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Abstract Seismic studies have found seismic scatterers with —2 to —12% shear velocity anomalies

along some subducting slabs at 700-1900 km depth. The ferroelastic post-stishovite transition in subducted
mid-ocean ridge basalt (MORB) has been linked to these seismic features, but compressional and shear wave
velocities (V) and V) and full elastic moduli (C;j) of AlH-bearing stishovite and post-stishovite at high pressure
remain uncertain. Here we have determined Raman shifts of optic modes and equation of state parameters

of two hydrated Al-bearing stishovite crystals, Al1.3-SiO, (1.34 mol% Al and 0.55 mol% H) and Al2.1-SiO,
(2.10 mol% Al and 0.59 mol% H), up to ~70 GPa in diamond anvil cells coupled with Raman spectroscopy and
X-ray diffraction. The experimental data are modeled using a pseudoproper Landau theory to derive full C; and
sound velocities across the post-stishovite transition at high pressure. The Al and H dissolution in stishovite
significantly reduces the transition pressure to 21.1 GPa in Al1.3-SiO, and to 16.1 GPa in Al2.1-SiO,, where
the transition is manifested by approximately 29% V reduction. Considering that stishovite with approximately
1.3 mol% Al and 0.6 mol% H could account for 20 vol% in subducted MORB at the top-lower mantle, the Al,H-
bearing post-stishovite transition with a Clapeyron slope of 65 K/GPa would occur at about 1060 km depth
with —=7(4)% V anomaly. The V, anomalies across the Al,H-bearing post-stishovite transition can help explain
the seismically-observed depth-dependent Vi anomalies along some subducting slabs in the top- to mid-lower-
mantle depths including the Tonga subducting slab.

Plain Language Summary Seismologists have found that shear wave travels 2%—12% slower along
some regions of subducting slabs at 700-1,900 km depths than the surrounding lower mantle. This observation
cannot be explained by the presence of cold subducting oceanic crusts alone, but the transition from stishovite
to post-stishovite could be a possible cause. Stishovite is a high-pressure dense silica polymorph that makes up
about one fifth volume of subducting mid-ocean ridge basalt in the lower mantle. We designed high-pressure
Raman spectroscopy and X-ray diffraction experiments to probe lattice vibration modes and lattice parameters,
respectively, of Al,H-bearing stishovite and post-stishovite. These results are used to evaluate the speed of
sound across the post-stishovite transition. Our study shows that the shear wave velocity of stishovite with
1.3-2.1 mol% Al and 0.5-0.6 mol% H significantly slows down by —29% at 16-21 GPa. If one fifth volume
of the subducting oceanic crust is made of stishovite with 1.3 mol% Al and 0.6 mol% H, the velocity reduction
across the transition could be ~7% at ~1,060 km depth. Regional seismic observations of Vg anomalies along
some subducting slabs in the top- to mid-lower mantle can be explained by the presence of the AlLH-bearing
post-stishovite transition.

1. Introduction

Seismic tomographic studies have revealed wide-spread stagnant slabs in the mantle beneath subduction zones
(Fukao & Obayashi, 2013). The subducting slabs contain Mid-Ocean Ridge Basalt (MORB) and other crus-
tal and sedimentary materials that are chemically and physically distinct from the lithospheric mantle (Ring-
wood, 1975). As slab subduction occurs deeper into the lower mantle, basaltic materials are expected to exhibit
distinct mineralogy and physical properties that may be revealed seismically (Ishii et al., 2019; Rost et al., 2008).
Compared with the mantle lithosphere of approximately 100-200 km thick, the oceanic crust is only ~7 km thick
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so interpretations of seismic images for the subducting MORB materials in the lower mantle have been challeng-
ing. Specifically, global seismic tomography has a length resolution of hundreds of kilometers that could not be
used to detect the subducted basalt (or eclogite) in the mantle (Fukao & Obayashi, 2013). On the other hand, anal-
yses of short period seismic-wave scattering can provide a much better spatial resolution in the order of ~10 km
in the mantle (Rost et al., 2008). Insofar, these short period seismic studies have revealed the occurrence of many
regional seismic scatterers with a number of distinct features: (a) slower shear wave velocity (V) anomaly up
to ~12% reduction, no significant compressional wave velocity (V,) anomaly, and sometimes higher density (p)
anomaly at 700-1,900 km depth (Niu, 2014; Niu et al., 2003); (b) planar geometry with several to tens of kilom-
eters in thickness and tens to hundreds of kilometers in length; (c) occurrence within or beneath the subduction
slab along the circum-Pacific region, but the frequency of observations decreases from top- to mid-lower mantle
(Haugland et al., 2017; Kaneshima, 2019; Li & Yuen, 2014; Vinnik et al., 2001). These features are thought to
be indicative of the presence of ancient subducted basalts in the lower mantle (Kaneshima & Helffrich, 1999).

To decipher the aforementioned seismic observations at depths, sound velocities and densities of major constit-
uent minerals at relevant pressure-temperature (P-7) conditions of the subducted slabs are critically needed.
Subducted MORB materials at the upper part of the lower mantle are expected to contain approximately 20
vol% stishovite, 30 vol% CaFe,0,-type phase (CF) or new hexagonal phase (NAL), 30 vol% bridgmanite (Bgm),
and 20 vol% Ca-perovskite (CaPv; Ishii et al., 2019). Previous studies have shown that sound velocities of these
phases except stishovite fall between those of bridgmanite and ferropericlase, the two most abundant minerals in
a pyrolite compositional model in the lower mantle (Gréaux et al., 2019; Wu et al., 2016; Xu et al., 2008; Yang
et al., 2015). That is, their velocity characteristics could not be used to reconcile the observations of small-scale
seismic Vg anomalies along subducting slabs in the lower mantle. However, their occurrence could contribute
to seismic observations of enhanced densities in some regions (Hirose et al., 2005; Niu, 2014; Niu et al., 2003;
Sun et al., 2016). On the other hand, the rutile-type stishovite displays much higher sound velocities than typical
mantle minerals (Yang & Wu, 2014; Zhang et al., 2021), although its density is similar to that of mineral aggre-
gates in a pyrolite composition (Fischer et al., 2018; Irifune et al., 2010). Stishovite undergoes a pseudoproper
ferroelastic transition to a CaCl,-type post-stishovite phase with a spontaneous strain (Carpenter et al., 2000;
Hemley et al., 2000). For pure-endmember stishovite (SiO,), the distortion transition occurs at 55 GPa and 300 K
and is associated with a drastic V reduction of —26% and a mild V, reduction of —10%, but the density contin-
uously increases with increasing pressure (Zhang et al., 2021). It has been theoretically shown that subducted
MORB with 20 vol% stishovite undergoing the post-stishovite transition could produce a V reduction of up to
~6.5% and a V, reduction of up to ~1.5% at the mid-lower-mantle depth that can help explain seismic wave
velocities (Wang et al., 2020). However, the post-stishovite transition has a positive Clapeyron slope of 65 K/GPa
and would occur at ~1,800 km depth at relevant P-T conditions of a cold subducting slab (77 GPa and 1706 K;
Fischer et al., 2018). The transition depth is thus too deep to be consistent with these aforementioned regional
seismic V anomalies at shallower lower mantle depths.

