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Abstract

Multi-kernel learning (MKL) has been widely used in learning problems involving function
learning tasks. Compared with single kernel learning approach which relies on a pre-selected
kernel, the advantage of MKL is its flexibility results from combining a dictionary of
kernels. However, inclusion of irrelevant kernels in the dictionary may deteriorate the
accuracy of MKL, and increase the computational complexity. Faced with this challenge, a
novel graph-aided framework is developed to select a subset of kernels from the dictionary
with the assistance of a graph. Different graph construction and refinement schemes are
developed based on incurred losses or kernel similarities to assist the adaptive selection
process. Moreover, to cope with the scenario where data may be collected in a sequential
fashion, or cannot be stored in batch due to the massive scale, random feature approximation
are adopted to enable online function learning. It is proved that our proposed algorithms
enjoy sub-linear regret bounds. Experiments on a number of real datasets showcase the
advantages of our novel graph-aided algorithms compared to state-of-the-art alternatives. 1

Keywords: Multi-Kernel Learning, Graphs, Random Features, Function Approximation,
Online Learning

1. Introduction

The need for function approximation arises in many machine learning studies including
regression, classification, and reinforcement learning, see e.g., (Chung et al., 2019). This
paper studies supervised function approximation where given data samples {(xt, yt)}Tt=1, the
goal is to find the function f(·), such that the difference between f(xt) and yt is minimized.
In this context, kernel learning methods exhibit reliable performance. Specifically, the
function approximation problem becomes tractable under the assumption that f(·) belongs
to a reproducing kernel Hilbert space (Scholkopf and Smola, 2001). In some cases, it is
imperative to perform function approximation task in an online fashion. For instance, when
the volume of data is large and is collected in a sequential fashion, it is impossible to store
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or process it in batch. Furthermore, suffering from the well-known problem of ‘curse of
dimensionality’ (Bengio et al., 2006; Shawe-Taylor and Cristianini, 2004), kernel learning
methods are not suitable for sequential settings. This has motivated studies on online
single kernel learning (Lu et al., 2016; Ding et al., 2017; Bouboulis et al., 2018; Zhang and
Liao, 2019) to address the curse of dimensionality. Specifically, approximating kernels by
finite-dimensional feature representations such as random Fourier feature by Rahimi and
Recht (2007) and Nyström method by Williams and Seeger (2000), function approximation
task becomes scalable. Furthermore, kernel approximation with finite-dimensional features
has been extensively studied by e.g. Sriperumbudur and Szabó (2015); Rudi and Rosasco
(2017); Shahrampour and Tarokh (2018); Ding et al. (2020).

Most of prior studies rely on a pre-selected kernel; however, such selection requires prior
information which may not be available. By contrast, utilizing a dictionary of multiple kernel
in lieu of a pre-selected kernel provides more flexible approach to obtain more accurate
function approximations as it can learn combination of kernels (Sonnenburg et al., 2006;
Kloft et al., 2011). Multiple kernel learning successfully has been employed in many learning
methods as well as practical applications including cross domain learning (Duan et al., 2012)
and computer vision applications (Bucak et al., 2014). To utilize the merits of multi-kernel
learning several algorithms have been emerged (see e.g. (Rakotomamonjy et al., 2008;
Cortes et al., 2009; Gönen and Alpaydin, 2011)) which exhibit well-documented advantages
compared to their single kernel learning counterparts. However, the mentioned algorithms
are suitable to apply to batch kernel learning cases and are less efficient or even intractable
when it comes to performing kernel learning in an online fashion. In order to make multiple
kernel learning amenable for online function approximation, several algorithms have been
proposed in the literature (see e.g. (Hoi et al., 2013; Sahoo et al., 2014)). However, the
aforementioned algorithms suffer from the curse of dimensionality and are not scalable to deal
with large volume of data. Enabled by the random feature approximation by Rahimi and
Recht (2007), scalable online multi-kernel learning algorithms have been developed by Sahoo
et al. (2019); Shen et al. (2019); Ghari and Shen (2020). In particular, the aforementioned
algorithms perform function approximation by learning the linear combination of random
feature kernel approximations.

One of the most important challenges of MKL is the proper selection of kernels in the
dictionary, which influences both computational complexity and accuracy of the function
approximation significantly. However, selecting an appropriate kernel dictionary requires
prior information. When such information is not available, one solution is to include a large
number of kernels in the dictionary. In this case, employing all kernels in the dictionary may
not be a feasible choice. Data-driven selection of subset of kernels in a given dictionary can
alleviate the computational complexity. Furthermore, data-driven subset selection of kernels
can enhance the accuracy of function approximation by pruning irrelevant kernels. The goal
of the present paper is to select a subset of kernels in a given dictionary at each time instant
in order to alleviate the computational complexity and improve function approximation
accuracy. To this end, our proposed algorithms construct a graph whose vertices represent
kernels such that a subset of kernels is selected based on the structure of the graph. In
this case, function approximations given by the chosen subset of kernels can be viewed as
feedback collected from a graph which is called feedback graph. Relative to existing online
multi-kernel learning approaches, our novelty can be summarized as follows:
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c1) Different from existing works which employ all kernels in the dictionary, while only
learning the combination coefficients, our proposed algorithms only use a subset of
kernels at each time instant according to a feedback graph.

c2) An adaptive and disciplined framework is developed to construct a feedback graph
at each time instant according to the loss incurred by kernel-based approximants. A
novel OMKL algorithm is proposed to select kernels according to the graph-structured
feedback (OMKL-GF) which achieves sublinear regret.

c3) Construction of the feedback graph at each time instant increases the computational
burden of multi-kernel learning. To address this issue, a similarity feedback graph is
constructed based on the similarity among kernels, which does not require observing
the data samples beforehand. The resulting algorithm is called Online Multi-Kernel
Learning with Similarity-based Feedback Graph (OMKL-SFG). It is proved that the
proposed OMKL-SFG achieves a sub-linear regret.

c4) A novel algorithm called OMKL-SFG-R is proposed to adaptively refine the structure
of the similarity-based feedback graph ‘on the fly.’ It is proved that the OMKL-SFG-R
enjoys the sublinear regret tighter than OMKL-SFG and OMKL-GF.

c5) Experiments on real datasets showcase the effectiveness of our proposed algorithms in
comparison with other state-of-the-art OMKL baselines.

The remainder of this paper is organized as follows. Section 2 discusses preliminaries of
random-feature based multi-kernel learning. Section 3 presents the proposed OMKL-GF
algorithm and its regret analysis. Furthermore, section 4 presents the OMKL-SFG and
OMKL-SFG-R algorithms along with their theoretical performance in terms of regret.
Experimental results are provided in section 5 to study performance of MKL algorithms on
several real datasets. Finally, section 6 concludes the paper.

2. Preliminaries

Given samples (x1, y1), · · · , (xT , yT ), with xt ∈ R
d and yt ∈ R, the function approximation

problem can be written as the following optimization problem

min
f∈H

1

T

T
∑

t=1

(

C(f(xt), yt) + λΩ(∥f∥2H)
)

(1)

where C(·, ·) denotes the cost function, which is specified according to the learning task.
For example, in regression task C(·, ·) can be least square function. In (1), λ denotes the
regularization coefficient and Ω(·) represents a non-decreasing function, which is used to
prevent over-fitting and control model complexity.

2.1 Function Approximation with Reproducing Hilbert Kernel Space

Let κ(x,xt) : R
d × R

d → R represent a symmetric positive definite kernel function which
measures the similarity between x and xt. In the context of kernel based learning, it is
assumed that the sought f(·) belongs to the reproducing Hilbert kernel space (RHKS) H :=
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{f |f(x) =
∑∞

t=1 αtκ(x,xt)}. A kernel is reproducing if it satisfies ⟨κ(x,xt), κ(x,xt′)⟩H =
κ(xt,xt′) where ⟨·, ·⟩

H
denotes vector inner product in Hilbert space, with the RKHS norm

defined as ∥f∥2
H
:=
∑

t

∑

t′ αtαt′κ(xt,xt′). The representer theorem states that the optimal
solution of (1) can be expressed as follows given finite data samples (Wahba, 1990)

f̂(x) =

T
∑

t=1

αtκ(x,xt) := α
⊤κ(x) (2)

where α := [α1, . . . , αT ]
⊤ denotes the vector of unknown coefficients to be estimated, and

κ(x) := [κ(x,x1), . . . , κ(x,xT )]
⊤. Furthermore, it can be observed that the dimension of α

increases with the number of data samples T . This is known as ‘curse of dimensionality’
(Wahba, 1990) and arises as a major challenge for solving (1) in an online fashion.

2.2 Random Fourier Feature Approximation

One way to cope with the increasing number of variables to be estimated is to employ random
feature (RF) approximation (Rahimi and Recht, 2007). As in Rahimi and Recht (2007), we
will approximate κ(·) in (2) using shift-invariant kernels which satisfy κ(xt,xt′) = κ(xt−xt′).
However, relying on a pre-selected kernel often requires prior information that may not be
available. To cope with this, multi-kernel learning can be exploited which learns the kernel
as a combination of a sufficiently rich dictionary of kernels {κi}Ni=1. The kernel combination
is itself a kernel (Scholkopf and Smola, 2001). Let κi(xt − xt′) be the i-th kernel in the
dictionary of N absolutely integrable kernels. In this case, its Fourier transform πκi

(ψ)
exists and can be viewed as probability density function (PDF) if the kernel is normalized
such that κi(0) = 1. Specifically, it can be written as

κi(xt − xt′) =

∫

πκi
(ψ)ejψ

⊤(xt−xt′ )dψ := Eπκi
(ψ)[e

jψ⊤(xt−xt′ )]. (3)

Let {ψi,j}Dj=1 be a set of vectors which are independently and identically distributed (i.i.d)
samples from πκi

(ψ). Hence, κi(xt − xt′) can be approximated by the ensemble mean

κ̂i,c(xt − xt′) := 1
D

∑D
j=1 e

jψ⊤
i,j(xt−xt′ ). Furthermore, the real part of κ̂i,c(xt − xt′) also

constitutes an unbiased estimator of κi(xt − xt′) which can be written as κ̂i(xt − xt′) =
z⊤i (xt)zi(xt′) (Rahimi and Recht, 2007), where

zi(xt) :=
1√
D
[ sin(ψ⊤

i,1xt), · · · , sin(ψ⊤
i,Dxt), cos(ψ

⊤
i,1xt), · · · , cos(ψ⊤

i,Dxt)].

Replacing κi(x,xt) with κ̂i(x− xt), f̂(x) in (2) can be approximated as

f̂RF,i(x) =
T
∑

t=1

αtκ̂i(x− xt) =
T
∑

t=1

αtz
⊤
i (x)zi(xt) = θ

⊤
i zi(x) (4)

where θi ∈ R
2D is a vector whose dimension does not increase with the number of data

samples. Therefore, utilizing RF approximation can make the function approximation
problem amenable for online implementation. Furthermore, the loss of the i-th kernel can
be calculated as

L(θ⊤i zi(xt), yt) = C(θ⊤i zi(xt), yt) + λΩ(∥θi∥2). (5)
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2.3 Online MKL as Online Learning with Expert Advice

Online learning with expert advice studies the problem where a learner performs the online
learning task by interacting with a set of experts, see e.g. (Cesa-Bianchi and Lugosi, 2006)).
At each time instant, the learner observes the advice given by experts, and then utilize the
received advice to make a decision in real time (Auer et al., 2003; Hazan, 2016; Mannor and
Shamir, 2011). In multi-kernel learning, each kernel can be viewed as an expert. Specifically,
the approximation obtained by the i-th kernel, can be viewed as the advice given by κi(·).
In particular, when multiple kernels are employed, function approximation can be performed
by functions in the form f(x) =

∑N
i=1 w̄ifi(x) where

∑N
i=1 w̄i = 1 (Scholkopf and Smola,

2001). Also, fi(x) ∈ Hi where Hi is an RKHS induced by the kernel κi. Replacing fi(x)
with f̂RF,i(x), the function f(x) can be approximated as

f̂RF(x) =

N
∑

i=1

w̄if̂RF,i(x),

N
∑

i=1

w̄i = 1 (6)

where the approximation f̂RF(x) is a linear combination of approximations (advice) given by
kernels in the dictionary. When all kernels are involved in function approximation at every
time instants, the multi-kernel learning problem with RF approximation can be formulated
as

min
{w̄i,θi}

T
∑

t=1

(

C
(

N
∑

i=1

w̄iθ
⊤
i zi(xt), yt

)

+ λΩ(∥θi∥2)
)

(7a)

s.t.
N
∑

i=1

w̄i = 1, w̄i ≥ 0, ∀1 ≤ t ≤ T. (7b)

In online MKL where data samples come sequentially, the optimization problem cannot be
solved in batch. Online convex optimization methods can be utilized to update {w̄i}Ni=1,
{θi}Ni=1 upon receiving new datum xt at each time instant t (Sahoo et al., 2019; Shen et al.,
2019). Let w̄i,t and θi,t denote the values of w̄i and θi at time t. Upon receiving new datum
xt and computing the loss L(θ⊤i,tzi(xt), yt), using the online gradient descent, θi,t can be
updated as

θi,t+1 = θi,t − η∇L(θ⊤i,tzi(xt), yt) (8)

where η is the learning rate. Furthermore, using multiplicative update, the value of w̄i,t can
be updated as

wi,t+1 = wi,t exp
(

−ηL(θ⊤i,tzi(xt), yt)
)

(9a)

w̄i,t+1 =
wi,t+1

∑N
j=1wj,t+1

. (9b)

Employing the update rules in (8) and (9) w̄i,t and θi,t can be updated in an online fashion
without storing data in batch.
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2.4 Assumptions

In order to analyze the proposed algorithms, we apply stochastic regret (Hazan, 2016) to
measure the difference between expected cumulative loss of the proposed algorithms and the
best function approximant in the hindsight. Let f∗(·) denote the best function approximant
in hindsight which can be obtained as

f∗(·) ∈ arg min
f∗
i ,i∈{1,...,N}

T
∑

t=1

L(f∗
i (xt), yt) (10a)

f∗
i (·) ∈ arg min

f∈Hi

T
∑

t=1

L(f(xt), yt). (10b)

Hence, the stochastic regret is defined as

T
∑

t=1

Et[L(f̂RF(xt), yt)]−
T
∑

t=1

L(f∗(xt), yt) (11)

where Et[·] denotes the expected value at time instant t given the loss observations in prior
times. Furthermore, the performance of proposed algorithms is analyzed under the following
assumptions:

(as1) The loss function L(θ⊤i,tzi(xt), yt) is convex with respect to θi,t at each time instant t.

