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Abstract

Topological data analysis (TDA) delivers invaluable and complementary infor-
mation on the intrinsic properties of data inaccessible to conventional methods.
However, high computational costs remain the primary roadblock hindering the
successful application of TDA in real-world studies, particularly with machine
learning on large complex networks.

Indeed, most modern networks such as citation, blockchain, and online social
networks often have hundreds of thousands of vertices, making the application of
existing TDA methods infeasible. We develop two new, remarkably simple but
effective algorithms to compute the exact persistence diagrams of large graphs to
address this major TDA limitation. First, we prove that (k + 1)-core of a graph G
suffices to compute its kth persistence diagram, P Dy (G). Second, we introduce a
pruning algorithm for graphs to compute their persistence diagrams by removing
the dominated vertices. Our experiments on large networks show that our novel
approach can achieve computational gains up to 95%.

The developed framework provides the first bridge between the graph theory and
TDA, with applications in machine learning of large complex networks. Our imple-
mentation is available at github.com/cakcora/PersistentHomologyWithCoralPrunit.

1 Introduction

Topological data analysis (TDA) has emerged as powerful machinery in machine learning (ML),
allowing us to extract complementary information on the observed objects, especially, from graph-
structured data. In particular, TDA has become quite popular in various ML tasks, ranging from
bioinformatics [38. 44]], finance [39, [2] material science [33]], biosurveillance [51, [19], network
analysis [54,[16]], as well as insurance and agriculture [56,|34]] (see the literature overviews [4, [17]]
and the TDA applications library [27]). Recently there has emerged a highly active research area that
combines the PH machinery with geometric deep learning (GDL) methods [30} 157, [31]].

Persistent homology (PH) is a key approach in TDA, allowing us to extract the evolution of subtler
patterns in the data shape dynamics at multiple resolution scales, which are not accessible to more
conventional, non-topological methods [[15]. The main idea is to construct a nested sequence of
topological spaces (filtration) induced from the data, and record the evolution of topological features
in this sequence. In other words, the extracted patterns, or homological features, along with how
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long such features persist throughout the considered filtration of a scale parameter, convey a critical
insight into salient graph characteristics and hidden mechanisms behind system organization.

PH has been very effective in many graph machine learning tasks, such as graph and node classifica-
tion [49] 14} 58 29], link prediction [6}55] and anomaly detection [12,47].

Nevertheless, while PH has shown promise in various graph learning applications, prohibitive
computational costs of PH constrain its wider usage. Indeed, most PH studies are limited to small
graphs with a few thousand vertices at most. The problem is that the complexity of the standard PH
algorithm is cubic in the number of simplices [48]], so one needs to limit homology computations to
0-th and 1-th levels only. Computation of higher-level persistence for relatively large graphs can take
days or weeks.

In this paper, we aim to address this fundamental bottleneck in the application of TDA to large
networks by introducing two new efficient algorithms which significantly reduce the cost of computing
persistence diagrams (PD) for large real-world networks: CoralTDA and PrunlT.

CoralTDA Algorithm: Based on our observation that many vertices in large real-world networks
have low degrees and do not contribute to PDs in higher dimensions, we developed the CoralTDA
algorithm (Theorem |Z) where we prove that (k 4 1)-core G+ of a graph G is enough to compute
the k" PD of the graph, i.e. PDy(G) = PDy(G*+1).

Using this property, with a much smaller core graph G*¥*1, we compute the exact higher persistence
diagram PDy(G) losing no information. Our experiments show that even for lower dimensional
topological features, such as k£ = 1, we reduce the graph order by up to 73% for some datasets
(See Figure ). Our findings show that many real-life data sets exhibit nontrivial second and third
persistence diagrams, facilitating various classification problems. On the other hand, our reduction
reaches 100% for the third or higher dimensions in several networks, implying that higher PDs are
trivial for these datasets.

As a result, our reduction approach improves our understanding of the existence of higher-order
dimensional holes and their role in the organization of complex networks.