Based on previous geochemical and petrological studies (Gale et al., 2013), subducted MORB materials can
contain ~10-19 wt% alumina (or ~4.3-8.1 mol%) which can partition into stishovite crystals. Multi-anvil appa-
ratus experiments on element partitioning in a basaltic system have revealed that the Al content in stishovite
increases from ~0.5 mol% at 22 GPa to ~1.5 mol% at 33 GPa (Ishii et al., 2019; Ono et al., 2001). Additionally,
chemical analysis of mineral inclusions in natural diamonds from the subducted ecologitic assemblage also shows
the presence of nearly Al-free silica (<0.06 mol% Al) in association with Al,SiO, phase (Zedgenizov et al., 2015).
This indicates the possible presence of Al-bearing stishovite at lower-mantle depths, although naturally occurring
Al-bearing stishovite has not been reported. In addition to the Al substitution, subducting slabs can contain a small
amount of water in hydrous or nominally anhydrous minerals (NAMSs) in the mantle. In multi-anvil apparatus
experiments, Fourier-transform infrared spectroscopy (FTIR) analyses showed that Al-bearing stishovite crystals
contain approximately 0.03-0.67 mol% H at 20-26 GPa and 1,473-2,073 K conditions (Litasov et al., 2007).

The Al** and/or H* incorporation in stishovite can reduce the post-stishovite transition pressure to the depth
range more consistent with the seismic observations of the regional V anomalies in the shallow lower mantle
(Lakshtanov et al., 2007b; Umemoto et al., 2016). Although full elasticity of pure stishovite and post-stishovite
and the effect of Al on the post-stishovite transition pressure have been relatively well investigated (Asahara
et al., 2013; Karki et al., 1997; Lakshtanov et al., 2007b; Li et al., 1996; Shieh et al., 2002; Yang & Wu, 2014;
Zhang et al., 2021), elasticity data of hydrated Al-bearing stishovite across the post-stishovite transition remain
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largely unexplored (Bolfan-Casanova et al., 2009; Gréaux et al., 2016; Lakshtanov et al., 2007a). This is mainly
due to the technical difficulty in measuring sound velocities and reliably deriving full elastic moduli (C;) of
the stishovite crystal at high pressure (Zhang et al., 2021). Alternatively, high-pressure experimental results on
Raman shifts of optic modes and equations of state (EOS) parameters across the post-stishovite transition can
be used to evaluate full C;; using Landau theory modeling (Carpenter et al., 2000). The full C; data can then be
used to calculate sound velocities and other elastic parameters across the post-stishovite transition as a function
of pressure.

In this study, we have measured Raman shifts of major optic modes and lattice parameters of two hydrated
Al-bearing stishovite single crystals, Al1.3-Si0, (1.34 mol% Al and 0.55 mol% H) and Al2.1-SiO, (2.10 mol%
Al and 0.59 mol% H), up to ~70 GPa in high-pressure diamond anvil cells. The experimental data are modeled
with a pseudoproper Landau theory in which some Landau parameters have been well constrained using a recent
experimental elasticity study of stishovite at high pressure (Zhang et al., 2021). These combined experimental
and modeling approaches allow us to determine full elastic properties of the Al,H-bearing stishovite, including
C; adiabatic bulk and shear moduli (K and p), aggregate sound velocities (Vg and V), and Poisson's ratio (v),
across the post-stishovite transition at high pressure. Our results show that the post-stishovite transition occurs
at 21.1 GPa in All.3-Si0O, and 16.1 GPa in Al2.1-Si0O,, where the B, , optic mode softens and the elastic moduli
C,, and C,, merge together. The full C;; and sound velocities of hydrated Al-bearing stishovite and post-stishovite
from high-pressure Raman and X-ray diffraction measurements are used to provide new constraints on Al/H-de-
pendent post-stishovite transition and associated velocity changes at high P-T. Assuming that subducted MORB
materials contain 20 vol% stishovite with 1.3 mol% Al and 0.6 mol% H, our results show that the post-stishovite
transition can exhibit a V reduction of —7(4)%. We have further modeled the V anomaly of the post-stishovite
transition as a function of Al contents at high P-T. These results are compared with regional seismic observations
in some selected subduction zone settings including the Tonga slab. Our results provide new insights into the
regional seismic V¢ anomalies that can be explained by the hydrated Al-bearing post-stishovite transition from
the top- to mid-lower mantle.

2. Experimental Details

Al H-bearing stishovite crystals were synthesized at the Institute for Planetary Materials at Okayama University.
Two starting samples were prepared by mixing silica powder of 99.99% purity with 10 wt% gibbsite AI(OH),
in run# 5K3302 and with 13 wt% gibbsite AI(OH), in run# 1K2965. Each starting mixture was loaded into a
platinum capsule of 4 mm in length and 2 mm in outer diameter. The sample assemblage in run# 5K3302 with
a LaCrO, heater was compressed to 20 GPa and then heated to 1973 K for 16.5 hr in a 5000-ton Kawai-type
multi-anvil apparatus. The assemblage in run# 1K2965 with the same type of heater was compressed to 19.2 GPa
and heated to 1973 K for 7 hr using a 1,000-ton Kawai-type multi-anvil apparatus. Detailed information about the
sample assemblage and apparatus conditions can be found in the literature (Okuchi et al., 2015; Xu et al., 2017).
Stishovite crystals extracted from the Pt capsules are anhedral to subhedral in shape and are about tens to hundreds
of micrometers in length under an optical microscope. A few crystals of approximately 100-200 pm in diameters
were selected for compositional analysis using a JEOL Electron Microprobe (EPMA) and a Scanning Electron
Microscopy with Energy Dispersive X-Ray Spectroscopy (SEM/EDS) in the Department of Geological Sciences
at the University of Texas at Austin (UT Austin). Chemical mappings on Si, Al, and O elements show composi-
tional homogeneities throughout the crystals (Figure S1 in Supporting Information S1). Quantitative results from
Wavelength-Dispersive Spectroscopy (WDS) analysis show Al contents of 1.34(2) mol% (or 3.43(6) wt% AlL,O,
averaged from 5 analyses) in the Al1.3-SiO, crystal from run# 5K3302 and 2.10(2) mol% (or 5.37(4) wt% Al,O,
averaged from 8 analyses) in Al2.1-SiO, from run# 1K2965 (Table S1 in Supporting Information S1). Other
elements are below the detection limit of the analytical techniques used here.

