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Abstract

Multi-kernel learning (MKL) exhibits well-documented performance in online
non-linear function approximation. Federated learning enables a group of learners
(called clients) to train an MKL model on the data distributed among clients to
perform online non-linear function approximation. There are some challenges in
online federated MKL that need to be addressed: i) Communication efficiency
especially when a large number of kernels are considered ii) Heterogeneous data
distribution among clients. The present paper develops an algorithmic framework to
enable clients to communicate with the server to send their updates with affordable
communication cost while clients employ a large dictionary of kernels. Utilizing
random feature (RF) approximation, the present paper proposes scalable online
federated MKL algorithm. We prove that using the proposed online federated MKL
algorithm, each client enjoys sub-linear regret with respect to the RF approximation
of its best kernel in hindsight, which indicates that the proposed algorithm can
effectively deal with heterogeneity of the data distributed among clients. Experi-
mental results on real datasets showcase the advantages of the proposed algorithm
compared with other online federated kernel learning ones.

1 Introduction

Kernel learning exhibits well-documented performance in function approximation tasks, while
providing theoretical guarantees associated with different performance metrics, see e.g. [48, 21, 38].
In some cases, a group of learners aims at collaborating to perform function approximation without
revealing their data. To this end, federated learning has been emerged as a crucial learning paradigm
by enabling a group of learners called clients to collaborate with each other by communicating with a
central server to train a centralized model [33, 27, 12, 23]. Through this process, clients send model
parameters and updates to the server without revealing their data. Upon receiving updates from
clients, the server updates the model. Therefore, federated learning enables clients to perform kernel
learning for function approximation. In this context, a server and clients collaborate with each other
to learn the optimal kernel. Furthermore, in some practical cases, clients may need to perform the
function approximation in an online fashion while they are collaborating with the server to learn the
kernel. For example, consider the case where clients may not have enough memory to store data in
batch. In addition, data samples may arrive in a sequential manner such that clients are not able to
perform the function approximation in batch form. There are major challenges in performing online
kernel learning in federated fashion that need to be addressed:
Communication Efficiency: Communication efficiency arises as a bottleneck in federated learning
(see e.g. [25, 37, 19, 16]). Specifically, limited clients-to-server communication bandwidth restricts
the number of parameters that can be sent from clients to the server.
Heterogeneous Data: The distribution of data observed by a client might be different from others
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(see e.g. [44, 29, 6]). Thus, the optimal kernel that is aimed to be learned is different across clients.
Computational Complexity: Clients should be able to perform function approximation fast enough
in order to make a decision in real-time. Therefore, the computational complexity of kernel learning
methods should be affordable for clients.

Conventional online kernel learning approaches (see e.g. [21, 39]) suffer from ‘curse of dimensional-
ity’ [3] in the sense that the number of parameters that should be learned increases with the number of
observed data. This can make employing conventional online kernel learning approaches infeasible
to perform online federated kernel learning since clients may be required to send a large number
of parameter updates to the server while the available clients-to-server communication bandwidth
is not enough for sending such information. Approximating kernels by finite-dimensional feature
representations (e.g. Nyström method [49] and random feature method of [36]) makes online kernel
learning approaches scalable in the sense that the learner can choose the number of parameters
that should be learned, independent of the number of observed data samples (see e.g. [30, 4, 52]).
Employing finite-dimensional feature representations of kernels to perform online federated kernel
learning, clients can choose the number of parameters that they should send to the server. Therefore,
finite-dimensional kernel approximation can better cope with limited clients-to-server communication
bandwidth compared to conventional kernel learning approaches. Random feature (RF) approxima-
tion [36] has been exploited to perform online federated kernel learning when a single pre-selected
kernel function is employed [26, 17]. The choice of the kernel function greatly affects the performance
of function approximation when it comes to exploiting only a single kernel function. Employing
multiple kernels instead of a single pre-selected one, can lead to obtaining more accurate function
approximation since multi-kernel learning (MKL) can learn combination of kernels [24]. Online
federated MKL algorithms with theoretical guarantees called vM-KOFL and eM-KOFL have been
proposed in [22]. However, eM-KOFL and vM-KOFL do not provide personalized MKL models for
clients since they learn the same combination of kernels for all clients.

The present paper proposes a novel personalized online federated MKL algorithm called POF-MKL
that provides a personalized MKL model for each client while it is ensured that the available clients-
to-server communication bandwidth can afford communication cost of sending clients’ updates to the
server. In order to alleviate the communication cost of MKL, the propsoed POF-MKL employs RF
approximation of kernels and at each time instant, each client chooses a subset of kernels to send
their updates to the server instead of sending the updates of all kernels. The number of kernels in the
chosen subset is selected such that the required bandwidth to send all clients’ updates does not exceed
the available clients-to-server communication bandwidth. Therefore, clients can send their updates
to the server independent of the number of kernels in the dictionary and as a result a comparatively
large dictionary of kernels can be considered to perform function approximation. Contributions of
the present paper can be summarized as follows:
c1. Leveraging the proposed POF-MKL, clients can update a subset of kernels’ parameters which
alleviates computational complexity and communication cost of sending updates to the server;
c2. Through theoretical analysis, it is proved that using the proposed POF-MKL, each client achieves
sub-linear regret with respect to RF approximation of the best kernel in hindsight associated with
the corresponding client data samples (c.f. Theorem 1). Moreover, it is guaranteed that the server
achieves sub-linear regret with respect to the best function approximator (c.f. Theorem 2);
c3. Experiments on real datasets showcase the effectiveness of the proposed POF-MKL compared to
existing online federated kernel learning algorithms.

2 Problem Statement and Preliminaries

Let there be a set of K clients performing function approximation task in an online fashion. The k-th
client’s goal is to learn the function f using the stream of data samples {(xk,t, yk,t)}Tt=1 such that
xk,t ∈ R

d is the data sample observed by the k-th client at time t and yk,t is the label associated
with xk,t. In the kernel learning context, the function f is assumed to belong to a reproducing kernel
Hilbert space (RKHS). The present paper studies the personalized federated supervised function
approximation problem

min
f∈H

T
∑

t=1

K
∑

k=1

L(f(xk,t), yk,t) (1)
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where H represents the RKHS the function f belongs to and L(·, ·) denotes the loss function which
can be defined as

L(f(x), y) = C(f(x), y) + λΩ(∥f∥2) (2)

where C(·, ·) is the cost function (e.g. least squares function for regression task), λ denotes the
regularization coefficient and Ω(·) represents a regularizer function to prevent over-fitting and control
the model complexity. Let Θ be the global parameters of the function f which are learned through
collaboration of clients with the server while wk be the personalized parameter of the function
f learned locally by the k-th client. Thus, the goal is that the cumulative difference between
f(xk,t;Θ,wk) and yk,t over time is minimized. At each time instant t, upon observing the data
sample xk,t, the k-th client make the prediction f(xk,t;Θ,wk) and then observes the true label yk,t.
Therefore, the function approximation problem that the server aims at solving can be expressed as
minΘ