PrunIT Algorithm: We further develop a topologically simple but highly efficient algorithm to
facilitate computations of PDs of graphs for any dimension. In particular, for a graph G = (V, £) and
filtration by clique complexes, we show that removing (pruning) a dominated vertex from the graph
does not change PDs at any level, provided that the dominated vertex enters the filtration after the
dominating vertex (Theorem 7).

Our experiments indicate that the new algorithm is highly efficient in PD computations of a broad
category of large graphs from 100K to 1M vertices, and it can reach 95% vertex reduction (see
Table [1)).

Further, when we combine CoralTDA and PrunIT algorithms, we can significantly reduce the graph
sizes for the computation of PDs (Figure [6)).

We summarize the key novelty of our contributions as follows:

* We show that the graphs’ (k 4 1)th and higher persistence diagrams only depend on their
k-cores.

* We introduce a highly effective pruning algorithm that significantly reduces the graph size
without changing any persistence diagram of the original graph.

* Our experiments in large datasets and large graphs show up to 95% reduction in the graph
size for the computation of persistence diagrams.

e With our reduction algorithms, highly successful TDA methods can be applied to very
large graphs and large datasets where previously its use was constrained by prohibitive
computational costs.

2 Related Work

There are mainly two settings in practice where we use PH to obtain a topological fingerprint of
a dataset. The first one is the point cloud setting, where the dataset comes as a point cloud in an



ambient space R™. Then, we define PH by constructing a sequence of simplicial complexes induced
by the pair-wise distances of data points (Vietoris-Rips filtration) and keeping track of the topological
changes in this sequence [59, [23]]. The second one is the network setting where the typical PH
construction uses a filtering function on the network. By construction, while the principal identifier
to define PH in the point cloud setting is the pair-wise distances of points, the principal identifier in
the network setting is the filtering function. Because of this, PH machinery works differently in a
network setting, as explained in Section

There are several works in the point cloud setting to reduce the computational costs and run-time of
the persistence diagrams. Malott and Wilsey used the idea of data reduction and data partitioning [41]].
Mischaikow and Nanda brought the discrete Morse Theory of geometric topology to the combinatorial
setting [43]]. In [46} 20, 21} 24]], the authors studied the same problem with different approaches in
the point cloud setting.

While several works improve the run-time of PH in the point cloud setting, only a few of them
could reduce the computational costs of persistent homology in the network setting. An idea is to
use discrete Morse Theory to capture the topological features occurring during the process [36] by
applying the techniques developed in [43] to the network setting.

While the computational complexity of k** persistence diagram (PD) is O(n?) where n is the number
of k-simplices [48], [43] achieves (Q(m2 x nlogn) where m is the number of critical k-simplices.
With the additional time to find the critical k-simplices in each filtration step, the computational
complexity O(m? x nlogn) is not scalable for very large networks.

3 Persistent Homology

This part provides a background on the theory of persistent homology. Homology Hy(X) is an
essential invariant in algebraic topology, which captures the information of the k-dimensional
holes (connected components, loops, cavities) in a topological space X. For example, a connected
component in a graph is a zero-dimensional hole, whereas a graph loop is a 1-dimensional hole.
Persistent homology is a way to use this invariant to keep track of the changes in a controlled
topological space sequence induced by the original space X. For basic background on persistent
homology, see [23} 22].

There are several ways to use PH in a network setting, such as power filtration or using different
complexes (e.g., Vietoris-Rips, Cech complexes) to construct the filtration for a given filtering
function [3]. We focus on the most common methods to define PH for graphs: sub/superlevel
filtrations obtained by a filtering function and the clique (flag) complexes. Sub/superlevel filtrations
are the most common methods because one can inject domain information into the PH process if the
chosen filtering function comes from the network domain (e.g., atomic number in protein networks,
transaction amount for blockchain networks). Note that our results can be generalized to the persistent
homology defined with a filtering function for different complexes.