(as2) For θ in a bounded set T which satisfies ∥θ∥ ≤ Cθ the loss and its gradient are bounded
as L(θ⊤i,tzi(xt), yt) ∈ [0, 1] and ∥∇L(θ⊤i,tzi(xt), yt)∥ ≤ L, respectively.

(as3) Kernels {κi}Ni=1 are shift-invariant (i.e. κi(x,x
′) = κi(x − x′), ∀i: i = 1, . . . , N),

standardized and bounded. Each datum ∥xt∥ ≤ 1.

Note that (as1) can be satisfied by many convex loss functions such as least squares
loss and logistic loss. Moreover, (as2) states that the losses are bounded and L-Lipschitz
continuous. (as3) states that kernels are assumed to be shift-invariant, standardized and
bounded, meaning that |κi(x)| ≤ 1, ∀i, ∀x. In what follows, we introduce a general graph-
aided OMKL framework, where only a subset of kernels in the dictionary are chosen at each
time instant.

3. Online Multi-Kernel Learning with Bipartite Feedback Graph

The present section introduces an OMKL approach which selects a subset of kernels using a
bipartite graph constructed adaptively at each time instant based on the observed losses.

3.1 Data-driven Graph-based Kernel Selection

Instead of combining the entire dictionary of the kernels, in the present paper, we will
consider combining a subset of kernels {κi(·), i ∈ St} at time instant t instead, where St is
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the index set of the chosen subset of kernels at time instant t. Hence, the original function
approximation problem boils down to

min
{w̄i,t,θi}

T
∑

t=1

(

C
(

∑

i∈St
w̄i,tθ

⊤
i zi(xt), yt

)

+ λΩ(∥θi∥2)
)

(12a)

s.t.
∑

i∈St
w̄i,t = 1, w̄i,t ≥ 0, ∀1 ≤ t ≤ T. (12b)

Upon defining the normalized weights w̄i,t =
wi,t∑

j∈St
wj,t

, (12) can be re-written as

min
{wi,t},{θi}

T
∑

t=1

L
(

∑

i∈St

wi,t
∑

j∈St wj,t
θ⊤i zi(xt), yt

)

(13a)

s.t.wi,t ≥ 0, ∀1 ≤ i ≤ N, ∀1 ≤ t ≤ T. (13b)

However, (13) assumes that {St}Tt=1 are preselected sets. In this section, we study data-driven
scheme which can adaptively select a subset of kernels ‘on the fly’ upon receiving new data
samples. In order to adaptively choose the subset of kernels, the present section models the
pruned kernel combination as feedback collected from a graph, that is constructed in an online
fashion. By doing this, the proposed approach trims irrelevant kernels in the dictionary to
both improve the function approximation accuracy and reduce the computational complexity
of MKL.

Consider a time varying bipartite graph (Asratian et al., 1998) Bt at time t, which consists
of two sets of nodes: N kernel nodes {vk,1, ..., vk,N} and J selective nodes {vs,1, ..., vs,J}
where vk,i and vs,j are the i-th kernel node and j-th selective node, respectively. And the
edges of the graph represents the association between the kernel nodes and the selective
nodes. Specifically, an edge between vk,i and vs,j exists at time t if the i-th kernel is assigned
to j-th selective node. The construction of the graph will be discussed in Section 3.2 .

At each time instant, one of the selective nodes vs,j is chosen, and the subset of kernel
nodes connected to vs,j will be used for the instantaneous function approximation at time t,

[c.f. (13)]. Then, the loss L(f̂RF,i(xt), yt) is observed for every kernel in the chosen subset
and θi,t is updated as

θi,t+1 = θi,t − η
∇L(θ⊤i,tzi(xt), yt)

qi,t
1i∈St , (14)

where qi,t is the probability that the loss of associated kernel is observed and 1i∈St denotes
the indicator function such that 1i∈St = 1 if i ∈ St and 1i∈St = 0 otherwise. The value of qi,t
depends on how the bipartite graph is generated. Upon receiving a new datum xt, the value
of the weight wi is updated ‘on the fly’. Let wi,t denote the weighting coefficient wi at time
instant t. We leverage multiplicative update for weights wi,t as

wi,t+1 = wi,t exp(−ηℓi,t) (15)

where ℓi,t denotes the importance sampling loss estimates (Alon et al., 2017) associated with
the i-th kernel as follows

ℓi,t =
L(f̂RF,i(xt), yt)

qi,t
1i∈St (16)
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Algorithm 1 Data Driven (Bipartite) Graph-based Kernel Selection

Input: Shift-invariant kernels κi, i = 1, . . . , N , step size η > 0, weights {wi,t}Ni=1, {uj,t}Jj=1,
bipartite graph Bt and datum xt.
Set uj,t =

∑

∀i:vk,i→vs,j
wi,t.

Obtain pj,t via (19).
Choose one selective node vs,j according to PMF pt = (p1,t, ..., pJ,t).

Predict f̂RF(xt) =
∑

i∈St
wi,t∑

m∈St
wm,t

f̂RF,i(xt) with f̂RF,i(xt) in (4).

Obtain loss L(f̂RF,i(xt), yt) for all i ∈ St.
Update θi,t+1 via (14) for all i ∈ St.
Update wi,t+1 via (15).

Output: f̂RF(xt), {wi,t+1}Ni=1, {θi,t+1}Ni=1

which is the observed loss L(f̂RF,i(xt), yt) divided by the probability qi,t. The function
approximation can be obtained as

f̂RF(xt) =
∑

i∈St

wi,t
∑

m∈St wm,t
f̂RF,i(xt) (17)

where f̂RF,i(·) is defined in (4).
Then the selective nodes are assigned to weights {uj,t+1} according to the the kernel

nodes’ weights {wi,t+1}. Indeed, each selective node’s weight {uj,t+1} is the total summation
of weights of kernel nodes which are connected to this selective node. Specifically the weight
of vs,j is obtained via

uj,t+1 =
∑

∀i:vk,i→vs,j

wi,t+1. (18)

Note that the weights of the selective nodes are determined by its adjacent kernel nodes,
which indicates the reliability of the corresponding kernel-based function estimate. Hence,
the probability according to which a selective node is chosen in the next time instant can be
updated as

pj,t+1 = (1− ηe)
uj,t+1

Ut+1
+

ηe
J

(19)

where Ut+1 :=
∑J

j=1 uj,t+1, and 0 < ηe ≤ 1 is the exploration rate. The term ηe
J

is introduced
to tradeoff between exploitation and exploration. The first term on the right hand side of
(19) implies choosing a selective node with larger weight uj,t+1 with higher probability. And
the term ηe

J
is used to to promote exploration. Algorithm 1 summarizes the data driven

kernel selection scheme presented in this section.
To sum up, each kernel is viewed as an expert and at each time instant a subset of

function approximations provided by these experts is combined. In this regard, the RF
approximation f̂RF,i(xt) can be viewed as the feedback provided by i-th kernel node, and
the proposed framework models the pruned kernel combination as feedback collected from a
graph, where the feedback are combined only if the corresponding kernel node is connected
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Algorithm 2 Generating Bipartite Feedback Graph

Input: Shift-invariant kernels κi, weighting coefficient wi,t, i = 1, . . . , N , exploration
coefficient ηe and the maximum degree of each selective node M .
Initialize: Sub-adjacency matrix At+1 = 0N×J .
for j = 1, ..., J do
for i = 1, ..., N do

Set πij,t+1 = (1− ηe
j)

wi,t+1
∑N

i=1 wi,t+1
+ ηe

j

N
.

end for
for k = 1, ...,M do
Choose one of nodes vk,i drawn according to the probability mass function (PMF)
πj,t+1 = (π1j,t+1, ..., πNj,t+1).
Set At+1(i, j) = 1.

end for
end for
Output: Bipartite feedback graph Bt+1 with adjacency matrix At+1

to the chosen selective node. By doing this, the proposed approach trims irrelevant kernels
in the dictionary to both improve the function approximation accuracy and reduce the
computational complexity of MKL. The graph construction approach will be proposed in
the ensuing subsection.

3.2 Online Bipartite Feedback Graph Construction

Construction of the time varying graph is of utmost importance, as it affects both function
approximation accuracy and computational complexity. In this regard, a graph is successful
if it can provide a subset of kernels which results in smallest possible loss. Indeed, considering
computational complexity, the graph should provide a limited number of kernels which obtain
minimum loss. To this end, we aim to propose a generating method for graph. Specifically,
using the weights {wi,t+1}Ni=1 obtained via (15), the structure of the graph is reconstructed
in a stochastic manner stated below to be leveraged in the next time instant.

Increasing the number of kernel nodes connected to vs,j , increases the computational
complexity of performing function approximation by choosing vs,j . Therefore, the graph
generation algorithm should be designed to limit the number of kernel nodes connected to
each selective node. Let M denote the maximum number of kernel nodes connected to each
selective node. The procedure to generate the graph Bt+1 is presented in Algorithm 2. Let
At+1 represent the N × J sub-adjacency matrix between two disjoint subsets {vs,1, ..., vs,J}
and {vk,1, ..., vk,N}. Notation At+1(i, j) represents the element in i-th row and j-th column
of the sub-adjacency matrix At+1 and it is equal to 1 if vk,i is connected to vs,j , and 0
otherwise.

Each selective node vs,j draws kernel nodes vk,i in M independent trials and in each trial
selective node draws only one kernel node. We put more weight on kernels which obtain less
loss in a sense that the probability that selective node vs,j draws the kernel node vk,i in a

9
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(a) A bipartite feedback graph con-
sists of J selective nodes and N kernel
nodes.

(b) The chosen selective node (vs,2 as
an example) and edges associated with
it are highlighted.

Figure 1: A bipartite feedback graph generated by Algorithm 2.

trial at time t+ 1 is

πij,t+1 = (1− ηe
j)

wi,t+1
∑N

k=1wk,t+1

+
ηe

j

N
(20)

Note that the first term in (20) discriminates between kernels based on their weights which is
determined by their loss in function approximation [c.f. (15)]. Furthermore, the second term
allows exploration over all kernel nodes. Specially, the selective node vs,j draws kernel nodes
according to uniform distribution if ηe = 1. Furthermore, note that ηe

j is a non-increasing
function of j for 0 < ηe ≤ 1. The selective node vs,1 puts more weight on exploration in
comparison with others while vs,J considers more exploitation than all the other selective
nodes. Therefore, the selective nodes entail different level of exploration and exploitation.

Based on the definition of πij,t+1 in (20), the probability that the i-th kernel node is
connected to vs,j is 1− (1− πij,t+1)

M , where (1− πij,t+1)
M is the probability that the i-th

kernel node is chosen by vs,j in none of M trials. Therefore, the probability of observing the
loss of the i-th kernel at time t+ 1 is given by

qi,t+1 =
J
∑

j=1

pj,t+1

(

1− (1− πij,t+1)
M
)

(21)

for 1 ≤ i ≤ N . The value of qi,t+1 is computed and used for importance sampling loss
estimate in (16). The graph generation framework is summarized in Algorithm 2. And
Figure 1 illustrates an example of the constructed bipartite feedback graph.

At each time instant t, the bipartite graph Bt is used for choosing a selective node,
and henceforth subset of the kernels. Then the weights of the selected kernels are updated
according to the loss [c.f.(14) and (15)]. And the graph can be constructed using Algorithm
2, based on which, the function approximation can be carried out by choosing one of the
selective nodes which leads to selecting a subset of kernels. Our proposed online multi-kernel
learning with graph-structured feedback (OMKL-GF) is summarized in Algorithm 3.
Computational Complexity. At time instant t, OMKL-GF needs to store a real 2D
random feature vector in addition to a weighting vector for each kernel in conjunction with

10
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Algorithm 3 OMKL with (Bipartite) Graph Feedback (OMKL-GF)

Input: Shift-invariant kernels κi, i = 1, . . . , N , step size η > 0 and the number of
random features D.
Initialize: θi,1 = 0, wi,1 = 1, i = 1, ..., N , generate B1 using Algorithm 2 given wi,1, ∀i
for t = 1, ..., T do
Receive one datum xt.
Obtain f̂RF(xt), {wi,t+1}Ni=1, {θi,t+1}Ni=1 using Algorithm 1 given Bt, {wi,t}Ni=1, {θi,t}Ni=1.
Generate Bt+1 using Algorithm 2 with {wi,t+1}Ni=1.

end for

a weighting vector for each selective node. As the number of kernels is in general larger than
the number of selective nodes, the required memory is of order O(dDN). The per-iteration
complexity of our OMKL-GF (e.g. calculating inner products) is O(dDM + JN). In
comparison, the per-iteration complexity of OMKR developed by Sahoo et al. (2014) is
O(tdN), while more contemporary online RF-based OMKL approaches proposed by Shen
et al. (2019); Sahoo et al. (2019) both have per-iteration complexity O(dDN). Hence, OMKL-
GF can significantly reduce the per iteration complexity especially when J ≤ M << N .