∑T

t=1

∑K

k=1 L(f(xk,t;Θ,wk), yk,t). Moreover, finding the local parameters wk by the k-th

client can be expressed as the optimization problem minwk

∑T

t=1 L(f(xk,t;Θ,wk), yk,t). In order
to perform the function approximation task in an online fashion, the k-th client needs to perform the
task with the values of Θ and wk at time t denoted by Θt and wk,t, respectively. Thus, the values of
function parameters Θ and wk should be updated ‘on the fly’. Since the function f(·; ·, ·) belongs
to a reproducing kernel Hilbert space (RKHS), based on the representer theorem [48], given data
samples, the optimal solution for (1) can be obtained as

f̂(x) =

T
∑

t=1

K
∑

k=1

αk,tκ(x,xk,t) (3)

where κ(·, ·) denotes symmetric positive definite kernel function such that κ(x,x′) measures the
similarity between x and x′. And αk,t is an unknown coefficient associated with κ(x,xk,t) which

is required to be estimated. In this case, f̂(·) in (3) belongs to the RKHS H := {f(·)|f(x) =
∑∞

t=1

∑K

k=1 αk,tκ(x,xk,t)} such that RKHS norm is defined as ∥f∥2
H
:=
∑

t

∑

t′ αtαt′κ(xt,xt′).
Furthermore, from (3), it can be inferred that Θt = [α1,1, . . . , αK,1, . . . , α1,t, . . . , αK,t]. Therefore,

the number of coefficients {αk,τ}tτ=1, ∀k that should be estimated to obtain f̂(·) increases over
time. This is known as curse of dimensionality [48] since the computational complexity of function
approximation increases with time. This brings challenge for federated implementation of function
approximation since dimension of updates that should be sent to the server by each client grows over
time and when T is large, the available communication bandwidth may not be enough for clients to
send their updates.

In order to deal with the increasing number of unknown coefficients, one can employ random Fourier
approximation [36]. Assume that κ(·) is a shift-invariant kernel meaning that κ(x,x′) = κ(x− x′).
Let πκ(ρ) denotes the Fourier transform of κ(·). If the kernel function κ(·) is normalized such that
κ(0) = 1, then πκ(ρ) can be viewed as a probability density function (PDF) (see e.g. [36]). Let
ρ1, . . . ,ρD be a set of D independent and identically distributed (i.i.d) vectors drawn from πκ(·).
Let the vector z(x) be defined as

z(x) =
1√
D
[sin(ρ⊤

1 x), . . . , sin(ρ
⊤
Dx), cos(ρ⊤

1 x), . . . , cos(ρ
⊤
Dx)]. (4)

Then, κ̂r(x − x′) = z(x)⊤z(x′) constitutes an unbiased estimator of κ(x − x′) and the random
feature (RF) approximation of f̂(x) in (3) can be obtained as

f̂RF(x) =

T
∑

t=1

K
∑

k=1

αk,tz(xk,t)
⊤z(x) := θ⊤z(x) (5)

where in this case θ =
∑T

t=1

∑K

k=1 αk,tz(xk,t). According to (4), z(xk,t) is a 2D vector and as
a result it can be concluded that θ is a 2D vector as well. Therefore, using RF approximation, the
vector θ should be estimated whose dimension does not grow over time.

The performance of a kernel learning algorithm depends on the choice of the kernel. Thus, per-
forming the function approximation using a pre-selected kernel requires prior information which
may not be available. To cope with this, employing a dictionary of kernels in lieu of a pre-selected
single kernel has been proposed in the literature (see e.g. [45, 24, 31]). Specifically, the ker-
nel is learned as a combination of kernels in the dictionary. Let κ1(·), . . . , κN (·) be a set of
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N kernels where κi(·) denotes the i-th kernel. The function κ̄(·) belongs to the convex hull

K := {κ̄(x) =
∑N

i=1 βiκi(x), βi ≥ 0, ∀i,∑N

i=1 βi = 1} is a kernel [41]. Therefore, in online
multi-kernel learning, the goal is to learn the convex combination of kernels in the dictionary to
minimize the cumulative regret with respect to the best function approximator in hindsight. The
cumulative regret is defined as the cumulative difference between loss of the online multi-kernel
learning algorithm and that of the best function approximator in hindsight. Furthermore, for a
dataset {(xt, yt)}Tt=1, the best function approximator is f∗(·) ∈ argminf∗

i
,i∈[N ]

∑T

t=1 L(f∗
i (xt), yt)

where f∗
i (·) ∈ argminf∈Hi

∑T

t=1 L(f(xt), yt) such that Hi is an RKHS induced by κi(·) and
[N ] := {1, . . . , N}. Enabled by random feature approximation, centralized and scalable online multi-
kernel learning algorithms have been proposed in literature (see e.g. [40, 43, 15]). The present paper
proposes an algorithmic framework for personalized online federated MKL using RF approximation
of kernels in the dictionary.

3 Personalized Online Federated Multi-Kernel Learning

The present section proposes an algorithmic framework for online federated multi-kernel learn-
ing which can deal with heterogeneous data among clients. To perform function approxi-
mation, RF approximations of kernel functions are employed. For the i-th kernel κi, vec-
tors ρi,1, . . . ,ρi,D are drawn i.i.d from πκi

(·) to construct the random feature vector zi(x) =
1√
D
[sin(ρ⊤

i,1x), . . . , sin(ρ
⊤
i,Dx), cos(ρ⊤

i,1x), . . . , cos(ρ
⊤
i,Dx)]. Then, at time instant t, the random

feature approximation associated with κi(·) can be obtained as f̂RF,it(x) = θ⊤
i,tzi(x) where θi,t is

the global function parameter associated the i-th kernel at time t.

3.1 Algorithm

At each time instant t, the server transmits global function parameters θi,t, ∀i ∈ [N ] to all clients. The
k-th client, assigns the weight wik,t to the i-th kernel which indicates the confidence of the k-th client
at time t in the function approximation given by the i-th kernel. Upon receiving new data sample
xk,t, the k-th client performs the function approximation combining kernels’ RF approximations as

f̂(xk,t; Θ̂t,wk,t) =
N
∑

i=1

wik,t

Wk,t

θ⊤
i,tzi(xk,t) =

N
∑

i=1

wik,t

Wk,t

f̂RF,it(xk,t;θi,t) (6)

where Θ̂t = [θ1,t, . . . ,θN,t], wk,t = [w1k,t, . . . , wNk,t] and Wk,t =
∑N

i=1 wik,t. As it can be
inferred from (6), each client constructs its own personalized combination of kernels. Upon observing
the true label yk,t, the k-th client calculates the losses L(f̂RF,it(xk,t;θi,t), yk,t), ∀i ∈ [N ]. Then, the
k-th client leverages calculated losses to locally update both global and local parameters. Let θik,t+1

and wik,t+1 denote the k-th client’s local updates of θi,t and wik,t, respectively. Specifically, the k-th
client utilizes multiplicative update rule to update wik,t as

wik,t+1 = wik,t exp
(

−ηkL(f̂RF,it(xk,t;θi,t), yk,t)
)

, ∀i ∈ [N ] (7)

where ηk is the learning rate of the k-th client. Note that the k-th client (∀k ∈ [K]) does not send its
updated local parameter wk,t+1 to the server. Clients send their locally updated global parameters to

the server (i.e. θik,t+1). Aggregating local updates, the server updates global parameters to Θ̂t+1.
If all clients send updates associated with all kernels (i.e. θik,t+1, ∀i ∈ [N ]), this requires sending
2ND parameters by each client at each time instant. When the number of both clients and kernels
are large, the available client-to-server communication bandwidth may not be enough to afford
sending 2NDK parameters per time instant even for small values of D. Note that reducing N and D
degrade the performance of online federated MKL. Reducing N (the number of kernels), decreases
the flexibility of clients to construct their ideal kernel using convex combination of kernels in the
dictionary. Reducing D can degrade the accuracy of RF approximation.