Throughout the paper, we use the terms graph and network interchangeably. Let G be a graph with
vertex set V = {v,.} and edge set £ = {e,s}, i.e. e,s € € if there is an edge between the vertex v,
and vs in G. Let f : V — R be a filtering function defined on the vertices of G. Let Z = {a; } be
a threshold set with g = min, ¢y f(v,) < a1 < ... < Q@ = max,, ey f(v,). For o; € Z, let
Vi ={v. € V| f(v;) < a;}. Let G; be the induced subgraph of G by V;, i.e. G; = (V;, ;) where
E = {ers € £ | vp,vs € Vi}. Let G; be the clique complex of G;. A clique complex is obtained
by filling in all the (k + 1)-complete subgraphs with k-simplices. In other words, if the vertices
{VrgsVry s -y Up,, } C G; are pairwise connected by an edge in G, then the clique complex G, contains
a k-simplex o = [vy,, Up,, ..., Uy, ]. This simplicial complex G; obtained by filling in all complete
subgraphs is called the clique complex of G;. This construction induces a nested sequence of high
dimensional simplicial complexes:

GoCG1CGyC ... C G

This sequence of simplicial complexes is called the sublevel filtration for G. Superlevel filtrations can
be defined similarly by considering the generating sets { f (v,.) > «; } instead of { f(v,.) < «a;} above.

Here, @ can be taken as the different simplicial complexes induced by G; which gives different



types of filtrations [3]]. After obtaining the filtration, one considers the homology groups H, k(@) of

each simplicial complex G,. The homology group Hy (X ) keeps the information of k-dimensional
topological features in the simplicial complex X.

Persistent homology keeps track of the topological changes in the sequence {(_Z} by using the
homology groups { H,(G;)}. When a k-dimensional hole o (a connected component, loop or cavity)
appears in Hy(G;), we mark b, = «; as its birth time. The feature o can disappear at a later time in

H},(G;) by merging with another feature or by being filled in. Then, we mark d, = «; as its death
time. Hence, we say that o persists along the interval [b,, d, ), i.e. [a;, ;). The longer the interval
(ds — bs), the more persistent the feature o.

The multi-set PDy (G, f) = {(bo, dy) | o € H(G;) for b, < i < dg} is called the k' persistence
diagram of (G, f) which is the collection of 2-tuples marking the birth and death times of k-

dimensional holes {c} in {G;}. In particular, PDy(G, f) represents the k'™ PD of the sublevel
filtration, induced by the filtering function f : V — R. For brevity, we suppress f and use PDy(G)
throughout the text.

4 CoralTDA Reduction and Higher Persistence Diagrams

A k-core G* of a graph G is the subgraph of G obtained by iteratively deleting all vertices (and edges
connected to it) with degree less than k [52]]. In other words, G* is the largest subgraph of G where
all the vertices have a degree of at least k.

Figure [T shows a graph with its core structure. Here, vertex 1
belongs to O-core as it is disconnected from the graph. Vertex
colors indicate shared coreness. When we use vertex degree
as the filtering function and allow graph cliques of size three
at most, the only one-dimensional hole (shown with the red
circle) appears at degree 4 for vertices 4, 6, 8, and 9. Vertices
3,5, and 7 can only contribute to 0-dimensional holes because
their degree is 1. Similarly, 8 can only contribute to 0 and
1-dimensional holes because its degree is 2.

The k-core decomposition is a fundamental operation in many
areas such as graph similarity matching [45], graph cluster-
ing [235]], network visualization [26], anomaly detection [53|]
and robustness analysis [[13]].

Figure 1: K-core decomposition of a
graph of 10 vertices. Vertex 1 has no
A naive implementation of k-core iteratively deletes vertices edges and belongs to the Oth-core. A
whose degree falls below a k, until it deletes all vertices from one-dimensional hole of vertices 4, 6,
the graph. The implementation has a computational complexity 8, and 9 is shown with a red circle.

of O(mlogn), where m and n are the number of edges and

vertices in the network, respectively. Batagelj and Zaversnik

reduce the complexity to O(m + n) “by keeping an in-memory array of all possible degree values
and keeping track of bin boundaries” [5].

