(md)
time. The overall time is thus

O(nnz(A;) + nnz(B) + md).

Thus, in later applications of our data structure, we present the runtime without this modification.

6 Faster Dynamic Tensor Product Algorithms with Dynamic Tree

In this section, we instantiate the dynamic tree data structure introduced in section 5 for three appli-
cations: dynamic tensor product regression, dynamic tensor spline regression, and dynamic tensor
low rank approximation.

6.1 Dynamic Tensor Product Regression

We present an algorithm (Algorithm. 2) for solving the dynamic Tensor product regression problem.
Our algorithm uses the dynamic tree data structure to maintain a sketch of the design matrix and
updates it efficiently. Additionally, we maintain a sketch of the label vector b via I190. During
the query phase, we output the solution using the sketch of the tensor product design matrix and
the sketch of the label vector. We have the following guarantees, the proof of which we defer to
Appendix C:

Theorem 6.1 (Informal version of Theorem C.1). There is an algorithm (Algorithm 2) for dynamic
Tensor product regression problem with the following procedures:

o INITIALIZE(A; € R X4 Ay € R™2*d2 A, € R"*% m € Ny, Chase, Thase, b €
R™"4): Given matrices Ay € RM>*41 Ay € R2¥d2 A € R"*da g sketching
dimension m, families of base sketches Cpase, Thase and a label vector b € R™ "4, the
data-structure pre-processes in time O(>_7_, nnz(A;) + gmd + m - nnz(b)).

 UPDATE(i € [q], B € R"*%): Given a matrix B and an index i € [q|, the data structure
updates the approximationto A1 ® ... Q (A; + B) ® ... ® Ay in time O(nnz(B) + md).

* QUERY: Query outputs an approximate solution T to the Tensor product regression prob-
lem where | Q7_, AiZ — b2 = (1 £¢)|| @I, Aix* — b||> with probability at least 1 — §
in time O(md“~! + d*) where x* is an optimal solution to the Tensor product regression
problem i.e. v* = argmin,cga || QF_; Aix — b2

To realize the input sparsity time initialize and update time, we can use the combination of OSNAP
and TENSORSRHT, which gives a sketching dimension

m = e 2qd*log(1/5).

Hence, the update time is O(nnz(B) + ¢ 2gd3log(1/6)). Compared to the static algo-
rithm [DJST19], we note that their algorithm is suitable to be modified into dynamic setting, with
a running time of O(nnz(A4;) + nnz(B) + e~ 2(q + d)d/§)), their algorithm cannot accommodate
general dynamic setting due to the 1/4 dependence in running time. Suppose the length dynamic
sequence is at least d, then one requires the failure probability to be at most é for union bound.
In such scenario, the algorithm of [DJST19] is strictly worse. [FFG22] improves the dependence
on d, yielding a subquadratic update time in the form of O((nnz(A4;) + nnz(B) + e 2¢*d¥ +
e71d?=%)1og(1/6)). While their algorithm is more efficient in solving the regression problem, their
approach does not scale with the statistical dimension of the problem, and is geared only towards
regression, whereas our data structure also handles low rank approximation.

6.2 Dynamic Tensor Spline Regression

Spline regression models are a well studied class of regression models [MCO1]. In particular,
Spline regression problems involving tensor products arise in the context of B-Splines and P-
Splines [EM96]. For a very brief but relevant introduction to Spline regression, we refer the reader
to [DSSW18]. In this section, we first define the Spline regression problem as it pertains to our
sketching application. Algorithm 3, which shows how we can use our DYNAMICTENSORTREE data
structure to solve a dynamic version of the Spline regression problem is provided in Appendix D.

Definition 6.2 (Spline Regression). In the Spline regression problem, given a design matrix A €
R™*" 4 target vector x € R™, a regularization matrix I € RP*?, and a non-negative penalty
coefficient A € R, the goal is to optimize

min [|Az —b[5 + A -[|L]3 (1)

Notice that the classic ridge regression problem is a special case of spline regression (when L = I).
In the TENSOR SPLINE REGRESSION problem, we want to solve the Spline regression problem
where the design matrix A can be decomposed as the tensor product of multiple smaller matrices
ie. A=A® - -®A, Our DYNAMICTENSORTREE data structure can be used to solve a dynamic
version of TENSOR SPLINE REGRESSION. In our dynamic model, at each time step, the update is
of the form i € [g], B € R™*4i and the data structure has to update A; < A; + B.

