
Sharpened Quasi-Newton Methods: Faster Superlinear Rate

and Larger Local Convergence Neighborhood

Qiujiang Jin 1 Alec Koppel 2 Ketan Rajawat 3 Aryan Mokhtari 1

Abstract

Non-asymptotic analysis of quasi-Newton meth-

ods have gained traction recently. In particular,

several works have established a non-asymptotic

superlinear rate of O((1/
√
t)t) for the (classic)

BFGS method by exploiting the fact that its error

of Newton direction approximation approaches

zero. Moreover, a greedy variant of BFGS was

recently proposed which accelerates its conver-

gence by directly approximating the Hessian, in-

stead of the Newton direction, and achieves a fast

local quadratic convergence rate. Alas, the local

quadratic convergence of Greedy-BFGS requires

way more updates compared to the number of iter-

ations that BFGS requires for a local superlinear

rate. This is due to the fact that in Greedy-BFGS

the Hessian is directly approximated and the New-

ton direction approximation may not be as accu-

rate as the one for BFGS. In this paper, we close

this gap and present a novel BFGS method that

has the best of both worlds in that it leverages the

approximation ideas of both BFGS and Greedy-

BFGS to properly approximate the Newton di-

rection and the Hessian matrix simultaneously.

Our theoretical results show that our method out-

performs both BFGS and Greedy-BFGS in terms

of convergence rate, while it reaches its quadratic

convergence rate with fewer steps compared to

Greedy-BFGS. Numerical experiments on various

datasets also confirm our theoretical findings.

1Department of Electrical and Computer Engineering, The Uni-
versity of Texas at Austin, Austin, TX, USA. 2Amazon, Bellevue,
WA, USA. 3Department of Electrical Engineering, Indian Institute
of Technology Kanpur, Kanpur, UP, INDIA. Correspondence to:
Qiujiang Jin <qiujiang@austin.utexas.edu>.

Proceedings of the 39
th International Conference on Machine

Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

1. Introduction

In this paper, we focus on the use of quasi-Newton methods

to solve the following unconstrained problem

min
x∈Rd

f(x), (1)

where f : Rd → R is strongly convex and its gradient is

Lipschitz continuous; see details in Section 3.2. We denote

the unique optimal solution of (1) by x∗.

First-order algorithms, i.e., gradient-based methods, are

widely used for solving (1), and it is well-known that their

iterates converge to x∗ at a linear rate (i.e., the error de-

cays exponentially fast). A major advantage of first-order

methods is their low computational cost of O(d), where d is

the problem dimension. However, the convergence rate of

these methods depends on the problem curvature and hence

they could be slow in ill-conditioned problems. Second-

order methods that leverage the objective function Hessian

to improve their curvature estimation often arise as a natural

alternative to accelerate convergence in ill-posed problems,

and they achieve fast local convergence rates (Bennett, 1916;

Ortega & Rheinboldt, 1970; Conn et al., 2000; Nesterov &

Polyak, 2006). Specifically, Newton’s method achieves a

local quadratic convergence rate when applied to solve (1)

with the additional assumption that the Hessian is Lipschitz

(Boyd & Vandenberghe, 2004, Chapter 9). A major obstacle

in the implementation of Newton’s method though is its

requirement to solve a linear system at each iteration, which

makes its computational cost O(d3).

Quasi-Newton (QN) methods serve as a middle ground be-

tween first- and second-order methods, as they improve

the linear rate of first-order methods and converge superlin-

eraly, and simultaneously their computation cost is O(d2)
which improves the O(d3) cost of Newton-type methods.

Their main idea is to construct a positive definite matrix

that approximates the Hessian required in Newton’s method.

Since the update of Hessian approximation matrix in QN

methods only requires a set of matrix-vector multiplications,

their computational cost per iteration is O(d2). There are

several types of QN methods that differ in their Hessian ap-

proximation updates, including Symmetric Rank-One (SR1)

method (Conn et al., 1991), the Broyden method (Broy-

Sharpened Quasi-Newton Methods

Algorithm Superlinear Rate t0

Standard BFGS (d lnκ
t

)
t
2 d lnκ

Greedy-BFGS
(

dκ(1− 1
dκ

)
t
2

)t

dκ ln (dκ)

Sharpened-BFGS (1− 1
dκ

)
t(t−1)

4 (dκ
t
)

t
2 dκ

Table 1. Convergence rate comparison of different variants of

BFGS, where d is the dimension, κ is the condition number and t0
is the time index at which the superlinear convergence begins.

where ηt > 0 is the step size (learning rate) and Gt ∈ R
d×d

is the matrix approximating the Hessian ∇2f(xt) ∈ R
d×d.

In general, ηt is determined by some line search algorithms

so that the iteration generated converge to the optimal so-

lution globally. In this paper, we focus on the local conver-

gence analysis of QN algorithms, which requires the use of

a unit step size ηt = 1. Hence, in the rest of the paper, we as-

sume that the iterates {xt}∞t=1 stay in a local neighborhood

of x∗ and ηt = 1 is always admissible.

2.1. BFGS Operator and Algorithm

The essence of a QN method is its update for the Hessian ap-

proximation matrixGt. There are various ways for updating

Gt, but in this paper we focus on the BFGS method. Before

stating the BFGS method, we first introduce it as an algo-

rithm for approximating linear operators. This perspective

turns out to be advantageous for unifying it with its greedy

variant. To do so, consider A ∈ R
d×d as a positive defi-

nite linear operator, and suppose G ∈ R
d×d is the operator

that approximates A and is updated according to the BFGS

update. Then, the BFGS update rule for approximating

operator A along the direction u ∈ R
d\{0} is

BFGS(A,G, u) = G+ := G−Guu⊤G

u⊤Gu
+
Auu⊤A

u⊤Au
. (3)

Note that this update tries to move from G to G+ in a way

that operators A and G+ are equal to each other in the

direction of vector u, i.e., Au = G+u.

Remark 2.1. As noted in (2), we need to compute the in-

verse of the Hessian approximation matrix at each step.

Hence, we need a direct update for the Hessian inverse ap-

proximation matrices. By exploiting the Sherman-Morrison-

Woodbury formula, one can show that the Hessian inverse

approximation matrix H = G−1 update can be written as

H+ =

(

I − uu⊤A

u⊤Au

)

H

(

I − Auu⊤

u⊤Au

)

+
uu⊤

u⊤Au
. (4)

Hence, the computational cost of BFGS is O(d2), as it only

requires computation of matrix-vector multiplication.

When we focus on minimizing a function and the ultimate

linear operator that we aim to approximate is its curva-

ture, then we select the direction as u = xt+1 − xt and

the desired operator as the average Hessian A = Jt :=
∫ 1

0
∇2f(xt + τ(xt+1 − xt))dτ . This way we ensure that

the new Hessian approximation matrix Gt+1 satisfies the

secant condition, i.e.,

Gt+1(xt+1−xt) = Jt(xt+1−xt) = ∇f(xt+1)−∇f(xt),

If we define the variable and gradient differences as

st := xt+1 − xt, yt := ∇f(xt+1)−∇f(xt), (5)

then the classic BFGS update is equivalent to

Gt+1 = Gt −
Gtsts

⊤
t Gt

s⊤t Gtst
+
yty

⊤
t

s⊤t yt
. (6)

A major advantage of the BFGS update in (6) is that it forces

the new Hessian approximation matrix Gt+1 to satisfy the

secant condition, which implies Gt+1st = yt. This condi-

tion ultimately ensures that the BFGS direction G−1
t ∇f(xt)

approaches the Newton direction ∇2f(xt)
−1∇f(xt); see

Chapter 6 of (Nocedal & Wright, 2006) for details.

2.2. Greedy-BFGS Algorithm

As mentioned in the previous section, BFGS does a good a

job in approximating the Newton direction, but its Hessian

approximation may not approach the true Hessian. To be

precise, consider the following metric which captures the

difference between positive definite matrices A,G ∈ R
d×d

σ(A,G) := Tr(A−1G)− d, (7)

where Tr(X) is the trace of matrix X , i.e., the sum of the

diagonal elements of X . Note that if A ⪯ G, we can use

σ(A,G) as a potential function that measures the distance

between two matrices A and G. Note that σ(A,G) = 0 if

and only if A = G. Using the above potential function, in

the next lemma, we state the error of Hessian approximation

for the BFGS operator in (3). The proof can be found in

(Rodomanov & Nesterov, 2021a).

Lemma 2.1. Consider positive definite matrices A,G ∈
R

d×d and suppose that G+ = BFGS(A,G, u) as defined

in (3) and u ∈ R
d\{0}. If A ⪯ G, then we have

σ(A,G)− σ(A,G+) ≥
u⊤Gu

u⊤Au
− 1. (8)

This result shows how fast the gap between the Hessian

approximation and the true Hessian decreases after one step

of BFGS. The result in Lemma 2.1 also shows that the

selection of direction u can influence the decrease in the

trace potential function σ(A,G) after one BFGS update.

Note that for an arbitrary direction u ∈ R
d\{0}, there is no

guarantee that the Hessian approximation matrix converges

Sharpened Quasi-Newton Methods

to the exact Hessian matrix. In fact, if we set u = x+ − x
as done in the classic BFGS update, there is no guarantee

that σ(A,G) converges to 0. This observation reveals the

following question: How can we select u to maximize the

progress in decreasing σ(A,G) and ensuring that σ(A,G)
converges to 0, i.e., G converges to A?

