Deep Unsupervised Visual Odometry Via Bundle Adjusted Pose Graph
Optimization

Guoyu Lu

Abstract— Unsupervised visual odometry as an active topic
has attracted extensive attention, benefiting from its label-
free practical value and robustness in real-world scenarios.
However, the performance of camera pose estimation and
tracking through deep neural network is still not as ideal as
most other tasks, such as detection, segmentation and depth
estimation, due to the lack of drift correction in the estimated
trajectory and map optimization in the recovered 3D scenes. In
this work, we introduce pose graph and bundle adjustment
optimization to our network training process, which iteratively
updates both the motion and depth estimations from the deep
learning network, and enforces the refined outputs to further
meet the unsupervised photometric and geometric constraints.
The integration of pose graph and bundle adjustment is easy to
implement and significantly enhances the training effectiveness.
Experiments on KITT| dataset demonstrate that the introduced
method achieves a significant improvement in motion estimation
compared with other recent unsupervised monocular visual
odometry algorithms.

I. INTRODUCTION

Visual odometry is an essential task in robotics and com-
puter vision to simultaneously determine the camera pose
and recover 3D structures from sequential images. It also
enables a wide range of applications on augmented reality
[25] [28], unmanned aerial vehicle (UAV) [3] [30], and self-
driving cars [38] [5].

In the last decade, visual odometry and SLAM systems
have been developed both from front-end to track camera
motion in real-time and from back-end to locally and globally
optimize the 3D structures and camera motion, which have
achieved promising and robust performance. However, the
conventional systems still rely on traditional image features
for detection and matching, which frequently fail in chal-
lenging environments, such as diverse lighting and exposure
conditions, no or repeated textures, and large portion of
moving foreground. Moreover, direct methods for dense
reconstruction [37] [32] cannot efficiently optimize the entire
depth image in real-world applications due to the extremely
large size of parameters and variables for updating.

Recent deep neural network based camera pose estimation
and 3D scene recovering algorithms [34] [16] [35] [1]
[4] [39] are able to achieve better performance than the
conventional pipelines in scene depth estimation, in terms
of both point cloud density and accuracy. However, unsuper-
vised learning based network still cannot achieve comparable
results with conventional geometric based visual odometry
pipelines in camera motion estimation, due to the lack
of efficient and effective pose drift and map optimization,
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Fig. 1: Trajectory comparison without (left) and with (right) the
proposed bundle adjusted pose graph. Blue: ground truth plotting.
Red: camera trajectory estimated from neural networks.

frequently leading to large gaps in loop closures. So, it is nec-
essary to incorporate online optimization of pose graph and
bundle adjustment into an unsupervised deep neural network
to explore the benefits from both conventional VO/SLAM
algorithms and deep neural network-based methods.

In this work, we propose a pose graph and bundle adjust-
ment optimization embedded deep visual odometry network,
namely PBO-VONet, to learn the optimized camera pose and
dense depth at the same time, realizing bundle adjustment
on both dense depth and camera motion estimation during
training. With the bundle adjustment and pose graph opti-
mization module, we are able to prevent pose drift effectively
and improve the performance of unsupervised deep learning
based visual odometry by a large margin. The proposed
framework bridges the gap between the conventional algo-
rithms and deep learning based networks by leveraging both
benefits of them via local and global optimization, photo-
metric consistency, and geometric-consistency. The sample
outputs of our designated framework are depicted in Fig. 1.

To summarize, the main contributions of this work are: i)
We introduce the pose graph and bundle adjustment as an
online optimization into the deep visual odometry network,
enabling continuously updating dense depth and camera
motion to be practicable. To the best of our knowledge,
this is one of the first attempts to embed both pose graph
optimization and bundle adjustment as online optimization
methods to the unsupervised deep learning network. ii) Both
trajectory estimation and 3D mapping from our introduced
algorithm outperform existing approaches largely. iii) The
bundle adjustment process is seamlessly integrated into the
neural network in real applications, bringing effective en-
hancement for camera pose estimation that is deficient in
most deep neural network based VO methods.
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Fig. 2: An architecture overview of the proposed pose graph and bundle adjustment optimized deep visual odometry framework. The
framework will output both depth maps and camera poses which compose a pose graph for further optimization in bundle adjustment with

depth values of salient pixels.

Il. RELATED WORK

There is a large body of work exploring the idea of esti-
mating both dense depth and camera motion from monocular
video inputs. We will discuss the conventional geometric vi-
sual odometry methods, deep learning based visual odometry
algorithms, and a combination of them as below.