Synchrotron X-ray diffraction (XRD) measurements are used to determine structures and lattice parameters of the
crystals at the beamline 13ID-D of the GSECARS, Advanced Photon Source (APS), Argonne National Labora-
tory. A few Al1.3-SiO, and Al2.1-SiO, crystals were polished down to approximately 10—-15 pm thick platelets,
and then loaded into a sample chamber in a diamond anvil cell with a pair of 300 pm flat culets. The sample
chamber was made of a rhenium gasket with an initial thickness of 260 pm that was pre-indented to ~32 pm
thickness and subsequently a hole of 190 um diameter was drilled in it. Au powder (Goodfellow; 99.95% purity)
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of ~8 X 10 pm? grain size was also loaded next to the crystals in the sample chamber and used as the pressure
calibrant (Fei et al., 2007). Neon pressure medium was loaded into the sample chamber using the gas loading
system in the Mineral Physics Laboratory, UT Austin. The neon medium provides a quasi-hydrostatic environ-
ment in the sample chamber within our investigated pressure range (Kingma et al., 1995). An incident X-ray
beam with a wavelength of 0.3344 A was focused down to a beam size of ~3 X 3 pm? (FWHM) at the sample
position where the diffracted signals were collected by a CdTe Pilatus 1M detector. During the data collection, the
sample stage was rotated +15° about its vertical axis to cover as many reflection spots as possible. The collected
images were further integrated into one-dimensional spectra using the DIOPTAS software (Prescher & Prakap-
enka, 2015). Pressure uncertainties were evaluated from the EOS of Au in the experiments.

High-pressure Raman measurements were performed using a Renishaw InVia Raman spectroscopy system at
the Mineral Physics Laboratory, UT Austin. A pair of anvils with 300 pm flat culets and ultralow fluorescence
background were selected for the experiments. Similar to the sample preparation in aforementioned XRD exper-
iments, Al1.3-SiO, and Al2.1-SiO, platelets of 10-15 pm thick and ~20 X 40 pm? grain size were loaded into
a sample chamber with Ne pressure medium. A few ruby spheres were also loaded in the chamber and used as
the pressure calibrant (Fei et al., 2007). The Raman system is equipped with a green excitation laser of 532 nm
wavelength, a grating of 2400-line/mm, and a spectral resolution of 1.2 cm~!. The system was calibrated using
the Raman peak of a reference Si crystal at 520 cm~! before high-pressure measurements. Each Raman spectrum
was collected using a 20X objective with a focused beam width of ~2-3 pm, an exposure time of 15 s, and 20-30
accumulations. Pressure uncertainties of the experiments were evaluated from multiple ruby fluorescence meas-
urements before and after each set of the Raman collection. Water contents in the crystals were also evaluated
using unpolarized FTIR spectra taken in a Thermo Electron 6700 FTIR spectrometer with a connected FTIR
Continuum microscope in the Department of Earth Sciences at the National Cheng Kung University. Raman
spectra of the OH-stretching band regions of the Al,H-bearing stishovite crystals were also measured at ambient
conditions.

3. Results
3.1. Al and H Substitution in the Rutile-Type Stishovite

Combined results of FTIR, Raman, electron microprobe and XRD spectral measurements are useful to examine
Al and H substitutions in hydrated Al-bearing stishovite crystal structure (Figure 1). Analysis of XRD spectra of
the synthesized crystals reveals the tetragonal rutile-type crystal structure with P4,/mnm space group at ambi-
ent conditions. Refined lattice parameters of the All.3-SiO, crystal are a = 4.1963(8) Ac= 2.6723(4) A, and
V = 47.06(2) A while the Al2.1-Si0, crystal displays a = 4.2025(9) A, ¢ =2.6788(16) A, and V = 47.31(2)
A3. Our results are consistent with the literature data in which the unit-cell volume of stishovite linearly expands
with increasing Al content (Figure 1c; Lakshtanov et al., 2007b; Litasov et al., 2007). The lattice expansion can
be mainly related to the coupled 2A1* and O,** (oxygen vacancy) substitution for 2Si** in stishovite (Laksh-
tanov et al., 2007a). On the other hand, analysis of unpolarized FTIR and Raman spectra shows three major
OH-stretching bands at ~2660, ~3140, and ~3410 cm~!, consistent with literature data (Figures la and 1b;
Litasov et al., 2007). The strongest FTIR absorption band at 3,140 cm™! is also extremely intense in Raman
measurements, revealing itself as an active FTIR and Raman mode. This is also the case for the modes at 2,660
and 3,410 cm™. The occurrence of the bands has been explained to be indicative of the coupled Al** + H* and/
or pure 4H™ substitution for Si** in the structure, which are also expected to contribute to the expansion of the
lattice (Nisr et al., 2017; Spektor et al., 2011). The water content C,,, of the crystals in the unpolarized spectra
can be determined using a calibration method by Paterson (1982):

k (V)

Cox = 150y (3780—v) M

where X; is the density factor, X; = 9/p X 108, with the density as 4,237 g/l and 4,211 g/ for All.3-SiO, and
Al2.1-Si0,, respectively; y is the orientation factor which is set as 1/3 for the unpolarized measurements; k( )
is an absorption in cm~! at each wavenumber - in cm~!. After subtracting the background and normalizing the
sample thickness to 1 cm, the water contents in Al1.3-SiO, and Al2.1-SiO, crystals are determined as 0.55(11)
mol% H (or 0.25(5) wt% H,0) and 0.59(11) mol% H (or 0.27(5) wt% H,0), respectively. Together with chemical
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Figure 1. Characterizations of hydrated Al-bearing stishovite crystals. (a) and (b) show OH-stretching bands in Al1.3-SiO,
(blue) and Al2.1-SiO, (red). (a) Representative unpolarized FTIR spectra; (b) representative Raman spectra. Wavenumbers
and Raman shifts of OH-stretching bands were fitted and labeled next to major peaks in (a) and (b), respectively. (c) Unit-cell
volume of stishovite as a function of Al content in mol% at ambient conditions. (d) H content as a function of Al content in
mol% in stishovite. Gray dashed lines show three different AI/H ratios. Literature data are plotted for comparison (Lakshtanov
et al., 2007b; Litasov et al., 2007; Zhang et al., 2021).

analysis results, the molar ratios of Al/H in these crystals are thus 2.4(7):1 and 3.5(8):1. These numbers are close
to 2:1 and 3:1 ratio, but much larger than 1:1 ratio for the coupled AI** + H* substitution mechanism proposed
previously (Pawley et al., 1993) (Figure 1d). These indicate that 2A13* + O,** < 2Si** mechanism is predomi-
nant in our Al,H-bearing stishovite crystals to expand the lattice, while the AI3** + H* < Si** mechanism can help
facilitate water incorporation into stishovite.