3.3 Regret Analysis

This subsection presents the regret analysis of OMKL-GF. In order to analyze the regret for
OMKL-GF, we first establish an intermediate result in the following lemma.

Lemma 1 The regret of the proposed OMKL-GF under (as1) and (as2) with respect to
a preselected kernel κi where Fi = {f̂i|f̂i(x) = θ⊤zi(x), ∀θ ∈ R

2D} satisfies the following
bound

T
∑

t=1

Et[L(f̂RF(xt), yt)]−
T
∑

t=1

L(f̂∗
i (xt), yt)

<
lnN

η
+

∥θ∗i ∥2
2η

+ ηeJT +
ηNT

2(1− ηe)
+

ηL2NJT

2η2e
(22)

where θ∗i is associated with the best RF function approximant f̂∗
i (xt) = θ

∗⊤
i zi(xt) and the

expectation at time t is taken with respect to PMFs pt and πj,t in (19) and (20), respectively.

Proof see Appendix B.

The next theorem further characterizes the difference between the loss of OMKL-GF relative
to the best functional estimator in the RKHS.

Theorem 2 The following bound holds with probability at least 1 − 28(σi

ϵ
)2 exp(− Dϵ2

4d+8)
under (as1)–(as3) for ϵ > 0 and with f∗

i belonging to RKHS Hi as in (10b)

T
∑

t=1

Et[L(f̂RF(xt), yt)]− min
i∈{1,...,N}

T
∑

t=1

L(f∗
i (xt), yt)

<
lnN

η
+

∥θ∗i ∥2
2η

+ ηeJT + ϵLTC +
ηNT

2(1− ηe)
+

ηL2NJT

2η2e
(23)
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where C is a constant, and σ2
i is the second order moment of the RF vector norm which

can be defined as σ2
i := Eπκi

(ψ)[∥ψ∥2]. The expectation at time t is taken with respect to the
randomness in pt and πj,t defined in (19) and (20), respectively.

Proof see Appendix C.

According to Theorem 2, by setting

η = O
(

√

lnN

N
T− 3

4

)

, ηe = O
(

N
1
6T− 1

4

)

, J = O
(

N
1
3

)

, ϵ = O
(

T− 1
4

)

(24)

in (23), the stochastic static regret in (11) satisfies O
(√

N lnNT
3
4

)

. Thus, by selecting

appropriate parameters, our proposed OMKL-GF achieves sublinear regret in expectation
with respect to the best static function approximant in (11). Note that while proper
settings of ϵ and η relies on the knowledge of T , such information may not be necessary,
via employing, e.g., doubling trick (Cesa-Bianchi and Lugosi, 2006). Considering (23), the

probability 1 − 28(σi

ϵ
)2 exp(− Dϵ2

4d+8) is an increasing function of D such that for a fixed
ϵ, always there are some values for D which result in positive probability. Furthermore,
(23) shows that by setting ϵ = O(T− 1

4 ) and D = O(
√
T lnT ), the sublinear regret of

O(
√
N lnNT

3
4 ) can be obtained with high probability of 1−O( 1√

T
).

The computational complexity of kernel learning algorithms play an important role in
their applicability. Bipartite feedback graph construction at each time instant increases the
computational complexity of OMKL-GF. To further alleviate the computational burden of
multi-kernel learning the ensuing section investigates the problem of choosing a subset of
kernels using a feedback graph while the graph is not constructed at every time instant.

4. Online Multi-Kernel Learning with Similarity-based Feedback Graph

Note that OMKL-GF is a data-driven kernel selection scheme where a bipartite feedback
graph is constructed at every time instant. However, online feedback graph construction
increases the computational complexity of OMKL-GF. This section proposes a novel al-
gorithmic framework to construct the feedback graph in an offline fashion such that the
proposed algorithms do not need to construct the feedback graph at every time instant.
Moreover, the bipartite feedback graph Bt constructed by Algorithm 2 do not exploit the
relationship among kernels. Hence, in this section, the similarity among kernels is measured
which will facilitate constructing the feedback graph in an offline fashion in such a way
that at each time instant a subset of dissimilar kernels are chosen to avoid unnecessary
computation. The present section first introduces a disciplined way to construct feedback
graph based on kernel similarities in an offline fashion. Based on the constructed feedback
graph, a novel online MKL algorithm (called OMKL-SFG) is developed to select a subset of
kernels which is proved to obtain sub-linear regret. Furthermore, to obtain tighter regret
bound a modification of OMKL-SFG algorithm (called OMKL-SFG-R) is proposed which
refines the structure of the feedback graph to choose a subset of kernels. OMKL-SFG-R
entails more computation than OMKL-SFG.

12
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4.1 Offline Similarity-based Feedback Graph Construction

The similarity between two shift invariant kernels κi and κj is measured through divergence
between κi and κj . As κi and κj has smaller divergence, they are considered to be more
similar. The present paper measures the divergence between a pair of kernels using the
Bregman divergence.

Let Ω be a d-dimensional convex set. Bregman divergence defined for a strictly convex
and differentiable function F (·) : Ω → R as (see, e.g. (Bregman, 1967; Banerjee et al., 2005))

BF (ω1,ω2) = F (ω1)− F (ω2)−∇F (ω2)
⊤(ω1 − ω2). (25)

Based on Bregman divergence, the divergence between two shift invariant kernels κi and κj
can be measured through the function ∆(κi, κj) which is defined as

∆(κi, κj) =

∫

BF (κi(ρ), κj(ρ)) dρ (26)

where ρ ∈ R
d. As it can be inferred from (26), ∆(κi, κj) measures the divergence between

two kernels κi and κj using the aggregation of Bregman divergence on every point ρ in the
input space. As ∆(κi, κj) decreases, kernels κi and κj are considered to be more similar.
Note that instead of defining the divergence as in (26), one can define the divergence function
∆(κi, κj) as the expected Bregman divergence over points ρ. However, taking the expectation
requires knowing the distribution of input data samples which may not be available priori.
Furthermore, the distribution of input space may change over time and as a result calculating
the expected value of Bregman divergence in an offline fashion over the input space may not
be feasible. Moreover, squared Euclidean divergence BF (κi(ρ), κj(ρ)) = ∥κi(ρ)− κj(ρ)∥2 is
generated by the function F (ω) = ∥ω∥2. Let ∆S(·, ·) denotes the function ∆(·, ·) when the
Bregman divergence is obtained by F (ω) = ∥ω∥2. In this case, we have

∆S(κi, κj) =

∫

|κi(ρ)− κj(ρ)|2dρ. (27)

The following Lemma states that the function ∆S(κi, κj) exists for each pair of absolutely
integrable kernels.

Lemma 3 Under the assumption that kernels {κi}Ni=1 are absolutely integrable, bounded
and normalized such that κi(0) = 1, ∀i : 1 ≤ i ≤ N , the function ∆S(κi, κj) is bounded and
exists for each pair of kernels κi(·) and κj(·).

Proof Since kernels {κi(ρ)}Ni=1 are assumed to be bounded as 0 ≤ κi(ρ) ≤ 1, ∀ρ, 1 ≤ i ≤ N ,
it can be concluded that |κi(ρ)− κj(ρ)|2 ≤ |κi(ρ)− κj(ρ)|. Thus, it can be inferred that

∫

|κi(ρ)− κj(ρ)|2dρ ≤
∫

|κi(ρ)− κj(ρ)|dρ. (28)

Furthermore, based on the Triangular inequality, it can be written that

∫

|κi(ρ)− κj(ρ)|dρ ≤
∫

|κi(ρ)|dρ+

∫

|κj(ρ)|dρ. (29)
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Based on (28), (29) and the fact that kernels are absolutely integrable, we can conclude that
the function ∆S(κi, κj) is bounded and exists for each pair of kernels κi(·) and κj(·).

Furthermore, the following lemma states that the average difference between function
approximations given by each pair of kernels is bounded above in accordance with the
function ∆S(·, ·) defined in (27).

Lemma 4 Let Cm := maxi
∑T

t=1 |αi,t|2 where {αi,t}Tt=1 are weights for (2) associated with
the i-th kernel κi(·). Also, let x is bounded as ∥x∥ ≤ 1 and kernels are absolutely integrable.
Then, the average difference between function approximations given by κi(·) and κj(·) is
bounded above as

1

Ud

∫

|f̂i(x)− f̂j(x)|2dx ≤ 2Cm

Ud

T
∑

t=1

(∆S(κi, κj) + 2Ud) (30)

where f̂i(x) denotes the function approximation given by κi(·) as in (2) and Ud represents
d-dimensional Euclidean unit norm ball volume.

Proof See Appendix D.

Let G := (V, E) be a directed graph with vertex vi ∈ V which represents the i-th kernel
κi. In this case, there is a self-loop for each vi ∈ V which means (i, i) ∈ E . Furthermore, an
edge from vi to vj is appended to E if

1

|Nout
i |

∑

m∈Nout
i

∆(κm(ρ), κj(ρ)) ≥ γi (31)

where γi is a threshold for vi and N
out
i denote the current out-neighborhood set of vi which

means j ∈ N
out
i if (i, j) ∈ E . Using the (31) to append edges to the graph G, a vertex vj

associated with the kernel κj is added to the out-neighborhood set of vi if it is dissimilar to
the current out-neighbors of vi. Therefore, the subset of vertices which are out-neighbors of
vi, are jointly dissimilar. Since a subset of function approximations associated with kernels
will be chosen using the graph G, the chosen subset of function approximations can be
viewed as feedback collected from the graph G and as a result the graph G is called feedback
graph. Specifically in order to restrict the number of out-neighbors for each node to M , the
value of γi is obtained as

γi = argmax
γ

{γ||Nout
i | = M}. (32)

Note that M is a preselected parameter in the algorithm and increasing the value of M
increases the connectivity of the feedback graph. At each time instant, one of the nodes are
drawn and the function approximation is carried out using the combination of a subset of
kernels which are out-neighbors of the chosen node. Therefore, increase in M can increase
the exploration in the approximation task while it increases the computational complexity.
The feedback graph construction procedure is summarized in Algorithm 4. It can be observed
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Algorithm 4 Generating Similarity based Feedback Graph

Input: Shift-invariant kernels κi, i = 1, ..., N .
for i = 1, ..., N do
Append (i, i) to E .
Obtain γi via (32).
Append (i, j) to E if 1

|Nout
i |
∑

m∈Nout
i

∆(κm(ρ), κj(ρ)) ≥ γi.

end for
Output: Similarity-based Feedback Graph G.

(a) A similarity-based feedback graph
with 5 kernel nodes.

(b) As an example, the chosen node (v2)
and its out-neighbors are highlighted.

Figure 2: An example of similarity-based feedback graph generated by Algorithm 4.

from (26) that the function ∆(κi, κj) can be considered as a measure of divergence, and
henceforth dissimilarity between kernels κi(·) and κj(·) without knowing data samples
{xt}Tt=1. This helps reduction of computational complexity of the function approximation
since (dis)similarity among kernels in the dictionary can be measured offline before observing
data samples and as a result the computation required to perform Algorithm 4 can be
performed offline.

At each time instant, one of the vertices of the feedback graph is drawn according to
a PMF as it will be explained in the next section. Then, the function approximation is
performed using the kernels associated with out-neighbors of the chosen vertex. Therefore,
based on the feedback graph construction in Algorithm 4, at each time instant a subset of
dissimilar kernels is chosen to avoid unnecessary computation since it is expected that similar
kernels provide comparatively similar approximations. See also Figure 2 for an example
of similarity based feedback graph where the number of kernels is 5 and vi represents a
Gaussian kernel with bandwidth of 10i−3. For each node vi, γi is selected so that the number
of out-neighbors of vi is 3.