The present paper proposes an algorithmic framework to enable clients to perform online function
approximation with sufficiently large dictionary of kernels while the available clients-to-server
communication bandwidth can afford sending updates from clients to the server when a desirable
value for the number of random features D is chosen. To this end, at each time instant, each client
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Algorithm 1 The k-th client kernel subset selection at time t.

Input:Weights wik,t, ∀i ∈ [N ], parameter M and exploration rate 0 < ξk ≤ 1.
Sort the kernels in descending order with respect to weights {wik,t}Ni=1.
Obtain the index sequence s1, . . . , sN such that wsbk,t ≤ wsak,t if b > a, ∀a, b ∈ [N ].
Open bin B1 and initialize j = 1.
for all i ∈ [N ], the k-th client do

if the bin Bj includes less than M kernels then
Adds the si-th kernel to Bj .

else
Opens new bin Bj+1, adds the si-th kernel to Bj+1 and updates j ← j + 1.

end if
end for
Draw an index Ik,t via PMF qk,t in (8).
Output: Sk,t: indices set of kernels in the selected bin BIk,t

randomly chooses a subset of M kernels among all N kernels in the dictionary. Then, each client
updates and sends the global parameters of the chosen M kernels to the server instead of updating
and sending global parameters of all kernels. To choose a subset of M kernels, each client splits
kernels into some bins and draws randomly one of the bins at each time instant. Each bin contains
at most M kernels and each client updates and sends global parameters associated with kernels in
the chosen bin. In order to distribute kernels among bins, at first the k-th client sorts kernels in
descending order according to kernels’ weights {wik,t}Ni=1. Let Bj represents the j-th bin of kernels.
The k-th client adds kernels from sorted list one by one to Bj until either all kernels are assigned to a
bin or the number of kernels in Bj reaches M . When there are some kernels that are not assigned to
any bins while there are M kernels in Bj , the k-th client opens the bin Bj+1 and adds kernels to this
bin. This continues until all kernels are assigned to a bin. As it can be inferred from the procedure
of distributing kernels into bins, the number of bins at every client is m =

⌈

N
M

⌉

. Furthermore, it
can be concluded that B1 includes M kernels with the largest weights while the bin Bm includes
N − (m− 1)M kernels with lowest weights. The k-th client assigns the weight ujk,t at time t to Bj
defined as ujk,t =

∑

κi∈Bj
wik,t. The k-th client draws one of the bins according to the probability

mass function (PMF) qk,t defined as

qjk,t = (1− ξk)
ujk,t

Uk,t

+
ξk
m

, ∀j ∈ [m] (8)

where Uk,t =
∑m

j=1 ujk,t and 0 < ξk ≤ 1 is an exploration rate determined by the k-th client. Let
Ik,t be the index of the chosen bin by the k-th client at time t. The PMF in (8) constitutes trade-off
between exploitation and exploration. According to the first term in the right hand side of (8), it
is more probable that the k-th client draws a bin which includes kernels with larger weights wik,t.
Hence, it is more probable that the k-th client collaborates in updating the global parameters of a
kernel with larger weight wik,t. Let Sk,t denotes the set which includes the indices of kernels in the
chosen bin at time t. The Algorithm 1 summarizes the procedure that the k-th client determines the
set Sk,t. According to Algorithm 1, kernel subset selection is personalized since each client chooses
its own subset of kernels to update their parameters.

Let pik,t denotes the probability that i ∈ Sk,t. Then pik,t = qbik,t where bi is the index of the bin
which includes the i-th kernel. The k-th client updates global parameters locally as follows

θik,t+1 = θi,t − η
∇L(θ⊤

i,tzi(xk,t), yk,t)

pik,t
1i∈Sk,t

(9)

where 1i∈Sk,t
denotes an indicator function and it is 1 when i ∈ Sk,t. The update rule in (9) implies

that when i /∈ Sk,t, the k-th client does not update θi,t (i.e. θik,t+1 = θi,t). Therefore, the k-th client
sends θik,t+1 to the server only if i ∈ Sk,t. Therefore, at each time instant, each client needs to send
at most 2MD parameters to the server. Let Ci,t be a set of client indices such that k ∈ Ci,t if the k-th
client sends θik,t+1 to the server. Upon aggregating updates from clients, the server updates θi,t as

θi,t+1 = θi,t −
1

K

∑

k∈Ci,t

(θi,t − θik,t+1) = θi,t −
η

K

K
∑

k=1

∇L(θ⊤
i,tzi(xk,t), yk,t)

pik,t
1i∈Sk,t

. (10)
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Algorithm 2 Personalized Online Federated Multi-Kernel Learning (POF-MKL)

Input:Kernels κi, i = 1, ..., N , learning rate η > 0 and the number of random features D.
Initialize: θi,1 = 0, wik,1 = 1, ∀i ∈ [N ], ∀k ∈ [K].
for t = 1, . . . , T do

The server transmits the global parameters Θ̂t = [θ1,t, . . . ,θN,t] to all clients.
for all k ∈ [K], the kth client do

Receive one datum xk,t.

Predicts f̂(xk,t; Θ̂t,wk,t) via (6).

Calculates losses L(f̂RF,it(xk,t;θi,t), yk,t), ∀i ∈ [N ].
Updates wik,t+1, ∀i ∈ [N ] via (7).
Selects a subset of kernel indices Sk,t using Algorithm 1.
Updates θik,t+1, ∀i ∈ Sk,t via (9) and sends θik,t+1, ∀i ∈ Sk,t to the server.

end for
The server updates θi,t+1, ∀i ∈ [N ] via (10).

end for

Algorithm 2 summarizes the proposed personalized online federated multi-kernel learning algorithm
called POF-MKL. It is useful to note that using our proposed POF-MKL, the server cannot find the
gradients ∇L(θ⊤

i,tzi(xk,t), yk,t) from updates received from clients. Instead, the server can find

∇L(θ⊤
i,tzi(xk,t), yk,t)/pik,t where pik,t is a time-varying value determined locally by the k-th client.

This can promote the privacy of the proposed POF-MKL since exchanging the gradients can be
hazardous to the privacy of federated learning (see e.g. [53, 14]).

Complexity. Each client needs to store d-dimensional D random feature vectors for each kernel.
Therefore, the memory requirement of each client to implement function approximation using POF-
MKL is O(dND). Using POF-MKL, at each time instant, each client needs to perform O(dND)
operations including inner products and summations. Furthermore, when ξk < 1, in order to choose
a subset of kernels, the k-th client needs to sort kernels which imposes worst case computational
complexity of O(N logN). However, when ξk = 1, according to PMF in (8), the k-th client chooses
one bin uniformly at random and as a result in this case the k-th client does not need to sort kernels.
Therefore, setting ξk < 1, the computational complexity for the k-th client is O(dND +N logN)
while setting ξk = 1, the computational complexity of the k-th client at each time instant isO(dND).

