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ABSTRACT

Despite the fact that the state-of-the-art fuzzers can generate in-
puts efficiently, existing fuzz drivers still can’t adequately cover
entries in libraries. Most of these fuzz drivers are crafted manually
by developers, and their quality depends on the developers’ under-
standing of the code. Existing works have attempted to automate
the generation of fuzz drivers by learning API usage from code and
execution traces. However, the generated fuzz drivers are limited
to a few specific call sequences by the code being learned. To ad-
dress these challenges, we present HOPPER, which can fuzz libraries
without requiring any domain knowledge to craft fuzz drivers. It
transforms the problem of library fuzzing into the problem of inter-
preter fuzzing. The interpreters linked against libraries under test
can interpret the inputs that describe arbitrary API usage. To gen-
erate semantically correct inputs for the interpreter, HOPPER learns
the intra- and inter-API constraints in the libraries and mutates
the program with grammar awareness. We implemented HoPPER
and evaluated its effectiveness on 11 real-world libraries against
manually crafted fuzzers and other automatic solutions. Our results
show that HoppER greatly outperformed the other fuzzers in both
code coverage and bug finding, having uncovered 25 previously
unknown bugs that other fuzzers couldn’t. Moreover, we have
demonstrated that the proposed intra- and inter-API constraint
learning methods can correctly learn constraints implied by the
library and, therefore, significantly improve the fuzzing efficiency.
The experiment results indicate that HOPPER is able to explore a
vast range of API usages for library fuzzing out of the box.

1 INTRODUCTION

Fuzzing is one of the most popular techniques to find software
vulnerabilities. Fuzzers give the software a large number of ran-
dom inputs and observe if unexpected behaviors happen. Though
the idea is simple, fuzzing has successfully been applied to test-
ing various applications and found many bugs. In recent years,
the techniques have been greatly improved due to the advent of
grey-box fuzzing. Coverage-based grey-box fuzzers such as AFL [3]
and LibFuzzer [28] mutate inputs to explore deeper program states
without requiring knowledge about input format or program speci-
fications. Constraint-based grey-box fuzzers [10, 11, 15, 44, 36, 9], as
the state-of-the-art fuzzers, employ constraint-solving techniques
to reach code branches that are guarded by complex constraints.
While grey-box fuzzing techniques greatly facilitate the general-
ization and automation of program fuzzing (i.e., fuzzing techniques
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that take ready-to-use binary programs as targets), replicating such
success in library fuzzing (i.e., fuzzing techniques that take APIs
as targets) is challenging. To use the state-of-the-art fuzzers for
libraries, users have to manually craft a fuzz driver that consumes
the type-agnostic inputs fed by fuzzers and transforms the byte
stream into API arguments. However, writing high-quality fuzz
drivers is difficult, as it is time-consuming and requires a deep un-
derstanding of the library. Consequently, most of the existing fuzz
drivers cover only a small part of library APIs. The APIs, especially
the rarely used ones, usually lack adequate testing. Library fuzzing
is still struggling to be usable out-of-box and scalable due to the
lack of an automated solution.

In library fuzzing, fuzz drivers need to use correct argument
types for invoking APIs and satisfy both intra- and inter-API con-
straints. Otherwise, the fuzz drivers would crash unexpectedly.
For instance, to test ares_send(ares_channel channel, char xqgbuf,

int qlen, ares_callback callback, void *arg) from c-ares, afuzz
driver should initialize the first argument channel with a call of
ares_init(ares_channel xchannelptr) to meet the inter-API con-
straint, and then set the third argument glen to be the length of
the second argument gbuf and set the forth argument callback to
be a non-null function pointer with the type of ares_callback to
comply with the intra-API constraints. Any violation of these three
constraints may result in spurious crashes. However, in practice,
information about these constraints is either missing or scattered
across library documents or comments, making it hard to collect
them in a fully automatic way.

Recently, researchers have proposed learning-based [7, 23, 45,
25] and model-based [19, 37, 22] methods to generate fuzz drivers
automatically. Learning-based methods, such as FuzzGen[23], try
to learn the correct usage of APIs from existing consumer code.
However, this method fails when consumer code is unavailable,
such as for new or work-in-progress libraries. Model-based meth-
ods, such as GraphFuzz [19], ask users to provide specifications
of the APIs under test, which requires domain-specific knowledge
and significant human involvement. Furthermore, the quality of
the fuzz drivers generated with these methods is largely affected
by the external inputs (i.e., consumer code or user-provided exper-
tise), which can be inaccurate or incomplete. For example, in our
experiments, we found that some of the fuzz drivers provided by
the authors of FuzzGen [23] and GraphFuzz [19] result in spurious
crashes due to misuses of the consumer code and incorrect user-
defined schemas (Section A.2 in Appendix). The fuzz drivers [1]
generated by FuzzGen only cover 5 of 26 API functions in the libvpx
decoding library and only support the vp9 codec. Similarly, the spec-
ifications [2] of sqlite3 written by the authors of GraphFuzz do not
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even include commonly used API functions, such as sqlite3_exec
and sqlite3_complete.

To address the aforementioned challenges, we present HOPPER
to fuzz APIs without requiring external knowledge. Inspired by
coverage-based fuzzing, which learns valid format from mutating
random seeds [30], HOPPER learns potential usage of the APIs from
mutating the composition of API calls and their arguments. If ex-
ecuting the mutated program triggers a new path or a new crash,
HoprpEr infers the intra- and inter-API constraints based on the
dynamic feedback. To achieve this, we introduce a Domain-Specific
Language (DSL) that describes arbitrary APTusages. The DSL inputs
can be interpreted with a lightweight interpreter linked against the
library under test. In this way, we transform library fuzzing into
interpreter fuzzing. The fuzzer is now responsible for generating
programs encoded in the format of DSL to feed into the interpreter.
Then the interpreter executes the programs to see if unexpected
behavior happens. Thanks to the grammar-aware mutation and the
inferred constraints, HOPPER is able to generate valid inputs that
explore different API usage while excluding false positive crashes.