4.2 Kernel Selection with Offline Feedback Graph

The present section studies how to select a subset of kernels using the feedback graph G and
prior observations of losses associated with kernels. Assume that each kernel is associated
with a set of weights {wi,t}Ni=1 where wi,t is the weight associated with the i-th kernel κi.
The weight wi,t indicates the accuracy of the function approximation given by the κi at
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time t and its value can be updated when more and more information is being revealed.
Furthermore, a set of weights {ui,t}Ni=1 is assigned to V such that ui,t is the weight associated
with vi ∈ V at time instant t, which indicates the accuracy of function approximation when
the node vi is drawn. In order to choose a subset of kernels at time t, one of the vertices in
V is drawn according to the PMF pt

pi,t = (1− ξ)
ui,t
Ut

+
ξ

|D|1i∈D, i = 1, . . . , N (33)

where ξ is the exploration rate and Ut :=
∑N

i=1 ui,t. D represents the dominating set of
G, and |D| denotes the cardinality of D. Let St denote the subset of kernel indices chosen
at time t, and It denote the index of the kernel drawn according to the PMF pt in (33).
Therefore, i ∈ St if i ∈ N

out
It

, which means that the loss associated with the i-th kernel is
calculated if the i-th kernel is an out-neighbor of the It-th node. In turn, the RF-based
function approximation can be obtained as

f̂RF(xt) =
∑

i∈Nout
It

wi,t
∑

j∈Nout
It

wj,t
f̂RF,i(xt). (34)

Furthermore, the importance sampling loss estimate ℓi,t at time instant t is defined as

ℓi,t =
L(θ⊤i,tzi(xt), yt)

qi,t
1i∈St , i = 1, . . . , N (35)

where qi,t is the probability that i ∈ St and it can be computed as

qi,t =
∑

j∈Nin
i

pj,t (36)

where Nin
i denote the in-neighborhood set of vi which means j ∈ N

in
i if (j, i) ∈ E . In addition,

the importance sampling function approximation estimate ℓ̂i,t at time instant t associated
with vi ∈ V is defined as

ℓ̂i,t =
L(f̂RF(xt), yt)

pi,t
1It=i. (37)

Using the importance sampling loss estimate in (36), θi,t can be updated as

θi,t+1 = θi,t − η∇ℓi,t = θi,t − η
∇L(θ⊤i,tzi(xt), yt)

qi,t
1i∈St , (38)

where η is the learning rate. Moreover, the multiplicative update is employed to update wi,t

and ui,t based on importance sampling loss estimates in (35) and (37) as follows

wi,t+1 = wi,t exp(−ηℓi,t), i = 1, . . . , N (39a)

ui,t+1 = ui,t exp(−ηℓ̂i,t), i = 1, . . . , N. (39b)
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Algorithm 5 OMKL with Similarity-based Feedback Graph (OMKL-SFG)

Input: Shift-invariant kernels κi, i = 1, . . . , N , learning rate η, exploration rate ξ, the
number of random features D.
Initialize: θi,1 = 0, wi,1 = 1, i = 1, . . . , N , Construct the feedback graph G via
Algorithm 4.
for t = 1, . . . , T do
Receive one datum xt.
Draw one of nodes vi ∈ V according to the PMF pt = (p1,t, ..., pN,t) in (33).

Predict f̂RF(xt) via (34).
Calculate loss L(f̂RF,i(xt), yt) for all i ∈ St.
Update θi,t+1 via (38).
Update wi,t+1 and ui,t+1 via (39).

end for

The procedure to choose a subset of kernels at each time instant for function approximation
is summarized in Algorithm 5. This algorithm is called OMKL-SFG which stands for Online
Multi Kernel Learning with Similarity based Feedback Graph. Figure 2(b) illustrates the
case when v2 is drawn by the Algorithm 5 as an example. Then the function approximation
is performed using kernels associated with out-neighbors of v2, which are v1, v2 and v3
highlighted in Figure 2(b).

The following Theorem presents the upper bound for cumulative stochastic regret of
OMKL-SFG.

Theorem 5 Under (as1) and (as2), let j∗ = argmin∀j:1≤j≤N

∑T
t=1 L(f∗

j (xt), yt). Then for

any i ∈ N
in
j∗ , the stochastic regret of OMKL-SFG satisfies

T
∑

t=1

Et[L(f̂RF(xt), yt)]−
T
∑

t=1

L(f∗(xt), yt)

≤ lnN |Nout
i |

η
+

(1 + ϵ)C2

2η
+ ϵLTC + (ξ +

ηN

2
− ηξ

2
)T +

η

2

T
∑

t=1

(
1

q̄i,t
+

L2

qj∗,t
) (40)

with probability at least 1−28(
σj∗

ϵ
)2 exp(− Dϵ2

4d+8) under (as1)-(as3) for any ϵ > 0. Furthermore,
1
q̄i,t

=
∑

j∈Nout

i

wj,t

qj,tWi,t
, C is a constant and σ2

j∗ is the second moment of πκj∗
(ψ).

Proof The proof is deferred to Appendix E.

The regret bound in (40) depends on 1
q̄i,t

and 1
qj∗,t

. Since, there is a self-loop for all vk ∈ V ,
it can be written that qk,t ≥ pk,t. In addition, based on (33), we can conclude that pk,t >

ξ
|D| ,

∀vk ∈ V and as a result qk,t >
ξ
|D| , ∀vk ∈ V . Therefore, in the worst case where qj∗,t = O( ξ

|D|),
considering

η = O
(

√

lnN

N
T− 2

3

)

, ϵ = ξ = O
(

T− 1
3

)

, D = O
(

T
2
3 lnT

)

(41)
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OMKL-SFG can achieve regret bound of O(
√
N lnNT

2
3 ) with high probability of 1−O(T− 1

3 ).
Moreover, comparing regret bound of OMKL-SFG with that of OMKL-GF, it can be observed
that OMKL-SFG obtains tighter regret than OMKL-GF. The reason behind this is that the
regret bound of both OMKL-SFG and OMKL-GF depend on 1/qj∗,t (c.f. (40) and (90)) and
OMKL-SFG performs more exploration than OMKL-GF in the sense that using OMKL-SFG
the lower bound for the probability qi,t, ∀i is larger than that of OMKL-GF. Specifically,

using OMKL-GF, qi,t > η2e/NJ (c.f. (91)). Setting ηe = O(N
1
6T− 1

4 ) and J = O(N
1
3 ) as it

is specified in (24), it can be concluded that

qi,t > O
(

1

N
√
T

)

, ∀i ∈ {1, . . . , N}, ∀t ∈ {1, . . . , T} (42)

when OMKL-GF is employed. Moreover, since using OMKL-SFG, qi,t > ξ
|D| , choosing

ξ = O(T− 1
3 ) as in (41) and considering the fact that |D| ≤ N , the lower bound of qi,t when

OMKL-SFG is employed is obtained as

qi,t > O
(

1

NT
1
3

)

, ∀i ∈ {1, . . . , N}, ∀t ∈ {1, . . . , T}. (43)

Comparing (42) with (43), it can be concluded that OMKL-SFG can provide larger lower
bound for qj∗,t than that of OMKL-GF. This enables OMKL-SFG to obtain tighter regret
upper bound than OMKL-GF. Since the regret bound of O(

√
T ) is more satisfactory than

the regret bound of O(T
2
3 ), in what follows the structure of the feedback graph is refined at

each time instant so that the regret of O(
√
T ) can be achieved.

4.3 OMKL with Similarity-based Feedback Graph Refinement

This subsection further improves the OMKL-SFG by refining the offline feedback graph ‘on
the fly’, so that the resulting algorithm achieves a tighter sub-linear regret of O(

√
T ). To

this end, at each time instant the offline feedback graph G constructed by the Algorithm 4
is refined to a feedback graph G′

t based on the observed losses. To begin with, let’s define set
D
′
t as

D
′
t :=

{

i

∣

∣

∣

∣

ui,t
Ut

≥ 1

1− ξ
(β − ξ

N
)

}

(44)

where β is a pre-selected constant. According to (33), it can be inferred that pi,t ≥ β, ∀i ∈ D
′
t.

Let G′
t = (V, E ′

t) be a graph such that D′
t is a dominating set of G′

t. Suppose at each time
instant t, G′

t is employed as the feedback graph instead of G. In this case, it is ensured
that there is at least one edge from D

′
t to each vi ∈ V \ D′

t, i.e., D
′
t is a dominating set of

G′
t. In this case, we have qi,t ≥ β, ∀vi ∈ V. To this end, at each time instant t, G′

t can be
constructed based on G by expanding E to E ′

t such that D′
t would be a dominating set of G′

t.
Specifically, at each time instant t, the edge (di,t, i) is appended to E ′

t, if there is not any
edge from D

′
t to vi, where

di,t = argmax
j∈D′

t

∆(κi, κj). (45)
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Algorithm 6 OMKL with Similarity Feedback Graph Refinement (OMKL-SFG-R)

Input: Shift-invariant kernels κi, i = 1, . . . , N , learning rate η > 0, exploration rate
ξ > 0, the number of random features D and the constant β > 0.
Initialize: θi,1 = 0, wi,1 = 1, i = 1, . . . , N , Construct the feedback graph G via
Algorithm 4.
for t = 1, . . . , T do
Receive one datum xt.
Set E ′

t = E and obtain di,t, ∀i ∈ V \ D′
t by (45).

For all i ∈ V \ D′
t, append (di,t, i) to E ′

t if (di,t, i) /∈ E .
Draw one of nodes vi ∈ V according to the PMF pt = (p1,t, ..., pN,t) in (46).

Predict f̂RF(xt) via (47).
Calculate loss L(f̂RF,i(xt), yt) for all i ∈ St.
Update θi,t+1 via (38).
Update wi,t+1 and ui,t+1 via (39).

end for

Hence, there is at least one edge from D
′
t to vi ∈ V \ D′

t, meaning D
′
t is a dominating set for

G′
t. Then one of the vertices in V is drawn according to the PMF pt, with

pi,t = (1− ξ)
ui,t
Ut

+
ξ

|D′
t|
1i∈D′

t
, i = 1, . . . , N. (46)

Let N
out
i,t and N

in
i,t denote sets of out-neighbors and in-neighbors of vi in G′

t, respectively.
According to (44) and (46), we have qi,t ≥ β, ∀vi ∈ V where qi,t =

∑

j∈Nin
i,t
pj,t. The RF-based

function approximation can be written as

f̂RF(xt) =
∑

i∈Nout
It

wi,t
∑

j∈Nout
It

wj,t
f̂RF,i(xt). (47)

According to (47), θi,t, wi,t and ui,t can be updated using (38), (39a) and (39b), respectively.
The procedure is summarized in Algorithm 6, which is called OMKL-SFG-R, and its
performance in terms of regret analysis is presented in the following Theorem.

Theorem 6 Under (as1)–(as3), the stochastic regret of OMKL-SFG-R satisfies

T
∑

t=1

Et[L(f̂RF(xt), yt)]−
T
∑

t=1

L(f∗(xt), yt)

≤2 lnN

η
+

(1 + ϵ)C2

2η
+ ϵLTC + (ξ +

η

2

L2 +Nβ + 1

β
− ηξ

2
)T (48)

with probability at least 1− 28(
σj∗

ϵ
)2 exp(− Dϵ2

4d+8) for any ϵ > 0 and any β ≤ 1
N
.

Proof The proof can be found in Appendix F.

According to Theorem 6, by setting

η = O
(

√

lnN

NT

)

, ϵ = ξ = O
(

√

1

T

)

, D = O(T lnT ) (49)
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and β = O(1) such that β ≤ 1
N
, OMKL-SFG-R can achieve regret bound of O(

√
TN lnN)

using the feedback graph G′
t with probability of 1−O(1). According to Theorem 6, larger

D leads to larger probability that the regret bound in (48) holds true. Thus, in order to
achieve regret of O(

√
TN lnN) with high probability, OMKL-SFG-R should set sufficiently

large value of order O(T lnT ) for D. However, note that since some edges may be added to
G to construct G′

t, using G′
t instead of G may cause increase in computational complexity of

function approximation.

Computational Complexity. Both OMKL-SFG and OMKL-SFG-R need to store a set of
d-dimensional vectors {ψi,j}Dj=1 per kernel in addition to two weighting coefficients {wi,t}Ni=1

and {ui,t}Ni=1. Furthermore, both OMKL-SFG and OMKL-SFG-R need to store adjacency
matrix of G which is N × N matrix. In order to perform required computation for (45),
OMKL-SFG-R needs to store the divergence ∆(κi, κj) between any pair of kernels in the
dictionary. Therefore, the memory requirement for both algorithms are O(dDN + N2).
Consider the case where the number of out-neighbors of each node vi in G satisfiesM < N , the
per-iteration complexity of OMKL-SFG including calculation of inner products is O(dDM).
Therefore, it can be inferred that OMKL-SFG incurs less computational complexity than
OMKL-GF since recall that the per-iteration complexity of OMKL-GF is O(dDM + JN).
Therefore, it can be concluded that the offline feedback graph construction indeed can
alleviate the computational complexity compared with OMKL-GF in section 3. Due to the
graph refinement procedure, the complexity of OMKL-SFG-R is higher than OMKL-SFG.
According to Algorithm 6, there is a possibility that all nodes in the graph are out-neighbors
of one node in D

′
t. Therefore, the worst-case per-iteration computational complexity of

OMKL-SFG-R is O(dDN). Furthermore, the computational complexities of OMKL-SFG
and OMKL-SFG-R are lower than state-or-art multi-kernel learning algorithms provided
that the per-iteration computational complexity of OMKR is O(tdN) Sahoo et al. (2014),
and the per-iteration computational complexity of RF-based online multi-kernel learning
algorithms proposed in Sahoo et al. (2019) and Shen et al. (2019) are O(dDN).

Regret Bounds Comparison. The algorithm OMKR (Sahoo et al., 2014) achieves regret
of O(

√
T lnN). However, since per iteration computational complexity of OMKR is O(tdN),

OMKR requires much more computations than the proposed graph-aided OMKL algorithms.
Furthermore, Raker (Shen et al., 2019) obtains regret of O(

√
T lnN) with high probability

when the number of random features D is set to O(T lnT ). Therefore, employing all kernels
in the dictionary, Raker obtains tighter regret bound than those of the proposed graph-aided
OMKL algorithms. However, the proposed graph-aided OMKL algorithms require less
computations than Raker.

Comparison with Online Learning. In online learning with expert advice, there is a
learner interacts with a set of experts such that at each round of learning the learner choose
one of the experts and takes its advice for either decision making or prediction (Cesa-Bianchi
and Lugosi, 2006; Auer et al., 2003). The learner may observe the loss associated with a
subset of experts after decision making and in this regard this can be modeled by a graph
which is called feedback graph (see e.g. (Mannor and Shamir, 2011; Cohen et al., 2016; Alon
et al., 2017; Ghari and Shen, 2022)). In all algorithms proposed in this paper, each kernel
can be viewed as an expert. However, there are two major innovative differences compared
with online learning with feedback graph: i) the proposed algorithm constructs and refines
the feedback graph to improve the performance of learning task while in online learning, the
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feedback graph is generated in an adversarial manner. ii) in this paper, each expert (kernel)
is a learner itself and experts implement an online scheme for self-improvement.