3.2 Regret Analysis

The present section analyzes the regret of the proposed POF-MKL. Specifically, two types of regret
Rk,T andRs,T are considered for the k-th client and the server, respectively. The performance of the
k-th client utilizing POF-MKL is analyzed in terms of regret defined as

Rk,T =

T
∑

t=1

L(f̂(xk,t; Θ̂t,wk,t), yk,t)− min
i∈[N ]

T
∑

t=1

L(f̂RF,it(xk,t;θi,t), yk,t) (11)

where Rk,T measures the cumulative difference between the loss of the k-th client and the loss
of the RF approximation of the kernel with minimum loss among all kernels’ RF approximations.
Let α∗

ik,t, ∀t ∈ [T ], ∀k ∈ [K] represents the optimal coefficients associated with the i-th kernel

such that f∗
i (x) =

∑T

t=1

∑K

k=1 α
∗
ik,tκi(x,xk,t). Then the best function approximator is defined

as f∗(·) ∈ argminf∗
i
,i∈[N ]

∑T

t=1

∑K

k=1 L(f∗
i (xk,t), yk,t). Furthermore, the regret of the server is

defined as the cumulative difference between the loss of POF-MKL and that of the best function
approximator over all data samples distributed among clients which can be expressed as

Rs,T =

T
∑

t=1

K
∑

k=1

L(f̂(xk,t; Θ̂t,wk,t), yk,t)−
T
∑

t=1

K
∑

k=1

L(f∗(xk,t), yk,t). (12)

In order to analyze the regret of POF-MKL, suppose that the following assumptions hold true:

(as1) L(θ⊤
i,tzi(xk,t), yk,t), ∀k ∈ [K] is convex with respect to θi,t at each time instant t.

(as2) For θ in a bounded set satisfying ∥θ∥ ≤ C, the loss function and its gradient are bounded
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as 0 ≤ L(θ⊤zi(xk,t), yk,t) ≤ 1 and ∥∇L(θ⊤zi(xk,t), yk,t)∥ ≤ L. Moreover, each data sample is
bounded as ∥xk,t∥ ≤ 1, ∀k ∈ [K], ∀t ∈ [T ].
(as3) Kernels κi(·), ∀i ∈ [N ] are shift-invariant with κi(0) = 1, ∀i ∈ [N ].

The following theorem investigates the regret of the k-th client according to the k-th client data. The
proof of the following Theorem can be found in Appendix A.

Theorem 1. Under (as1)±(as3), the regret of the k-th client with respect to the best kernel satisfies

T
∑

t=1

L(f̂(xk,t; Θ̂t,wk,t), yk,t)− min
i∈[N ]

T
∑

t=1

L(f̂RF,it(xk,t;θi,t), yk,t) ≤
lnN

ηk
+

ηk
2
T. (13)

Theorem 1 shows that by setting ηk = O
(

1√
T

)

, the k-th client achieves sub-linear regret of O(
√
T ).

Furthermore, Theorem 1 shows that POF-MKL can deal with heterogeneous data among clients since
the regret of each client defined in (11) is calculated with respect to the corresponding client data.
The following theorem studies the regret of the server with respect to the best function approximator.
The proof can be found in Appendix B.

Theorem 2. Let i∗ := argmini∈[N ]

∑T

t=1

∑K

k=1 L(f∗
i (xk,t), yk,t) and σi be the second Fourier

moment of the i-th kernel. Under (as1)±(as3), the regret of the server with respect to the best function
approximator satisfies

T
∑

t=1

K
∑

k=1

L(f̂(xk,t; Θ̂t,wk,t), yk,t)−
T
∑

t=1

K
∑

k=1

L(f∗(xk,t), yk,t)

≤KC2

2η
+

η

2

T
∑

t=1

K
∑

k=1

L2

pi∗k,t
+

K
∑

k=1

(

lnN

ηk
+

ηk
2
T

)

+ ϵLKTC (14)

with probability at least 1− 28
(

σi∗

ϵ

)2
exp

(

− Dϵ2

4(d+2)

)

where C := maxi∈[N ]

∑T

t=1

∑K

k=1 α
∗
ik,t.

As it can be inferred from (14), the regret of the server with respect to the best function approximator
depends on 1

pi∗k,t
. From (8) and the fact that pik,t = qbik,t, it can be concluded that pi∗k,t >

ξk
m

. Thus,

setting ξk = O(1), then pik,t > O(MN ). The regret bound in (14) shows that setting η = O
(
√

M
NT

)

and ϵ = ηk = 1√
T

, ∀k ∈ [K], the server obtains regret of O
(
√

N
M
T
)

with probability at least

1− 28
(

σi∗

ϵ

)2
exp

(

− Dϵ2

4(d+2)

)

. This shows that increasing M tighten the regret bound and increasing

D increases the probability that the regret bound in (14) holds true. However, using POF-MKL, each
client needs to transmit MD parameters at each time instant. Since both M and D are determined by
the algorithm POF-MKL, this shows that POF-MKL can provide flexibility to tighten regret bound
while the available clients-to-server communication bandwidth can afford transmission of clients’
updates to the server. It is useful to mention that choosing larger value for ξk increases the lower
bound of pi∗k,t and as a result the optimal choice for ξk in terms of regret is ξk = 1. However,
choosing smaller values for ξk makes the value of pik,t more dependent on weights {wik,t}Kk=1
(c.f. (8)). Therefore, choosing smaller values for ξk makes pik,t less predictable. This makes
estimating ∇L(θ⊤

i,tzi(xk,t), yk,t) given ∇L(θ⊤
i,tzi(xk,t), yk,t)/pik,t more difficult which leads to

better protection of privacy.

Comparison with personalized federated learning. In order to deal with heterogeneous data
among clients, personalized federated learning has been studied extensively in the literature (see
[44, 8, 9, 12, 20, 10, 29, 28, 42, 6, 1, 32, 50, 2, 46, 5]). Utilizing model-agnostic meta-learning [13],
personalized federated learning algorithms have been proposed in [12, 1]. In [42, 5], personalized
federated learning algorithms have been designed by learning hyper-networks [18]. In [32], a
personalized model is a linear combination of a set of shared component models such that each client
constructs its personalized mixture of models. However, in aforementioned personalized federated
learning works, clients are assumed to store a dataset to perform local updates with. Therefore, when
clients are not able to store data in batch and they have to make a decision upon receiving a new
data sample, aforementioned works in personalized federated learning cannot guarantee sub-linear
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regret for clients. However, according to Theorems 1 and 2, POF-MKL provides sub-linear regret for
clients when clients cannot store data in batch and make decision in an online fashion.

Comparison with online federated learning [34]. Fed-OMD algorithm has been proposed in [34]
which enables clients to perform their learning task in an online and federated fashion while it is proved
that Fed-OMD enjoys sub-linear regret when the loss function is convex with respect to parameters
required to be learnt at each time instant. The proposed POF-MKL differs from Fed-OMD in the sense
that Fed-OMD cannot guarantee sub-linear regret when it comes to performing the online learning
task with RF approximations of multiple kernels since the loss function L(∑N

i=1 wi,tθ
⊤
i,tzi(x), y) is

not convex with respect to both θi,t and wi,t. However, according to Theorems 1 and 2, the proposed
POF-MKL guarantees sub-linear regret.