3.2. High-Pressure Raman Shifts of Major Optic Modes Across the Post-Stishovite Transition

Analyses of the Raman spectra of the crystals at ambient conditions show four intense optic Raman bands at
226, 583, 748, and 960 cm~' in Al1.3-Si0, and at 224, 579, 744, and 957 cm~!in Al2.1-SiO,. After taking the
Al substitution effects into account, these peaks can be assigned to B, , E, A, and B,, modes of the rutile-type
stishovite, respectively (Kingma et al., 1995). The B,,, E,, and A, peaks can be well detected at high pressure,
but the B,, mode was blocked by the background of the diamond anvil (Tables S2-S4 in Supporting Informa-
tion S1). Raman shifts of £, and A;, modes increase with increasing pressure whereas the Raman shifts of the B,
mode decrease with increasing pressure (Figure 2). The trends and slopes of these Raman shifts are consistent
with those in pure SiO, stishovite at high pressure (Kingma et al., 1995; Zhang et al., 2021). Crossing into the
CaCl,-type post-stishovite phase, the B, and A,, evolve into two A, modes but splitting of £, mode into B,,
and B;, modes was not observed due to background of the diamond anvil. Raman shifts of the A, modes in the
post-stishovite phase increase with increasing pressure, but the slope is shallower than that in pure SiO, stisho-
vite (Figure 2c). Most importantly, the pressure-dependence of the stishovite's B,, mode becomes positive in the
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Figure 2. Raman shifts of Al,H-bearing stishovite and post-stishovite phases at high pressure. (a) and (b) are representative
high-pressure Raman spectra of All.3-Si0, and Al2.1-SiO,, respectively, with the B, , optic mode in stishovite and the A,

and A * modes in post-stishovite. (c) Pressure-dependent Raman shifts for Raman modes of stishovite (B,,, E,, A,,) and post-
stishovite (4,, A *, B,,, B;,). Solid lines are best linear or quadratic fits to our experimental data to guide the eye. Error bars
are smaller than the symbols and are not shown for figure clarity. Previous studies on stishovite crystals with pure SiO, (Al
free) and Al2.4-SiO, (2.4 mol% Al) compositions are plotted as open circles for comparison (Kingma et al., 1995; Lakshtanov
et al., 2007b; Zhang et al., 2021). Vertical dashed lines show the transition pressure for each composition with the same color
as the corresponding data in (a) or (b).

post-stishovite's A, mode after the post-stishovite transition. A satellite band, denoted as A *, in the All.3-SiO,
crystal occurs between 21.1 and 36.5 GPa (Figures 2a and 2c) with Raman shift behavior similar to the A < mode,
but the kink occurs at approximately 28 GPa. The occurrence of the satellite peak may be due to local clusters of
Al-poor regions where the local domains can resist the ferroelastic transition to a higher pressure. This phenom-
enon across the ferroelastic transition has been reported in other binary systems (Salje, 1990).

3.3. Lattice Parameters Across the Post-Stishovite Transition

Analysis of the high-pressure XRD spectra from All.3-SiO, and Al2.1-SiO, crystals shows 10-15 reflections in
the tetragonal stishovite phase with 20 ranging from 6° to 24° (Figures 3a and 3b; Tables S5 and S6 in Supporting
Information S1). The analyzed lattice parameters indicate that lengths of a and c axis and unit-cell volume (V)
decrease with increasing pressure with slopes consistent with those in pure-endmember stishovite (Figures 3c
and 3d). With increasing pressure, some representative diffraction peaks in the tetragonal structure split into
the orthorhombic post-stishovite structure with Pnnm space group at 21.1 GPa for Al1.3-Si0, and 16.1 GPa for
Al2.1-Si0,. Specifically, tetragonal 211 and 311 reflections in Miller indices split into pairs of orthorhombic
(211 and 121) and (311 and 131) reflections, respectively, in Al1.3-SiO, crystal (Figure 3a). Similarly, splitting of
tetragonal 210, 211, 310, 311, 320, 410, 411, and 420 reflections was observed in Al2.1-SiO, crystal (Figure 3b).
These mean that the a-axis of the tetragonal stishovite splits into a- and b-axis of orthorhombic post-stishovite
at high pressure. Axial and bulk incompressibilities of the stishovite and post-stishovite phases at high pressure
were further evaluated using the Birch-Murnaghan EOS (Birch, 1947; Table S7 in Supporting Information S1).
Isothermal bulk modulus (K;,,) of Al1.3-Si0, and Al2.1-SiO, crystals at ambient conditions is lower than that in
pure SiO, stishovite, but higher than that in pure SiO, post-stishovite. These indicate that the Al and H substitu-
tion softens the tetragonal structure in stishovite but stiffens the orthorhombic structure in post-stishovite.
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Figure 3. X-ray diffraction and equation of state results of hydrated Al-bearing stishovite and post-stishovite at high
pressure. (a) and (b) are representative XRD patterns for Al1.3-SiO, and Al2.1-SiO, crystals, respectively, at 9.0 GPa for the
stishovite phase and at 72.6 GPa for the post-stishovite phase. Miller indices hkl labeled next to identified diffraction peaks
are used to calculate lattice parameters and unit-cell volumes, shown in (c) and (d). The occurrence of the post-stishovite
phase is most visible in the splitting of some reflection peaks in the stishovite phase across the transition, such as a splitting
of the 211 reflection into a pair of 211 and 121 reflections. (c) and (d) show lattice parameters and unit-cell volumes,
respectively, of the stishovite and post-stishovite phases in Al1.3-SiO, (blue open circles) and Al2.1-SiO, (red open circles)
at high pressure. Corresponding solid lines show best fits using the axial incompressibility or the Birch-Murnaghan equation
of state (Birch, 1947). The insert panel shows unit-cell volume variations of the Al,H-bearing crystals at high pressure with
respect to the endmember SiO, by Zhang et al. (2021). Vertical dashed lines show the transition pressures.

4. Discussion
4.1. Landau Theory Modeling of the Elasticity Across the Post-Stishovite Transition

Our high-pressure Raman and XRD results are used to derive full C;; and sound velocities of the stishovite and
post-stishovite phases. We use a pseudoproper-type Landau free energy expansion, where the order parameter
Q is related to the soft B, optic mode and is coupled bilinearly with the symmetry-breaking spontaneous strain
(Carpenter et al., 2000). In the modeling, a number of Landau parameters need to be well evaluated in order to
reliably derive the full elastic moduli. These parameters include P*, critical pressure (Pc), bare elastic moduli
(CSO), pressure derivatives of Cg.o (C,.Oj’), coupling coefficients (4;), and normal Landau coefficients (a and b). To
start with, the intersection of the two linear fits to the squared Raman shifts of the B,, and A, modes as a func-
tion of pressure gives the P} value at 21.1(6) GPa for All.3-Si0, and at 16.1(4) GPa for Al2.1-SiO, (Figure 4a).
Extrapolation of the B, linear fit to zero Raman shift yields the Pc value where the optic mode becomes imag-
inary. Additionally, the Cgo can be calculated from literature C;, data of stishovite at ambient conditions after
taking into account of the linear Al effect on the C,.jo in stishovite (Lakshtanov et al., 2007a). Since the pres-
sure-dependent slopes for Raman shifts and lattice parameters are very similar in Al,H-bearing and pure SiO,
stishovite (Figures 2c, 3c, and 3d), the Cg slope, the pressure derivatives of C,.Oj (Cg’ ), of the experimentally-de-
termined values for pure SiO, endmember in a recent study can be used for the Al,H-bearing stishovite (Zhang