5. Experiments

This section presents experimental results over real datasets downloaded from UCI Machine
Learning Repository (Dua and Graff, 2017). The accuracy of different approaches are
evaluated using mean square error (MSE). Due to the randomness in the random features
extracted for function approximation, we average the MSE over R = 20 different sets of
random features. The MSE at time t is computed as

MSEt =
1

R

R
∑

r=1

1

t

t
∑

τ=1

(f̂RF(xτ )− yτ )
2. (50)

The number of random features is D = 50. The kernel dictionary contains 76 kernels
including 51 RBF kernels and 25 Laplacian kernels. The bandwidth of the i-th (1 ≤ i ≤ 51)
RBF kernel is 10σi with σi =

2i−52
25 . And the value of the i-th (1 ≤ i ≤ 25) Laplacian kernel’s

parameter is 10λi where λi =
i−13
6 . For fairness of evaluation, parameters ξ, η and ηe are

set to 0.1√
t
for all algorithms at time step t. More precise results can be obtained with more

extensive parameter tuning. The performance of kernel learning algorithms is evaluated
through several real datasets:
Airfoil: This dataset comprises 1, 503 different size airfoils at various wind tunnel speeds
and each data sample xt includes 5 features such as frequency and chord length. The output
yt is scaled sound pressure level in decibels (Brooks et al., 1989).
Bias: This dataset contains 7, 750 samples. Each sample has 21 features including maximum
and minimum temperatures of present-day, and geographic auxiliary variables for the purpose
of bias correction of next-day minimum air temperatures. The goal is to predict next-day
minimum air temperature (Cho et al., 2020).
Concrete: This dataset contains 1, 030 samples of 8 features, such as the amount of cement
or water in a concrete. The goal is to predict concrete compressive strength (Yeh, 1998).
Naval: contains 11, 934 samples of 15 features of a naval vessel characterized by a gas
turbine propulsion plant including the ship speed and gas turbine shaft torque. The goal is
to predict the lever position (Coraddu et al., 2016).

Parameter λ is set to 10−3 for all proposed algorithms OMKL-GF, OMKL-SFG and
OMKL-SFG-R. Generating the bipartite graph Bt at every time instant can increase the
computational complexity of the proposed OMKL-GF while it cannot improve MSE consid-
erably. To further decrease the computational complexity of our proposed OMKL-GF, we
terminate generating Bt after 300 time instants, meaning that Bt = B300 if t > 300. The
number of selective nodes for OMKL-GF is set to be 2. Furthermore, the feedback graph
G in Algorithm 4 is generated with the divergence function ∆(·, ·) defined using Bregman
divergence in (25) when F (ω) = ∥ω∥2. The greedy set cover algorithm by Chvatal (1979)
is utilized to find the dominating set D of the feedback graph G. Moreover, in order to
speed up OMKL-SFG and OMKL-SFG-R, after 300 time instants, OMKL-SFG-R chooses
It = argmaxi

ui,t

Ut
. All experiments were carried out using Intel(R) Core(TM) i7-10510U CPU
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@ 1.80 GHz 2.30 GHz processor with a 64-bit Windows operating system. Codes are available
at https://github.com/pouyamghari/Graph-Aided-Online-Multi-Kernel-Learning.

5.1 Number of Selected Kernels

The present subsection studies the effect of the maximum number of selected kernels M
on the performance of the proposed OMKL-GF, OMKL-SFG and OMKL-SFG-R. Figure 3
illustrates the MSE and its standard deviation of the proposed OMKL-GF, OMKL-SFG and
OMKL-SFG-R with the change in the number of selected kernels. The standard deviation
and the MSE are obtained over R = 20 sets of i.i.d random features (c.f. (50)). Figure
3 shows the advantage of data-driven kernel selection by OMKL-GF since increasing M
from M = 10 to M = 20 does not result in lower MSE for Airfoil, Bias and Naval datasets.
Figure 3 indicates that for OMKL-SFG and OMKL-SFG-R choosing moderate value for
M such as M = 10 obtains MSE comparatively close to the MSE associated with optimal
M . Figure 3 illustrates that OMKL-GF can obtain lower MSE than OMKL-SFG although
OMKL-SFG achieves tighter regret upper bound than that of OMKL-GF. Regret upper
bounds deal with worst cases. According to Theorems 2 and 5, the worst cases for OMKL-GF
and OMKL-SFG happen when the probability of observing the loss of the best kernel (i.e.
qj∗,t where j∗ defined in Theorem 5) is close to its minimum value for almost all t. For
both algorithms qj∗,t is close to its minimum value for almost all t if the probability of
choosing the best kernel for function approximation is small for all t, which is unlikely to
happen although it is not impossible. In addition, both OMKL-GF and OMKL-SFG choose
a subset of kernels using a trade-off between exploitation and exploration. OMKL-SFG
performs more exploration in choosing a subset of kernels than OMKL-GF in the sense
that using OMKL-SFG lower bound for qj∗,t is larger than that of OMKL-GF (see (42) and
(43)). OMKL-GF performs more exploitation than OMKL-SFG since using OMKL-GF the
structure of the graph is changing every time instant to enable OMKL-GF to choose optimal
subset of kernels while using OMKL-SFG the structure of the graph is fixed and independent
of prior loss observations. Results in Figure 3 show that the proper selection of M along
with data-driven kernel selection can enable OMKL-GF to choose a more powerful subset of
kernels than that of OMKL-SFG which leads to better accuracy of OMKL-GF. Moreover,
since using OMKL-SFG-R, qi,t ≥ β, choosing β = O(1), it can be concluded that qj∗,t ≥ O(1)
when OMKL-SFG-R is employed. Therefore, OMKL-SFG-R performs more exploration
than OMKL-SFG which leads to tighter regret upper bound for OMKL-SFG-R. However,
employing OMKL-SFG-R increases the probability that the kernels with comparatively poor
prior performance being among the chosen subset of kernels. This is against exploitation and
degrades the MSE performance of OMKL-SFG-R compared to OMKL-SFG. Furthermore,
Figure 4 depicts that the run time of the proposed graph-aided OMKL algorithms with the
change in the number of selected kernels. Figure 4 shows that a larger M leads to longer run
time which is expected as larger M increases the complexity. Moreover, numerical results
associated with Figures 3 and 4 are also presented in Tables 3, 4, 5 in Appendix A.

5.2 MSE and Run Time Performance Compared to Baselines

The performance of the proposed algorithms OMKL-GF, OMKL-SFG and OMKL-SFG-R
are compared with the following kernel learning benchmarks:
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(a) Airfoil dataset. (b) Bias dataset.

(c) Concrete dataset. (d) Naval dataset.

Figure 3: MSE and standard deviation performance of Graph-aided MKL algorithms on
real datasets with the change in the number of selected kernels.

(a) Airfoil dataset. (b) Bias dataset.

(c) Concrete dataset. (d) Naval dataset.

Figure 4: Run Time performance of Graph-aided MKL algorithms on real datasets with the
change in the number of selected kernels.
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Table 1: MSE(×10−3) of MKL algorithms on real datasets.

Algorithms Airfoil Bias Concrete Naval

OMKR 32.68 15.54 41.72 9.22
RBF-1 33.17 15.96 41.73 11.99
POLY-2 355.67 23.36 50.06 90.06
RFOMKR 350.52 405.44 210.42 347.06
Raker 28.64 12.70 35.22 11.35

OMKL-GF 25.73 8.15 34.45 5.11
OMKL-SFG 32.49 12.06 37.75 5.35
OMKL-SFG-R 33.99 13.24 38.58 7.89

Table 2: Run time(s) of MKL algorithms on real datasets.

Algorithms Airfoil Bias Concrete Naval

OMKR 889.36 80010.03 547.93 163688.82
RBF-1 14.39 3914.67 6.60 1499.78
POLY-2 7.22 195.19 3.33 951.93
RFOMKR 2.17 27.72 1.53 18.37
Raker 3.81 46.28 2.71 31.24

OMKL-GF 2.56 17.01 2.06 10.63
OMKL-SFG 1.65 13.58 1.34 9.00
OMKL-SFG-R 2.81 17.86 2.24 11.45

• OMKR: online multi-kernel regression approach proposed by Sahoo et al. (2014).

• RBF-1: online single kernel regression approach (Sahoo et al., 2014) using a radial
basis function (RBF) with bandwidth of 1.

• POLY-2: online single kernel regression approach (Sahoo et al., 2014) using a polyno-
mial kernel with degree of 2.

• RFOMKR: online multi-kernel learning approach utilizes RF approximation (Sahoo
et al., 2019).

• Raker: RF-based online multi-kernel learning (Shen et al., 2019).

The maximum number of kernels chosen by OMKL-GF at each time instant is 10. In
addition, for OMKL-SFG, to determine the value of γi for each vertex vi ∈ V, the number
of out-neighbors for each node is set to be 10. For OMKL-SFG-R, at each time, β is set to
β = (1− ξ)ū[10,t] +

ξ
N

where ū[10,t] denote the tenth greatest value in the sequence {ui,t

Ut
}Ni=1.

Tables 1 and Table 2 list MSE and run time performance of alternative algorithms on
real datasets, respectively. It can be observed from Table 1 that the proposed OMKL-GF
significantly outperforms all benchmark algorithms, which corroborate the effectiveness of
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(a) Airfoil dataset. (b) Bias dataset.

(c) Concrete dataset. (d) Naval dataset.

Figure 5: MSE performance of MKL algorithms on real datasets.

data-driven feedback graph based kernel pruning. Furthermore, MSEs reported in Table 1
indicates that the accuracy of OMKL-SFG is comparable with that of Raker which employs
all kernels in the dictionary while OMKL-SFG chooses a subset of kernels at each time
instant. Table 2 shows that OMKL-GF and OMKL-SFG are more efficient than all other
alternatives, since thanks to the graph-aided pruning only a subset of kernels instead of all
kernels in the dictionary are employed at each time instant. In addition, OMKL-SFG is
the fastest due to the offline graph construction. Although OMKL-SFG-R enjoys tighter
sub-linear regret than those of OMKL-GF and OMKL-SFG by including a larger number
kernels in the selected subset, employing OMKL-SFG-R requires more computation and
increases the run time which can be inferred from the results in the Table 2.

Figure 5 illustrates the MSE of OMKR, Raker and proposed algorithms over time. It can
be seen that as time goes, performance gain of OMKL-GF becomes more remarkable. This
confirms the effectiveness of the data-driven kernel selection in a sense that the proposed
OMKL-GF learns the optimal subset of kernels in the dictionary ‘on the fly’.

5.3 Regret Performance

The present section presents the regret performance of the proposed OMKL-GF, OMKL-SFG
and OMKL-SFG-R. The maximum number of kernels chosen by OMKL-GF at each time
instant is 10. In addition, using OMKL-SFG, at each time instant 10 kernels are chosen
to perform the function approximation task. For OMKL-SFG-R, at each time, β is set to
β = (1− ξ)ū[10,t] +

ξ
N
. Figure 6 illustrates the regret of the proposed algorithms over time.
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(a) Airfoil dataset. (b) Bias dataset.

(c) Concrete dataset. (d) Naval dataset.

Figure 6: Regret of proposed OMKL algorithms on real datasets.

6. Conclusion

This paper develops online multi-kernel learning algorithms for non-linear function learning.
By constructing a bipartite feedback graph at every time instant, OMKL-GF chooses a subset
of kernels to both prune irrelevant kernels and decrease the computational complexity. It is
proved that OMKL-GF can obtain regret of O(T

3
4 ). To further alleviate the computational

burden of multi-kernel learning, a feedback graph is constructed in an offline fashion based on
the similarities among kernels. Using the similarity-based feedback graph, a subset of kernels
is chosen and the resulting algorithm is called OMKL-SFG. It is proved that OMKL-SFG
can achieve sub-linear regret of O(T

2
3 ). Furthermore, refining the similarity-based feedback

graph structure at each time instant, OMKL-SFG-R is proposed, which enjoys sub-linear
regret of O(

√
T ). Moreover, experiments on real datasets demonstrate that by choosing

a subset of kernels, OMKL-GF can obtain lower MSE in comparison with other online
kernel learning algorithms including OMKR and Raker. Furthermore, experiments show
that OMKL-GF and OMKL-SFG have considerably lower run time compared to online
multi-kernel learning algorithms OMKR and Raker.
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Table 3: MSE(×10−3) and run time of OMKL-GF with different M on real datasets.

MSE(×10−3) Run time (s)
Datasets M = 1 M = 5 M = 10 M = 15 M = 20 M = 1 M = 5 M = 10 M = 15 M = 20

Airfoil 49.53 24.95 25.73 26.47 26.91 0.70 1.53 2.56 3.40 4.30
Bias 12.56 7.11 8.15 8.93 9.79 5.44 11.24 17.01 23.17 27.74
Concrete 79.27 34.58 34.45 34.04 33.84 0.55 1.27 2.06 2.82 3.65
Naval 14.60 4.78 5.11 5.69 6.06 3.58 7.61 10.63 14.16 18.11

Table 4: MSE(×10−3) and run time of OMKL-SFG with different M on real datasets.