Conventional VO approaches. In order to estimate mo-
tion, early conventional feature-based VO approaches rely on
the extracted geometric constraints from image [26]. More
specifically, these approaches can be concluded into two
branches: featured based approaches and direct approaches
[10] [36]. Feature based approaches require feature tracking
[19], which usually fall into drifting when considering the
accumulation of time and only some of the features in the
image are extracted during the calculation, leaving a large
amount of information in the original image unused [31].
Direct approaches [9] then put forward to solve the problem
by going through all the pixels in the image sequential. These
approaches take the advantage of whole-image information
which contributes to higher accuracy, but suffer from large
frame-to-frame motion. Another shortcoming is that these
approaches occupy too much computation due to the heavy
optimization burden for dense tracking. With maps available,
image sequences are also used for estimating the camera
poses [22] [20] [21] [18].

Deep learning based networks for VO. Deep neural
networks have been applied in visual odometry to recover
both trajectory and scene depth simultaneously [38] [34]
[31] [24] [40] [37] [16] [29] [2] [33]. Among them, Wang
et al. [31] trained a Recurrent Neural Network (RNN) for
estimating the camera poses and scene depth. Zhou et al.
[37] designed a coarse-to-fine strategy to track camera pose
from keyframes. However, the aforementioned methods all
require a large amount of ground truth poses for training. To

militate the need of costly labels, unsupervised methods have
attracted much attention recently. Li et al. [16] extended [31]
to design an unsupervised learning framework to use spatial
and temporal information extracted from stereo sequences
as constraints. Yin et al. [34] simultaneously learned depth,
camera pose estimation, and optical flow via a CNN network.
Ranjan et al. [29] further integrated depth estimation, camera
motion, optical flow, and segmentation in a unit framework
during the training. Though these systems are capable of
achieving a good estimation of the scene depth, camera pose
estimation is still not as accurate as conventional pipelines
due to the lack of back-end optimization modules.
Combination of conventional VO and deep learning
based VO. Considering the superior performance of recent
deep learning based networks in feature detection and repre-
sentation, a few works [17] [12] explored integrating image
features learned from deep learning networks into the con-
ventional visual odometry pipeline. Li et al. [17] introduced a
hybrid VO system to combine deep learning based monocular
VO algorithms with a windowed pose graph as an additional
back-end. A stereo VO approach SuperPointVO [12] was
proposed to replace traditional feature detection with a
CNN-based feature extraction network SuperPoint [7], and
integrate it into a standard stereo visual odometry system.
Although these methods can leverage the benefits from both
conventional VO pipelines and deep learning based networks,
they still lack strict geometric optimization, e.g., bundle
adjustment. Also, the pre-trained feature extraction network
might not perform well in different and unseen scenarios.

I1l. BUNDLE ADJUSTED VO FRAMEWORK

The proposed PBO-VONet is comprised of a set of key
components: an unsupervised monocular VO pipeline based
on both geometric and photo-metric consistencies across



local neighboring frames, a graph-based pose optimization
module and a pose-depth bundle adjusted optimization. To
enable an efficient and practicable optimization, we propose
to update only selected keypoints in the depth map in the
optimization process, while inferring the entire dense depth.
The use of all image pixels for optimization would result
in the difficulty of convergence of model training due to the
significant parameters to optimize (e.g., optimize hundreds of
thousands images with over one hundred thousand pixels for
each image). To the best of our knowledge, our proposed
network is one of the first approaches to enable online
optimization in the unsupervised deep VO structure. An
overview of our training pipeline is depicted in Fig. 2.

A. Unsupervised Monocular VO Pipeline

Given monocular video sequences, we are able to use
geometric and photometric consistencies between the target
frame to reference views to train depth estimation and motion
estimation. As illustrated in Fig. 2, the self-supervision
simultaneously constrains the depth inference network and
pose estimation network. Pose estimation network is trained
by multiple adjacent local frames composed of a target frame
I+ and the referenced neighboring frames li+1. A group
of relative poses are able to be inferred. Simultaneously,
corresponding depth map for each input frame is generated
by the depth estimation network. The initial estimated depth
maps and pose vectors will then be optimized by the pose
graph and bundle adjustment, which will be detailed in Sec.
I11-B and Sec. IlI-C.