Comparison with [22]. Online federated MKL algorithms called vM-KOFL and eM-KOFL have
been presented in [22]. Both POF-MKL and algorithms in [22] exploit random feature approximation
to alleviate computational complexity of online kernel learning. Furthermore, both POF-MKL and
algorithms in [22] learn a linear combination of kernels. The proposed POF-MKL has the following
advantages and innovations compared to vM-KOFL and eM-KOFL: i) The proposed POF-MKL
allows clients to learn their own personalized combination of kernels (c.f. (6)). As it is proved in
Theorem 1, the proposed POF-MKL can deal with heterogeneous data among clients in the sense
that using POF-MKL each client guarantees sub-linear regret with respect to the best kernel RF
approximation according to the corresponding client data. However, both vM-KOFL and eM-KOFL
are not able to provide such guarantee. ii) Using vM-KOFL, each client needs to send (N + 1)D
parameters to the server. However, using the proposed POF-MKL, each client needs to send MD
parameters to the server such that M ≤ N is determined by POF-MKL and can be chosen to be
much smaller than N . iii) In eM-KOFL, the server chooses a kernel at each time instant and clients
send their local updates associated with the chosen kernel by the server. The proposed POF-MKL
provides more flexibility compared to eM-KOFL in the sense that using POF-MKL each client can
send local updates of M ≥ 1 kernels to the server. And each client chooses its own subset of kernels
to send their updates to the server. Therefore, even though POF-MKL sets M to 1, it is possible that
at a time instant the server receives updates associated with all kernels in the dictionary. It is useful to
mention that using eM-KOFL the cumulative regret of all clients is sub-linear with respect to the best
kernel RF approximation with probability 1 − δ where 0 < δ ≤ 1. However, utilizing the update
rule in (9), using the proposed POF-MKL, each client obtains sub-linear regret with respect to RF
approximation of its best kernel with probability 1.

4 Experiments

We tested the performance of the proposed POF-MKL for online regression task through a set of
experiments. The performance of POF-MKL is compared with the baselines PerFedAvg [12], OFSKL
[34], OFMKL-Avg [34], vM-KOFL [22] and eM-KOFL [22]. PerFedAvg refers to the personalized
federated averaging algorithm in [12]. In the experiments, PerFedAvg employs a fully connected
feedforward neural network model. More information about the implementation of PerFedAvg can
be found in Appendix C. OFSKL and OFMKL-Avg are two variations of Fed-OMD [34]. OFSKL
leverages Fed-OMD [34] when a single radial basis function (RBF) with bandwidth of 10 is employed
to perform the learning task. In OFMKL-Avg, kernels are learned independently from each other
using Fed-OMD [34] and the prediction is the average of approximations given by kernels. Moreover,
vM-KOFL and eM-KOFL are online federated MKL algorithms of [22] such that vM-KOFL requires
transmission of all kernel updates at every time instant while eM-KOFL requires transmission of a
kernel update at each time instant. In the experiments, each client observes 500 samples until the end
of the learning task meaning that T = 500. The performance of the proposed POF-MKL and other
baselines are tested on the following real datasets downloaded from UCI machine learning repository
[11]: Naval [7], UJI [47], Air [51] and WEC [35]. More detailed information about datasets can be
found in Appendix C. Data samples of Naval and UJI datasets are distributed i.i.d among clients. Data
samples in Air and WEC datasets are distributed non-i.i.d among clients. More inforamtion about
distributing data samples among clients can be found in Appendix C. The number of clients for Naval,
UJI, Air and WEC datasets are 23, 42, 240 and 560, respectively. The dictionary of kernels consists

of 51 RBFs with different bandwidth such that the bandwidth of the i-th kernel is σi = 10
2i−52

25 . We
consider the case where the clients-to-server communication bandwidth is limited such that at each
time instant, the maximum number of parameters that a client is allowed to transmit to the server
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is 1000. Furthermore, the memory and computational capability of clients are limited such that the
maximum value can be picked for the number of random features D is 100. The experiments were
carried for 20 different sets of random feature vectors. The performance of algorithms is measured
using average of mean squared error (MSE) defined as

MSE =
1

20

20
∑

j=1

1

KT

T
∑

t=1

K
∑

k=1

(ŷjk,t − yk,t)
2

where ŷjk,t denotes the prediction of the k-th client at time instant t corresponding to the j-th set of
random feature vectors. Learning rates are set to η = ηk = 1√

T
, ∀k. Also, exploration rates are set to

ξk = 1, ∀k. The performance of POF-MKL with different ξk is studied in Appendix C. Codes are
available at https://github.com/pouyamghari/POF-MKL.

Table 1 presents the MSE and run time performance of online federated kernel learning algorithms
on real datasets. Run time refers to average total run time of clients to perform online learning task
on the entire data samples that they observe. In Table 1, M refers to the number of kernels whose
updates are sent to the server after prediction at each time instant. And, D is the number of random
features. Comparing MSE of POF-MKL with that of OFMKL-Avg, it can be concluded that learning
the weights to combine kernels provides higher accuracy than averaging kernels’ predictions. Table 1
shows that POF-MKL with M = 1 provides lower MSE than eM-KOFL. Using eM-KOFL, at each
time instant, the server receives updates belong to only one kernel. However, using POF-MKL with
M = 1, each client sends an update belongs to a kernel which is selected by the client. Therefore, the
server receives updates associated with different kernels even though M = 1. Therefore, experimental
results show the effectiveness of the personalized kernel selection provided by POF-MKL. It can be
observed that POF-MKL with M = 25 obtains lower MSE than those of POF-MKL with M = 51
and vM-KOFL. Since each client is allowed to send at most 1000 parameters per time instant, if
clients send updates of all kernels at every time instant as this is the case in vM-KOFL, D cannot
be chosen to be greater than 9. However, setting M = 25, POF-MKL can set D = 20 which
can improve the accuracy of online regression task compared to the case where D = 9. Note that
according to Theorem 2, increase in D increases the probability that the server achieves sub-linear
regret with respect to the best function approximator. Furthermore, POF-MKL with M = 51 achieves
lower MSE than vM-KOFL even if data samples are distributed i.i.d among clients. This shows
that the proposed POF-MKL can better cope with heterogeneous data among clients which is in
agreement with theoretical results in Theorem 1. In fact, the optimal combination of kernels can be
different across clients. Using POF-MKL, each client constructs its own personalized combination of
kernels which results in lower MSE compared to vM-KOFL. The proposed POF-MKL with M = 1
and M = 25 runs faster than eM-KOFL. In fact, using POF-MKL, clients only need to update
parameters associated with M kernels while employing vM-KOFL and eM-KOFL, clients have to
update parameters of all kernels. Moreover, POF-MKL obtains lower MSE than PerFedAvg. Note
that since clients are not able to store data in batch, at each time instant clients update PerFedAvg’s
model using only the newly observed data sample. Therefore, convergence of PerFedAvg is not
guaranteed. Experimental results show that POF-MKL achieves higher accuracy than PerFedAvg in
online regression task when it is not possible for clients to store data in batch. Since OFSKL employs
only a pre-selected single kernel, OFSKL runs faster than POF-MKL. However, utilizing multiple
kernels enables POF-MKL to obtain lower MSE than that of OFSKL. In fact, using POF-MKL clients
learn a linear combination of kernels which is proved to enjoy sub-linear regret with respect to the best
kernel in hindsight while employing OFSKL clients have to make predictions using a pre-selected
kernel. Furthermore, Figure 1 illustrates the average regret of clients when clients employ vM-KOFL
and the proposed POF-MKL with different M parameters. From Figure 1, it can be observed that the
proposed POF-MKL achieves sub-linear regret.

5 Conclusions

The present paper proposed a personalized online federated MKL algorithm called POF-MKL based
on RF approximation. Employing the proposed POF-MKL, each client updates the parameters of a
subset of kernels which alleviates the computational complexity of the client as well as communication
cost of sending updated parameters of kernels. Theoretical analysis proved that using POF-MKL,
each client achieves sub-linear regret with respect to the RF approximation of its best kernel in
hindsight which indicates that POF-MKL can deal heterogeneous data among clients. While each
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Table 1: MSE(×10−3) and run time of online federated learning algorithms on real datasets.