MSE(×10−3) Run time (s)
Datasets M = 1 M = 5 M = 10 M = 15 M = 20 M = 1 M = 5 M = 10 M = 15 M = 20

Airfoil 51.03 33.49 32.49 31.82 30.89 1.17 1.36 1.65 1.98 2.27
Bias 12.35 11.78 12.06 12.11 12.13 6.58 9.94 13.57 17.49 21.26
Concrete 79.60 48.03 37.75 33.83 32.59 1.03 1.15 1.34 1.60 1.79
Naval 8.15 6.18 5.35 4.85 4.68 4.45 6.22 9.00 11.69 14.09
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2019.

A. Additional Experimental Results

This section presents more detailed results on MSE and Run time of proposed algorithms
with the change in the number of chosen kernels. Table 3 lists the MSE and run time of
OMKL-GF with the change in the value of M which is the maximum number of kernels
selected at each time instant by OMKL-GF. For OMKL-SFG and OMKL-SFG-R, the value
of γi is chosen such that for each vertex vi ∈ V, the number of out-neighbors for each node
is M . Tables 4 and 5 show both MSE and run time of OMKL-SFG and OMKL-SFG-R
respectively with different values of M .

B. Proof of Lemma 1

In order to prove Lemma 1, we first establish the following lemma as a step stone.

Lemma 7 Let f̂RF,i(.) denote the sequence of estimates generated with a preselected kernel

κi where Fi = {f̂i|f̂i(x) = θ⊤zi(x), ∀θ ∈ R
2D}. Then, under assumptions (as1) and (as2)
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Table 5: MSE(×10−3) and run time of OMKL-SFG-R with different M on real datasets.

MSE(×10−3) Run time (s)
Datasets M = 1 M = 5 M = 10 M = 15 M = 20 M = 1 M = 5 M = 10 M = 15 M = 20

Airfoil 106.66 38.03 33.99 32.42 31.21 2.28 2.32 2.81 2.97 3.18
Bias 48.81 14.77 13.24 12.78 12.57 10.87 13.98 17.86 21.13 25.13
Concrete 110.08 50.96 38.58 34.32 32.85 1.91 2.06 2.24 2.51 2.63
Naval 95.37 14.32 7.89 6.03 5.33 6.77 8.55 11.45 13.65 15.84

the following bound holds

T
∑

t=1

L(f̂RF,i(xt), yt)−
T
∑

t=1

L(f̂∗
i (xt), yt) ≤

∥θ∗i ∥2
2η

+
T
∑

t=1

ηL2

2qi,t
(51)

where L is the Lipschitz constant in (as2) and θ∗i is the parameter vector associated with the
best estimator f̂∗

i (x) = (θ∗i )
⊤zi(x).

Proof For θi,t+1 and any fixed θ, it can be written that

∥θi,t+1 − θ∥2 = ∥θi,t − η∇ℓi,t − θ∥2

= ∥θi,t − θ∥2 − 2η∇⊤ℓi,t(θi,t − θ) + ∥η∇ℓi,t∥2. (52)

Furthermore, from the convexity of the loss function with respect to θ in (as1), we can
conclude that

L(θ⊤i,tzi(xt), yt)− L(θ⊤zi(xt), yt) ≤ ∇⊤L(θ⊤i,tzi(xt), yt)(θi,t − θ). (53)

Therefore, from (53), it can be inferred that
(

L(θ⊤i,tzi(xt), yt)

qi,t
− L(θ⊤zi(xt), yt)

qi,t

)

1i∈St ≤
∇⊤L(θ⊤i,tzi(xt), yt)

qi,t
(θi,t − θ)1i∈St . (54)

Based on (35), (54) is equivalent to

ℓi,t −
L(θ⊤zi(xt), yt)

qi,t
1i∈St ≤ ∇⊤ℓi,t(θi,t − θ). (55)

Combining (52) with (55), we get

ℓi,t −
L(θ⊤zi(xt), yt)

qi,t
1i∈St ≤

∥θi,t − θ∥2 − ∥θi,t+1 − θ∥2
2η

+
η

2
∥∇ℓi,t∥2. (56)

Taking the expectation of ℓi,t and ∥∇ℓi,t∥2 with respect to 1i∈St , we arrive at

Et[ℓi,t] =
∑

j∈Nin
i

pj,t
L(θ⊤i,tzi(xt), yt)

qi,t
= L(θ⊤i,tzi(xt), yt) (57a)

Et[∥∇ℓi,t∥2] =
∑

j∈Nin
i

pj,t
∥∇L(θ⊤i,tzi(xt), yt)∥2

q2i,t
=

∥∇L(θ⊤i,tzi(xt), yt)∥2
qi,t

. (57b)
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Therefore, taking the expectation with respect to 1i∈St from both sides of (56), we obtain

L(θ⊤i,tzi(xt), yt)− L(θ⊤zi(xt), yt)

≤∥θi,t − θ∥2 − ∥θi,t+1 − θ∥2
2η

+
η∥∇L(θ⊤i,tzi(xt), yt)∥2

2qi,t
. (58)

Based on (as2), we have ∥∇L(θ⊤i,tzi(xt), yt)∥2 ≤ L2. Therefore, summing (58) over time
from t = 1 to t = T it can be concluded that

T
∑

t=1

L(θ⊤i,tzi(xt), yt)−
T
∑

t=1

L(θ⊤zi(xt), yt) ≤
∥θ∥2 − ∥θi,T+1 − θ∥2

2η
+

T
∑

t=1

ηL2

2qi,t
. (59)

Putting θ = θ∗i in (59) and taking into account that ∥θi,T+1 − θ∥2 ≥ 0, we can write

T
∑

t=1

L(θ⊤i,tzi(xt), yt)−
T
∑

t=1

L(θ⊤zi(xt), yt) ≤
∥θ∗i ∥2
2η

+
T
∑

t=1

ηL2

2qi,t
(60)

which completes the proof of Lemma 7.

Lemma 8 Under (as1) and (as2), the following holds

T
∑

t=1

Et[L(f̂RF(xt), yt)]−
T
∑

t=1

L(f̂RF,i(xt), yt) ≤
lnN

η
+ ηeJT +

ηNT

2(1− ηe)
(61)

where η is the learning rate, ηe is the exploration rate, qi,t =
∑J

j=1 pj,t
(

1− (1− πij,t)
M
)

and N denotes the number of kernels.

Proof Let Wt =
∑N

n=1wn,t. For any t we find

Wt+1

Wt
=

J
∑

j=1

pj,t
Wt+1

Wt
=

J
∑

j=1

pj,t

N
∑

i=1

wi,t+1

Wt
=

J
∑

j=1

pj,t

N
∑

i=1

wi,t

Wt
exp(−ηℓi,t). (62)

Based on (3), we have

wi,t

Wt
=

πij,t − η
j
e

N

1− ηje
, ∀j ∈ {1, ..., J}. (63)

Combining (62) with (63) obtains

Wt+1

Wt
=

J
∑

j=1

pj,t

N
∑

i=1

πij,t − η
j
e

N

1− ηje
exp(−ηℓi,t). (64)
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Using the inequality e−x ≤ 1− x+ 1
2x

2, ∀x ≥ 0, (64) leads to

Wt+1

Wt
≤

J
∑

j=1

pj,t

N
∑

i=1

πij,t − η
j
e

N

1− ηje

(

1− ηℓi,t +
1

2
(ηℓi,t)

2

)

. (65)

Taking logarithm from both sides of inequality (65), and use the fact that 1 + x ≤ ex, we
have

ln
Wt+1

Wt
≤

J
∑

j=1

pj,t

N
∑

i=1

πij,t − η
j
e

N

1− ηje

(

−ηℓi,t +
1

2
(ηℓi,t)

2

)

. (66)

Summing (66) over t from 1 to T results in

ln
WT+1

W1
≤

T
∑

t=1

J
∑

j=1

pj,t

N
∑

i=1

πij,t − η
j
e

N

1− ηje

(

−ηℓi,t +
1

2
(ηℓi,t)

2

)

. (67)

Furthermore, recall the updating rule of wi,T+1 in (37), for any i we have

ln
WT+1

W1
≥ ln

wi,T+1

W1
= − lnN −

T
∑

t=1

ηℓi,t. (68)

Combining (67) with (68) results in

T
∑

t=1

J
∑

j=1

pj,t

N
∑

i=1

πij,t

1− ηje
(ηℓi,t)−

T
∑

t=1

ηℓi,t

≤ lnN +

T
∑

t=1

J
∑

j=1

pj,t

N
∑

i=1

η
j
e

N

1− ηje
(ηℓi,t) +

T
∑

t=1

J
∑

j=1

pj,t

N
∑

i=1

πij,t − η
j
e

N

1− ηje

(

1

2
(ηℓn,t)

2

)

. (69)

Multiplying both sides by 1−ηJe
η

, we arrive at

T
∑

t=1

J
∑

j=1

pj,t

N
∑

i=1

πij,t
1− ηJe

1− ηje
ℓi,t −

T
∑

t=1

(1− ηJe )ℓi,t

≤1− ηJe
η

lnN +

T
∑

t=1

J
∑

j=1

pj,t

N
∑

i=1

ηje(1− ηJe )

N(1− ηje)
ℓi,t

+
T
∑

t=1

J
∑

j=1

pj,t

N
∑

i=1

(1− ηJe )(πij,t − η
j
e

N
)

1− ηje
(
η

2
ℓ2i,t). (70)

Also, using the fact that 0 < ηe ≤ 1 we can conclude that 1 − ηJe < 1 and for all j ≥ 1,
ηje ≤ ηe, the RHS of (70) can be upper bounded by

1− ηJe
η

lnN +
T
∑

t=1

J
∑

j=1

pj,t

N
∑

i=1

ηje(1− ηJe )

N(1− ηje)
ℓi,t +

T
∑

t=1

J
∑

j=1

pj,t

N
∑

i=1

(1− ηJe )(πij,t − η
j
e

N
)

1− ηje
(
η

2
ℓ2i,t)

≤ lnN

η
+

T
∑

t=1

J
∑

j=1

pj,t

N
∑

i=1

ηe(1− ηJe )

N(1− ηe)
ℓi,t +

T
∑

t=1

J
∑

j=1

pj,t

N
∑

i=1

πij,t − η
j
e

N

1− ηje
(
η

2
ℓ2i,t). (71)
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Since 1− ηJe = (1− ηe)(1 + . . .+ ηJ−1
e ) and ηe ≤ 1, the following bound holds for the second

term on the RHS of (71)

T
∑

t=1

J
∑

j=1

pj,t

N
∑

i=1

ηe(1− ηJe )

N(1− ηe)
ℓi,t =

T
∑

t=1

J
∑

j=1

pj,t

N
∑

i=1

ηe(1 + . . .+ ηJ−1
e )

N
ℓi,t

≤
T
∑

t=1

J
∑

j=1

pj,t

N
∑

i=1

ηeJ

N
ℓi,t. (72)

Meanwhile, as ηJe ≤ ηje for all j, 1 ≤ j ≤ J , the LHS of (70) can be bounded by

T
∑

t=1

J
∑

j=1

pj,t

N
∑

i=1

πij,t
1− ηJe

1− ηje
ℓi,t −

T
∑

t=1

(1− ηJe )ℓi,t ≥
T
∑

t=1

J
∑

j=1

pj,t

N
∑

i=1

πij,tℓi,t −
T
∑

t=1

ℓi,t. (73)

Combining (70), (71), (72) and (73), we can conclude that

T
∑

t=1

J
∑

j=1

pj,t

N
∑

i=1

πij,tℓi,t −
T
∑

t=1

ℓi,t

≤ lnN

η
+

T
∑

t=1

J
∑

j=1

pj,t

N
∑

i=1

ηeJ

N
ℓi,t +

T
∑

t=1

J
∑

j=1

pj,t

N
∑

i=1

πij,t − η
j
e

N

1− ηje
(
η

2
ℓ2i,t). (74)

Recall the probability of observing the loss of the i-th kernel at time t given in (21), the
expected first and second moments of ℓi,t in (16) given the losses incurred up to time instant

t− 1, i.e., {L(f̂RF(xτ ), yτ )}t−1
τ=1 can be written as

E[ℓi,t] =
J
∑

j=1

pj,t
(

1− (1− πij,t)
M
) L(f̂RF,i(xt), yt)

qi,t
= L(f̂RF,i(xt), yt) (75a)

E[ℓ2n,t] =

J
∑

j=1

pj,t
(

1− (1− πij,t)
M
) L2(f̂RF,i(xt), yt)

q2i,t
=

L2(f̂RF,i(xt), yt)

qi,t
≤ 1

qi,t
. (75b)

Based on (75b), the third term in the right hand side of (74) can be bounded as follows

T
∑

t=1

J
∑

j=1

pj,t

N
∑

i=1

πij,t − η
j
e

N

1− ηje
(
η

2
ℓ2n,t) ≤

T
∑

t=1

J
∑

j=1

pj,t

N
∑

i=1

πij,t − η
j
e

N

1− ηje
(

η

2qi,t
). (76)

Taking the expected value of (74) at each time t given{L(f̂RF(xτ ), yτ )}t−1
τ=1 and combining

with (75a) and (76) we have

T
∑

t=1

J
∑

j=1

pj,t

N
∑

i=1

πij,tL(f̂RF,i(xt), yt)−
T
∑

t=1

L(f̂RF,i(xt), yt)