Before introducing our main result, we define an important metric to measure the rank of a Spline
regression:
Definition 6.3 (Statistical dimension of Splines). For matrix A € R™*? and L € RP*? with

rank(L) = p and rank < [jﬂ) = d. Given the generalized singular value decomposition [GVL13]

of (A, L) such that A = U {0 > Op}(("—p) RQT,L = V[Q Opx(nyp)| RQT, where
(n—p)xp d—p

Y = diag(o1,...,0,),Q = diag(p1,...,H4p) € RPXP are diagonal matrices. Finally, let
Yi = 0'7/[14 for ¢ S [p]
The statistical dimension of the Spline is defined as sd (A, L) = Y>7_ 1/(1 + X\/72) +d — p.

The statistical dimension of the Spline can be much smaller than d, and we will show that the
sketching dimension depends on the statistical dimension instead of d.
Let z* denote an optimal solution of the Spline regression problem, i.e.

z* = argmin||Az — b||2 4+ X - || Lz||?
zeR™

and let OPT := ||Ax* — b||2 + X - ||Lx*||3. We can compute z* given A,b, L, A by z* = (AT A +
ALTL)"1ATb.

Theorem 6.4 (Guarantees for DTSREGRESSION. Informal version of Theorem D.5). There exists
an algorithm (Algorithm 3) with the following procedures:

o INITIALIZE(A; € Rm*d A, € R"*da): Given matrices Ay € R >4 . A, €
R"a*4a, the data structure pre-processes in time

5(2 nnz(A;) + gmd + m - nnz(b)).
i=1

 UPDATE(i € [q], B € R"*%): Given an index i € |q] and an update matrix B € R"*¢,
the data structure updates in time O(nnz(B) + md).

* QUERY: Let A denote the tensor product Q?_, A;. Query outputs a solution ¥ € R"
with constant probability such the T is an € approximate to the Tensor Spline Regression
problem i.e.

|AZ = b||3 + A+ ||L3]]3 < (1 +¢) - OPT
where OPT = mingcgn || Az —b||2+\-||Lz||3. Query takes time md“~1) +pd“~1) 4-d«,
We defer the proof of the above theorem to Appendix D.
The sketching dimension m here depends on the statistical dimension of the Spline, which is at
most d. To realize the above runtime, one can picNk OSNAP and TENSORSHRT, which gives
m = e 'gsd} (A, L)log(1/§) and an update time O(nnz(B) + e 'gsd3 (A, L)dlog(1/d)). The

improved dependence on £~! comes from using approximate matrix product directly, instead of
OSE.

6.3 Dynamic Tensor Low Rank Approximation

In this section, we consider a problem studied in [DJIST19]: given matrices Ay, ..., A,, the goal
is to compute a low rank approximation for the tensor product matrix 4; ® ... ® A, € R"X4,
specifically, a rank-k approximation B € R™*¢ such that

|B = Allr < (14¢)OPTy,

where OPT;, = minyankr 4 [|[A” — Allr and A = @J_, A;. The [DIST19] algorithm works
as follows: they pick ¢ independent COUNTSKETCH matrices [CCFC02] with O(s~2qk?) rows,
then apply each sketch matrix S; to A;. After that, they form the tensor product M = @7, S;4;
and run SVDon M = UXV T, Finally, they output B = AU, kT U, in factored form (as matrices
Ai, ..., Ay, Ur), where Uy, € RE*4 denotes the top k right singular vectors. By doing so, they
achieve an overall running time of

q
O(Z nnz(A4;) + e 2q1k*d* 1)
i=1

Two central issues around their algorithm are 1). exponential dependence on parameters 1, ¢, k
and 2). the algorithm is inherently static, so a natural way to make it dynamic is to apply S; to the
update B, reforming the tensor product of sketches and compute the SVD.

We address these two issues simultaneously by using our tree data structure. For the sketching
dimension, we observe it is enough to design a sketch that is (e, d, k,d,n)-OSE and (g/k, ¢)-
approximate matrix product, therefore, we can set sketching dimension m = e~ 2gk?log(1/9).
As we will show later, this gives a much improved running time. By using the dynamic tree, we also
provide a dynamic algorithm.