etal., 2021). The exception here is for the C?]’ and C?; that can be affected by the shear softening and the transition
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90 pressure such that these two parameters for the Al,H-bearing stishovite need
(a) to be evaluated in the modeling. Moreover, the coupling coefficients A4 and
- Ag are also set to those in the pure SiO, endmember because they are related
‘\"E 60+ A to the spontaneous strains ey, es, and eq that remain zero in the post-stishovite
o g phase regardless of the Al and H contents due to the nature of the ferroelastic
8 ;7| © AN.3-SI0,, this study transition (Carpenter et al., 2000). In short, six parameters (coupling coeffi-
O A2.1-Si0,, this stud . .. .
‘C_> 304 | _ si0,, Zhang ets ; (2{321 cients A; and A3, Landau coefficients g and b, C ?]’ and C%) are evaluated in our
<\5 modeling using the Al and H dependent spontaneous strains ey, e;, and e; at
high pressures that can be calculated from the lattice parameters (Figure 4b):
0T el = apst — Asi e = bpy — as: e = Cpst — Cst )
304 as: ’ as: o Cst
o 15- where apy, bpy, and cpy, are lattice parameters of post-stishovite (Ps?) at high
8 pressure; as, and cg, are the extrapolated lattice parameters of stishovite (S7)
= at the same pressure. With all these Landau parameters determined (Table 1),
:j‘ 01 the full set of C;; of the stishovite and post-stishovite phases at high pressure
can be calculated using the following expressions (Carpenter et al., 2000):
-154
Ci=C}, — (44,0 + 1 + 441 10) x A3)
0 50 100 150 0 ss s
Cn=C! - (420 + 22— 40110) y @
Pressure (GPa)
Cy = C), —4220% ©)
Figure 4. Landau theory modeling of the post-stishovite transition in hydrated
Al-bearing stishovite. (a) Squared Raman shifts of B;,—A, modes divided by _ 0 272 _ 2
1,000 (@?/1,000). The kink in the Raman shift slope reflects the post-stishovite Cn= C12 (4/11Q AZ)Z ©)
transition pressure P* for each composition, while the linear extrapolation 0 )
on ®?/1,000 of the B, mode to zero yields the critical pressure P. (b) Cis= C13 - (4)»1 A:0° + 2/12/13Q))( @)
Spontaneous strains multiplied by 1,000 (e, X 1,000; i = 1, 2, 3). Blue and
red circles are experimental data on Al1.3-Si0, and Al2.1-Si0,, respectively, Cy = C?z — (4}1 0% =24 /13Q))( 8)
while corresponding lines are best fits. Literature results on endmember SiO, ’
are shown as gray dashed lines (Zhang et al., 2021). Cu=C + 240 )
=%u
Css = CJ, — 240 (10)
Ceo = Coy +246Q° an
where y is the susceptibility and Q is the order parameter as
1/[a(P - Po)l, if PP
x= 12)
1/ [2ab (P;—P) /b*+a(P;—Pc)|. if P>P;
0, if PP
0= (13)
\Ja(P:—P)/b*, if P> P}
with the renormalized Landau coefficient b* as
2 (0 0 20 0
B=bh—2 ['13 (Cn :C120)+211C33_t’12')“3cl3] (14)
5 (Cn + CIZ) —2C7,

Standard deviations of the C;/s can be estimated using the equation for the standard error propagation (refer to

Text S1 in Supporting Information S1 for details).
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Table 1
Landau Model Parameters for the Stishovite to Post-Stishovite Transition
Compositions Al1.3-Si0,, 0.7 mol% H* Al2.1-Si0,, 0.8 mol% H* SiO,, 0.004 mol% H*
References This study This study Zhang et al. (2021)
P, GPa 21.1(6) 16.1(4) 55.0(10)
(Pc - PC*), GPa 105.7(38) 134.3(65) 55.2(10)
a —0.0512(49) —0.0467(45) —0.0501(29)
b, GPa 10.5(12) 10.6(14) 11
1, GPa —4.9(3) -5.5(2) 11.03(85)
A2, GPa 60.5 78.5 27.61
A3, GPa 12.6(13) 12.2(11) 16.79(92)
A4, GPa 18.94 18.94 18.94(31)
A, GPa 15.15 15.15 15.15(22)
', GPa 999 1302 592.3
C?]’ 10.0(9) 9.509) 10.80(47)
C?zo’ GPa =375 —693 57.9
C?é 9.9(7) 10.4(8) 8.81(63)
C’,,. GPa 190.6 189.2 193.0
C?; 291 291 2.91(27)
CY,, GPa 7435 734.1 760.2
C;’; 7.07 7.07 7.07(48)
Y, GPa 246.7 238.2 261.6
C;Z 3.18 3.18 3.18(5)
Cgao’ GPa 295.2 281.4 319.7
Cg(: 5.60 5.60 5.60(13)
Note. See the main text for the meaning and references of Landau parameters listed in the first column. Numbers in
parentheses represent +1c uncertainties.
We further calculate K and y from our modeled C;; values using Voigt-Reuss-Hill averaging scheme at high
pressure (Hill, 1952). With p determined from EOS parameters (Table S7 in Supporting Information S1), the V;
and V,, values of stishovite and post-stishovite phases at each given pressure are calculated using the following
equations:
/ 4
Vp = (Ks+§/4>/p, Vs =\u/p (15)
The Poisson's ratio v, a key seismic parameter reflecting the V), and V ratio, is also calculated using the following
equation:
2 2
1 Vi Vi
v==|(2£) -2|/|(Z£) -1 (16)
2 VS VS
4.2. Al and H Effects on the Post-Stishovite Transition Boundary
The post-stishovite transition boundary influenced by the Al and/or H substitutions at relevant mantle P-T condi-
tions can be of direct relevance to our understanding of the depth-dependent distributions of the regional seismic
V anomalies in the lower mantle as discussed in the introduction. Therefore, we have compared our results
with literature data to better evaluate the transition boundary as a function of Al and/or H contents. Based on
ZHANG ET AL. 90of 16
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Pressure (GPa) the Landau modeling at high pressure and 300 K, the PZ for All.3-Si0, and
0 25 50 75 100 Al2.1-Si0, are ~21.1 and ~16.1 GPa, respectively, which are significantly
3 . . L lower than the P of 55 GPa in pure-endmember SiO, stishovite that contains
\ (a) ~19 wt. ppm water (Zhang et al., 2021).
\ ,
. 5 ® % g ;::nsgtﬁyall (2021) Previous studies have showed that the post-stishovite transition pressure can
§ i \ <> Andrault et al. (2003) be lowered by either the Al substitution (Bolfan-Casanova et al., 2009) or
g \ <> gzﬁgi?cjse:ﬁg? ft) al. (2009) water incorporation (Nisr et al., 2017; Umemoto et al., 2016). Al and H incor-
— @ | 5 | akshtanov et al. (2007b) porations in stishovite can occur via coupled AlI** + H* for Si** in the octa-
< 14 \ hedral site, together with Al** and O,* substitution (Pawley et al., 1993).
\ Hydrogen substitution in Al-free stishovite can also occur via 4H* < Si**
b N (Spektor et al., 2011). Importantly, previous studies have found that H solu-
0+ KOS OO bility increases with the Al substitution in stishovite, but the Al:H ratio in
3200 —sic,with omor% A stishovite is mostly near or below 3:1. Therefore, 2A13* + O,?* « 2Si*
=S gt substitution mechanism is expected to be more prevalent in hydrated Al-bear-
g 24004 _::gjm:: § EZ:;: 2: mantle ing stishovite in subducted basalts in the mantle (Pawley et al., 1993). Because
o our Al,H-bearing stishovite crystals only contain 0.25-0.27 wt% H,O with
% cold s\ab 2.4-3.5 AI/H molar ratios, the P reduction can thus be mainly attributed
® 1600+ to the 2A1°* + O, 2" « 2Si** effect, together with some contributions from
CE)' 4H* & Si** substitution. Specifically, the 2A1** + O,* < 2Si*" mechanism
|2 Stishovit Post-stishovite softens the stishovite's structure such that the post-stishovite shear distortion
8004 occurs more favorably under compression (Lakshtanov et al., 2007a).