≤ lnN

η
+

T
∑

t=1

J
∑

j=1

pj,t

N
∑

i=1

ηeJ

N
L(f̂RF,i(xt), yt) +

T
∑

t=1

J
∑

j=1

pj,t

N
∑

i=1

πij,t − η
j
e

N

1− ηje
(

η

2qi,t
). (77)
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Since
πij,t− η

j
e

N

(1−η
j
e)qi,t

≤ πij,t

(1−ηe)qi,t
, replace

πij,t− η
j
e

N

qi,t(1−η
j
e)

by
πij,t

(1−ηe)qi,t
, the inequality in (77) still holds

T
∑

t=1

J
∑

j=1

pj,t

N
∑

i=1

πij,tL(f̂RF,i(xt), yt)−
T
∑

t=1

L(f̂RF,i(xt), yt)

≤ lnN

η
+

T
∑

t=1

J
∑

j=1

pj,t

N
∑

i=1

ηeJ

N
L(f̂RF,i(xt), yt) +

η

2(1− ηe)

T
∑

t=1

J
∑

j=1

pj,t

N
∑

i=1

πij,t
qi,t

. (78)

Moreover, based on (21), the probability qi,t can be bounded from below as

qi,t =
J
∑

j=1

pj,t
(

1− (1− πij,t)
M
)

=
J
∑

j=1

pj,tπij,t
(

1 + (1− πij,t) + . . .+ (1− πij,t)
M−1

)

>
J
∑

j=1

pj,tπij,t (79)

Therefore, according to (79), for the third term in the right hand side of (78) we have

η

2(1− ηe)

T
∑

t=1

J
∑

j=1

pj,t

N
∑

i=1

πij,t
qi,t

<
ηNT

2(1− ηe)
. (80)

Furthermore, based on that L(f̂RF,i(xt), yt) ≤ 1 in (as2), the following inequality holds

T
∑

t=1

J
∑

j=1

pj,t

N
∑

i=1

ηeJ

N
L(f̂RF,i(xt), yt) ≤

T
∑

t=1

J
∑

j=1

pj,t

N
∑

i=1

ηeJ

N
= ηeJT. (81)

From (78), (80) and (81), we can conclude that

T
∑

t=1

J
∑

j=1

pj,t

N
∑

n=1

πij,tL(f̂RF,i(xt), yt)−
T
∑

t=1

L(f̂RF,i(xt), yt) ≤
lnN

η
+ ηeJT +

ηNT

2(1− ηe)
. (82)

According to the procedure of generating the graph Bt which is presented in Algorithm 2, for
each selective node vs,j a subset of kernels is chosen using PMF πij,t in M independent trials.
In fact, a subset of kernels is assigned to each node vs,j in M independent trials and in each
trial one kernel is assigned and its associated entry in the sub-adjacency matrix A becomes
1. Now, let bi represents the frequency that the i-th kernel is chosen in M independent trials.
Thus, {bi}Ni=1 can be viewed as the solution to the following linear equation

b1 + . . .+ bN = M, s.t. bi ≥ 0, bi ∈ N (83)

where N denotes the set of natural numbers. There are
(

N+M−1
N

)

different solutions for (83).
Let, {bi,k}Ni=1 denotes the k-th set of solution for (83). Based on Jensen’s inequality, for the
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expected value of L(f̂RF(xt), yt) we have

Et[L(f̂RF(xt), yt)] =

J
∑

j=1

pj,t

(N+M−1
N )
∑

k=1

(

N
∏

i=1

(πij,t)
bi,k

)

L(
∑

i∈St

w̄i,tf̂RF,i(xt), yt)

≤
J
∑

j=1

pj,t

(N+M−1
N )
∑

k=1

(

N
∏

i=1

(πij,t)
bi,k

)

∑

i∈St

w̄i,tL(f̂RF,i(xt), yt). (84)

Also, considering (84) and the fact that w̄i,t ≤ 1, we can conclude that

Et[L(f̂RF(xt), yt)] ≤
J
∑

j=1

pj,t

(N+M−1
N )
∑

k=1

(

N
∏

i=1

(πij,t)
bi,k

)

∑

i∈St

w̄i,tL(f̂RF,i(xt), yt)

≤
J
∑

j=1

pj,t

(N+M−1
N )
∑

k=1

(

N
∏

i=1

(πij,t)
bi,k

)

∑

i∈St

L(f̂RF,i(xt), yt). (85)

Note that the number of ways to solve (83) when the i-th kernel is chosen for at least one
time equals to the number of ways to solve the following problem

b̃1,i + . . .+ b̃N,i = M − 1, s.t. b̃m,i ≥ 0, b̃m,i ∈ N. (86)

There are
(

N+M−2
N

)

different solutions for (86). Let {b̃(k)m,i}Ni=1 denotes k-th set of solution
for (86). Therefore, based on this, from (85) we can conclude the following equality

J
∑

j=1

pj,t

(N+M−1
N )
∑

k=1

(

N
∏

i=1

(πij,t)
bi,k

)

∑

i∈St

L(f̂RF,i(xt), yt)

=
J
∑

j=1

pj,t

N
∑

i=1

πij,t

(N+M−2
N )
∑

k=1

(

N
∏

m=1

(πmj,t)
b̃
(k)
m,i

)

L(f̂RF,i(xt), yt) (87)

where
∑(N+M−2

N )
k=1

(

∏N
m=1(πmj,t)

b̃
(k)
m,i

)

is the total probability of all
(

N+M−2
N

)

possible solu-

tions of (86). Therefore,
∑(N+M−2

N )
k=1

(

∏N
m=1(πmj,t)

b̃
(k)
m,n

)

= 1. Substituting (87) into (84), we

obtain

Et[L(f̂RF(xt), yt)] ≤
J
∑

j=1

pj,t

N
∑

i=1

πij,tL(f̂RF,i(xt), yt). (88)

Combining (82) with (88) leads to

T
∑

t=1

Et[L(f̂RF(xt), yt)]−
T
∑

t=1

L(f̂RF,i(xt), yt) ≤
lnN

η
+ ηeJT +

ηNT

2(1− ηe)
(89)
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which concludes to proof of Lemma 8.

From Lemma 7 and Lemma 8, we conclude that for any i : 1 ≤ i ≤ N we have

T
∑

t=1

Et[L(f̂RF(xt), yt)]−
T
∑

t=1

L(f̂∗
i (xt), yt)

≤ lnN

η
+

∥θ∗i ∥2
2η

+ ηeJT +
ηNT

2(1− ηe)
+

η

2

T
∑

t=1

L2

qi,t
. (90)

From (79) and the facts that pj,t > ηe
J

and πij,t > η
j
e

N
, the following inequality can be

concluded

qi,t ≥
J
∑

j=1

pj,tπij,t > p1,tπi1,t >
η2e
NJ

. (91)

Therefore, we find qi,t >
η2e
NJ

, ∀i : 1 ≤ i ≤ N , ∀t : 1 ≤ t ≤ T . Combining (90) and (91) we
can conclude that

T
∑

t=1

Et[L(f̂RF(xt), yt)]−
T
∑

t=1

L(f̂∗
i (xt), yt)

<
lnN

η
+

∥θ∗i ∥2
2η

+ ηeJT +
ηNT

2(1− ηe)
+

ηL2NJT

2η2e
. (92)

Hence, Lemma 1 is proved.

C. Proof of Theorem 2

To prove Theorem 2, the following lemma is exploited.

Lemma 9 For the optimal function estimator in Hi expressed as f∗
i (x) :=

∑T
t=1 α

∗
i,tκi(x,xt)

and its RF-based approximant f̂∗
i (x,xt) =

∑T
t=1 α

∗
i,tz

⊤
i (x)zi(xt), the following bound holds

with probability at least 1− 28(σi

ϵ
)2 exp(− Dϵ2

4d+8)

∣

∣

∣

∣

∣

T
∑

t=1

L(f̂∗
i (xt), yt)−

T
∑

t=1

L(f∗
i (xt), yt)

∣

∣

∣

∣

∣

≤ ϵLTC (93)

where the equality happens if we have C := maxi
∑T

t=1 |α∗
i,t|.

Proof For a given shift invariant kernel κi, the maximum point-wise error of the random fea-
ture kernel approximant is uniformly bounded with probability at least 1−28(σi

ϵ
)2 exp(− Dϵ2

4d+8),
by Rahimi and Recht (2007)

sup
xj ,xk∈X

|z⊤i (xj)zi(xk)− κi(xj ,xk)| < ϵ (94)
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where σ2
i is the second moment of the Fourier transform of κi. Therefore, under (a3)

this implies that supxτ ,xt∈X z⊤i (xτ )zi(xt) ≤ 1 + ϵ holds with probability at least 1 −
28(σi

ϵ
)2 exp(− Dϵ2

4d+8). Let C := maxn
∑T

t=1 |α∗
n,t|. Hence, ∥θ∗j ∥2 can be bounded from above

as

∥θ∗j ∥2 ≤ ∥
T
∑

t=1

α∗
j,tzj(xt)∥2 ≤ |

T
∑

t=1

T
∑

τ=1

α∗
j,tα

∗
j,τz

⊤
j (xt)zj(xτ )| ≤ (1 + ϵ)C2 (95)

with probability at least 1 − 28(σi

ϵ
)2 exp(− Dϵ2

4d+8). Moreover, using the triangle inequality
yields

∣

∣

∣

∣

∣

T
∑

t=1

L(f̂∗
j (xt), yt)−

T
∑

t=1

L(f∗
j (xt), yt)

∣

∣

∣

∣

∣

≤
T
∑

t=1

∣

∣

∣
L(f̂∗

j (xt), yt)− L(f∗
j (xt), yt)

∣

∣

∣
. (96)

According to Lipschitz continuity of the loss function, it can be concluded that

T
∑

t=1

∣

∣

∣
L(f̂∗

j (xt), yt)− L(f∗
j (xt), yt)

∣

∣

∣

≤
T
∑

t=1

L

∣

∣

∣

∣

∣

T
∑

τ=1

α∗
j,τz

⊤
j (xτ )zn(xt)−

T
∑

τ=1

α∗
j,τκj(xτ ,xt)

∣

∣

∣

∣

∣

. (97)

Using the Cauchy-Schwartz inequality, we can write

T
∑

t=1

L

∣

∣

∣

∣

∣

T
∑

τ=1

α∗
j,τz

⊤
j (xτ )zn(xt)−

T
∑

τ=1

α∗
j,τκj(xτ ,xt)

∣

∣

∣

∣

∣

≤
T
∑

t=1

L
T
∑

τ=1

|α∗
j,τ |
∣

∣

∣
z⊤j (xτ )zj(xt)− κj(xτ ,xt)

∣

∣

∣
. (98)

Using (94) and (98), we can conclude that the inequality
∣

∣

∣

∣

∣

T
∑

t=1

L(f̂∗
j (xt), yt)−

T
∑

t=1

L(f∗
j (xt), yt)

∣

∣

∣

∣

∣

≤ ϵLTC (99)

holds with probability at least 1− 28(σi

ϵ
)2 exp(− Dϵ2

4d+8).

Combining Lemma 1 with Lemma 9 and (95), it can be concluded that the following bound

holds with probability at least 1− 28(σn

ϵ
)2 exp(− Dϵ2

4d+8),

T
∑

t=1

Et[L(f̂RF(xt), yt)]−
T
∑

t=1

L(f∗
i (xt), yt)

=
T
∑

t=1

Et[L(f̂RF(xt), yt)]−
T
∑

t=1

L(f̂∗
i (xt), yt) +

T
∑

t=1

L(f̂∗
i (xt), yt)−

T
∑

t=1

L(f∗
i (xt), yt)

<
lnN

η
+

∥θ∗i ∥2
2η

+ ηeJT + ϵLTC +
ηNT

2(1− ηe)
+

ηL2NJT

2η2e
(100)

which completes the proof of Theorem 2.
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D. Proof of Lemma 4

According to (2), we obtain

1

Ud

∫

|f̂i(x)− f̂j(x)|2dx =
1

Ud

∫

|
T
∑

t=1

αi,tκi(x,xt)−
T
∑

t=1

αj,tκj(x,xt)|2dx. (101)

Applying Arithmetic Mean-Geometric Mean inequality on the right hand side of (101), we
find

1

Ud

∫

|f̂i(x)− f̂j(x)|2dx

≤ 2

Ud

∫

(

|
T
∑

t=1

αi,t (κi(x,xt)− κj(x,xt))|2 + |
T
∑

t=1

(αj,t − αi,t)κj(x,xt)|2
)

dx. (102)

Using Cauchy-Schwartz inequality, (102) can be further relaxed to

1

Ud

∫

|f̂i(x)− f̂j(x)|2dx

≤ 2

Ud

∫

(

T
∑

t=1

|αi,t|2)(
T
∑

t=1

|κi(x,xt)− κj(x,xt)|2)dx

+
2

Ud

∫

(
T
∑

t=1

|αj,t − αi,t|2)(
T
∑

t=1

|κj(x,xt)|2)dx. (103)

Considering the fact that Cm := maxi
∑T

t=1 |αi,t|2, from (103) it can be written that

1

Ud

∫

|f̂i(x)− f̂j(x)|2dx

≤2Cm

Ud

T
∑

t=1

∫

|κi(x,xt)− κj(x,xt)|2dx+
4Cm

Ud

T
∑

t=1

∫

|κj(x,xt)|2dx. (104)

Furthermore, based on (104) and the fact that |κj(x,xt)|2 ≤ 1, we can infer that

1

Ud

∫

|f̂i(x)− f̂j(x)|2dx ≤ 2Cm

Ud

T
∑

t=1

(∆S(κi, κj) + 2Ud) (105)

which proves Lemma 4.