1) Multi-view Re-projection Loss: Given each pair of two
images |t and lt+1, the estimated depth map D:, and the
estimated camera motion T¢->t+1, we are able to compute
the per-pixel correspondence by projecting the pixel of the
target image to the reference images. Supposing a known
camera intrinsic K, the correspondence of the pixel pt in
lt+1 can be represented by the following equation:

prs1 = KTt-st+2D(pt)K py (1)

To warp the target frame |+ to reference frame lt+1 and
constrain a smooth reconstruction I1+1, we compute the per-
pixel minimum photometric loss across multiple reference
frames rather than the averaging photometric error [11] as:

XN
L= mingae-i,t+i) P, le->t) (2)
i=1
where N is the number of frames. p is a weighted com-
bination of L1 loss term and the structural similarity index
measure (SSIM) loss [14] to achieve a robust image recon-
struction performance, denoted as:

_a

p(I1,I2) 2(1—SSIM(I1,I2))+(1—a)| ||1—|2||1 (3)

2) Moving Object Masking: As the loss constraint Eq.
2 should meet the assumption of static scenes and moving
cameras, objects with large motion and occlusions will create
non-rigid transformation which will degrade the learning
effect of camera pose and depth estimation. In this case,

we propose to incorporate the depth inconsistency mask
[4] to exclude the moving objects and regions. The depth
inconsistency map for each pixel value p is computed as:
|D§+1(p) - Dt+1(p)|
Dtt+1(p) + Dt+1(p)

Daifs(p) = (4)
where DtH1 is the synthesized depth at t+1 frame generated
from | based on the estimated camera motion Tt->t+1, and
D;H is the bilinear interpolation of the estimated depth att
+ 1 frame. So, the moving mask can be computed based on
the depth inconsistency map Dgiff as:

Mmoving = 1- Dqifs(p) (5)

where Mmoving ranges from 0 to 1, which intends to
give small weights to the regions containing moving and
occluded objects. Considering that there could exist non-
moving frames in specific scenes (stopping), which may
affect the training of camera motion estimation, we apply
auto-masking to compute the photometric loss between the
neighboring moving frames only, filtering out those points
whose relative motion is the same:

1, 0f [ [le= 1. [la< [1k= heal]2
Mo = 2 1= Tl = hall

where Mayto is a binary mask. I; is a warped frame from
lt+1 based on the estimated depth map D and relative camera
motion T.

B. Pose Graph Optimization

Normally, pose estimation from the deep neural net-
work suffers from a relatively large drift. We propose
to incorporate pose graph to optimize each camera pose
node c= [C;, €,, ..., €n] computed from the estimated relative
rigid camera transformation T= [T, T2, ..., Tnl. Let zjj =
V(C,,€ ) + nij to be the edge of each camera pose vertex
pair €, and EJ , Where the noise is formulated as a zero-mean
white Gaussian as ni; @ N (0, Wij). The graph optimization is
then described as a problem of maximizing the posterior
probability of all points on the camera’s trajectory, given the
estimated camera pose c and the observed edge constraints
v between the pose nodes:

Prob(z|c)= "
ij

prob(z;; | (€, &)) (7)

By following the Gaussian distribution assumption and
taking the natural logarithm on both sides of Eq. 7, the
maximum likelihood estimation can be easily converted
to the minimization problem by the following least-square

function:
X
X = argminy
ij

Hzg = v(&, EIITE™ Iz - v(E, &)l =

eTi,-Zi,-ei,- =
argminy
.
. ~ o~ Tas -1 ~ o~
argminy [z = v(E, E)I"W ™| ]z; - v(E, &I

(8)



where Eq. 8 is a non-linear least-square optimization and ej;
is the error between z;; and the estimated value y(¢;, €;).

To solve the optimization equation, iterative Gauss-
Newton is used for solving Eq. 8. Specially, an optimization
for the estimated camera pose &M at the current time n is
calculated by the approximation of the second-order Taylor-
series as:

o lzi- v(E", &) - rijgel'w

ij (9)
Hzi - v(&™, &™) - roeell = [1)Msc- kM ]|2

where k is the corresponding residual vector as equation
below, and I'(} is the partial derivative of the edge constraint
vy to the estimated camera pose ¢, and J is the Jacobian
matrix which is composed of all the computed Jacobians T
as:

=

-1/2
w r
2 12
(A ]
- ?
b= BWq g Mi-nj-1
-1/2
Wi’j ri,j
-1/2 .
W z12 - V(CE,,C
12 ( V( 1 2))
k _ 10
Wi_ll/,zj_l(zi—l,j—l - v(cii1, 6-1))F (10)

Wi_,jl/z(zi,j - v(€,§))

Eq. 9 can be further simplified by applying QR factoriza-
tion on J. Hence, Eq. 9 can be rewritten as:

min|[J6c- k||?= ||[Q1 Q2] E 6c- k|I*=
R R
llQa © 6c- kIP= || © 8c- Qikl’=  (11)
I 0 sc- Q' g [I>=" min||Réc - d||?
1
Hence, 6c can be computed as:
c= (RTR)-'R-d (12)

Based on the pose graph optimization, the optimized cam-
era pose Cupdate Can be corrected from the initial estimation
from the pose estimation network € and a small correction
6c as: Cupdate = € + 8c. Hence, the relative pose estimation
can be correspondingly refined to Tupdate = T + 6T.