MSE(×10−3) Run time(s)
Algorithms M D Naval UJI Air WEC Naval UJI Air WEC
PerFedAvg - - 118.60 63.03 13.68 77.33 44.59 41.67 37.40 33.56
OFSKL 1 100 77.77 61.82 13.65 87.87 0.07 0.06 0.08 0.06
OFMKL-Avg 51 9 33.25 55.44 10.63 34.01 1.51 1.73 0.91 0.47
vM-KOFL 51 9 26.42 51.50 10.58 25.17 2.01 2.22 1.37 0.67
eM-KOFL 1 100 28.64 61.08 21.94 20.14 2.27 10.13 1.45 1.70
POF-MKL 1 100 16.16 33.02 9.27 11.44 1.22 9.02 1.25 1.10
POF-MKL 25 20 16.82 37.34 9.34 11.58 0.69 2.29 0.63 0.52
POF-MKL 51 9 16.65 41.00 9.38 11.97 0.82 1.07 0.81 0.65

(a) Naval dataset. (b) UJI dataset. (c) Air dataset. (d) WEC dataset.

Figure 1: Average regret of clients.

client updates a subset of kernels, it was proved that the server achieves sub-linear regret with
respect to the best function approximator. Experiments on real datasets showcased the advantages of
POF-MKL compared with other online federated kernel learning algorithms.
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applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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A Proof of Theorem 1

Since Wk,t =
∑N

i=1 wik,t and according to (7), we can write

Wk,t+1

Wk,t

=
N
∑

i=1

wk,t+1

Wk,t

=
N
∑

i=1

wik,t

Wk,t

exp
(

−ηkL(f̂RF,it(xk,t;θi,t), yk,t)
)

. (15)

Using the inequality e−x ≤ 1− x+ 1
2x

2, ∀x ≥ 0, the upper bound of (15) can be obtained as

Wk,t+1

Wk,t

≤
N
∑

i=1

wik,t

Wk,t

(

1− ηkL(f̂RF,it(xk,t;θi,t), yk,t) +
η2k
2
L2(f̂RF,it(xk,t;θi,t), yk,t)

)

. (16)

Using the inequality 1 + x ≤ ex and taking the logarithm from both sides of (16), we get

ln
Wk,t+1

Wk,t

≤
N
∑

i=1

wik,t

Wk,t

(

−ηkL(f̂RF,it(xk,t;θi,t), yk,t) +
η2k
2
L2(f̂RF,it(xk,t;θi,t), yk,t)

)

. (17)

According to (as2), L2(f̂RF,it(xk,t;θi,t), yk,t) ≤ 1. Therefore, from (17), we can conclude that

ln
Wk,t+1

Wk,t

≤
N
∑

i=1

wik,t

Wk,t

(

η2k
2
− ηkL(f̂RF,it(xk,t;θi,t), yk,t)

)

. (18)

Summing (18) over time, we arrive at

ln
Wk,T+1

Wk,1
≤

T
∑

t=1

N
∑

i=1

wik,t

Wk,t

(

η2k
2
− ηkL(f̂RF,it(xk,t;θi,t), yk,t)

)

. (19)

Moreover, for any i ∈ [N ], ln Wk,T+1

Wk,1
can be lower bounded as

ln
Wk,T+1

Wk,1
≥ ln

wik,T+1

Wk,1
= −ηk

T
∑

t=1

L(f̂RF,it(xk,t;θi,t), yk,t)− lnN. (20)

Combining (19) with (20), we obtain

T
∑

t=1

N
∑

i=1

wik,t

Wk,t

L(f̂RF,it(xk,t;θi,t), yk,t)−
T
∑

t=1

L(f̂RF,it(xk,t;θi,t), yk,t) ≤
lnN

ηk
+

ηk
2
T. (21)

Since the loss function L(·, ·) is convex, using (21) and Jensen inequality we can write

T
∑

t=1

L
(

N
∑

i=1

wik,t

Wk,t

f̂RF,it(xk,t;θi,t), yk,t

)

−
T
∑

t=1

L(f̂RF,it(xk,t;θi,t), yk,t) ≤
lnN

ηk
+

ηk
2
T (22)

which proves the Theorem 1.

B Proof of Theorem 2

In order to prove Theorem 2, the following Lemma is used as a stepstone.

Lemma 3. Let α∗
ik,t, ∀t ∈ [T ], ∀k ∈ [K] represents the optimal coefficients associated with the

i-th kernel such that f∗
i (x) =

∑T

t=1

∑K

k=1 α
∗
ik,tκi(x,xk,t). And f̂∗

i (x) = (θ∗
i )

⊤zi(x) denotes the

best RF-based estimator associated with the i-th kernel such that θ∗
i =

∑T

t=1

∑K

k=1 α
∗
ik,tzi(xk,t).

Under assumptions (as1)±(as3), using POF-MKL, the RF approximation of the i-th kernel satisfies

T
∑

t=1

K
∑

k=1

L(f̂RF,it(xk,t;θi,t), yk,t)−
T
∑

t=1

K
∑

k=1

L(f̂∗
i (xk,t), yk,t)

≤K∥θ∗
i ∥2

2η
+

η

2

T
∑

t=1

K
∑

k=1

L2

pik,t
. (23)
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Proof. Let ℓik,t be the importance sampling loss estimate defined as

ℓik,t =
L(θ⊤

i,tzi(xk,t), yk,t)

pik,t
1i∈Sk,t

. (24)

Then according to (9), for any fixed θ, it can be written that
∥

∥

∥

∥

∥

1

K

K
∑

k=1

θik,t+1 − θ

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

1

K

K
∑

k=1

(θi,t − η∇ℓik,t)− θ

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

θi,t − θ − η

K

K
∑

k=1

∇ℓik,t

∥

∥

∥

∥

∥

2

= ∥θi,t − θ∥2 − 2η

K

(

K
∑

k=1

∇⊤ℓik,t

)

(θi,t − θ) +

∥

∥

∥

∥

∥

η

K

K
∑

k=1

∇ℓik,t

∥

∥

∥

∥

∥

2

(25)

According to the convexity of the loss function L(θ⊤x, y) with respect to θ as stated in (as1), we
find

L(θ⊤
i,tzi(xk,t), yk,t)− L(θ⊤zi(xk,t), yk,t) ≤ ∇⊤L(θ⊤

i,tzi(xk,t), yk,t)(θi,t − θ). (26)

Multiplying both sides of (26) by
1i∈Sk,t

pik,t
, we get

(

L(θ⊤
i,tzi(xk,t), yk,t)

pik,t
− L(θ

⊤zi(xk,t), yk,t)

pik,t

)

1i∈Sk,t

≤
∇⊤L(θ⊤

i,tzi(xk,t), yk,t)

pik,t
(θi,t − θ)1i∈Sk,t

. (27)

Summing (27) over k, ∀k ∈ [K], we arrive at

K
∑

k=1

(

L(θ⊤
i,tzi(xk,t), yk,t)

pik,t
− L(θ

⊤zi(xk,t), yk,t)

pik,t

)

1i∈Sk,t

≤
(

K
∑

k=1

∇⊤L(θ⊤
i,tzi(xk,t), yk,t)

pik,t
1i∈Sk,t

)

(θi,t − θ). (28)

Based on the definition of ℓik,t, (28) can be rewritten as

K
∑

k=1

ℓik,t −
K
∑

k=1

L(θ⊤zi(xk,t), yk,t)

pik,t
1i∈Sk,t

≤
(

K
∑

k=1

∇⊤ℓik,t

)