Rodomanov & Nesterov (2021a) answered this question by

proposing a greedy selection scheme for determination of

the best choice of u. To better explain this concept, consider

a quadratic problem, where the objective function Hessian is

fixed and denoted by the positive definite matrix A. In this

case, to maximize the right hand side of (8), which shows

the progress for the BFGS update, one could select u as

ū(A,G) := argmax
u∈{ei}d

i=1

u⊤Gu

u⊤Au
, (9)

where {ei} is the vector whose i-th element is 1 and its

remaining elements are 0. If we choose u = ū(A,G) in

each iteration of BFGS update (3), we obtain the Greedy-

BFGS algorithm in (Rodomanov & Nesterov, 2021a). The

advantage of this greedily selected is that it ensures the

trace potential function σ(A,G) is strictly decreasing and

converges to 0 linearly as specified in the following lemma.

Lemma 2.2 ((Rodomanov & Nesterov, 2021a)). Consider

positive definite matrices A,G ∈ R
d×d that satisfy A ⪯ G

and µI ⪯ A ⪯ LI , where 0 < µ ≤ L are two con-

stants. Suppose that Ḡ+ = BFGS(A,G, ū(A,G)) where

ū(A,G) ∈ R
d is greedily selected as defined in (9). Then,

σ(A, Ḡ+) ≤
(

1− µ

dL

)

σ(A,G). (10)

This result shows that by following the Greedy-BFGS up-

date the error of Hessian approximation, in terms of the met-

ric σ(., .) defined in (7), converges to zero linearly and even-

tually the sequence of Hessian approximations approaches

the true Hessian. Note that, for the non-quadratic case, a

similar argument holds, but the algorithm should be slightly

modified as the computation of the average Hessian Jt
is costly and instead one might use the current Hessian

∇2f(xt). We discuss this point in detail in the following

section, when we present our Sharpened-BFGS method.

3. Sharpened-BFGS

In this section, we propose the Sharpened-BFGS algorithm

which benefits from the update of BFGS for Newton di-

rection approximation and the Greedy-BFGS update to ap-

proximate the Hessian matrix. In a nutshell, the update of

Sharpened-BFGS first adjusts the Hessian approximation

according to the BFGS update by setting u = xt+1−xt, and

then improves the Hessian approximation by following the

greedy update, and selecting the vector u in a greedy fash-

ion. To introduce our method, we first focus on a quadratic

Algorithm 1 Sharpened-BFGS applied to (11).

Require: Initial point x0 and initial matrix G0 = LI .

1: for t = 0, 1, 2, . . . do

2: Update the variable: xt+1 = xt −G−1
t ∇f(xt);

3: Compute st = xt+1 − xt;
4: Compute Ḡt = BFGS(A,Gt, st);
5: Compute ū = ū(A, Ḡt) according to (9);

6: Compute Gt+1 = BFGS(A, Ḡt, ū);
7: end for

program where the Hessian is fixed. We then build on our

intuition from the quadratic case to develop the general

version of our method for the problem in (1).

3.1. Quadratic Programming

Consider a special case of (1) where the objective function

is quadratic and given by

min
x∈Rd

f(x) =
1

2
x⊤Ax+ b⊤x, (11)

where A ∈ R
d×d is a symmetric positive definite matrix

satisfying µI ⪯ A ⪯ LI and b ∈ R
d. The Sharpened-

BFGS algorithm applied to (11) is shown in Algorithm 1.

We observe that the proposed algorithm involves two BFGS

updates per iteration. Intuitively, we improve the Hessian

approximation along the classical BFGS direction and sub-

sequently along the Greedy-BFGS direction. Notice that the

initial Hessian approximation matrix is G0 = LI . Hence,

the initial Hessian inverse approximation matrix is simply

H0 = (1/L)I . For the quadratic problem, the sequence

generated by Sharpened-BFGS converges to the optimal so-

lution globally, as we show in Theorems 3.2 and 3.4. Hence,

the initial point x0 can be any vector in R
d.

To formally show how Sharpened-BFGS exploits the

fast properties of both BFGS and Greedy-BFGS, we

first define the Newton decrement as λf (x) :=
√

∇f(x)⊤∇2f(x)−1∇f(x). In our results, we report

convergence in terms of λf (x) and we use the notation

λt := λf (xt). We next state the following intermediate

result that shows for the class of quasi-Newton updates de-

fined in (2) (with step size η = 1) on a quadratic program,

how fast λf (x) converges to zero. The proof of this result

can be found in (Rodomanov & Nesterov, 2021b).

Lemma 3.1. Consider the quadratic function in (11) and

the sequence of iterates generated according to the update

in (2) with step size ηt = 1. Then, we have that

λt+1 = θ(A,Gt, xt+1 − xt)λt, (12)

where

θ(A,G, u) :=

(

u⊤(G−A)A−1(G−A)u

u⊤GA−1Gu

)

1
2

. (13)

Sharpened Quasi-Newton Methods

First, note that θ(A,G, u) captures the closeness of G and

A along the direction of u, where u ∈ R
d\{0}. The above

result shows that the contraction factor for the convergence

of the Newton decrement is related to the gap between

Gt(xt+1−xt) and A(xt+1−xt). In the following theorem,

we characterize a global upper bound on θ(A,Gt, xt+1−xt)
for the Sharpened-BFGS method.

Theorem 3.2. Consider the Sharpened-BFGS method in

Algorithm 1 applied to the quadratic problem (11). Then,

θ(A,Gt, xt+1 − xt) ≤ 1− µ

L
, ∀t ≥ 0, (14)

and therefore

λt ≤
(

1− µ

L

)t

λ0, ∀t ≥ 0. (15)

Proof. Check Appendix B.

The above result shows that the iterates generated by

Sharpened-BFGS converge to the solution at a linear rate

of 1 − µ/L. However, this is not a tight bound and sim-

ply follows from the fact that eigenvalues of Gt and A are

uniformly bounded. In the next lemma, we present that

the sequence θ(A,Gt, xt+1 − xt) eventually approaches

zero and hence the iterates of Sharpened-BFGS converge

superlinearly.

Lemma 3.3. Consider Sharpened-BFGS in Algorithm 1

applied to the quadratic function (11). Further, define θt :=
θ(A,Gt, xt+1 − xt) and σt := σ(A,Gt). Then,

σt+1 ≤
(

1− µ

dL

)

(

σt − θ2t
)

(16)

for any t ≥ 0. Moreover, we have

t−1
∑

i=0

θ2i
(1− µ

dL
)i

≤ σ0, ∀t ≥ 1. (17)

Proof. Check Appendix C.

First, note that (16) shows that in Sharpened-BFGS σt con-

verges to zero as in the Greedy-BFGS algorithm. Moreover

comparing the bound in (16) with the one in (10) shows

that in Sharpened-BFGS σt converges faster than Greedy-

BFGS, as θ2t > 0. Second, the result in (17) shows that

the sequence θt converges to zero. Hence, one can leverage

this result to show a tighter upper bound for θt compared to

the one in (14) and show a faster rate than the one in (15)

for the Sharpened-BFGS. This goal is accomplished in the

following Theorem.

Theorem 3.4. Consider Sharpened-BFGS described in Al-

gorithm 1 applied to the quadratic function (11). Then, for

t ≥ 1 we have

λt ≤
(

1− µ

dL

)

t(t−1)
4

(

dL

tµ

)
t
2

λ0. (18)

Algorithm 2 General Sharpened-BFGS

Require: Initial point x0 and initial matrix G0 = LI .

1: for t = 0, 1, 2, . . . do

2: Update xt+1 = xt −G−1
t ∇f(xt);

3: Compute st = xt+1 − xt;

4: Set Jt =
∫ 1

0
∇2f(xt + τst)dτ ;

5: Compute Ḡt = BFGS(Jt, Gt, st);
6: Compute rt = ∥xt+1 − xt∥xt

;

7: Compute Ĝt = (1 +Mrt/2)
2Ḡt;

8: Compute ū = ū(∇2f(xt+1), Ĝt) according to (9);

9: Compute Gt+1 = BFGS(∇2f(xt+1), Ĝt, ū);
10: end for

Proof. Check Appendix D.

If we analyze the superlinear convergence rate in (18), we

observe that there are two terms that contribute to the rate.

The first is the quadratic rate (1 − µ
dL

)
t(t−1)

4 and the sec-

ond is (dL
tµ
)

t
2 . Notice that for the second term (dL

tµ
)

t
2 , the

superlinear convergence kicks in only after t ≥ dL
µ

. Hence,

by combining the results of Theorem 3.2 and 3.4, we ob-

tain that during the initial iterations t < dL
µ

Sharpened-

BFGS converges linearly and for t > dL
µ

the rate becomes

faster than quadratic rate and λt approaches zero at a rate of

O((1− µ
dL

)t
2

(dL
µt
)t).

3.2. General Strongly-Convex and Smooth Setting

In this section, we extend our algorithm and its analysis to

non-quadratic convex programs. To do so, We first state the

required assumptions on the objective function to establish

the superlinear convergence rate of Sharpened-BFGS.

Assumption 3.1. The objective function f is twice differen-

tiable. It is strongly convex with parameter µ > 0 and its

gradient ∇f is Lipschitz continuous with parameter L > 0.

Assumption 3.2. The objective function f is strongly self-

concordant with M > 0, i.e., for any x, y, z, w ∈ R
d, we

have ∇2f(y) − ∇2f(x) ⪯ M∥y − x∥z∇2f(w), where

∥y − x∥z :=
√

(y − x)⊤∇2f(z)(y − x).