C. Bundle Adjustment Integration

Considering that the pose graph optimization ignores the
3D point information and the self-supervision from the
unsupervised VO network is able to constrain both initial
scene depth D and the refined relative camera pose Typdate,
we propose to further refine them for more precise poses
and depths by solving them in geometric bundle adjustment
(BA) optimization. This process is formulated as minimizing

the total energy E of the re-projection errors e on the image
pixel p across all the frames as:

XX

E = argmin | leij(p, Tupdate, DY| | =

i=1j=1
X X

argmin [11(pij) = Li(n(Tupdate,i, M (D;)))] |
i=1j=1

where the global energy E that needs to be minimized is
composed by a series of errors between the pixel intensity of
the projected 3D points and the corresponding image pixel.
Considering that it is not practicable to optimize the entire
depth estimated from the depth estimation network, we only
selected 2000 keypoints (ORB feature is used in our setting)
from the input image.

To minimize the global energy E over all depths at the
selected keypoints and the corresponding camera motion, we
define the parameter vector P and the measurement vector
X as:

P = (prdate,lr--'r -IN—-LIJ—pdate,i |
M (D1), M(D2), ..., M(D;))T,
X = (p11,PY2s s Po1s -By)T

(14)

The estimated measurement vector X can be expressed
as:

XA = (p’\-|]'-1’ pA-]r_Zl seey p"irm’ p’;l; ceey anm) = V(P + A) =

V(fupdate + Sfupdate, M (5) + 6M (5)) =

v(P)+ Aﬁfupdate + B6M (5)

(15)

Therefore, the bundle adjustment optimization is equal to
minimize the squared Z'Xl norm as:

T XX 2 F112 Ty-1
€ €= [leij| |7 = [IX-X[|">e 2 €
i (16)

= |1X= X]]%2x
Y represents convariance matrix. The above normal equa-

tion can be solved with Levenberg—Marquardt (LM) non-
linear least-square algorithm:

(BTt +us=1"5te (17)
The updating vector for LM algorithm becomes:
- T _ T T
6= (Sfupdate' 6|V|(|5)) - (61:1'61:2’“" (18)
T T T \}
6Ti’ 6M(I51)' 6M(ﬁz)' T SM(Dj))
And the Jacobian matrix J is:
o X o X dX
ﬁ= [—= | =] (19)
dTupdate OM(D)
Therefore, the covariance matrix becomes:
Ix = diag(Zx,y, Txyp---2%;) (20)
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Fig. 3: Absolute Trajectory Error (ATE) results on the KITTI
sequence 09 (top) and 10 (bottom) in comparison with SC-
SfMLearner [4] and Monodepth 2 [11].

With that, the normal equation takes the form:

ATA ATB S-F'update AT ET—‘update
( =) = (
B'TA BB sM(D) BTﬁm(D))% 1)
U w 6Tupdate ) - Efupdate )
wT ybo §M (D) BT ey (5)

6a can be formulated as:

(UP- wvZiwT)s- = €

update Tupdate

= (UZ- wvPiwT)-

24
- WP ie 5, >
B4
- WV ey s,
(22)

1
T €3
update update

Then 8b can be solved to optimize the 3D points by
solving:
VIS B = eyby- W6, -

Tupdate (23)
Therefore, the final refined camera pose estimation and
depth map can be expressed by T¢inal and Dfinal, respec-

tively.

IV. EXPERIMENTAL RESULTS
A. Implementation Details

Dataset: We separately evaluate the depth estimation and
odometry on the Eigen split of KITTI raw dataset and KITTI
odometry dataset. We first evaluate the depth estimation
performance on the Eigen testing split [8], with all images
resized to 832 x 256. For KITTI odometry dataset, we follow
the standard setting to use sequences 00-08 for training and
09-10 for testing.

Network architecture and training: The designated
framework is implemented on PyTorch [27] with a single
Nvidia P6000 GPU. ResNet-18 [13] is applied as the encoder
backbone to generate the depth map in the unsupervised
VO network. The depth decoder contains sigmoid activation

’ 4
\
\
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Fig. 4: Comparison of the trajectory on the KITTI odometry 09
(left) and 10 (right) splits. Blue: Ground truth; Red: Camera
trajectory from our system; Green: Camera trajectory from [11].

functions at the output and ELU [6] as the non-linear
activation. The camera pose estimation network consists of 7
convolutions followed by a 1x1 convolution to output 6-DoF
pose, with a ResNet-18 based extractor which is similar as
[11]. The number of training epochs is 30 with a mini-batch
size of 4 for our experiment. Adam optimizer [15] is applied
with a learning rate of 0.0001. The images are first resized
to 832x256 for both camera pose and depth estimation. The
testing process runs on the same setup.