g 550 100D 1200 2000 Modeling the P} as a function of Al contents using a polynomial function

Depth (km)

Figure 5. Post-stishovite phase transition boundary influenced by Al content
in stishovite. (a) The post-stishovite transition pressure as a function of the
Al content in mol% at 300 K. The dashed line is the best polynomial fit to
our data using 55 GPa as the transition pressure of the pure SiO, by Zhang

et al. (2021). The red shaded area in Al1.3-SiO, represents a pressure region
where the stishovite and post-stishovite phases coexist (see Figures 2a and
2c¢). Literature results are also shown for comparison (Andrault et al., 2003;
Bolfan-Casanova et al., 2009; Buchen et al., 2018; Lakshtanov et al., 2007b;
Zhang et al., 2021). (b) Post-stishovite transition at high P-T conditions. A
Clapeyron slope of 65 K/GPa is used for the post-stishovite transition (Fischer
et al., 2018), where stishovite contains 0 (black), 1 (red), 2 (green), and 3
(blue) mol% Al, respectively. The horizontal bar at the bottom right indicates
the coexistence range of the Al,H-bearing stishovite and post-stishovite
phases, which is estimated from the coexistence of the A " and A H* modes in
All.3-Si0, (Figures 2a and 2c). A typical normal mantle geotherm (Katsura
et al., 2010) and a cold slab geotherm that is 500 K colder than a typical
normal mantle geotherm (Tan et al., 2002) are shown as thick gray lines for
comparison to the post-stishovite phase boundaries.

results in Al = 0.0014 Pc’i2 — 0.154 P} + 4.235 where Al is expressed in
mol% and P} is in GPa (Figure Sa). Using a Clapeyron slope of 65 K/GPa
from a recent experimental study (Fischer et al., 2018), the post-stishovite
transition can be extrapolated to high P-T conditions of the lower mantle: the
transition pressure could be lowered by approximately 30 GPa in stishovite
with 1 mol% Al and by 52 GPa with 3 mol% Al. Along a cold subducting
slab which is taken as approximately 500 K colder than a typical normal
mantle (Katsura et al., 2010; Tan et al., 2002), the post-stishovite transition
is expected to occur at 740 km depth with 3 mol% Al and at 1,250 km depth
with 1 mol% Al (Figure 5b). We should note that since the oceanic crust
is thin and mainly exists on the surface of the subduction slabs, our cold-
slab geotherm assumption, that is, 500 K colder than the surrounding mantle,
should be taken as an upper bound of the temperature conditions.

4.3. Al and H Effects on the Sound Velocities Across the Post-Stishovite
Transition

Our Landau modeling results provide full elastic moduli of the (Al,H)-bear-
ing stishovite crystals across the post-stishovite transition at high pressure
(Figure 6; refer to Tables S8 and S9 in Supporting Information S1 for numer-

ical values of C;). Examinations of the pressure-dependent C; in the Al1.3-SiO, and Al2.1-Si0, crystals show
that they are overall consistent with that of pure SiO, (Zhang et al., 2021), but the slopes across the transition
are quite different. The (Al,H)-bearing stishovite crystals display softer C,, and stiffer C,, approaching the tran-
sition than the pure SiO, stishovite phase. These lead to the convergence of C, and C}, at a lower P7 in the
(Al H)-bearing system. We should note that the (C},-C},)/2 constant, which reflects the response of a crystal to
deformation caused by shear stress along the [110] direction, is expected to vanish at the transition (Figure 6a).
Similarly, the deviations between C,, and C,, and between C,; and C,; in the post-stishovite phase become larger
(Figures 6a and 6b). In addition, our results show an enhanced reduction in the shear modulus and sound veloci-
ties (Figures 6¢ and 6d): the transition correlates with 49% u reduction, 29% V reduction, and 12% V, reduction
as compared with reductions of 45% in u, 26% in V¢, and 10% in V,, in pure SiO, post-stishovite transition (Zhang

et al., 2021).

ZHANG ET AL.

10 of 16

QSUADIT SUOWIWO)) dATIEAI)) d]qeatjdde oy Aq pouIdA0S aIe SO[O1IE () ‘2SN JO SO[NI 10j AIeIqI] SuI[uQ) AS[IA\ UO (SUOIPUOD-PUB-SULID)/ W0 Ko[im Kreiqijoul[uoy/:sdny) suonipuoy) pue suuo I 3y S *[£707/90/8¢] uo Areiqr dutuQ Aofip ‘ANsIoAtun dfex £q 0L1€Z0Ll1202/6201°01/10p/wod Kojim Areiqiourjuo-sqndnSe;/:sdyy woly popeojumod y ‘7Z0T ‘9S€6691T



A~y
NI Journal of Geophysical Research: Solid Earth 10.1029/2021JB023170

ADVANCING EARTH
AND SPACE SCIENCE

[e2]
o
o

Al2.4-SiO,, Lakshtanov et al. (2007a)
Al0.4-SiO,, Gréaux et al. (2016)

O Al1.3-Si0,, Gréaux et al. (2016)
Al1.8-SiO,, Gréaux et al. (2016)

1200+

I
o
e

( a) A A1.7-SI0,, Lakshtanov et al. (2007a)
A
o
o

900+

Elastic Moduli (GPa)

600+

300+

T T
(b) [ Al1.3-SiO,, this study
[ Al2.1-SiO,, this study
- — SiO,, Zhang et al. (2021)

500+

Velocity (km/s)

Elastic Moduli (GPa)

4004

300+

Poisson's Ratio

2001

Pressure (GPa) Pressure (GPa)

Figure 6. Modeled elasticity of the hydrated Al-bearing stishovite and post-stishovite at high pressure. (a) and (b) Elastic
moduli C;; of stishovite and post-stishovite at high pressure; (c) adiabatic bulk and shear moduli (K and ) using the Voigt-
Reuss-Hill averaging scheme (Hill, 1952); (d) aggregate compressional and shear wave velocities (V, and Vy); (e) Poisson's
ratio (v). The Al1.3-SiO, (blue lines) and Al2.1-SiO, (red lines) stishovite crystals undergo the post-stishovite transition at
21.1 and 16.1 GPa, respectively, where their respective u, V,, and V drop drastically. v jumps across the transition. Elasticity
data for different compositions in the literature are also plotted for comparison (Gréaux et al., 2016; Lakshtanov et al., 2007a;
Zhang et al., 2021).