The strongly self-concordant functions form a subclass of

the famous self-concordant functions class introduced in

(Nesterov, 1989; Nesterov & Nemirovskii, 1994), which

plays a fundamental role in the local analysis of Newton’s

method. The concept of strong self-concordance was first

proposed by Rodomanov & Nesterov (2021a) to establish

the explicit quadratic convergence rate of the greedy QN

method. Note that a strongly convex function with Lips-

chitz continuous Hessian is strongly self-concordant; see

Example 4.1 in (Rodomanov & Nesterov, 2021a).

The general Sharpened-BFGS method is presented in Al-

gorithm 2. We observe that Algorithm 2 is fundamentally

Sharpened Quasi-Newton Methods

similar to the Algorithm 1 for the quadratic case, but there

are still some differences between them. In general, similar

to Algorithm 1, we first update the Hessian approxima-

tion matrix along the standard BFGS direction and then

along the Greedy-BFGS direction. The only difference be-

tween Algorithm 1 and 2 is that we add the correction term

rt = ∥xt+1−xt∥xt
in Steps 6 and 7 of Algorithm 2. The rea-

son for this modification is that the trace potential function

σ(A,G) is only well-defined under the condition A ⪯ G.

Suppose currently the condition ∇2f(x) ⪯ G holds. We

add the correction term to ensure that after one BFGS up-

date, the new point x+ and the new Hessian approximation

matrixG+ still satisfy the condition ∇2f(x+) ⪯ G+. Since

the Hessian of the general convex function is not fixed, there

is no guarantee that the quasi-Newton update can preserve

the property of ∇2f(x) ⪯ G without that correction term.

The initial Hessian approximation matrix is still G0 = LI .

We should also add that Step 4 does not require computing

Jt =
∫ 1

0
∇2f(xt + τst)dτ explicitly. As we discussed in

Section 2.1, we can compute the standard BFGS update in

Step 5 according to (6).

Remark 3.1. The computational cost per iteration of Algo-

rithm 1 is O(d2). The difference between Algorithm 2 and 1

is in Steps 6 and 7 of Algorithm 2. The computational cost

of calculating the vector rt = ∥xt+1−xt∥xt
and the matrix

Ĝt = (1+Mrt/2)
2Ḡt is also O(d2). Hence, the computa-

tional cost per iteration of Algorithm 2 is also O(d2).

The convergence rate analysis of the Sharpened-BFGS

method is inspired by the counterpart of the quadratic func-

tion, but there are still some differences between these two

analyses as we need to take into account the variation of the

Hessian for the non-quadratic case. Most importantly, for

the general (non-quadratic) case, we can only obtain local

convergence results as we state in Theorems 3.6 and 3.8. In

other words, the initial point x0 should be within a local

neighborhood of the optimal solution x∗ to guarantee the

convergence of Sharpened-BFGS. Similar to Section 3.1, we

first establish the relationship between θ defined in (13) and

the Newton decrement λf (x) after one iteration of quasi-

Newton update for minimizing a general convex function.

The proof can be found in (Rodomanov & Nesterov, 2021b).

Lemma 3.5. Consider problem (1) and suppose Assump-

tions 3.1±3.2 are satisfied. Then, the iterates xt generated

according to the update in (2) with step size ηt = 1 satisfy

λt+1 ≤
(

1 +
Mrt
2

)

θ(Jt, Gt, xt+1 − xt)λt, (19)

where Jt :=
∫ 1

0
∇2f(xt + τ(xt+1 − xt))dτ and rt :=

∥xt+1 − xt∥xt
.

Notice that the above lemma is in parallel to Lemma 3.1 for

the quadratic case. Now, we establish a local upper bound

for the measurement θ(Jt, Gt, xt+1−xt) and prove the local

linear convergence rate of the general Sharpened-BFGS

method, which is similar to the results in Theorem 3.2.

Theorem 3.6. Consider Sharpened-BFGS in Algorithm 2

applied to the objective function f satisfying Assumption 3.1

and 3.2. Moreover, suppose that the initial point x0 satisfies

λ0 ≤ C0µ

ML
, (20)

where C0 = 1
4 ln

3
2 . Then, for any t ≥ 0 we have

θ(Jt, Gt, xt+1 − xt) ≤ 1− 2µ

3L
, (21)

which leads to

λt ≤ (1− µ

2L
)tλ0. (22)

Proof. Check Appendix E.

The above theorem presents that in a local neighborhood of

the optimal solution, the iterates generated by Sharpened-

BFGS achieve a linear convergence rate of 1−µ/2L, which

is obtained by a loose bound on θt. As mentioned in Sec-

tion 3.1, our ultimate target is to improve this to the superlin-

ear rate. In the following lemma, we establish inequalities

similar to (16) and (17) to establish a superlinear conver-

gence rate for Sharpened-BFGS.

Lemma 3.7. Consider Sharpened-BFGS in Algorithm 2 ap-

plied to the objective function f satisfying Assumptions 3.1

and 3.2. Moreover, suppose that the initial point x0 satisfies

λ0 ≤ C0µ

ML
, (23)

where C0 = 1
4 ln

3
2 . Further, consider the definitions θt :=

θ(∇2f(xt), Gt, xt+1 − xt) and σt := σ(∇2f(xt), Gt).
Then, for any t ≥ 0 it holds that

σt+1 ≤ (1− µ

2dL
)

[

(1 +
Mλt
2

)4(σt + 4Mdλt)−
1

4
θ2t

]

.

(24)

Moreover, we have

t−1
∑

i=0

θ2i
(1− µ

2dL)
i
≤ 8(σ0 + 4Mdλ0), ∀t ≥ 1. (25)

Proof. Check Appendix F.

The conclusions of the above lemma are similar to the ones

for the quadratic case in Lemma 3.3, except that a local

condition is required. Specifically, the result in (24) implies

that in Sharpened-BFGS σt converges to zero as long as

λ0 is sufficiently small. Similarly this rate is faster than

the one for Greedy-BFGS as θ2t > 0. Second, the result

Sharpened Quasi-Newton Methods

in (25) implies that the sequence θt converges to zero at

a fast rate as its weighted sum by a factor larger than 1
that is exponentially growing is finite. Hence, locally this

result provides a tighter upper bound on θt compared to

the one in (21) and shows a faster rate than the one in (22)

for Sharpened-BFGS. We leverage these points to establish

the convergence rate of Sharpened-BFGS for non-quadratic

problems.

Theorem 3.8. Consider the Sharpened-BFGS method in

Algorithm 2 applied to the objective function f satisfying

Assumptions 3.1-3.2. Suppose the initial point x0 satisfies

λ0 ≤ C1µ

dML
, (26)

where C1 = ln 2
20 . Then, ∀t ≥ 1, we have

λt ≤ 2
(

1− µ

2dL

)

t(t−1)
4

(

8dL

tµ

)
t
2

λ0. (27)

Proof. Check Appendix G.

We observe that the superlinear convergence rate of The-

orem 3.8 is very similar to the result of Theorem 3.4. As

we discussed in the last paragraph of Section 3.1, we can

summarize the Theorem 3.6 and 3.8 into one convergence re-

sult. Hence, the iteration generated by the Sharpened-BFGS

method applied to the unconstrained optimization problem

as specified in Algorithm 2 satisfies the following local con-

vergence rate. When the iteration number t ≤ Θ(dL
µ
), the

linear convergence rate in (21) holds. When t ≥ Θ(dL
µ
),

we can reach the superlinear convergence rate in (27).

4. Discussions

In this section, we compare the convergence results of

Sharpened-BFGS with the ones for Greedy-BFGS and stan-

dard BFGS. We specifically focus on the case that the objec-

tive function satisfies Assumption 3.1 and 3.2. To simplify

the comparisons, we replace all the universal constants with

1 in the convergence results and only compare the parame-

ters µ, L, M and d defined in Assumption 3.1 and 3.2. We

denote the condition number by κ = L/µ ≥ 1.

Sharpened-BFGS. According to our result, if we set G0 =
LI and the initial point x0 satisfies

λf (x0) = O
(

1

dMκ

)

,

then the iterates generated by Sharpened-BFGS satisfy:

λf (xt)

λf (x0)
≤ min







(

1− 1

κ

)t

,

(

1− 1

dκ

)

t(t−1)
4
(

dκ

t

)
t
2







.

Hence, for t < dκ, the first upper bound is smaller and the

Newton decrement converges at a linear rate of (1 − 1
κ
)t,

and for t ≥ dκ the second term becomes smaller and we

observe a superlinear rate of (1− 1
dκ

)
t(t−1)

4 (dκ
t
)

t
2 , which is

faster than quadratic rate.

Greedy-BFGS. Next, we present the convergence result for

Greedy-BFGS in (Rodomanov & Nesterov, 2021a). If we

set G0 = LI and the initial point x0 satisfies

λf (x0) = O
(

1

dMκ

)

,

then the iterates of Greedy-BFGS satisfy:

λf (xt)

λf (x0)
≤ min







(

1− 1

κ

)t

,

(

1− 1

dκ

)

t(t−1)
2
(

1

2

)t







.

We observe that the superlinear convergence appears

after dκ ln (dκ) iterations for Greedy-BFGS, while for

Sharpened-BFGS it takes dκ steps to reach the superlinear

convergence. Hence, Sharpened-BFGS achieves the super-

linear rate with fewer iterations compared to Greedy-BFGS.

Moreover, eventually the superlinear convergence rate of

Sharpened-BFGS is faster than the one for Greedy-BFGS.

This is because both of the methods achieve a quadratic

convergence rate of the form (1− 1
dκ

)t
2

. However, when t

is sufficiently large, we have (dκ
t
)

t
2 ≪ (12)

t.