Theorem 6.5 (Guarantees for LOWRANKMAINTENANCE. Informal version of Theorem E.3).
There exists an algorithm (Algorithm 4) that has the following procedures

e INITIALIZE(A; € R >4 (A, € R"*da): Given matrices A1 € R™*4, ... A, €
R™ % the data structure processes in time

5(2 nnz(A4;) + gmd).

 UPDATE(i € [q], B € R"*%): Given an index i € |q) and an update matrix B € R™*%,
the data structure updates the approximation for A1 ® ... ® (4; + B) ® ... ® Aq in time

O(nnz(B) + md).

* QUERY: Let A denote the tensor product Q}_, A;. The data structure outputs a rank-k
approximation C' such that

— < i f— .
|C—Allr < (142) min A=Al

The time to output C' is O(md*“~1).

By choosing m = e~2¢k?log(1/§), we can provide good guarantees for low rank approximation.
This gives

* Initialization time in 5(2;?:1 nnz(A;) + e 2qdk?log(1/6));
« Update time in O(nnz(B) + £~ 2qdk? log(1/6));
* Query time in O (e~ 2¢d“ k> log(1/9)).

Without using fast matrix multiplication, our algorithm improves upon the prior state-of-the-
art [DJST19] on all parameters even in the static setting.

7 Conclusion & Future Directions

In this work, we initiate the study of the Dynamic Tensor Regression, Dynamic Tensor Spline Re-
gression, and Dynamic Tensor Low-Rank Approximation problems, and design a tree data structure
DYNAMICTENSORTREE which can be used to provide fast dynamic algorithms for these problems.
The problems we study are very interesting and there are a lot of exciting future directions, some of
which we discuss below. First, it is unclear whether the algorithms we proposed are optimal and so
having lower bounds for the update times would be an important direction. Second, we have focused
exclusively on regression problems with the £2 norm whereas solving Dynamic Tensor Regression
and Dynamic Tensor Spline Regression with respect to the more robust ¢;-norm as well as for more
general p-norms are also very appealing.

Acknowledgments

We would like to thank all the NeurIPS 2022 reviewers of our paper and also the ICML 2022
reviewers who reviewed an earlier version of this work. Most of this work was done while LZ was
at CMU. AR was supported in-part by NSF grants CCF-1652491, CCF-1934931, and CCF-1955351
during the preparation of this manuscript.

References

[ACW1T7]

[AKK*+20]

[ALST18]

[BBB+19]

[BKM*22]

[BPSW21]

[Bubl15]

[BW14]

[BWZ16]

[CCFCO02]

[CEMT15]

[CMP20]

[CSTZ22]

Haim Avron, Kenneth L. Clarkson, and David P. Woodruff. Sharper bounds for regular-
ized data fitting. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques - 20th International Workshop, APPROX 2017 and 21st
International Workshop, RANDOM 2017, August 2017.

Thomas D Ahle, Michael Kapralov, Jakob BT Knudsen, Rasmus Pagh, Ameya Vel-
ingker, David P Woodruff, and Amir Zandieh. Oblivious sketching of high-degree
polynomial kernels. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 141-160, 2020.

Alexandr Andoni, Chengyu Lin, Ying Sheng, Peilin Zhong, and Ruiqi Zhong. Subspace
embedding and linear regression with orlicz norm. In International Conference on
Machine Learning (ICML), pages 224-233. PMLR, 2018.

Frank Ban, Vijay Bhattiprolu, Karl Bringmann, Pavel Kolev, Euiwoong Lee, and
David P. Woodruff. A ptas for £,-low rank approximation. In Proceedings of the Thirti-
eth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’19, page 747-766,
2019.

Amos Beimel, Haim Kaplan, Yishay Mansour, Kobbi Nissim, Thatchaphol Saranu-
rak, and Uri Stemmer. Dynamic algorithms against an adaptive adversary: Generic
constructions and lower bounds. In Proceedings of the 54th Annual ACM SIGACT
Symposium on Theory of Computing, pages 1671-1684, 2022.

Jan van den Brand, Binghui Peng, Zhao Song, and Omri Weinstein. Training (over-
parametrized) neural networks in near-linear time. In ITCS, 2021.

Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations and
Trends® in Machine Learning, 8(3-4):231-357, 2015.

Christos Boutsidis and David P Woodruff. Optimal cur matrix decompositions. In
Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC),
2014.

Christos Boutsidis, David P Woodruff, and Peilin Zhong. Optimal principal component
analysis in distributed and streaming models. In Proceedings of the forty-eighth annual
ACM symposium on Theory of Computing (STOC), pages 236-249, 2016.

Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data
streams. In International Colloquium on Automata, Languages, and Programming,
pages 693-703. Springer, 2002.

Michael B Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina
Persu. Dimensionality reduction for k-means clustering and low rank approximation.
In Proceedings of the forty-seventh annual ACM symposium on Theory of computing,
pages 163-172, 2015.

Michael B. Cohen, Cameron Musco, and Jakub Pachocki. Online row sampling. Theory
Comput., 16:Paper No. 15, 25, 2020.

Sitan Chen, Zhao Song, Runzhou Tao, and Ruizhe Zhang. Symmetric sparse boolean
matrix factorization and applications. In 13th Innovations in Theoretical Computer
Science Conference (ITCS 2022). Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik,
2022.

10

[CW13] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression
in input sparsity time. In Proceedings of the 45th Annual ACM Symposium on Theory
of Computing (STOC), 2013.

[DJST19] Huaian Diao, Rajesh Jayaram, Zhao Song, Wen Sun, and David Woodruff. Optimal
sketching for kronecker product regression and low rank approximation. Advances in
neural information processing systems, 32:4737-4748, 2019.

[DSSW18] Huaian Diao, Zhao Song, Wen Sun, and David Woodruff. Sketching for kronecker
product regression and p-splines. In International Conference on Artificial Intelligence
and Statistics, pages 1299—1308. PMLR, 2018.

[EM96] Paul HC Eilers and Brian D Marx. Flexible smoothing with b-splines and penalties.
Statistical science, 11(2):89-121, 1996.

[EMO06] Paul HC Eilers and Brian D Marx. Multidimensional density smoothing with p-splines.
In Proceedings of the 21st international workshop on statistical modelling, 2006.

[EMZ21] Hossein Esfandiari, Vahab Mirrokni, and Peilin Zhong. Almost linear time density level
set estimation via dbscan. In AAAI 2021.

[FFG22] Matthew Fahrbach, Thomas Fu, and Mehrdad Ghadiri. Subquadratic kronecker re-
gression with applications to tensor decomposition. arXiv preprint arXiv:2209.04876,
2022.

[GVL13] Gene H. Golub and Charles F. Van Loan. Matrix computations. Johns Hopkins Studies
in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, 2013.

[HIST21] Baihe Huang, Shunhua Jiang, Zhao Song, Runzhou Tao, and Ruizhe Zhang. Solving
sdp faster: A robust ipm framework and efficient implementation, 2021.

[HLW17] Jarvis Haupt, Xingguo Li, and David P Woodruff. Near optimal sketching of low-rank
tensor regression. In ICML, 2017.

[IVWWI19] Pitor Indyk, Ali Vakilian, Tal Wagner, and David P Woodruff. Sample-optimal low-
rank approximation of distance matrices. In Conference on Learning Theory, pages
1723-1751. PMLR, 2019.

[JKL*20] Haotian Jiang, Tarun Kathuria, Yin Tat Lee, Swati Padmanabhan, and Zhao Song. A
faster interior point method for semidefinite programming. In FOCS, 2020.

[JLSW20] Haotian Jiang, Yin Tat Lee, Zhao Song, and Sam Chiu-wai Wong. An improved cutting
plane method for convex optimization, convex-concave games and its applications. In
STOC, 2020.

[JPW22] Shunhua Jiang, Binghui Peng, and Omri Weinstein. Dynamic least-squares regression.
arXiv preprint arXiv:2201.00228, 2022.

[JSWZ21] Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. Faster dynamic matrix
inverse for faster Ips. In STOC. arXiv preprint arXiv:2004.07470, 2021.

[LCK*10] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and Zoubin
Ghahramani. Kronecker graphs: an approach to modeling networks. Journal of Ma-
chine Learning Research, 11(2), 2010.