4.1 Relation between G; and G

Our main idea is to compute high-dimensional persistence features on their associated graph cores.
Note that a k-clique in graph theory corresponds to a (k — 1)-simplex in PH; a k-clique (complete

subgraph of order k) in G induces a (k — 1)-simplex in G.

The clique complex Gisa simplicial complex of dimension ' — 1 where K denotes the degeneracy
of G,i.e. K = max{k | G* # ()}. That is, G contains a (k — 1)-simplex if and only if its k-core G¥
is not empty.

For any i, k, we have the k-core of G; contained in G; by construction, i.e. G¥ C G;. This implies
that the same holds for their clique complexes, i.e. Qf C G;. On the other hand, if one restricts the
original filtering function f : V — R to the vertices V¥ of the k-core of G, we have f : V¥ — R. By



using the same thresholds for f : V¥ — R, we obtain the filtration G5 C GF  G¥ C ... € G¥. This
will induce the persistence diagram P.D,.(G*) for any dimension 7.

Since for any ¢, k, @’“ C QAZ-, we have the following diagram.

Gt ¢ G8 ¢ .. c G
N N N (1)
G C G C .. C Gn

Notice that for any j > k — 1, if there is a j-cycle o living in C} (QAf), then we have o C C} (QAZ) as

QAf C @ In the following, we show that for these cycles, the converse is also true, and we show the
equivalence in the homology level.

Remark 1. [Restriction of f to V*] Notice that the filtering function f : V¥ — R on V¥, the vertices
of G*, is defined directly by restricting values of f : V — R to the subset V¥ C V. In particular, if
f:V — Ris a function coming from the graph attributes (such as vertex degree), then f : V¥ — R
may not be the same function coming from the graph attributes induced by the graph G*. For example,
let f be the degree function on V), the vertices of G. Then, for any w € V¥, f(w) is the degree of w
in G, not its degree in G*. While the k-core graph G* changes, we do not update the values of f on
V¥ according to its attribute definition in G*, but we keep the same values in the original function
f :V — R for the remaining vertices in V¥ C V. In graph terms, this corresponds to computing
vertex filtering (activation) values on the original graph but using the edges of the reduced graph to
extract simplices.

4.2 CoralTDA Reduction

Our CoralTDA technique shows that lower degree vertices do not affect higher persistence diagrams,
i.e., CoralTDA yields exact results. Note that in the following result, even though the graph size
changes, we keep the same filtering function f : VV — R with the original values. See Remark 1| for
further details. We give the proof of the following theorem in Appendix.

Theorem 2. Let G be an unweighted connected graph. Let f : V — R be a filtering function on
G. Let PDy(G, f) represent the k'" persistence diagram for the sublevel filtration of the clique
complexes. Let G* be the k-core of G. Then, for any j > k

PD7<gaf) = PDj(gk+1’f)'

Outline of the proof: We show that for any nontrivial k-homology class o in the original clique
complex G.a generating k-cycle S in this homology class also lives in a much smaller subcomplex:
the clique complex of the (k + 1)-core ( (3’““). That is, we prove that any vertex in the k-cycle S
must have a degree at least k& + 1 where this degree count comes only from the k-simplices of S, and
removing the lower degree vertices from G has no effect on the existence of such S. We give the
proof of the theorem in Appendix.

The above result indicates that k' persistence diagram information can be obtained by only consider-
ing the (k + 1)-core of a graph. CoralTDA is an effective tool for reducing computational costs to
compute higher persistence diagrams. See Figure ] for reduction results for various datasets.

0+ et = ool ol ..
0.00 025 0.50 075 0.00 025 050 075

Clustering coeff Clustering coeff

S 0 - . e

0.00 025 050 0.75 0.00
Clustering coeff

Figure 2: Clustering coefficients vs. number of topological features in Facebook and Twitter datasets. Each
data point is a graph instance. We observe hundreds of higher topological features in these datasets which can be
highly useful for various graph learning tasks.