BFGS. Now, we present the convergence result for BFGS

provided in (Rodomanov & Nesterov, 2021c). If we set

G0 = LI and the initial point x0 satisfies

λf (x0) = max

{

O
(

1

Mκ

)

,O
(

1

Md lnκ

)}

,

then the iterates of BFGS satisfy:

λf (xt)

λf (x0)
≤ min

{

(

1− 1

κ

)t

,

(

d lnκ

t

)
t
2

}

.

We observe that the superlinear convergence of BFGS starts

after d lnκ steps, while it takes dκ iterations for the appear-

ance of the superlinear convergence of Sharpened-BFGS.

However, the superlinear convergence rate of Sharpened-

BFGS is faster than BFGS as for large t we have

(

1− 1

dκ

)

t(t−1)
4
(

dκ

t

)
t
2

≪
(

d lnκ

t

)
t
2

.

For the broad strokes, see the quantitative comparisons sum-

marized in Table 1.

Sharpened Quasi-Newton Methods

Dataset N d µ

svmguide3 1243 21 0.01

phishing 11055 68 0.001

mushrooms 8124 112 0.001

a9a 32561 123 0.001

connect-4 67557 126 0.0001

w8a 49749 300 0.0001

protein 17766 357 0.0001

colon-cancer 62 2000 0.00001

gisette 6000 5000 0.00001

Table 2. Sample size N , dimension d, regularization parameter µ.

1⃗ ∈ R
d is the one vector. We set the initial Hessian approx-

imation matrix as LI and set the stepsize to 1 for all QN

methods. The step size of gradient descent is set as 1/L
to achieve its linear convergence rate on each dataset. In

practice, we found it is better not to apply the correction

strategy in the hybrid and greedy methods (i.e., simply set

Ĝt = Ḡt in step 7 of Algorithm 2). The convergence rates

of the ratio λf (xt)/λf (x0) versus the number of iterations

t are presented in Figure 2.

We observe that Sharpened-BFGS outperforms both the clas-

sical and greedy BFGS methods. More specifically, in the

initial phase of the convergence process, Sharpened-BFGS

exploits the Newton direction approximation of BFGS and

has a fast convergence like BFGS, while Greedy-BFGS

has a slower convergence at the beginning as it Hessian ap-

proximation is not accurate yet. Then, once the time index

increases and almost approaches d, and d greedy updates

are accomplished, the Hessian approximation of Greedy-

BFGS becomes more accurate. As a result, Greedy-BFGS

achieves a very fast convergence rate at this turning point.

Similarly, Sharpened-BFGS follows the same fast conver-

gence of Greedy-BFGS almost at the same time index, as

it also exploits the Hessian approximation update rule in

Greedy-BFGS. This behavior is consistent over all the con-

sidered datasets in our experiments, as illustrated in Figure 2.

We should also add that these empirical observations are

consistent with our theoretical findings and the performance

comparisons of these algorithms in Section 4.

6. Conclusions

In this paper, we proposed a novel quasi-Newton method

called Sharpened-BFGS for solving unconstrained con-

vex optimization problems, where the objective function

is strongly convex with µ, its gradient is smooth with L,

and it is strongly self-concordant with M . Sharpened-

BFGS benefits from the Newton direction approximation

of BFGS as well as Hessian approximation of Greedy-

BFGS. Using these properties, we proved that the proposed

Sharpened-BFGS achieves a superlinear convergence rate of

O((1− µ
dL

)
t(t−1)

4 (dL
tµ
)

t
2), which is faster than quadratic rate.

We also compared the convergence results of our method

with the classical BFGS and Greedy-BFGS methods and

highlighted how Sharpened-BFGS takes advantage of the

Newton direction approximation in BFGS and the Hessian

approximation in Greedy-BFGS. We also numerically illus-

trated the advantages of our proposed method against BFGS

and Greedy-BFGS.

Acknowledgement

This research of Q. Jin and A. Mokhtari is supported in

part by NSF Grants 2007668, 2019844, and 2112471, ARO

Grant W911NF2110226, the Machine Learning Lab (MLL)

at UT Austin, and the Wireless Networking and Communi-

cations Group (WNCG) Industrial Affiliates Program.

References

Bennett, A. A. Newton’s method in general analysis. Pro-

ceedings of the National Academy of Sciences of the

United States of America, 2(10):592, 1916.

Boyd, S. and Vandenberghe, L. Convex Optimization. Cam-

bridge University Press, New York, NY, USA, 2004.

Broyden, C. G. A class of methods for solving nonlinear

simultaneous equations. Mathematics of computation, 19

(92):577±593, 1965.

Broyden, C. G. The convergence of single-rank quasi-

Newton methods. Mathematics of Computation, 24(110):

365±382, 1970.

Broyden, C. G., Jr., J. E. D., Broyden, and More, J. J. On

the local and superlinear convergence of quasi-Newton

methods. IMA J. Appl. Math, 12(3):223±245, June 1973.

Conn, A. R., Gould, N. I. M., and Toint, P. L. Convergence

of quasi-Newton matrices generated by the symmetric

rank one update. Mathematical programming, 50(1-3):

177±195, 1991.

Conn, A. R., Gould, N. I., and Toint, P. L. Trust region

methods, volume 1. Siam, 2000.

Davidon, W. Variable metric method for minimization.

Technical report, Argonne National Lab., Lemont, Ill.,

1959.

Fletcher, R. A new approach to variable metric algorithms.

The computer journal, 13(3):317±322, 1970.

Fletcher, R. and Powell, M. J. A rapidly convergent descent

method for minimization. The computer journal, 6(2):

163±168, 1963.

Sharpened Quasi-Newton Methods

Gay, D. M. Some convergence properties of Broyden’s

method. SIAM Journal on Numerical Analysis, 16(4):

623±630, 1979.

Goldfarb, D. A family of variable-metric methods derived

by variational means. Mathematics of computation, 24

(109):23±26, 1970.

Jin, Q. and Mokhtari, A. Non-asymptotic superlinear conver-

gence of standard quasi-newton methods. arXiv preprint

arXiv:2003.13607, 2020.

Lin, D., Ye, H., and Zhang, Z. Explicit superlinear conver-

gence of broyden’s method in nonlinear equations. arXiv

preprint arXiv:2109.01974, 2021a.

Lin, D., Ye, H., and Zhang, Z. Greedy and random quasi-

newton methods with faster explicit superlinear conver-

gence. Advances in Neural Information Processing Sys-

tems 34, 2021b.

Liu, D. C. and Nocedal, J. On the limited memory BFGS

method for large scale optimization. Mathematical pro-

gramming, 45(1-3):503±528, 1989.

Nesterov, J. E. Self-concordant functions and polynomial-

time methods in convex programming. Report, Central

Economic and Mathematic Institute, USSR Acad. Sci,

1989.

Nesterov, Y. and Nemirovskii, A. Interior-point polynomial

algorithms in convex programming. SIAM, 1994.

Nesterov, Y. and Polyak, B. T. Cubic regularization of New-

ton method and its global performance. Mathematical

Programming, 108(1):177±205, 2006.

Nocedal, J. Updating quasi-Newton matrices with limited

storage. Mathematics of computation, 35(151):773±782,

1980.

Nocedal, J. and Wright, S. Numerical optimization. Springer

Science & Business Media, 2006.

Ortega, J. M. and Rheinboldt, W. C. Iterative solution

of nonlinear equations in several variables, volume 30.

Siam, 1970.

Rodomanov, A. and Nesterov, Y. Greedy quasi-newton

methods with explicit superlinear convergence. SIAM

Journal on Optimization, 31(1):785±811, 2021a.

Rodomanov, A. and Nesterov, Y. Rates of superlinear con-

vergence for classical quasi-newton methods. Mathemati-

cal Programming, pp. 1±32, 2021b.

Rodomanov, A. and Nesterov, Y. New results on superlinear

convergence of classical quasi-newton methods. Journal

of Optimization Theory and Applications, 188(3):744±

769, 2021c.

Shanno, D. F. Conditioning of quasi-Newton methods for

function minimization. Mathematics of computation, 24

(111):647±656, 1970.

Ye, H., Lin, D., Zhang, Z., and Chang, X. Explicit su-

perlinear convergence rates of the sr1 algorithm. arXiv

preprintarXiv:2105.07162, 2021.

Sharpened Quasi-Newton Methods

Appendix

A. Preliminary Lemmas

In this subsection, we develop some technical preliminaries which are critical in the path towards establishing our main

convergence results. We begin with the following lemma regarding the BFGS operator defined in Sec. 2.1

Lemma A.1. Consider positive definite matrices A,G ∈ R
d×d and suppose that G+ = BFGS(A,G, u) as defined in (3)

for any u ∈ R
d\{0}. Then, the following results hold:

1. For any constants ξ, η ≥ 1, we have

1

ξ
A ⪯ G ⪯ ηA ⇒ 1

ξ
A ⪯ G+ ⪯ ηA. (29)

2. If A ⪯ G, then we have

σ(A,G)− σ(A,G+) ≥ θ2(A,G, u). (30)

3. If 1
ξ
A ⪯ G and θ(A,G, u) ≤ ξ, where ξ ≥ 1 is a constant, then

σ(A,G)− σ(A,G+) ≥
1

4ξ2
θ2(A,G, u)− ln ξ. (31)

Proof. Check Lemma 2.1 in (Rodomanov & Nesterov, 2021b) for the proof of (29) and check Lemma 2.2 in (Rodomanov &

Nesterov, 2021b) for the proof of (30). Now we prove (31). We denote Det(A) as the determinant of the matrix A ∈ R
d×d.