[LDFU13] Yichao Lu, Paramveer Dhillon, Dean P Foster, and Lyle Ungar. Faster ridge regression
via the subsampled randomized hadamard transform. In Advances in neural informa-
tion processing systems, pages 369-377, 2013.

[LSZ19] Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization in the
current matrix multiplication time. In COLT, 2019.

[Mad13] Aleksander Madry. Navigating central path with electrical flows: From flows to match-
ings, and back. In 2013 IEEE 54th Annual Symposium on Foundations of Computer
Science (FOCS), pages 253-262. IEEE, 2013.

11

[Mad16] Aleksander Madry. Computing maximum flow with augmenting electrical flows. In
2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS),
pages 593-602. IEEE, 2016.

[MCO1] L.C. Marsh and D.R. Cormier. Spline Regression Models. Number 137 in Quantitative
Applications in the Social Sciences. SAGE Publications, 2001.

[MM13] Xiangrui Meng and Michael W Mahoney. Low-distortion subspace embeddings in
input-sparsity time and applications to robust linear regression. In Proceedings of the
Sforty-fifth annual ACM symposium on Theory of computing (STOC), pages 91-100,
2013.

[MW21] Arvind V. Mahankali and David P. Woodruff. Optimal ¢; column subset selection and
a fast ptas for low rank approximation. In Proceedings of the Thirty-Second Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA °21, page 560-578, 2021.

[NKO6] James G Nagy and Misha Elena Kilmer. Kronecker product approximation for pre-
conditioning in three-dimensional imaging applications. IEEE Transactions on Image
Processing, 15(3):604-613, 2006.

[NN13] Jelani Nelson and Huy L Nguyén. Osnap: Faster numerical linear algebra algorithms
via sparser subspace embeddings. In Proceedings of the 54th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), 2013.

[OYO0S5] S. Oh, S. Kwon and J. Yun. A method for structured linear total least norm on blind
deconvolution problem. Applied Mathematics and Computing, 19:151-164, 2005.

[Pagl3] Rasmus Pagh. Compressed matrix multiplication. ACM Trans. Comput. Theory, 5(3),
aug 2013.

[PP13] Ninh Pham and Rasmus Pagh. Fast and scalable polynomial kernels via explicit feature
maps. In Proceedings of the 19th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 239-247, 2013.

[PSA21] Aliakbar Panahi, Seyran Saeedi, and Tom Arodz. Shapeshifter: a parameter-efficient
transformer using factorized reshaped matrices. Advances in Neural Information Pro-
cessing Systems, 34, 2021.

[RG1Y78] L. R. Rabiner, B. Go 1d, and C. K. Yuen. Theory and application of digital signal
processing. IEEE Transactions on Systems, Man, and Cybernetics, 8(2):146—146, 1978.

[RRST22] Aravind Reddy, Ryan A Rossi, Zhao Song, Anup Rao, Tung Mai, Nedim Lipka, Gang
Wu, Eunyee Koh, and Nesreen Ahmed. One-pass algorithms for map inference of
nonsymmetric determinantal point processes. In International Conference on Machine
Learning, pages 18463—-18482. PMLR, 2022.

[RSW16] Ilya Razenshteyn, Zhao Song, and David P. Woodruff. Weighted low rank approxi-
mations with provable guarantees. In Proceedings of the Forty-Eighth Annual ACM
Symposium on Theory of Computing, STOC *16, page 250-263, 2016.

[Sar06] Tamds Sarlés. Improved approximation algorithms for large matrices via random pro-
jections. In Proceedings of 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 2006.

[SSX21] Anshumali Shrivastava, Zhao Song, and Zhaozhuo Xu. Sublinear least-squares value
iteration via locality sensitive hashing. arXiv preprint arXiv:2105.08285, 2021.

[ST04] Daniel A Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph par-
titioning, graph sparsification, and solving linear systems. In Proceedings of the thirty-
sixth annual ACM symposium on Theory of computing, pages 81-90, 2004.

[Sti81] Stephen M. Stigler. Gauss and the Invention of Least Squares. The Annals of Statistics,
9(3):465 — 474, 1981.

12

[SWYZ21] Zhao Song, David P. Woodruff, Zheng Yu, and Lichen Zhang. Fast sketching of poly-
nomial kernels of polynomial degree. In ICML, 2021.