Remark 3. [Higher PDs in Random Networks vs. Real-Life Networks] Note that by Kahle’s seminal
result [35]), to observe nontrivial Betti numbers for higher dimensions in Erd6s-Rényi graphs G(n, p),



the average degree must be very high. In particular, for a graph G(n, p), in order to have nontrivial
kt"-homology in its clique complex, Kahle proved that for p = n®, a should be between —1/k and
—1/(k + 1). In terms of average degree n X p, this means the average degree should be between
nF=1/k and nk/(k+1)  For instance, for dimension k = 2, the average degree should be between
\/n and V/n2. For a graph order of n = 1000, this implies that the average degree should be between
31 and 100 to have a nontrivial second homology in random networks. However, in real-life networks,
our results show that higher Betti numbers are prevalent in much sparser graphs (see fig. [2/ and
appendix fig. [I0). These findings can be further used to derive error bounds and the associated loss of
topological information when G(n, p) is employed to approximate real-world network phenomena,
for instance, in the case of synthetic power grid networks and other cyber-physical systems.

In the following, we give another effective method to reduce the size of a graph G without affecting
the persistence diagrams PD,.(G) for any dimension r > 0.

S PrunlIT Algorithm

This section introduces another effective reduction technique for computing persistence diagrams of
graphs induced by a filtering function. In particular, we show that for a graph G, and filtering function
f 'V — R, removing (pruning) specific vertices from the graph does not change the persistent
homology at any level. The result is valuable because the algorithm may reduce the vertex set
considerably (Table[T)). Furthermore, as our experiments show, the reduced vertex set can significantly
lower the simplex count, leading to much shorter computational times for persistent homology (see
Figure ] and appendix Figure 7).

In algebraic topology, homotopy is a very effective tool to compute topological invariants like
homology, and fundamental group [28]]. These topological invariants are homotopy invariant, meaning
that if two spaces are homotopy equivalent, then their corresponding topological invariants are the
same, e.g., X ~Y = H;(X) = H;(Y). We give a very natural homotopy construction to simplify a
graph in the following.

For a given filtering function f V = R, let G; be the clique complex of G; which induces the
sublevel filtration go C g1 C g2 C..C gm Let PDy(G, f) represent the k'" persistence diagram
for the sublevel filtration {G;} as descrlbed above.

Now, we define dominated vertices in G. Define the neighborhood of ug as N (ug) = {ug} U {v €
V | eyow € E}. In particular, N (ug) C V is the set of all vertices adjacent to ug, and uy itself.

Definition 4. A vertex u is dominated by the vertex v in G if N(u) C N(v). If there is such a vertex
v, we call u a dominated vertex of G (see Figure |3|)

Removing a vertex u from a graph G creates the natural subgraph of G
obtained by removing the vertex u and all adjacent edges from G, i.e.
—{u}=¢ =W, ,&)where V' =V —{u},and & =& — {eyw € 0

&} for any w
We can alternatively express these via the star notion. The star St(u) e e e
of a vertex u is the union of all simplices which contains . Then, w

is dominated by v if St(u) C St(v). Similarly, removing a vertex u

from g corresponds to removing St(u) from the clique complex é, e e

ie. G — St(u) = G'. A useful result is that removing a dominated

vertex does not affect the homotopy type of the corresponding clique Figure 3: Vertex 3 dominates

complexes. vertices 1 and 2 because all
neighbors of 1 or 3 are neigh-
Lemma 5. Let u be a dominated vertexin G. Let G' = {u} Then bors of 3. There are no other

the clique complexes G and G' are homotopy eqmvalent i.e. G ~ G'. dominated vertices.
Proof:  Notice that G’ is a subgraph of G, and hence Gisa subcomplex in G. Let u be dominated

by v in G. Then, we can write a deformation retract from GG by pushing the edge e,,,, starting
from v toward v. In other words, by using the simplicial coordinates, one can define a homotopy

F g x I — g which is identity on g’ and pushing all the faces in g g G' to the corresponding faces



in G'. This gives a homotopy equivalence G ~ G'. To visualize, in Figure one can push vertex 1 in
the clique complex G towards vertex 3 along the edge between them. After the push, the 2-simplices
[1,2,3] and [1,3,4] are pushed to the edges [2,3] and [3,4] respectively. See [1.[7] and [11, Lemma
2.2] for details. O