Applying results of Lemma 2.4 in (Rodomanov & Nesterov, 2021b), we obtain that

ψ(A,G)− ψ(A,G+) ≥ ω(
θ(A,G, u)

ξ
), (32)

where

ψ(A,G) := Tr(A−1(G−A))− lnDet(A−1G) = σ(A,G)− lnDet(A−1G), (33)

and

ω(t) := t− ln(1 + t), ∀t ≥ −1. (34)

Thus, we obtain that

ψ(A,G)− ψ(A,G+) = σ(A,G)− σ(A,G+)− lnDet(A−1G) + lnDet(A−1G+)

= σ(A,G)− σ(A,G+) + lnDet(G−1G+).
(35)

From Lemma 6.2 of (Rodomanov & Nesterov, 2021b), we have that

Det(G−1G+) =
u⊤Au

u⊤Gu
. (36)

Hence, we get that

ψ(A,G)− ψ(A,G+) = σ(A,G)− σ(A,G+) + ln
u⊤Au

u⊤Gu
. (37)

Substituting (37) into the (32), we obtain that

σ(A,G)− σ(A,G+) ≥ ω(
θ(A,G, u)

ξ
)− ln

u⊤Au

u⊤Gu
. (38)

Notice that the function ω(t) satisfies the following property,

ω(t) ≥ t2

2(t+ 1)
, ∀t ≥ 0. (39)

Sharpened Quasi-Newton Methods

Thus, we derive that

ω(
θ(A,G, u)

ξ
) ≥ θ2(A,G, u)/ξ2

2(θ(A,G, u)/ξ + 1)
=

θ2(A,G, u)

2ξ(θ(A,G, u) + ξ)
≥ θ2(A,G, u)

4ξ2
, (40)

where the second inequality is due to the condition θ(A,G, u) ≤ ξ. From condition 1
ξ
A ⪯ G, we know that for any

u ∈ R
d\{0}

u⊤Au

u⊤Gu
≤ ξ. (41)

Substituting (40) and (41) into (38), we achieve conclusion (31).

In the following lemma, we show that the Hessians of the strongly self-concordant function at two different points.

Lemma A.2. Suppose the objective function f(x) is strongly self-concordant with constant M > 0. Consider x, y ∈ R
d,

r = ∥y − x∥x and J =
∫ 1

0
∇2f(x+ τ(y − x))dτ . Then, we have that

∇2f(x)

1 +Mr
⪯ ∇2f(y) ⪯ (1 +Mr)∇2f(x). (42)

∇2f(x)

1 + Mr
2

⪯ J ⪯ (1 +
Mr

2
)∇2f(x). (43)

∇2f(y)

1 + Mr
2

⪯ J ⪯ (1 +
Mr

2
)∇2f(y). (44)

Proof. Check Lemma 4.2 in (Rodomanov & Nesterov, 2021a).

Lemma A.3. Suppose the objective function f(x) satisfies the Assumption 3.1 and 3.2. Consider the following update

xt+1 = xt −G−1
t ∇f(xt), (45)

where Gt ∈ R
d×d is the s.p.d. Hessian approximation matrix satisfying that

∇2f(xt) ⪯ Gt ⪯ η∇2f(xt), (46)

where η ≥ 1 is some constant. Suppose the following condition holds

Mλt ≤ 2. (47)

Denote that rt = ∥xt+1 − xt∥xt
and Jt =

∫ 1

0
∇2f(xt + τ(xt+1 − xt))dτ . Then, we have

rt ≤ λt, (48)

θ(Jt, Gt, xt+1 − xt) ≤
η − 1 + Mλt

2

η
. (49)

Proof. From (45), we have that

rt = ∥xt+1 − xt∥xt
=
(

∇f(xt)⊤G−1
t ∇2f(xt)G

−1
t ∇f(xt)

)
1
2

≤
(

∇f(xt)⊤G−1
t ∇f(xt)

)
1
2 ≤

(

∇f(xt)⊤∇2f(xt)
−1∇f(xt)

)
1
2

= λt,

(50)

where the inequalities hold due to (46). Therefore, (48) holds. Now we condition (49). Using (46) and (43) of Lemma A.2,

we obtain that
1

1 + Mrt
2

Jt ⪯ ∇2f(xt) ⪯ Gt ⪯ η∇2f(xt) ⪯ η(1 +
Mrt
2

)Jt. (51)

Sharpened Quasi-Newton Methods

Using rt ≤ λt from (48), we get that
1

1 + Mλt

2

Jt ⪯ Gt ⪯ η(1 +
Mλt
2

)Jt. (52)

Hence, we have

−
(

1− 1

η(1 + Mλt

2)

)

J−1
t ⪯ G−1

t − J−1
t ⪯ Mλt

2
J−1
t . (53)

Notice that
(

1− 1

η(1 + Mλt

2)

)

≤ 1− 1− Mλt

2

η
=
η − 1 + Mλt

2

η
. (54)

Since Mλt ≤ 2 and η ≥ 1, we have

Mλt
2

= 1− (1− Mλt
2

) ≤ 1− 1− Mλt

2

η
=
η − 1 + Mλt

2

η
. (55)

Therefore, we have

− η − 1 + Mλt

2

η
J−1
t ⪯ G−1

t − J−1
t ⪯ η − 1 + Mλt

2

η
J−1
t . (56)

Hence, we get

(G−1
t − J−1

t)Jt(G
−1
t − J−1

t) ⪯
(

η − 1 + Mλt

2

η

)2

J−1
t , (57)

s⊤t Gt(G
−1
t − J−1

t)Jt(G
−1
t − J−1

t)Gtst ≤
(

η − 1 + Mλt

2

η

)2

s⊤t GtJ
−1
t Gtst, (58)

where st = xt+1 − xt is the variable difference. Therefore, by the definition of θ in (13), we prove conclusion (49),

θ(Jt, Gt, xt+1 − xt) =

(

s⊤t (Gt − Jt)J
−1
t (Gt − Jt)st

s⊤t GtJ
−1
t Gtst

)

1
2

=

(

s⊤t Gt(J
−1
t −G−1

t)Jt(J
−1
t −G−1

t)Gtst

s⊤t GtJ
−1
t Gtst

)

1
2

≤ η − 1 + Mλt

2

η
.

(59)

B. Proof of Theorem 3.2

First, we use induction to prove the following condition

A ⪯ Gt ⪯
L

µ
A, ∀t ≥ 0. (60)

From µI ⪯ A ⪯ LI , we observe that the initial Hessian approximation matrix G0 = LI satisfies A ⪯ G0 ⪯ L
µ
A. Hence,

condition (60) holds for t = 0. We assume that condition (60) holds for t = k, i.e., A ⪯ Gk ⪯ L
µ
A, where k ≥ 0. Applying

(29) of Lemma A.1 to the update in step 4 of Algorithm 1, we obtain that A ⪯ Ḡk ⪯ L
µ
A. Applying (29) of Lemma A.1

again to the update in step 6 of Algorithm 1, we obtain that A ⪯ Gk+1 ⪯ L
µ
A. Therefore, condition (60) holds for t = k+1.

By induction, we prove that condition (60) holds for any t ≥ 0. Moreover, this condition implies that for any t ≥ 0, we have

0 ⪯ A−1 −G−1
t ⪯ (1− µ

L
)A−1. (61)

Hence, we obtain that

(Gt −A)A−1(Gt −A) = Gt(A
−1 −G−1

t)A(A−1 −G−1
t)Gt ⪯ (1− µ

L
)2GtA

−1Gt, (62)

Sharpened Quasi-Newton Methods

s⊤t (Gt −A)A−1(Gt −A)st ≤ (1− µ

L
)2stGtA

−1Gtst, (63)

where st = xt+1 − xt is the variable difference. By the definition of θ in (13), we have that

θ(A,Gt, xt+1 − xt) =

(

s⊤t (Gt −A)A−1(Gt −A)st
stGtA−1Gtst

)

1
2

≤ 1− µ

L
. (64)

Therefore, (14) holds for any t ≥ 0. Applying (12) of Lemma 3.1, we prove that

λt+1 = θ(A,Gt, xt+1 − xt)λt ≤ (1− µ

L
)λt, ∀t ≥ 0. (65)

Hence, we prove the linear convergence rate of (15).

C. Proof of Lemma 3.3

The initial Hessian approximation matrix G0 = LI ⪰ A. Applying the same induction technique used in the proof of

Theorem 3.2, we can prove that for any t ≥ 0

Gt ⪰ A, Ḡt ⪰ A, (66)

where Ḡt is defined in step 4 of Algorithm 1. Using (30) of Lemma A.1, we have that

σ(A,Gt)− σ(A, Ḡt) ≥ θ2(A,Gt, xt+1 − xt), ∀t ≥ 0. (67)

Applying (10) of Lemma 2.2 to the step 6 of Algorithm 1, we obtain that

σ(A,Gt+1) ≤ (1− µ

dL
)σ(A, Ḡt), ∀t ≥ 0. (68)

We prove conclusion (16) by combining and regrouping the above two inequalities. Now we prove condition (17). Recall

and define the following shorthanded notations

θt = θ(A,Gt, xt+1 − xt), σt = σ(A,Gt), c =
µ

dL
. (69)

Condition (16) is equivalent to

σt ≤ (1− c)σt−1 − (1− c)θ2t−1, ∀t ≥ 1. (70)

Applying the above inequality recursively, we can derive that

σt ≤ (1− c)σt−1 − (1− c)θ2t−1

≤ (1− c)2σt−2 − (1− c)2θ2t−2 − (1− c)θ2t−1

≤ (1− c)tσ0 −
t−1
∑

i=0

(1− c)t−iθ2i .