E. Proof of Theorem 5

Furthermore, in order to prove Theorem 5, the following intermediate Lemma is also proved.

Lemma 10 The following inequality holds under (as1) and (as2)

T
∑

t=1

Et[L(f̂RF(xt), yt)]−
T
∑

t=1

L(f̂RF,i(xt), yt) ≤
lnN

η
+ η(1 +

N

2
− η

2
)T (106)

where Li(f̂RF(xt), yt) denote the loss of function approximation when vi is drawn.

39



Ghari and Shen

Proof For any t, we can write

Ut+1

Ut
=

N
∑

i=1

ui,t+1

Ut
=

N
∑

i=1

ui,t
Ut

exp(−ηℓ̂i,t). (107)

Based on (33), we have
ui,t

Ut
=

pi,t− ξ
|D|

1i∈D

1−ξ
and as a result (107) can be rewritten as

Ut+1

Ut
=

N
∑

i=1

pi,t − ξ
|D|1i∈D

1− ξ
exp(−ηℓ̂i,t). (108)

Using the inequality e−x ≤ 1− x+ 1
2x

2, ∀x ≥ 0 and (108), it can be concluded that

Ut+1

Ut
≤

N
∑

i=1

pi,t − ξ
|D|1i∈D

1− ξ

(

1− ηℓ̂i,t +
1

2
(ηℓ̂i,t)

2

)

. (109)

Taking logarithm from both sides of inequality (109), and use the fact that 1 + x ≤ ex, we
arrive at

ln
Ut+1

Ut
≤

N
∑

i=1

pi,t − ξ
|D|1i∈D

1− ξ

(

−ηℓ̂i,t +
1

2
(ηℓ̂i,t)

2

)

. (110)

Summing (110) over t leads to

ln
UT+1

U1
≤

T
∑

t=1

N
∑

i=1

pi,t − ξ
|D|1i∈D

1− ξ

(

−ηℓ̂i,t +
1

2
(ηℓ̂i,t)

2

)

. (111)

Furthermore, ln
UT+1

U1
can be bounded from below as

ln
UT+1

U1
≥ ln

ui,T+1

U1
= −

T
∑

t=1

ηℓ̂i,t − lnN (112)

for any i such that 1 ≤ i ≤ N . Combining (111) with (112), we obtain

T
∑

t=1

N
∑

i=1

pi,tη

1− ξ
ℓ̂i,t −

T
∑

t=1

ηℓ̂i,t

≤ lnN +
T
∑

t=1

N
∑

i=1

ηξ1i∈D
(1− ξ)|D| ℓ̂i,t +

T
∑

t=1

N
∑

i=1

pi,t − ξ
|D|1i∈D

1− ξ

(

1

2
(ηℓ̂i,t)

2

)

. (113)

Multiplying both sides by 1−ξ
η

it can be concluded that

T
∑

t=1

N
∑

i=1

pi,tℓ̂i,t −
T
∑

t=1

ℓ̂i,t

≤ lnN

η
+

T
∑

t=1

N
∑

i=1

ξ1i∈D
|D| ℓ̂i,t +

T
∑

t=1

N
∑

i=1

η(pi,t − ξ
|D|1i∈D)

2
ℓ̂2i,t. (114)
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In addition, taking the expectation of ℓ̂i,t and ℓ̂2i,t, we get

Et[ℓ̂i,t] = pi,t
L(f̂RF,i(xt), yt)

pi,t
= L(f̂RF,i(xt), yt) (115a)

Et[ℓ̂
2
i,t] = pi,t

L2(f̂RF,i(xt), yt)

p2i,t
=

L2(f̂RF,i(xt), yt)

pi,t
≤ 1

pi,t
(115b)

Thus, taking the expectation from both sides of (114) leads to

T
∑

t=1

N
∑

i=1

pi,tL(f̂RF(xt), yt)−
T
∑

t=1

L(f̂RF,i(xt), yt)

≤ lnN

η
+

T
∑

t=1

N
∑

i=1

ξ1i∈D
|D| L(f̂RF(xt), yt) +

T
∑

t=1

N
∑

i=1

η(pi,t − ξ
|D|1i∈D)

2pi,t
. (116)

Taking into account that L(f̂RF(xt), yt) ≤ 1 and based on (116) we can write

T
∑

t=1

N
∑

i=1

pi,tL(f̂RF(xt), yt)−
T
∑

t=1

L(f̂RF,i(xt), yt)

≤ lnN

η
+ ξT +

T
∑

t=1

N
∑

i=1

η(pi,t − ξ
|D|1i∈D)

2pi,t
. (117)

Moreover, using (117) and the fact that pi,t ≤ 1, it can be concluded that

T
∑

t=1

N
∑

i=1

pi,tL(f̂RF(xt), yt)−
T
∑

t=1

L(f̂RF,i(xt), yt) ≤
lnN

η
+ (ξ +

ηN

2
− ηξ

2
)T. (118)

Furthermore, the expected loss incurred by OMKL-SFG given observed losses in prior time
instants can be expressed as

Et[L(f̂RF(xt), yt)] =

N
∑

i=1

pi,tL(
∑

j∈Nout
i,t

wj,t
∑

k∈Nout
i,t

wk,t

f̂RF,j(xt), yt)

=
N
∑

i=1

pi,tL(f̂RF(xt), yt). (119)

Therefore, from (118) and (119), it can be inferred that

T
∑

t=1

Et[L(f̂RF(xt), yt)]−
T
∑

t=1

L(f̂RF,i(xt), yt) ≤
lnN

η
+ (ξ +

ηN

2
− ηξ

2
)T (120)

which establishes the Lemma 10.

Furthermore, to prove Theorem 5, we prove the following Lemma.

41



Ghari and Shen

Lemma 11 For any vi ∈ V and any j ∈ N
out
i , it can be written that

T
∑

t=1

Li(f̂RF(xt), yt)−
T
∑

t=1

L(f̂RF,j(xt), yt) ≤
ln |Nout

i |
η

+
η

2

T
∑

t=1

1

q̄i,t
(121)

where 1
q̄i,t

=
∑

j∈Nout

i

wj,t

qj,tWi,t
.

Proof Let Wi,t =
∑

j∈Nout
i

wj,t. For vi ∈ V we find

Wi,t+1

Wi,t
=
∑

j∈Nout
i

wj,t+1

Wi,t
=
∑

j∈Nout
i

wj,t

Wi,t
exp(−ηℓj,t). (122)

The following inequality can be obtained using the inequality e−x ≤ 1− x+ 1
2x

2, ∀x ≥ 0 as
follows

Wi,t+1

Wi,t
≤
∑

j∈Nout
i

wj,t

Wi,t

(

1− ηℓj,t +
1

2
(ηℓj,t)

2

)

. (123)

Taking the logarithm from both sides of (123) and using the inequality 1 + x ≤ ex, we get

ln
Wi,t+1

Wi,t
≤
∑

j∈Nout
i

wj,t

Wi,t

(

−ηℓj,t +
1

2
(ηℓj,t)

2

)

. (124)

Summing (124) over time, we obtain

ln
Wi,T+1

Wi,1
≤

T
∑

t=1

∑

j∈Nout
i

wj,t

Wi,t

(

−ηℓj,t +
1

2
(ηℓj,t)

2

)

. (125)

Moreover, for any j ∈ N
out
i , ln

Wi,T+1

Wi,1
can be bounded from below as

ln
Wi,T+1

Wi,1
≥ ln

wj,T+1

Wi,1
= −

T
∑

t=1

ηℓj,t − ln |Nout
i | (126)

Combining (125) with (126), it can concluded that

T
∑

t=1

∑

j∈Nout
i

wj,t

Wi,t
ℓj,t −

T
∑

t=1

ℓj,t ≤
ln |Nout

i |
η

+
η

2

T
∑

t=1

∑

j∈Nout
i

wj,t

Wi,t
ℓ2j,t. (127)

For the expected value of ℓi,t and ℓ2i,t, we have

Et[ℓj,t] =
∑

k∈Nout
i

pk,t
L(θ⊤j,tzj(xt), yt)

qj,t
= L(θ⊤j,tzj(xt), yt) (128a)

Et[ℓ
2
j,t] =

∑

k∈Nout
i

pk,t
L2(θ⊤j,tzj(xt), yt)

q2j,t
=

L2(θ⊤j,tzj(xt), yt)

qj,t
≤ 1

qj,t
(128b)
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Taking the expectation from (127), we get

T
∑

t=1

∑

j∈Nout
i

wj,t

Wi,t
L(θ⊤j,tzj(xt), yt)−

T
∑

t=1

L(θ⊤j,tzj(xt), yt)

≤ ln |Nout
i |

η
+

η

2

T
∑

t=1

∑

j∈Nout
i

wj,t

qj,tWi,t
. (129)

Let 1
q̄i,t

=
∑

j∈Nout
i

wj,t

qj,tWi,t
which is the weighted sum of 1

qj,t
such that j ∈ N

out
i . Furthermore,

according to (34), the loss Li(f̂RF(xt), yt) can be written as

Li(f̂RF(xt), yt) = L(
∑

j∈Nout
i

wj,t

Wi,t
f̂RF,j(xt), yt). (130)

Based on the Jensen’s inequality Li(f̂RF(xt), yt) can be bounded from above as

Li(f̂RF(xt), yt) ≤
∑

j∈Nout
i

wj,t

Wi,t
L(f̂RF,j(xt), yt). (131)

Using (129) and (131), we can conclude that

T
∑

t=1

Li(f̂RF(xt), yt)−
T
∑

t=1

L(θ⊤j,tzj(xt), yt) ≤
ln |Nout

i |
η

+
η

2

T
∑

t=1

1

q̄i,t
(132)

which proves the Lemma 11.

Combining Lemma 10 with Lemma 11, for any vj ∈ V and any i ∈ N
in
j we obtain

T
∑

t=1

Et[L(f̂RF(xt), yt)]−
T
∑

t=1

L(f̂RF,j(xt), yt)

≤ lnN |Nout
i |

η
+ (ξ +

ηN

2
− ηξ

2
)T +

η

2

T
∑

t=1

1

q̄i,t
. (133)

In addition, combining Lemma 7 with (133), for any vj ∈ V and any i ∈ N
in
j we can write

T
∑

t=1

Et[L(f̂RF(xt), yt)]−
T
∑

t=1

L(f̂∗
j (xt), yt)

≤ lnN |Nout
i |

η
+

∥θ∗j ∥2
2η

+ (ξ +
ηN

2
− ηξ

2
)T +

η

2

T
∑

t=1

(
1

q̄i,t
+

L2

qj,t
) (134)

We use the above inequality as a step-stone to prove Theorem 5.

43



Ghari and Shen

Therefore, combining (134) with (95) and (99), it can be inferred that the following
inequality

T
∑

t=1

Et[L(f̂RF(xt), yt)]−
T
∑

t=1

L(f∗
j (xt), yt)

≤ lnN |Nout
i |

η
+

(1 + ϵ)C2

2η
+ ϵLTC + (ξ +

ηN

2
− ηξ

2
)T +

η

2

T
∑

t=1

(
1

q̄i,t
+

L2

qj,t
) (135)

holds for any vj ∈ V and any i ∈ N
in
j with probability at least 1− 28(σi

ϵ
)2 exp(− Dϵ2

4d+8). This
completes the proof of Theorem 5.

F. Proof of Theorem 6

According to Theorem 5, the following inequality

T
∑

t=1

Et[L(f̂RF(xt), yt)]−
T
∑

t=1

L(f∗(xt), yt)

≤ lnN |Nout
i |

η
+

(1 + ϵ)C2

2η
+ ϵLTC + (ξ +

ηN

2
− ηξ

2
)T +

η

2

T
∑

t=1

(
1

q̄i,t
+

L2

qj∗,t
) (136)

holds with probability at least 1 − 28(
σj∗

ϵ
)2 exp(− Dϵ2

4d+8) for any ϵ > 0 and any i ∈ N
in
j∗ .

When G′
t is generated by Algorithm 6 as the feedback graph, D′

t is a dominating set of G′
t.

Furthermore, k ∈ D
′
t if pk,t ≥ β. Based on (36), if i ∈ N

in
k,t (i.e. in-neighborhood of vk in G′

t),

qk,t ≥ pi,t. Also, considering the condition β ≤ 1
N
, it is ensured that D

′
t is not an empty

set. Moreover, each node vk in G′
t is out-neighbor of at least one node in D

′
t. Thus, we can

conclude that qk,t ≥ β, ∀vk ∈ V. Hence, it can be written that

T
∑

t=1

(
1

q̄i,t
+

L2

qj∗,t
) ≥

T
∑

t=1

(
∑

j∈Nout
i

wj,t

Wi,tβ
+

L2

β
) =

(L2 + 1)T

β
. (137)

Furthermore, since |Nout
i | ≤ N , we have N |Nout

i | ≤ N2. Combining (136) with (137), it can
be inferred that in this case the stochastic regret of OMKL-SFG-R satisfies

T
∑

t=1

Et[L(f̂RF(xt), yt)]−
T
∑

t=1

L(f∗(xt), yt)

≤ 2 lnN

η
+

(1 + ϵ)C2

2η
+ ϵLTC + (ξ +

η

2

L2 +Nβ + 1

β
− ηξ

2
)T (138)

with probability at least 1− 28(
σj∗

ϵ
)2 exp(− Dϵ2

4d+8) under (as1)-(as3) for any ϵ > 0 and any

β ≤ (1− ξ)maxk
uk,t

Ut
+ ξ

N
. This completes the proof of Theorem 6.
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