4.4. Velocity Profiles of Subducted MORB Across the Post-Stishovite Transition in the Lower Mantle

The post-stishovite transition is known to occur in the subducted MORB such that sound velocity of the MORB
materials can be useful in deciphering seismic results along subducting zone regions in the lower mantle. In our
modeling to evaluate the effects of the post-stishovite transition on velocity profiles, we used elasticity of indi-
vidual mineral phases in an aggregate with MORB composition along the aforementioned cold-slab geotherm.
The mineralogy in the selected MORB composition contains 20 vol% stishovite, 30 vol% CF, 30 vol% Bgm, and
20 vol% CaPv in the lower mantle (Ishii et al., 2019). Thermoelastic parameters of these mineral phases, except
CaPv, in our modeling are taken from this study, Zhang et al. (2021), and Xu et al. (2008). We should note that Xu
et al. (2008) determined these parameters using previous elasticity data at high P-T (refer to Table S10 in Support-
ing Information S1 for details; Akaogi et al., 1999; Fei & Ahrens, 1995; Fiquet et al., 2000; Funamori et al., 1998;
Kiefer et al., 2002; Liu et al., 1999; Murakami et al., 2003; Shim & Duffy, 2000; Sinogeikin et al., 2004; Smyth &
McCormick, 1995; Wentzcovitch et al., 2004). On the other hand, thermoelastic parameters for CaPv are obtained
by refitting combined elasticity data sets from Gréaux et al. (2019) and Sun et al. (2016) (Table S10 in Supporting
Information S1). We should note that the CaPv data by Thomson et al. (2019) are not used here because they
measured sound velocities at a nearly constant pressure such that some thermoelastic parameters cannot be reli-
ably constrained such as pressure derivatives of K and y. Mie-Griineisen EOS and finite-strain theory are then
used to calculate p, K, and p of each mineral phase in the MORB mineralogy along a cold subducting slab based
on the following equations (Stixrude & Lithgow-Bertelloni, 2005):

P =3Krnof(1+2/)" [1+%( ey f] +7pAD, an

27
Ks=(1+2f)" [Kso + (3KS()K;0 - 5Ks0) f+ 5 (KSOK/SO - 4K50) fz]

+ @+ 1= @ypA\O, —y*p/\(CyT) 1%
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u=(1+2" [uo+ (3Ksouy — Suo) [+

9 19
(61(5()[,{(,) —24Kso — 14uo + EKS()K;()) fz] —nspAO, a9

——Al1.3-Si02 ——Bgm

2/3
where f is the Eulerian finite strain, f = 1 [( i) - 1]; y is the Griineisen

—— AI2.1-Si02 CF 2 [\
——Si0z ——NAL
——CaPv parameter, y = é(Zf + (a1 +axf)/ (1 +af+ %azfz), where a; = 6y,

a> = —12yo + 36y0%> — 18qyo, and g is a constant; U, and Cy are internal
energy and isochoric heat capacity, respectively, which can be calculated
using the Debye model; K, and g are the first-order pressure derivative

-
SN
2

Sound Velocity (km/s)
o

of Kso and uo, respectively; s is the first-order shear strain derivative of
vons=—y+Qf+ 1> (o + ns0) / (1 +af+ %azfz); A means the differ-
ence between high temperature and 300 K; the subscript ‘0’ denotes the

O Seismic reference
—— MORB (Al1.3-SiO,)
—— MORB (AI2.1-Si0,)

ambient conditions.

7 —— MORB (Si0y) 7 We should note that the finite-strain model cannot be applied to evaluate
7. the shear softening feature across the post-stishovite ferroelastic transition at
VS high P-T conditions. Therefore, in addition to the finite-strain modeling, we
have evaluated the shear modulus softening, A u, across the transition at high

61 P-T using the following equations (Helffrich et al., 2018):

30 90 120 5 p_ ]\

Ap = A¢{ 1 = Zlarctan | ———— 20
Pressure (GPa) # "{ ”(arc a”[ w ] ‘} @0
Figure 7. Modeled sound velocities of subducted MORB in the lower mantle. P(T) = P; + s(T —300) 201

The modeled profiles are for a typical cold subducted slab mineralogy that

is 500 K colder than a typical normal mantle (Ishii et al., 2019; Katsura

etal., 2010; Tan et al., 2002). (a) V,, and V, profiles of MORB materials. The
SiO, with different Al contents and other MORB materials are shown as lines
with different colors. (b) Aggregate velocities in the MORB mineralogy with
20 vol% stishovite with Al1.3-SiO, (blue lines), Al2.1-SiO, (red lines), or pure

where Ay is the maximum shear modulus softening in GPa, P,.(T) is the tran-
sition pressure in GPa at T in K with a Clapeyron slope s of 1/65 GPa/K,
and w is the width of the phase transition in GPa. Fitting our modeled u
across the post-stishovite transition at 300 K with Equations 20 and 21 yields

SiO, composition (gray lines). Propagated standard errors (+1c uncertainties) Ao = —148.4(7) GPa and w = 14.7(1) GPa in Al1.3-Si0, and Ao = —152.4(9)

in the model are shown as vertical bars with the same color as the
corresponding lines in (a) and (b). Reference seismic profiles plotted as open
circles represent seismic velocities in cold subduction regions that are about
1% higher than PREM at the same depth (Dziewonski & Anderson, 1981).

GPa and w = 13.9(2) GPa in Al2.1-SiO, (Figure 6¢). After obtaining results
from these aforementioned modeling efforts, p, K, and u for the MORB
mineralogy are calculated using the Voigt-Reuss-Hill scheme and volume
ratios of the minerals to derive the V, and V, profiles of the aggregates in
subducted MORB materials in the lower mantle (Figure 7) (Hill, 1952; Ishii
etal., 2019).

5. Geophysical Implication

The anomalous elastic properties of stishovite across the second-order phase transformation have important impli-
cations for the interpretation of seismological observations. The large velocity contrast between the stishovite near
the phase transformation and co-exiting minerals implies that there will be substantial seismic wave scattering at a
boundary between stishovite-rich and stishovite-poor materials (Figure 7). First, for an obvious reason, the impact
of stishovite on seismological observations depends on the amount of stishovite. For a typical lower mantle,
stishovite exists only in regions occupied by subducted oceanic crust. Stishovite occupies approximately 20% in a
typical oceanic crust subducted into the lower mantle (Ishii et al., 2019), whereas once subducted crust undergoes
partial melting the amount of stishovite will increase substantially (Amulele et al., 2021). Second, since large
velocity contrast (particularly in V() occurs at or near the depth of the second-order transformation, we expect to
see the influence of stishovite in the depth corresponding to the depth of the phase transformation. Our and early
experimental studies show that the depth at which the post-stishovite transition occurs strongly depends on the
Al O, content ranging from ~800 to 1,600 km (Figure 5; Bolfan-Casanova et al., 2009; Lakshtanov et al., 2007b).
The Al O, content in MORB materials ranges from ~4.3 to 8.1 mol% (Gale et al., 2013), which in turn affects
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0 @ MiersIFhyiics the amount of Al in natural stishovite. Considering MORB materials with a
- : o E::;f’z:gz; typical ~6.8 mol% Al, stishovite is expected to contain ~1.3 mol% Al from
© MORB (Si0) 800 to 1,600 km depth (Figure S2 in Supporting Information S1).
[Seismology