(71)

The above inequality indicates that

t−1
∑

i=0

(1− c)t−iθ2i ≤ (1− c)tσ0 − σt ≤ (1− c)tσ0. (72)

Dividing the term (1− c)t on both sides of the above inequality, we can obtain that

t−1
∑

i=0

θ2i
(1− c)i

≤ σ0. (73)

Hence, we prove the result (17) since c = µ
dL

.

Sharpened Quasi-Newton Methods

D. Proof of Theorem 3.4

Using the condition A−1 ⪯ 1
µ
I and recalling the notation c = µ

dL
, we can upper bound σ0 by

σ0 = σ(A,G0) = Tr(A−1LI)− d ≤ Tr(
L

µ
I)− d = d(

L

µ
− 1) ≤ d

L

µ
=

1

c
. (74)

Combining the above upper bound and (17), we derive that

t−1
∑

i=0

θ2i
(1− c)i

≤ σ0 ≤ 1

c
. (75)

From (12) of Lemma 3.1, we obtain that

λt
λ0

=

t−1
∏

i=0

λi+1

λi
=

t−1
∏

i=0

θi =

t−1
∏

i=0

(1− c)
i
2

θi

(1− c)
i
2

=

t−1
∏

i=0

(1− c)
i
2

t−1
∏

i=0

θi

(1− c)
i
2

= (1− c)
t(t−1)

4

t−1
∏

i=0

θi

(1− c)
i
2

. (76)

Using the arithmetic-geometric mean inequality and (75), we derive that

t−1
∏

i=0

θi

(1− c)
i
2

=

[

t−1
∏

i=0

θ2i
(1− c)i

]

1
2

≤
[

1

t

t−1
∑

i=0

θ2i
(1− c)i

]

t
2

≤
(

1

ct

)
t
2

. (77)

Leveraging (76) and (77), we achieve the final convergence rate of (18)

λt
λ0

≤ (1− c)
t(t−1)

4

(

1

ct

)
t
2

= (1− µ

dL
)

t(t−1)
4 (

dL

tµ
)

t
2 , ∀t ≥ 1. (78)

E. Proof of Theorem 3.6

First, we use induction to prove the following condition

∇2f(xt) ⪯ Gt ⪯ ξt
L

µ
∇2f(xt), ∀t ≥ 0, (79)

where

ξ0 = 1 and ξt = e2M
∑t−1

i=0 ri , ∀t ≥ 1. (80)

We use induction to prove (79) and (80). When t = 0, from Assumption 3.1 we know that

∇2f(x0) ⪯ G0 = LI ⪯ L

µ
∇2f(x0). (81)

Hence, (79) and (80) hold for t = 0. Suppose that (79) and (80) hold for t = k, we have that

∇2f(xk) ⪯ Gk ⪯ ξk
L

µ
∇2f(xk), ξk = e2M

∑k−1
i=0 ri . (82)

Now we consider the case of t = k + 1. Condition (43) of Lemma A.2 indicates that

1

1 + Mrk
2

Jk ⪯ ∇2f(xk) ⪯ Gk ⪯ ξk
L

µ
∇2f(xk) ⪯ ξk

L

µ
(1 +

Mrk
2

)Jk. (83)

where Jk =
∫ 1

0
∇2f(xk + τ(xk+1 − xk))dτ . Applying (29) of Lemma A.1, we have that

1

1 + Mrk
2

Jk ⪯ Ḡk = BFGS(Jk, Gk, xk+1 − xk) ⪯ ξk
L

µ
(1 +

Mrk
2

)Jk, (84)

Sharpened Quasi-Newton Methods

where the equality is due to step 5 of Algorithm 2. Condition (44) of Lemma A.2 indicates that

1

(1 + Mrk
2)2

∇2f(xk+1) ⪯
1

1 + Mrk
2

Jk ⪯ Ḡk ⪯ ξk
L

µ
(1 +

Mrk
2

)Jk,⪯ ξk
L

µ
(1 +

Mrk
2

)2∇2f(xk+1). (85)

Multiplying the term (1 + Mrk
2)2 on both sides of the above inequality, we get that

∇2f(xk+1) ⪯ (1 +
Mrk
2

)2Ḡk = Ĝk ⪯ ξk
L

µ
(1 +

Mrk
2

)4∇2f(xk+1), (86)

where the equality is due to step 7 of Algorithm 2. Applying the fact 1 + x ≤ ex, we have

ξk(1 +
Mrk
2

)4 ≤ ξke
2Mrk = e2M

∑k−1
i=0 rie2Mrk = e2M

∑k
i=0 ri = ξk+1, (87)

where the first equality is due to the induction assumption in (82) and the last equality is due to the definition in (80).

Substituting (87) into (86), we have that

∇2f(xk+1) ⪯ Ĝk ⪯ ξk+1
L

µ
∇2f(xk+1). (88)

Applying (29) of Lemma A.1 again and step 9 of Algorithm 2, we obtain that

∇2f(xk+1) ⪯ Gk+1 = BFGS(∇2f(xk+1), Ĝk, ū(∇2f(xk+1), Ĝk)) ⪯ ξk+1
L

µ
∇2f(xk+1). (89)

Hence, (79) and (80) hold for t = k + 1. Therefore, We finish the proof of (79) and (80) using induction.

Now, we use induction again to prove the result of (21) and (22). It’s obvious that (22) holds for t = 0. Suppose that (22)

holds for 0 ≤ t ≤ k, we have that

Mλt ≤Mλ0 ≤ C0
µ

L
=

ln 3
2

4

µ

L
< 1 < 2, 0 ≤ t ≤ k, (90)

where we use the initial condition (20) and the fact µ ≤ L. Conditions (79) and (90) imply that (48) and (49) of Lemma A.3

hold for all 0 ≤ t ≤ k where η = ξtL/µ. Hence, we have that

θ(Jt, Gt, xt+1 − xt) ≤
η − 1 + Mλt

2

η
= 1− µ

Lξt
(1− Mλt

2
), 0 ≤ t ≤ k. (91)

Applying the initial condition (20) and the induction assumption of (22) for 0 ≤ t ≤ k, we observe that

M

t
∑

i=0

λi ≤Mλ0

t
∑

i=0

(1− µ

2L
)i ≤ 2M

L

µ
λ0 ≤ 2C0, 0 ≤ t ≤ k. (92)

Consequently,

e2M
∑t

i=0 λi ≤ e4C0 = eln
3
2 =

3

2
, 0 ≤ t ≤ k. (93)

Since Mλt < 1 from (90) and the fact that 1− x/2 ≥ e−x for x ∈ (0, 1), we get that

1− Mλt
2

≥ e−Mλt , 0 ≤ t ≤ k. (94)

Hence, we can obtain that for 0 ≤ t ≤ k,

1

ξt
(1− Mλt

2
) = e−2

∑t−1
i=0 Mri(1− Mλt

2
) ≥ e−2

∑t−1
i=0 Mrie−Mλt

≥ e−2
∑t−1

i=0 Mλie−Mλt ≥ e−2M
∑t

i=0 λi ≥ 2

3
,

(95)

Sharpened Quasi-Newton Methods

where the equality holds due to the definition of (80), the first inequality holds due to (94), the second inequality holds due

to (48), the third inequality holds due to Mλk ≥ 0 and the last inequality holds due to (93). Substituting (95) into (91), we

get that

θ(Jt, Gt, xt+1 − xt) ≤ 1− µ

Lξt
(1− Mλt

2
) ≤ 1− 2µ

3L
, 0 ≤ t ≤ k. (96)

Therefore, (21) holds for 0 ≤ t ≤ k. Now consider the case of t = k + 1. From (90) for t = k and the fact that

(ln 3
2)/8 < 1/16, we get that

Mλk
2

≤ ln 3
2

8

µ

L
≤ µ

16L
. (97)

From (19) of Lemma 3.5 and (48), we have that

λk+1 ≤ (1 +
Mrk
2

)θ(Jk, Gk, xk+1 − xk)λk ≤ (1 +
Mλk
2

)θ(Jk, Gk, xk+1 − xk)λk. (98)

Substituting (96) for t = k and (97) into (98), we get that

λk+1 ≤ (1 +
µ

16L
)(1− 2µ

3L
)λk = (1− 29µ

48L
− µ2

24L2
)λk ≤ (1− 29µ

48L
)λk ≤ (1− µ

2L
)λk. (99)

Thus, condition (22) holds for t = k + 1 since

λk+1 ≤ (1− µ

2L
)λk ≤ (1− µ

2L
)k+1λ0. (100)

Using the same technique we can prove that condition (21) holds for t = k + 1. Therefore, we finish proving the conclusion

(21) and (22) using induction.