Remark 6. [Collapsing] Note that this collapsing operation is adaptation of a well-known notion
called deformation retract in algebraic topology in a simplicial complex setting [28]. This operation
keeps the homotopy type the same, and hence the homology does not change with this reduction.
In [ [7, (11}, this is called folding (G folds onto G — {u}) or a strong collapse. In these papers,
the algorithm reduces simplicial complexes in the filtration one by one so that its associated clique
complex keeps the same homotopy type. Our contribution here is to adapt this operation to the
graph filtrations and define a smaller subgraph before the filtration step so that the induced simplicial
complexes are homotopy equivalent. Since we prune the graph at the beginning of the process, our
algorithm significantly reduces the computational costs for the induced persistence diagrams.

In the following, we introduce the PrunlIT Algorithm by showing that removing a dominated vertex
does not change the persistence diagrams of the graph. We give the proof in Appendix

Theorem 7. Let G = (V, &) be an unweighted graph, and f : V — R be a filtering function. Let
u € V be dominated by v € V and f(u) > f(v). Then, removing u from G does not change the
persistence diagrams for sublevel filtration, i.e. for any k > 0

PDy(G, f) = PDr(G — {u}, f).

Outline of the proof: The main idea is to employ the collapsing idea in the simplicial complexes of
the filtration Gy C G; C Go C -+ C Gy, in a suitable way. In particular, the lemma above shows
that if a vertex  is dominated by a vertex v in G;, then removing St(u) from G, does not change the

homotopy type. Hence, if we ensure that when « first appears in the filtration {G; }, the dominated
vertex v is already there, then u can be removed from all the simplicial complexes in the filtration;
removing u from the original graph before building the simplicial complexes does not affect the
homotopy type of complexes in the filtration. The condition f(u) > f(v) makes sure that whenever

u exists in {@} the dominant vertex is already there, and u can be removed from all simplicial
complexes, and hence from the graph G. We give the proof of the theorem in Appendix

Notice that the primary condition to remove dominated vertices from the graph ensures that the
dominated vertex enters the filtration after its dominating counterpart. With the PrunIT Algorithm,
we show that removing the dominated vertex does not change the homotopy type of the simplicial
complexes in the filtration. As homotopy equivalence implies the equivalences of homology groups
at all levels, the reduction with this algorithm works in all dimensions. Furthermore, while coral
reduction works above the corresponding dimension (j > k), the PrunlIT algorithm works in any
dimension.

Remark 8. [Superlevel Filtration] The same proof applies to the superlevel filtration by changing the
condition f(u) > f(v) to f(u) < f(v) in the theorem. In particular, if PD}(G, f) represents the
k" PD for superlevel filtration, then with the condition f(u) < f(v), we would have PD}/(G, f) =
PDy(G — {u}, f) for any k > 0. Notice that if one takes f to be the degree function and uses the
superlevel filtration, then the theorem automatically holds for any dominated vertex as deg(u) <
deg(v) when u is dominated by v.

Remark 9. [Detecting Dominating Vertices] The dominating vertices can be computed by using
the following approach (Algorithm is given in appendix Section . Let A = (a;;) be the adjacency
matrix for a graph G. Given v;, € V, consider all j’s with a;,; = 1. Check if v;, is dominated by v;
by comparing the rows R;, and R;, i.e. for any k # j with a;,r = 1, check whether a;, = 1. If this
holds, v; dominates v;,. Removing i row R;, and i{" column C;, from A corresponds to removing
v;, from G. Essentially, vertex v, is compared to each neighbor v; by checking whether v;, is already
aneighbor of each of v;’s neighbors. These checks require iterating over each vertex, searching vertex
neighbors in the graph and getting the neighbors of each neighbor. The computational complexity is
therefore O(|V| x d?) where d is the average degree in the graph.