[SWZ17] Zhao Song, David P Woodruff, and Peilin Zhong. Low rank approximation with en-

trywise ¢1-norm error. In Proceedings of the 49th Annual Symposium on the Theory of
Computing (STOC), 2017.

[SWZ19a] Zhao Song, David Woodruff, and Peilin Zhong. Average case column subset selec-
tion for entrywise £1-norm loss. Advances in Neural Information Processing Systems
(NeurIPS), 32:10111-10121, 2019.

[SWZ19b] Zhao Song, David Woodruff, and Peilin Zhong. Towards a zero-one law for column
subset selection. Advances in Neural Information Processing Systems, 32:6123—-6134,
2019.

[SWZ19c] Zhao Song, David P Woodruff, and Peilin Zhong. Relative error tensor low rank ap-
proximation. In SODA. arXiv preprint arXiv:1704.08246, 2019.

[SY21] Zhao Song and Zheng Yu. Oblivious sketching-based central path method for solving
linear programming problems. In 38th International Conference on Machine Learning
(ICML), 2021.

[SYZ21] Zhao Song, Shuo Yang, and Ruizhe Zhang. Does preprocessing help training over-
parameterized neural networks? Advances in Neural Information Processing Systems
(NeurlIPS), 34, 2021.

[SZZ21] Zhao Song, Lichen Zhang, and Ruizhe Zhang. Training multi-layer over-parametrized
neural network in subquadratic time. arXiv preprint arXiv:2112.07628, 2021.

[VLOO] Charles F Van Loan. The ubiquitous kronecker product. Journal of computational and
applied mathematics, 123(1-2):85-100, 2000.

[WRI12] Alfred North Whitehead and Bertrand Russell. Principia mathematica, volume 2. Cam-
bridge University Press, 1912.

[WY22] David P Woodruff and Taisuke Yasuda. Improved algorithms for low rank approxi-
mation from sparsity. In Proceedings of the 2022 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 2358-2403. SIAM, 2022.

[WZ16] David P Woodruff and Peilin Zhong. Distributed low rank approximation of implicit
functions of a matrix. In 2016 IEEE 32nd International Conference on Data Engineer-
ing (ICDE), pages 847-858. IEEE, 2016.

[WZD*20] Ruosong Wang, Peilin Zhong, Simon S Du, Russ R Salakhutdinov, and Lin F Yang.
Planning with general objective functions: Going beyond total rewards. In Annual
Conference on Neural Information Processing Systems (NeurIPS), 2020.

[XSS21] Zhaozhuo Xu, Zhao Song, and Anshumali Shrivastava. Breaking the linear itera-
tion cost barrier for some well-known conditional gradient methods using maxip data-
structures. Advances in Neural Information Processing Systems (NeurIPS), 34, 2021.

[XZZ18] Chang Xiao, Peilin Zhong, and Changxi Zheng. Bourgan: generative networks with
metric embeddings. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems (NeurlPS), pages 2275-2286, 2018.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] Please refer to Section 7.

13

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Our work
is theoretical and it provides a dynamic algorithm for tensor product-typed problems.
We analyze the runtime complexity of our algorithm, which relates to energy con-
sumption in practice. We do not foresee potential negative societal impact of our
work.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] Please refer
to Section 3.2.
(b) Did you include complete proofs of all theoretical results? [Yes] Please refer to
Section B, C, D, and E in the supplementary materials.
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [N/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A|

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [IN/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUgs, internal cluster, or cloud provider)? [N/A]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [IN/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [IN/A]

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [N/A |

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

	Introduction
	Related Work
	Preliminaries
	Notation
	Problem Formulation

	Technical Overview
	Dynamic Tree Data Structure
	Faster Dynamic Tensor Product Algorithms with Dynamic Tree
	Dynamic Tensor Product Regression
	Dynamic Tensor Spline Regression
	Dynamic Tensor Low Rank Approximation

	Conclusion & Future Directions
	Background
	Proofs for Dynamic Tree Data Structure (section 5)
	Running Time of Algorithm 1
	Approximation Guarantee of Algorithm 1

	Proofs for Dynamic Tensor Product Regression (section 6.1)
	Omitted details and proofs for Dynamic Tensor Spline Regression (section 6.2)
	Omitted details and proofs for Dynamic Tensor Low Rank Approximation (section 6.3)