(θi,t − θ). (29)

According to (25), (29) is equivalent to

K
∑

k=1

ℓik,t −
K
∑

k=1

L(θ⊤zi(xk,t), yk,t)

pik,t
1i∈Sk,t

≤K

2η



∥θi,t − θ∥2 −
∥

∥

∥

∥

∥

1

K

K
∑

k=1

θik,t+1 − θ

∥

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

η

K

K
∑

k=1

∇ℓik,t

∥

∥

∥

∥

∥

2


 (30)

Expectations of ℓik,t and ∥∇ℓik,t∥2 with respect to 1i∈Sk,t
can be calculated as

Et[ℓik,t] =
L(θ⊤

i,tzi(xk,t), yk,t)

pik,t
pik,t = L(θ⊤

i,tzi(xk,t), yk,t) (31a)

Et[∥∇ℓik,t∥2] =
∥∇L(θ⊤

i,tzi(xk,t), yk,t)∥2
p2ik,t

pik,t =
∥∇L(θ⊤

i,tzi(xk,t), yk,t)∥2
pik,t

. (31b)

Furthermore, using AM-GM inequality and (31b), it can be concluded that

Et

[

∥
K
∑

k=1

∇ℓik,t∥2
]

≤ Et

[

K

K
∑

k=1

∥∇ℓik,t∥2
]

≤ K

K
∑

k=1

∥∇L(θ⊤
i,tzi(xk,t), yk,t)∥2

pik,t
. (32)
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According to (10), considering the fact that

∥θi,t+1 − θ∥2 =

∥

∥

∥

∥

∥

1

K

K
∑

k=1

θik,t+1 − θ

∥

∥

∥

∥

∥

2

taking the expectation from (30) with respect to 1i∈Sk,t
, ∀k ∈ [K] leads to

K
∑

k=1

L(θ⊤
i,tzi(xk,t), yk,t)−

K
∑

k=1

L(θ⊤zi(xk,t), yk,t)

≤K

2η

(

∥θi,t − θ∥2 − ∥θi,t+1 − θ∥2
)

+
η

2

K
∑

k=1

∥∇L(θ⊤
i,tzi(xk,t), yk,t)∥2

pik,t
. (33)

According to (as2), we can conclude that ∥∇L(θ⊤
i,tzi(xk,t), yk,t)∥2 ≤ L2. Hence, summing (33)

over time, given the fact that θi,1 = 0, ∀i ∈ [N ], we get

T
∑

t=1

K
∑

k=1

L(θ⊤
i,tzi(xk,t), yk,t)−

T
∑

t=1

K
∑

k=1

L(θ⊤zi(xk,t), yk,t)

≤K

2η

(

∥θ∥2 − ∥θi,T+1 − θ∥2
)

+
η

2

T
∑

t=1

K
∑

k=1

L2

pik,t
. (34)

Replacing θ with θ∗
i and considering the fact that ∥θi,T+1 − θ∥2 ≥ 0, we obtain

T
∑

t=1

K
∑

k=1

L(θ⊤
i,tzi(xk,t), yk,t)−

T
∑

t=1

K
∑

k=1

L((θ∗
i )

⊤zi(xk,t), yk,t) ≤
K∥θ∗

i ∥2
2η

+
η

2

T
∑

t=1

K
∑

k=1

L2

pik,t

which proves the Lemma 3.

In order to proof Theorem 2, we leverage the results obtained in the proofs of Lemma 3 and Theorem
1. Since (22) holds true for any i, summing (22) over all k ∈ [K], for any i we can write

T
∑

t=1

K
∑

k=1

L(f̂(xk,t; Θ̂t,wk,t), yk,t)−
T
∑

t=1

K
∑

k=1

L(f̂RF,it(xk,t;θi,t), yk,t)

≤
K
∑

k=1

(

lnN

ηk
+

ηk
2
T

)

. (35)

Combining (35) with (23), we arrive at

T
∑

t=1

K
∑

k=1

L(f̂(xk,t; Θ̂t,wk,t), yk,t)−
T
∑

t=1

K
∑

k=1

L(f̂∗
i (xk,t), yk,t)

≤K∥θ∗
i ∥2

2η
+

η

2

T
∑

t=1

K
∑

k=1

L2

pik,t
+

K
∑

k=1

(

lnN

ηk
+

ηk
2
T

)

. (36)

According to claim 1 in [36], it can be written that sup
x,x′ |z⊤

i (x)zi(x
′)− κi(x,x

′)| ≤ ϵ holds true

with probability greater than 1− 28
(

σi

ϵ

)2
exp

(

− Dϵ2

4(d+2)

)

where σi is the second Fourier moment of

the i-th kernel κi(·). Furthermore, according to (as3), the loss function is L-Lipschitz continuous and
as a result it can be written that

T
∑

t=1

K
∑

k=1

|L(f̂∗
i (xk,t), yk,t)− L(f∗

i (xk,t), yk,t)|

≤
T
∑

t=1

K
∑

k=1

L

∣

∣

∣

∣

∣

∣

T
∑

τ=1

K
∑

j=1

α∗
ij,τz

⊤
i (xj,τ )zi(xk,t)−

T
∑

τ=1

K
∑

j=1

α∗
ij,τκi(xj,τ ,xk,t)

∣

∣

∣

∣

∣

∣

. (37)
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Applying Cauchy-Schwartz inequality to the right hand side of (37), the left hand side of (37) can be
bounded from above as

T
∑

t=1

K
∑

k=1

|L(f̂∗
i (xk,t), yk,t)− L(f∗

i (xk,t), yk,t)|

≤
T
∑

t=1

K
∑

k=1

L
T
∑

τ=1

K
∑

j=1

|α∗
ij,τ ||z⊤

i (xj,τ )zi(xk,t)− κi(xj,τ ,xk,t)|. (38)

Let C := maxi∈[N ]

∑T

t=1

∑K

k=1 α
∗
ik,t. Therefore, we can conclude that

T
∑

t=1

K
∑

k=1

|L(f̂∗
i (xk,t), yk,t)− L(f∗

i (xk,t), yk,t)| ≤ ϵLKTC (39)

with probability at least 1− 28
(

σi

ϵ

)2
exp

(

− Dϵ2

4(d+2)

)

. Moreover, using Triangle inequality, we can

write

T
∑

t=1

K
∑

k=1

L(f̂∗
i (xk,t), yk,t)−

T
∑

t=1

K
∑

k=1

L(f∗
i (xk,t), yk,t)

≤
∣

∣

∣

∣

∣

T
∑

t=1

K
∑

k=1

L(f̂∗
i (xk,t), yk,t)− L(f∗

i (xk,t), yk,t)

∣

∣

∣

∣

∣

≤
T
∑

t=1

K
∑

k=1

|L(f̂∗
i (xk,t), yk,t)− L(f∗

i (xk,t), yk,t)| ≤ ϵLKTC (40)

which holds true with probability at least 1− 28
(

σi

ϵ

)2
exp

(

− Dϵ2

4(d+2)

)

. Moreover, for z⊤
i (x)zi(x

′)

we can write

z⊤
i (x)zi(x

′) =
1

D

D
∑

j=1

(sin(ρ⊤
i,jx) sin(ρ

⊤
i,jx

′) + cos(ρ⊤
i,jx) cos(ρ

⊤
i,jx

′)). (41)