While our main focus is the most common method, sublevel/superlevel filtration, in the application of
PH in graph setting, our Prunlt algorithm works perfectly well with another common method, power
filtration [3]], as well, i.e. removing a dominated vertex does not change persistence diagrams.



Theorem 10. [Prunlt for Power Filtration] Let G = (V, £) be an unweighted connected graph. Let

]Bbk (G) represent k" persistence diagram of G with power filtration. Let u € V be dominated by
any other vertex in V. Then, for any k > 1,

PDy(G) = PDy(G — {u}).
The proof of this result is given in appendix Section[C.2.

Combining the CoralTDA and PrunIT Algorithms

Even though both algorithms are quite effective by themselves, we significantly reduce the computa-
tional costs (Figure @ by combining them as follows. For a given graph G = (V, £) and filtering
function f : V — R, one can start by trimming all dominated vertices with respect to f, and get a
smaller graph G’. We have already proven that PDy(G) = P Dy (G’). Then, one can take the k-core
of this smaller graph G’ to compute higher persistence diagrams of the original graph G as before. In
particular, by applying both reduction algorithms, for any k£ > 0, we obtain

PDy,(G) = PDy(¢') = PDi((G)"*).

6 Experiments and Discussion

We apply our new approaches to three types of datasets. The details of datasets are provided in
Table [T]and appendix Table

Graph classification datasets consists of biological kernel [37] and ego networks from TWITTER
and FACEBOOK [42]. Node classification datasets includes CITESEER and CORA [50] and Open
Graph Benchmark citation (paper cites paper) OGB—ARXIV and OGB-MAG [32] networks. Large
networks dataset contains 11 large networks of 100K-1M vertices from the Stanford Repository [40].

We used an AMD Ryzen 5 2100 MHZ 4 core computer in our R, Python and Java experiments.

We evaluate both algorithms by comparing vertex and edge sets and the total run time for the reduced
graph with respect to the original graph. In the rest of this manuscript, we compute the vertex set
reduction as 100 x (|V| — |V'|)/ [V| where V' is the vertex count in the reduced graph. Edge and
time reductions are computed similarly.

6.1 Reduction on Graph Classification Datasets
In this task, our goal is to evaluate the reduction of computational costs when we use the CoralTDA

and PrunIT algorithms on datasets chosen from different graph classification tasks. We used one of
the most commonly used functions in these experiments, the degree function with sublevel filtration.
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Figure 4: CoralTDA vertex reduction in graph and node classification datasets (higher is better). Reduction
values are averages from graph instances of the datasets (CORA and CITESEER node classification datasets
contain a single graph instance only). FACEBOOK and TWITTER datasets are reduced by 20% for k > 4,
whereas in other datasets graphs are reduced to empty sets.

In Figure E, we show the vertex reduction when using CoralTDA for computations of P Dy (G) for
dimensions (Betti) £ = 1 to k = 5. At dimension k = 4 and k£ = 5, CoralTDA reduces 10 datasets
by 100%, i.e., these datasets have trivial PDy(G) for k > 4. Even at smaller dimensions, CoralTDA
can reduce the vertex set by 25%-75%.

Figure [5ashows reduction percentages by the PrunIT algorithm. FIRSTMM and SYNNEW datasets
are reduced by less than 10%; however the other 11 datasets are reduced by at least 35%. The
lower reduction on FIRSTMM and SYNNEW are due to stronger cores on the networks. SYNNEW is
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(a) Vertex reduction by PrunIT algorithm in the super- (b) PrunlIT reduction in OGB node classification dataset.
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from the datasets. networks, time reduction rates can reach 75%.

Figure 5: Prunlt vertex and time reduction in graph datasets.

synthetically created, but FTRSTMM is created from 3d point cloud data and categories of various
household objects. We believe that the physical proximity of similar objects (e.g., chairs are close to
each other) in a household creates a denser community structure in the FTRSTMM dataset, which in
turn results in strong cores.

We further report reductions in computational time (Figure [8), edge set (Figure[9)), and simplex count
(Figure[7) in the Appendix.