F. Proof of Lemma 3.7

For brevity, we use the following shorthanded notations

c =
µ

2dL
, ρt = 1 +

Mλf (xt)

2
, αt = σt + 4Mdλt, βt = ρ4t (1 + 8Mdλt). (101)

The initial condition (23) indicates that Mλ0 ≤ C0µ/L ≤ C0 < 2. Hence, rt ≤ λt of (48) in Lemma A.3 always holds for

any t ≥ 0. Thus, we have that

1 +
Mrt
2

≤ 1 +
Mλt
2

= ρt, ∀t ≥ 0. (102)

Substituting the above inequality into (43) and (44) of Lemma A.2, we obtain that

∇2f(xt)

ρt
⪯ Jt ⪯ ρt∇2f(xt),

∇2f(xt+1)

ρt
⪯ Jt ⪯ ρt∇2f(xt+1). (103)

From (86) of the proof of Theorem 3.6, we showed that for any t ≥ 0, we have Ĝt ⪰ ∇2f(xt+1). Recall that Gt+1 =
BFGS(∇2f(xt+1), Ĝt, ū) and ū = ū(∇2f(xt+1), Ĝt) in step 8 and 9 of Algorithm 2. Applying Lemma 2.2, we obtain

that

σt+1 ≤ (1− µ

dL
)σ(∇2f(xt+1), Ĝt) ≤ (1− µ

2dL
)σ(∇2f(xt+1), Ĝt) = (1− c)σ(∇2f(xt+1), Ĝt). (104)

Using the condition Ĝt = (1 + Mrt
2)2Ḡt in step 7 of Algorithm 2 and (102), we can observe that Ĝt ≤ ρ2t Ḡt. Using this

condition, (103) and the definition of σ in (7), we obtain

σ(∇2f(xt+1), Ĝt) = Tr(∇2f(xt+1)
−1
Ĝt)− d ≤ ρ2tTr(∇2f(xt+1)

−1
Ḡt)− d ≤ ρ3tTr(J

−1
t Ḡt)− d (105)

From (79), we know that

∇2f(xt) ⪯ Gt ⪯ ξt
L

µ
∇2f(xt), ∀t ≥ 0. (106)

Sharpened Quasi-Newton Methods

Combining the above inequality and (103), we can show that,

1

ρt
Jt ⪯ Gt ⪯ ξt

L

µ
ρtJt, ∀t ≥ 0. (107)

From (21) of Theorem 3.6, we obtain that

θt ≤ 1− 2µ

3L
≤ 1 ≤ ρt. (108)

In summary, (107) shows that Gt ⪰ 1
ρt
Jt and (108) shows that θt ⪯ ρt. Consider (31) of Lemma A.1 and take G = Gt,

A = Jt, G+ = BFGS(Jt, Gt, st) = Ḡt in step 5 of Algorithm 2 and ξ = ρt. Applying (31) of Lemma A.1, we obtain that

σ(Jt, Gt)− σ(Jt, Ḡt) ≥
1

4ρ2t
θ2t − ln ρt, (109)

which is equivalent to

Tr(J−1
t Ḡt) ≤ Tr(J−1

t Gt)−
1

4ρ2t
θ2t + ln ρt, (110)

where we use the definition of σ in (7). Substituting (110) into (105), we obtain that

σ(∇2f(xt+1), Ĝt) ≤ ρ3t

(

Tr(J−1
t Gt)−

1

4ρ2t
θ2t + ln ρt

)

− d. (111)

Substituting (111) into (104), we have that

σt+1 ≤ (1− c)

[

ρ3t

(

Tr(J−1
t Gt)−

1

4ρ2t
θ2t + ln ρt

)

− d

]

. (112)

Applying (103) and the definition of σ in (7) again, we obtain that

Tr(J−1
t Gt) ≤ ρtTr(∇2f(xt)

−1
Gt) = ρt(σt + d). (113)

Substituting (113) into (112), we achieve that

σt+1 ≤ (1− c)

[

ρ3t

(

ρt(σt + d)− 1

4ρ2t
θ2t + ln ρt

)

− d

]

= (1− c)(ρ4tσt + ρ4td+ ρ3t ln ρt − d)− 1

4
(1− c)ρtθ

2
t

≤ (1− c)ρ4t (σt + d+
1

ρt
ln ρt −

1

ρ4t
d)− 1

4
(1− c)θ2t ,

(114)

where the last inequality holds due to the condition ρt ≥ 1. We have that

d+
1

ρt
ln ρt −

1

ρ4t
d ≤ d+

d

ρt
ln ρt −

1

ρ4t
d =

ρ4t + ρ3t ln ρt − 1

ρ4t
d ≤ (ρ4t + ρ3t ln ρt − 1)d

=

[

(1 +
Mλt
2

)4 + (1 +
Mλt
2

)3 ln (1 +
Mλt
2

)− 1

]

d

≤ (e2Mλt − 1 +
Mλt
2

e
3
2Mλt)d,

(115)

where the first inequality is due to d ≥ 1, the second inequality is due to ρt ≥ 1 and the last inequality holds due to

1 + x ≤ ex. Since the initial condition (23) holds, applying Theorem 3.6 we obtain that

Mλt ≤Mλ0 ≤ C0
µ

L
≤ C0 =

ln 3
2

4
≤ 1

8
. (116)

Sharpened Quasi-Newton Methods

Hence, (115) can be upper bounded by

d+
1

ρt
ln ρt −

1

ρ4t
d ≤ (e2Mλt − 1 +

Mλt
2

e
3
2Mλt)d

≤ (2Mλt + 4M2λ2t +
Mλt
2

e
3
2Mλt)d

= (2 + 4Mλt +
1

2
e

3
2Mλt)Mdλt

≤ (2 +
1

2
+

1

2
e

3
16)Mdλt

≤ 4Mdλt,

(117)

where the second inequality is due to ex − 1 ≤ x+ x2 for x ≤ 1
4 and the third inequality is due to (116). Substituting (117)

into (114), we reach that

σt+1 ≤ (1− c)ρ4t (σt + 4Mdλt)−
1

4
(1− c)θ2t = (1− c)

[

(1 +
Mλt
2

)4(σt + 4Mdλt)−
1

4
θ2t

]

. (118)

This is equivalent to the conclusion (24). Now, we move forward to prove (25). Notice that (24) is equivalent to

σt ≤ (1− c)ρ4t−1(σt−1 + 4Mdλt−1)−
1

4
(1− c)θ2t−1, ∀t ≥ 1. (119)

Recall the notation

αt = σt + 4Mdλt. (120)

Combining the above two conditions, we obtain that

αt ≤ (1− c)ρ4t−1αt−1 −
1

4
(1− c)θ2t−1 + 4Mdλt (121)

Notice that for any symmetric positive semi-definite matrices A,B ∈ R
d×d, we have

B ⪯ Tr(A−1B)A. (122)

From (79) in the proof of Theorem 3.6, we know that Gt ⪰ ∇2f(xt). Taking A = ∇2f(xt) and B = Gt −∇2f(xt) in the

above inequality and using the definition of σ in (7), we get that

Gt −∇2f(xt) ⪯ Tr(∇2f(xt)
−1

(Gt −∇2f(xt)))∇2f(xt) = σt∇2f(xt). (123)

Hence, we obtain that

∇2f(xt) ⪯ Gt ⪯ (1 + σt)∇2f(xt). (124)

Applying (49) of Lemma A.3 with η = 1 + σt, we obtain that

θt = θ(Jt, Gt, xt+1 − xt) ≤
σt +

Mλt

2

1 + σt
≤ σt +

Mλt
2

≤ σt + 4Mdλt, (125)

where the second inequality is due to σt ≥ 0 and the third inequality holds due to d ≥ 1. Combing (19) of Lemma 3.5, (48)

and the above inequality, we have that

λt+1 ≤ (1 +
Mrt
2

)θtλt ≤ (1 +
Mλt
2

)θtλt ≤ (1 +
Mλt
2

)(σt + 4Mdλt)λt = ρtαtλt, (126)

Thus, we prove that

λt ≤ ρt−1αt−1λt−1 ∀t ≥ 1. (127)

Substituting (127) into (121), we have that

αt ≤ (1− c)ρ4t−1αt−1 + 4Mdρt−1αt−1λt−1 −
1

4
(1− c)θ2t−1

≤ (1− c)ρ4t−1αt−1 + 8(1− c)Mdρ4t−1αt−1λt−1 −
1

4
(1− c)θ2t−1

= (1− c)ρ4t−1αt−1(1 + 8Mdλt−1)−
1

4
(1− c)θ2t−1,

(128)

Sharpened Quasi-Newton Methods

where the second inequality is due to 1
2 ≤ 1− µ

2L = 1− c and ρt−1 ≥ 1. Recall the notation βt = ρ4t (1 + 8Mdλt). The

above inequality can be simplified as

αt ≤ (1− c)βt−1αt−1 −
1

4
(1− c)θ2t−1. (129)

Applying the above inequality recursively, we obtain the following result

αt ≤ (1− c)βt−1αt−1 −
1

4
(1− c)θ2t−1

≤ (1− c)2βt−2βt−1αt−2 −
1

4
(1− c)2βt−1θ

2
t−2 −

1

4
(1− c)θ2t−1

≤ (1− c)tα0

t−1
∏

j=0

βj −
1

4

t−1
∑

i=0

(1− c)t−iθ2i

t−1
∏

j=i+1

βj .