O South America (Haugland et al. 2017)
O Tonga (Kaneshima 2018, 2019)
Tonga (Vinnik et al. 2001)

O Tonga (Kaneshima 2013)
O Mariana (Kaneshima and Helffrich 1999)|
O Mariana (Niu et al. 2003)
O Japan Sea (Niu 2014)
O Japan Sea (Li and Yuen 2014)

660 1000 1500 2000

Depth (km)
0 ——
(b) Tongaslab .. , Ninmoi%

upper mantle
lower mantle (o} 2 o B

i Lt

seismic scatterers

2000 T T
170 180 190

Longitude (degree)

Figure 8. Seismic observations and mineral physics modeling of the depth-
dependent V anomalies (dV) in the lower mantle. (a) dV observations of
regional seismic Vg anomalies around subducting slabs at various depths are
plotted as open circles. 20 vol% stishovite in a subducted MORB composition
is used in our mineral physics model to account for the maximum V
anomaly (dVy, ) across the post-stishovite transition shown as solid circles.
The dVy,, .. in % is calculated using the formula of (Vs 1005~ Vs cord sian)

Vs nors + V.coia siap) X200, where the Vg, ., value is 1% higher than the

V, of PREM at the same depth (Dziewonski & Anderson, 1981) (Figure 7b).
Literature data for seismic observations include Haugland et al. (2017),
Kaneshima (2018, 2019), Vinnik et al. (2001), Kaneshima (2013), Kaneshima
and Helffrich (1999), Niu et al. (2003), Niu (2014), and Li and Yuen (2014).
Note that some of these studies have only reported lower bound of the V
anomaly (Kaneshima, 2013, 2018; Kaneshima & Helffrich, 1999). (b)
Depth-longitude schematics for the seismic dV anomalies and the post-
stishovite transition along the Tonga subduction region. The color shaded area
represents the post-stishovite transition region scaled with the Al content in a
color scale shown on the top right. Reported seismic V anomalies (red open
circles) with different latitudes in the Tonga region are projected onto the
two-dimensional schematic (Kaneshima, 2009, 2013, 2018, 2019; Kaneshima
& Helffrich, 2010). The geometry and position of the Tonga subducting slab
are drawn according to previous seismic images (Fukao & Obayashi, 2013).

6. Conclusion

Indeed, seismic wave scattering is often reported in regions linked to subduc-
tion zones from top- to mid-lower mantle. These subduction regions include
South America (Haugland et al., 2017), Tonga (Kaneshima, 2013, 2018,
2019; Vinnik et al., 2001), Mariana (Kaneshima & Helffrich, 1999; Niu
et al., 2003), and Japan sea (Li & Yuen, 2014; Niu, 2014). The magnitudes
of the seismically-observed V anomalies are generally consistent with our
modeled maximum Vg anomaly (dV;,,.) of 7-8(x4)% in MORB with 20%
silica undergoing the post-stishovite transition (Figure 8a). Seismic obser-
vations also show that the number of these anomalies decreases with depth
and the majority of these seismic scatterers (~85%) occurs above 1,600 km
depth (Kaneshima, 2013, 2018, 2019). These observations can be interpreted
as a result of the Al-dependent post-stishovite transition in subducted MORB
materials as well as the broad V reduction across the ferroelastic transition
(Figure 8b).

Our results can also have implications to our understanding of the water circu-
lation and storage in the deep mantle. MORB materials contain some water
due to the hydrothermal processes. The subduction of MORB materials can
bring a certain amount of water into the mantle through hydrogen dissolved
in NAMs. Stishovite is one of the NAMs and can accommodate a certain
amount of water in its lattice along the subduction processes (Lin et al., 2019;
Litasov et al., 2007; Ohtani, 2020). As the slabs reach the 660-km boundary
layer in some subduction regions, dehydration-induced partial melting can
occur in the shallow lower mantle (Liu et al., 2016; Schmandt et al., 2014)
and produce Al-bearing stishovite with approximately 700 wt. ppm H,O
(Amulele et al., 2021). Our Al,H-bearing stishovite can contain 0.25 and 0.27
wt% H,O with an Al:H ratio close to 2:1 (Figure 1d). Using 2:1 for the Al:H
ratio in natural stishovite in a typical MORB composition, stishovite with
1.3 mol% Al,O, would contain approximately 0.65 mol% H (or 0.3 wt% H,0)
in the upper part of the lower mantle. The 0.3 wt% H,O in stishovite is signif-
icantly larger than the water solubility of ~0.1 wt% in other MORB compo-
nents such as Bgm and NAL phase (Fu et al., 2019; Wu et al., 2016), making
the ALH-bearing stishovite a plausible water carrier along the subduction
slabs into the lower mantle.

Previous studies have showed that hydration in stishovite can significantly
enhance its electrical conductivity by two orders of magnitude at 12 GPa
and high temperature (Yoshino et al., 2014). Electromagnetic observations of
high electrical conductivity regions along circum-Pacific subducting slabs in
the shallow lower mantle (Kelbert et al., 2009) may be interpreted as a result
of the presence of hydrated silica-rich materials.

We have studied the vibrational Raman modes and lattice parameters of two Al,H-bearing stishovite crystals,
Al1.3-Si0, with 0.55 mol% H and Al2.1-SiO, with 0.59 mol% H, across the post-stishovite transition at high
pressure. The experimental results are used to evaluate the Al and Al/H substitutional effects on the post-stisho-

vite phase boundary and the elasticity across the post-stishovite transition. Landau theory modeling of the exper-

imental data is used to derive the transition pressure and full elasticity across the transition, where the soft B,

mode becomes the hard A, mode, the a axis splits into the a and b axis, the (C},-C},)/2 approaches zero, and the

V, displays —29% softening. The Al and H incorporation reduces the transition pressure to 21.1 GPa in All.3-
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Si0, and 16.1 GPa in Al2.1-SiO,. We have modeled high P-T phase boundary and elasticity of stishovite and
post-stishovite for a MORB mineralogy with 20 vol% stishovite. For a typical MORB composition where stisho-
- may 1N sSubducted

MORB at 1064 km depth. These results help explain depth-dependent V anomaly distributions of some regional

vite is expected to contain 1.3 mol% Al, the post-stishovite transition can cause for —7(4)% dV

small-scale scatterers especially for the S-to-P scattering along the Tonga subduction region. The AL H-bear-
ing stishovite can also accommodate approximately 0.3 wt% H,O via the coupled substitution mechanism of
AIP* + H* < Si** in the upper part of the lower mantle. The lattice-bonded water is expected to remain stable in
the post-stishovite phase. The water in stishovite and post-stishovite phases could affect electrical conductivity
of silica-rich materials in the region.
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