B. Odometry Evaluation

We evaluate the proposed method on the odometry split of
the KITTI dataset. 00-08 sequences are used for training and
09-10 sequences are tested, which maintains the same setting
as [4] [11]. Fig. 3 depicts the odometry results on the KITTI
dataset. It can be seen that our method achieves clearly
improvement in the absolute trajectory error (ATE) when
comparing with other methods [4] [11] under the same setup
condition. Fig. 4 further shows qualitative comparison results
for estimating the trajectories on the sequence 09 and 10. The
plotted trajectories based on our final output relative poses
are closer to the ground truth plotting than other methods,
even compared to [11]. Especially, our estimated trajectory
is very close to be a loop on the sequence 09, even without
any loop closure detection.

C. Depth Estimation Results

We retrain our method on the raw dataset of KITTI and
compare with other methods on the Eigen test set. In Fig. 5,
we show some qualitative results. The proposed method is
able to better preserve the object shapes and boundaries and
prevent some mis-predictions in trees and the sky.

Table | makes an comparison with our model and other
depth estimation approaches. Quantitative results on depth
estimation are provided in Table |. Absolute relative differ-
ence (Abs Rel), squared relative difference (Sq Rel), Root
Mean Square Error (RMSE), RMSE log, and the accuracy
under thresholds (8; < 1.25' , i = 1, 2, 3) are reported. The
results shown in Table | clearly shows that our depth estima-
tion approach outperforms other approaches, achieving the
new state-of-the-art performance in most metrics, especially
the Abs Rel error and the first accuracy.



Fig. 5: Qualitative results for depth estimation on the KITTI dataset. Top to bottom: raw input image; results from [11]; results from [23];

our results. Red boxes mark the major differences.

Methods Training type Error Accuracy
Abs Rel Sq Rel [ RMSE | RMSE log | 6 < 1.25 [ 6 < 1.25 §< 1.253
SC-SfMLearner [4] Unsupervised 0.141 1.224 5.548 0.218 0.811 0.934 0.972
Monodepth2 [11] Unsupervised 0.130 1.144 5.485 0.232 0.831 0.932 0.968
HR-Depth [23] Unsupervised 0.133 1.062 5.381 0.216 0.826 0.936 0.973
Ours with bundle adjusted pose graph Unsupervised 0.118 1.007 5.099 0.196 0.852 0.946 0.979

TABLE |: Quantitative comparison with other recent methods. All methods are trained based on KITTI Eigen training split for a fair
comparison. We compare with unsupervised methods taking both a single image [11] and monocular video [4] [23] as input for testing.
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D. Ablation Analysis

To validate the core components introduced in our pro-
posed network, we perform an ablation study on the KITTI
Odometry dataset. Three different settings are compared
as below: 1. Results directly from the deep unsupervised
network (”Deep”) 2. Results from the deep unsupervised
network with pose graph optimization (”Deep+Pose graph”)

3. Results from the deep unsupervised network with bundle
adjusted pose graph optimization ("Deep+Pose graph+BA”)
as our full pipeline. We study the effect of the mentioned
key component for training. It can be observed in Fig. 6
and Fig. 7 that compared with the baseline result di-rectly
from the network (”Deep”), ”Deep+Pose graph” and
"Deep+Pose graph+BA” both give the depth estimation and
VO performance a significant boost. Moreover, ”Deep+Pose
graph+BA” tends to perform better than “Deep+Pose graph”,
which can be explained by the fact that bundle adjustment
simultaneously refine the depth and pose graph instead of
focusing only on the poses.

V. CONCLUSION

In this paper, we propose an unsupervised monocular
visual odometry method with integration of camera pose
graph optimization and bundle adjustment during the training
process. Pose graph and bundle adjustment optimization
greatly contribute to our framework by updating the motion
and depth and refining outputs, which mitigates the pose drift
issues taking place in the trajectory estimation. By selecting
keypoints to optimize together with the camera poses, the
neural network can be effectively trained. Extensive qualita-
tive and quantitative results on KITTI dataset demonstrate
the significant improvement in trajectory estimation and
depth estimation. The method benefits from both graph
optimization in conventional approaches and feature learning
capability of deep learning-based methods to correct pose
drifting and depth miss-prediction significantly.
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