(130)

Here we regulate that
∏t−1

j=t βj is 1. The above inequality indicates that

1

4

t−1
∑

i=0

(1− c)t−iθ2i

t−1
∏

j=i+1

βj ≤ (1− c)tα0

t−1
∏

j=0

βj − αt ≤ (1− c)tα0

t−1
∏

j=0

βj . (131)

Since βj = ρ4j (1 + 6Mdλj) ≥ 1 for all j ≥ 1, we obtain that

t−1
∏

j=i+1

βj ≥ 1, 0 ≤ i ≤ t− 1. (132)

Applying 1 + x ≤ ex, we obtain that

βj = (1 +
Mλj
2

)4(1 + 8Mdλj) ≤ e2Mλje8Mdλj = e10Mdλj , ∀j ≥ 0. (133)

Hence, from the linear convergence result of (22) and the initial condition (23), we observe

t−1
∏

j=0

βj ≤
t−1
∏

j=0

e10Mdλj = e10Md
∑t−1

j=0 λj ≤ e10Mdλ0
∑t−1

j=0(1−
µ
2L)j ≤ e20MdL

µ
λ0 ≤ e20C1 = eln 2 = 2. (134)

Leveraging the results in (131), (132) and (134), we obtain that

1

4

t−1
∑

i=0

(1− c)t−iθ2i ≤ 1

4

t−1
∑

i=0

(1− c)t−iθ2i

t−1
∏

j=i+1

βj ≤ (1− c)tα0

t−1
∏

j=0

βj ≤ 2(1− c)tα0. (135)

This is equivalent to

t−1
∑

i=0

(1− c)t−iθ2i ≤ 8(1− c)tα0. (136)

Dividing the term (1− c)t on both sides of the above inequality, we can obtain that

t−1
∑

i=0

θ2i
(1− c)i

≤ 8α0. (137)

Hence, we prove the result (25) since c = µ
2dL and α0 = σ0 + 4Mdλ0.

Sharpened Quasi-Newton Methods

G. Proof of Theorem 3.8

Using G0 = LI , initial condition (26), the definition of σ in (7) and Assumption 3.1, we obtain

σ0 + 4Mdλ0 = Tr(∇2f(x0)
−1
G0)− d+ 4Mdλ0 ≤ d

L

µ
− d+ 4

ln 2

20

µ

L
≤ d

L

µ
− d+ 1 ≤ d

L

µ
. (138)

Substituting (138) into (25), we have that
t−1
∑

i=0

θ2i
(1− c)i

≤ 8d
L

µ
. (139)

Using Lemma 3.5 and (49) of Lemma A.3 and recalling the notation ρt = 1 + Mλt

2 , we obtain that

λt
λ0

=
t−1
∏

i=0

λi+1

λi
≤

t−1
∏

i=0

(1 +
Mri
2

)θi ≤
t−1
∏

i=0

(1 +
Mλi
2

)θi =
t−1
∏

i=0

ρi

t−1
∏

i=0

θi. (140)

Applying 1 + x ≤ ex, d ≥ 1, the linear convergence result of (22) and the initial condition (26) again, we obtain that

t−1
∏

i=0

ρi =

t−1
∏

i=0

(1 +
Mλi
2

) ≤ e
M
2

∑t−1
i=0 λi ≤ e

M
2 λ0

∑t−1
i=0(1−

µ
2L)i ≤ e

M
2 λ0

2L
µ ≤ e

C1
d ≤ eC1 = e

ln2
20 ≤ eln 2 = 2. (141)

Leveraging (140) and (141), we get that

λt
λ0

≤ 2

t−1
∏

i=0

θi = 2

t−1
∏

i=0

(1− c)
i
2

θi

(1− c)
i
2

= 2

t−1
∏

i=0

(1− c)
i
2

t−1
∏

i=0

θi

(1− c)
i
2

= 2(1− c)
t(t−1)

4

t−1
∏

i=0

θi

(1− c)
i
2

. (142)

Using the arithmetic-geometric mean inequality and (139), we obtain that

t−1
∏

i=0

θi

(1− c)
i
2

=

[

t−1
∏

i=0

θ2i
(1− c)i

]

1
2

≤
[

1

t

t−1
∑

i=0

θ2i
(1− c)i

]

t
2

≤
(

8dL

µt

)
t
2

. (143)

Combining (142), (143) and c = µ
2dL , we achieve the final convergence rate of (27)

λt
λ0

≤ 2(1− c)
t(t−1)

4

(

8dL

µt

)
t
2

= 2(1− µ

2dL
)

t(t−1)
4 (

8dL

tµ
)

t
2 , ∀t ≥ 1. (144)

H. Randomized Sharpened-BFGS Algorithm

In this section, we extend our analysis to the randomized version of Sharpened-BFGS method. This is enlightened by the

latest work of (Ye et al., 2021), where the authors proposed the modified Greedy-BFGS method based on the Cholesky

factorization of the inverse Hessian approximation matrix. They presented that instead of selecting the greedy direction

defined in (9) of Lemma 2.2, we consider the following Greedy-BFGS update G+ = BFGS(A,G,Rū(A,R)), where R is

the upper triangular matrix satisfying A−1 = R⊤R and ū(A,R) is defined as

ū(A,R) := argmax
u∈{ei}d

i=1

u⊤R−⊤A−1R−1u

u⊤u
. (145)

Then, the linear convergence rate of 1− 1/(dκ) in (10) of Lemma 2.2 can be improved to 1− 1/d, which is independent of

the condition number κ = L/µ. However, for each unit vector ei the computational cost of the term e⊤i R
−⊤A−1R−1ei

is O(d2). Hence, the cost of calculating the vector ū(A,R) in (145) is O(d3), which makes this modified greedy update

impractical to implement. Therefore, the authors of (Ye et al., 2021) proposed to replace the greedy vector in (145) by the

random vector ũ ∼ N (0, Id) and consider the randomized BFGS update Ḡ+ = BFGS(A,G,Rũ), where R is still the

upper triangular Cholesky factorization matrix of A−1. The condition-number-free linear convergence rate of 1− 1/d is

preserved for this randomized algorithm. This is summarized in the following lemma.

Sharpened Quasi-Newton Methods

Lemma H.1 ((Ye et al., 2021)). Consider positive definite matrices A,G ∈ R
d×d that satisfy A ⪯ G. Suppose that

Ḡ+ = BFGS(A,G,R⊤ũ) where R is the upper triangular matrix with G−1 = R⊤R and ũ ∼ N (0, Id) ∈ R
d is the

random vector. Then, we have

E
[

σ(A, Ḡ+)
]

≤
(

1− 1

d

)

E [σ(A,G)] . (146)

Notice that the computational cost of Cholesky decomposition is in general O(d3) for a matrix with dimension d. However,

the expense per iteration of randomized BFGS method could be reduced to O(d2) using technique highlighted in (Ye et al.,

2021). Therefore, we can improve the superlinear convergence rate of our Sharpened-BFGS algorithm by replacing the

Greedy-BFGS update with the randomized BFGS method proposed in (Ye et al., 2021). Meanwhile, the computational cost

per iteration of randomized Sharpened-BFGS method is still O(d2). This novel randomized Sharpened-BFGS method is

summarized in Algorithm 3. The local linear convergence rate presented in Theorem 3.6 still holds for this randomized

Sharpened-BFGS method. In the following theorem, we directly show the explicit local superlinear convergence rate for this

randomized Sharpened-BFGS algorithm.

Theorem H.2. Consider the randomized Sharpened-BFGS quasi-Newton method in Algorithm 3 applied to the objective

function satisfying Assumption 3.1 and 3.2. Suppose that the initial point x0 satisfies that

λ0 ≤ C1µ

dML
, C1 =

ln 2

20
. (147)

Then, we can reach the following local superlinear convergence rate with high probability

λt ≤ 2(1− 1

2d
)

t(t−1)
4 (

8dL

tµ
)

t
2λ0, ∀t ≥ 1. (148)

Proof. Here we just present the abbreviated proof to avoid repeated details since the proof of this theorem is very similar to

the proof of Lemma 3.7 and Theorem 3.8. From the theory of probability, Lemma H.1 shows that there exists a constant δ
such that the inequality

σ(A, Ḡ+) ≤ (1− 1

d
)σ(A,G) (149)

holds with probability at least 1 − δ. Here we neglect this parameter δ to simplify the proof and denote that the above

inequality holds with high probability. Then, applying the same techniques from the proof of Lemma 3.7, we can show that

the following condition holds with high probability for any t ≥ 0

σt+1 ≤ (1− 1

2d
)

[

(1 +
Mλt
2

)4(σt + 4Mdλt)−
1

4
θ2t

]

, (150)

where θt := θ(∇2f(xt), Gt, xt+1 − xt) and σt := σ(∇2f(xt), Gt). Moreover, we have that with high probability

t−1
∑

i=0

θ2i
(1− 1

2d)
i
≤ 8(σ0 + 4Mdλ0), ∀t ≥ 1. (151)

Finally, using the same methods from the proof of Theorem 3.8, we can prove that the suplinear convergence rate of (148)

holds with high probability.

We observe that the quadratic convergence rate term is O((1− 1/d)t
2

) in the above superlinear convergence rate in (148),

which is independent of the condition number κ. This condition-number-free quadratic convergence rate is the direct

consequence of the linear convergence rate of (146) from Lemma H.1.

Sharpened Quasi-Newton Methods

Algorithm 3 The randomized Sharpened-BFGS method.

Require: Initial point x0 and initial Hessian approximation matrix G0 = LI .

1: for t = 0, 1, 2, . . . do

2: Update the variable: xt+1 = xt −G−1
t ∇f(xt);

3: Compute the variable difference: st = xt+1 − xt;

4: Set the matrix: Jt =
∫ 1

0
∇2f(xt + τst)dτ ;

5: Compute the matrix: Ḡt = BFGS(Jt, Gt, st);
6: Compute the correction term: rt = ∥xt+1 − xt∥xt

;

7: Compute the matrix: Ĝt = (1 +Mrt/2)
2Ḡt;

8: Compute upper triangular matrix: Rt with Ĝt

−1
= R⊤

t Rt;

9: Choose the random direction: ũ ∼ N (0, Id);
10: Compute Gt+1 = BFGS(∇2f(xt+1), Ĝt, R

⊤
t ũ);

11: end for