Based on arithmetic-mean geometric-mean, (41) can be relaxed to

z⊤
i (x)zi(x

′) ≤ 1

D

D
∑

j=1

1

2
(sin2(ρ⊤

i,jx) + sin2(ρ⊤
i,jx

′) + cos2(ρ⊤
i,jx) + cos2(ρ⊤

i,jx
′)) = 1. (42)

Thus, given the fact that |z⊤
i (x)zi(x

′)| ≤ 1, ∥θ∗
i ∥2 can be bounded as

∥θ∗
i ∥2 ≤

T
∑

t=1

K
∑

k=1

T
∑

τ=1

K
∑

j=1

|α∗
ik,tα

∗
ij,τz

⊤
i (xj,τ )zi(xk,t)| ≤ C2. (43)

Combining (40) and (43) with (36) yields

T
∑

t=1

K
∑

k=1

L(f̂(xk,t; Θ̂t,wk,t), yk,t)−
T
∑

t=1

K
∑

k=1

L(f∗
i (xk,t), yk,t)

≤KC2

2η
+

η

2

T
∑

t=1

K
∑

k=1

L2

pik,t
+

K
∑

k=1

(

lnN

ηk
+

ηk
2
T

)

+ ϵLKTC (44)

which holds true for any i ∈ [N ] with probability at least 1− 28
(

σi

ϵ

)2
exp

(

− Dϵ2

4(d+2)

)

. Therefore,

this proves the Theorem 2.
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Table 2: MSE(×10−3) and standard deviation(×10−3) of online federated learning algorithms on
real datasets.

Algorithms M D Naval UJI Air WEC
OFSKL 1 100 77.77± 1.04 61.82± 2.76 13.65± 0.61 87.87± 3.93
OFMKL-Avg 51 9 33.25± 1.46 55.44± 2.48 10.63± 0.47 34.01± 1.52
vM-KOFL 51 9 26.42± 1.16 51.50± 2.30 10.58± 0.47 25.17± 1.12
eM-KOFL 1 100 28.64± 1.32 61.08± 2.73 21.94± 1.16 20.14± 0.93
POF-MKL 1 100 16.16± 0.72 33.02± 1.48 9.27± 0.41 11.44± 0.52
POF-MKL 25 20 16.82± 0.74 37.34± 1.67 9.34± 0.42 11.58± 0.53
POF-MKL 51 9 16.65± 0.74 41.00± 1.83 9.38± 0.42 11.97± 0.55

C Supplementary Experimental Results and Details

This section presents further experimental results testing different aspects of the proposed algorithm
POF-MKL. Moreover, this section provides more detailed information about experimental setup
associated with results in section 4. The performance of federated kernel learning algorithms are
tested on the following datasets:

• Naval: The dataset consists of 11, 500 samples. Each sample has 15 features of a a naval
vessel. The goal is to predict lever position [7].

• UJI: The dataset consists of 21, 000 data samples. Each data sample has 520 features which
are WiFi fingerprints. The goal is to predict the geographical longitude associated with each
data sample.

• Air: The dataset consists of 120, 000 samples with 14 features including information related
to air quality such as concentration of some chemicals in the air. Data samples are collected
from 4 different geographical sites. The goal is to predict the concentration of CO in the air
[51]. For each site there are 30, 000 samples in the dataset.

• WEC: The dataset consists of 280, 000 samples with 48 features of wave energy converters.
Data samples are collected from 4 different geographical sites. The goal is to predict total
power output [35]. For each site, there are 70, 000 samples.

Data samples of Naval and UJI datasets are distributed i.i.d among clients. The number of clients
for Naval and UJI datasets are 23 and 42, respectively. Data samples in Air and WEC datasets are
distributed non-i.i.d among clients. The number of clients for Air and WEC datasets are 240 and
560, respectively. For both Air and WEC datasets, there are 4 different geographical sites that each
sample belongs to one of them. Each client observes 350 samples from one site and 50 samples from
each of the rest of 3 sites. Moreover, PerFedAvg uses a feedforward neural network model. Each
layer is a fully-connected dense layer with at most 20 neurons. Neurons in hidden layers exploit
ReLU activation functions. Since each client cannot transmit more than 1000 parameters to the
server, the number of hidden layers is determined in a way that the number of the neural network’s
parameters to be less than 1000. The number of parameters depends on the number of features in data
samples. Therefore, the number of hidden layers varies across different datasets. For each dataset,
given the number of features, the maximum number of hidden layers with 20 neurons is chosen.
All experiments were carried out using Intel(R) Core(TM) i7-10510U CPU @ 1.80 GHz 2.30 GHz
processor with a 64-bit Windows operating system.

Table 2 presents average MSE along with MSE standard deviation calculated over 20 different sets
of random feature vectors. As it can be seen from Table 2, the proposed POF-MKL provides lower
standard deviation compared to all other baselines. This shows that the proposed POF-MKL is less
sensitive to the choice of random features. Furthermore, Table 3 reports the average cumulative
regret of clients along with the standard deviation of regret among clients. As it can be inferred from
Table 3, the proposed POF-MKL obtains lower regret than other online federated MKL algorithms.
Moreover, for Air and WEC datasets, the standard deviation of regret among clients associated with
POF-MKL is considerably lower than those of other online federated MKL algorithms. Note that data
samples in Air and WEC datasets are distributed non-i.i.d among clients. Therefore, the results in
Table 3 confirm that the proposed POF-MKL can better deal with heterogeneous data among clients.
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Table 3: Average regret and its standard deviation across clients for online federated MKL learning
algorithms.

Algorithms M D Naval UJI Air WEC
OFMKL-Avg 51 9 16.95± 0.39 24.23± 20.33 3.05± 2.83 17.07± 14.52
vM-KOFL 51 9 13.40± 0.39 22.28± 15.56 3.02± 2.79 12.65± 11.53
eM-KOFL 1 100 14.92± 0.65 27.26± 19.79 8.53± 2.51 10.43± 8.28
POF-MKL 1 100 8.33± 0.39 13.23± 8.80 2.95± 2.08 6.37± 5.28
POF-MKL 25 20 8.67± 0.39 15.41± 9.58 2.98± 2.12 6.41± 5.39
POF-MKL 51 9 8.55± 0.39 17.23± 10.07 3.01± 2.15 6.51± 5.57

(a) Naval dataset. (b) Air dataset. (c) WEC dataset.

Figure 2: Average cumulative regret of clients with the change in the value of exploration rate (ξk).

Figure 2 illustrates the average regret of clients employing POF-MKL with the change in the value of
exploration rate ξk when the exploration rate of all clients are the same. In particular, Figure 2 depicts
the performance of POF-MKL for M = 1 and M = 25 with the change in ξk. According to the PMF
qk,t defined in (8), the increase in ξk leads to increase in exploration such that if ξk = 1, the k-th
client chooses a subset of kernels uniformly at random. Figure 2 indicates that the optimal choice
of ξk in terms of regret depends on the dataset distributed among clients as well as the number of
chosen kernels M . Moreover, the choice of ξk is related to the computational complexity of executing
POF-MKL by clients. Specifically, when ξk < 1, in order to choose a subset of kernels, the k-th
client needs to sort kernels which imposes worst case computational complexity of O(N logN).
However, when ξk = 1, according to PMF in (8), the k-th client chooses one bin uniformly at random
and as a result in this case the k-th client does not need to sort kernels. Also, it is useful to note that
as it can be inferred from (9), clients can leverage the exploration rate ξk to send their updates to
the server without revealing both the gradient of loss and the loss of kernels which can promote the
privacy of the proposed POF-MKL.
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