6.2 Reduction on Node Classification Datasets

In this task, our goal is to compute the reduction of computational costs by using CoralTDA and
PrunIT algorithms on datasets chosen from node classification tasks. The CoralTDA results are
computed over CITESEER and CORA networks and shown in Figure ] with more than 20% reduction
for the first and higher dimensional persistence.

In node classification, we can also analyze the k-hop (k¥ > 1) neighborhood of a vertex with
topological features (such as Betti-0) and use the computed persistence diagram to classify the
vertex. Such an approach has yielded SOTA results with significant improvement in accuracy by
using O-dimensional persistence [18]. However, the computational costs of persistent homology
are non-negligible in large graphs, even for O-dimensional features. For example, in Open Graph
Benchmark datasets [32], one must compute persistence diagrams for each vertex in 100k to 111M
vertex graphs.

We apply the PrunIT algorithm to two graphs, Arxiv and MAG, from the Open Graph Benchmark to
compute time reduction in persistence diagram computations. We follow the approach in [18]] and
extract the 1-hop neighborhood of each ego vertex. We use the degree function as filtering function as
before. In Figure [5b] we show the reduction in computational time for 0-dimensional persistence. We
compute the time costs of PrunIT by considering all the algorithm steps: finding and removing the
dominated vertices, creating an induced graph with the vertices, and running 0-dimensional persistent
homology on the graph by using vertex degrees as the filtering function. As Figure [5b]shows, we see
more than 25% reduction in computation time in most graphs. Specifically, on average, computation
times of O-dimensional persistence on OGB—-ARXIV networks are reduced by 37%, and those of
OGB-MAG networks are reduced by 23%. The results show that we can mitigate the computational
costs of persistence homology by using the PrunlT algorithms.

6.3 Reduction on Large Networks

Our goal is to combine Prunlt and CoralTDA algorithms to achieve the maximum vertex and edge
reduction in large networks in these experiments.

Table |I shows that on the biggest network of com-youtube, we eliminate 59% of the vertices
when we only apply the Prunlt (on average 62% in all datasets). The reduction is as high as 95% (in
emailEuAll). Similarly, Prunlt creates significant edge reduction; 40% of all edges are removed on



Table 1: Prunlt reductions in the number of vertices and edges.

Dataset [[V]l ||Vl Reduction (1) [|E|  ||E|| Reduction (1)
com-youtube 1134890 59% 2987624 25%
com-amazon 334863 37% 925872 40%
com-dblp 317080 72% 1049866 65%
web-Stanford 281903 67% 1992636 76%
emailEuAll 265214 95% 364481 94%
soc-Epinions1 75879 57% 405740 14%
p2pGnutella3 1 62586 46% 147892 20%
Brightkite_edges 58228 48% 214078 21%
Email-Enron 36692 76% 183831 38%
CA-CondMat 23133 69% 93439 65%
oregonl_010526 11174 62% 23409 48%

average. Figure[6]shows the reduction when we apply both CoralTDA and Prunlt on large networks.
Even for low cores of 2 and 3, the combined algorithms reach a vertex reduction rate of 78%. These
results show that our algorithms can effectively reduce large networks to more manageable sizes.

$$$ HESEFEF5

5 6 7 8 9 10
core

Vertex Reduction (%)

Figure 6: Vertex reduction results for 11 large datasets after the application of Prunlt and CoralTDA algorithms.
emailEuAll is the outlier for the 2nd and 3rd cores (shown with a crossed square).

7 Conclusion

We have proposed two new highly effective algorithms to significantly reduce the computational costs
of TDA methods on graphs. While coral reduction is very effective for higher persistence diagrams,
Prunlt is highly efficient, in general. Our experiments have showed that even for lower dimensional
topological features, such as k = 1, for some datasets our methods can reduce graph order by up to
95%, which alleviates computational costs substantially. Furthermore, in most graph datasets we
reduce graph sizes by 100% for 3rd or higher dimensions. Our methods provides a novel solution for
efficient application of the powerful TDA methods on large networks and build a bridge between the
graph theory and TDA, opening a pathway for broader applicability of topological graph learning in
practice.
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