We implemented HoPPER and evaluated its effectiveness on 11
real-world libraries against manually crafted fuzzers (MCF) and
other automatic solutions (i.e., FuzzGen and GraphFuzz). Table 2
shows that HoPpER greatly outperformed the other fuzzers in both
code coverage and bug finding. Notably, HOPPER improves the code
coverage over MCFs in ¢JSON by 47.12% in line coverage and 37.50%
in branch coverage and achieves higher coverage than the total
of 9 fuzzers in zlib. In total, HoPPER found 25 new bugs in the
libraries, and 17 of them have been confirmed, as shown in Table 4.
Moreover, we have demonstrated that the proposed intra- and inter-
API constraint learning methods can accurately learn constraints
implied by the library, thereby significantly improving the fuzzing
efficiency.

2 BACKGROUND
2.1 Library Fuzzing

Security vulnerabilities in libraries are fatal because they are widely
used in various programs. However, testing libraries through pro-
gram fuzzing alone is often inadequate. Library APIs may be in-
voked by programs under complex path constraints or with specific
arguments that make it difficult to fully exercise the APIs. To address
this issue, library fuzzing tools have been developed to specifically
test libraries, with LibFuzzer being a common choice for such test-
ing. Here are the required steps for effectively using LibFuzzer to
fuzz libraries:

o Craft a fuzz drivers. A fuzz driver describes the usage of
library APIs, including a sequence of API calls and their ar-
guments. A high-quality fuzz driver should provide an entry
to explore as much code in the library as possible. How-
ever, specific execution paths are not only determined by
the arguments in API calls but also by invoking their related
APIs. These related APIs may return values as arguments
or affect the context for other APIs that rely on them (e.g.,
global values). Hence, a deep understanding of the tested
library is necessary for thorough testing. But, enumerating
all valid APT usages would be time-consuming and challeng-
ing, so fuzz drivers usually only contain a few common API
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Table 1: Number of unique APIs used in fuzz drivers. The sec-
ond column is the total number of exported APIs in libraries.

Library Total MCFs FuzzGen® GraphFuzz HOPPER

¢JSON 78  6(7.69%) 4(4.13%) 40(51.28%)  78(100%)
c-ares 60  13(21.67%) - 20(33.33%)  58(96.67%)
libpng 241 25(10.37%) - 66(27.39%) 233(96.69%)

lems 283 10(3.53%) - 38(13.43%) 274(96.82%)
libmagic 18 4(22.22%) - 10(55.56%)  18(100%)
libpcap 89  8(8.99%) - 29(32.58%) 73(82.02%)
zlib 84  29(34.52%) - 41(48.81%) 78(92.86%)
re2 70 35(50.00%) - 47(67.14%)  69(98.57%)
sqlite3 279  15(5.38%) - 74(26.52%) 225(80.65%)
libvpx 26 7(26.92%) 5(19.23%) 17(65.38%) 24(92.31%)
libaom 38 5(13.16%) 7(18.42%) 13(34.21%) 35(92.11%)
Average -  18.58%  13.93%  41.42% 93.52%

*The authors of FuzzGen released the fuzz drivers for libvpx and libaom, and the
released code of FuzzGen is unable to run on the rest libraries, except for ¢cJSON.

usages. As shown in Table 1, the MCFs of the listed 11 pop-
ular libraries only covered 18.58% of the APIs, whereas the
remaining 81.42% uncovered APIs will escape being fuzzed.
Even though some approaches have been proposed to au-
tomatically synthesize fuzz drivers, the coverage of APIs is
still limited (e.g., GraphFuzz [19] achieved API coverage of
41.42%). Besides, as different API usage has different search
spaces for fuzzing, putting all of them in sequence would
be inefficient. Instead, it would be more effective to write
them into multiple fuzz drivers or conditionally execute them
within a fuzz driver. For example, in Figure 2, this fuzz dri-
ver calls the parsing function first and then calls different
printing functions according to the first 4 bytes of data.
Specify the format of input. The blind byte stream gen-
erated by LibFuzzer makes it difficult to create structured
inputs that satisfy intra-API constraints. To address this
issue, we need to specify the input format and guide the
fuzzer to generate arguments beyond byte arrays. FuzzedDat-
aProvider [22] is capable of dividing the fuzz input into mul-
tiple parts of various types, while libprotobuf-mutator[37]
can generate structured inputs based on provided grammars.
However, the presence of intra-API constraints makes defin-
ing the potential argument range for fuzzing an enormous
task. Hence, developers might opt to encode arguments as
literal constants directly into fuzz drivers, such as the second
argument of cJSON_ParseWithOpts in Figure 2. Unfortunately,
this approach may lead to inadequate testing for API func-
tions.

2.2 Fuzzing Interpreters

Grammar-aware grey-box fuzzing has succeeded in programs that
parse the inputs, especially in interpreters [35, 42, 4, 8, 20, 40, 27, 12].
The success of fuzzing interpreters is attributed to the following
two key techniques.

e Grammar-aware input mutation. Blindly mutated inputs
are likely to be rejected by the parsing procedure, while
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Figure 1: Overview of HoPPER’s architecture.

structured inputs can reach deeper paths. Grammar-aware
mutations parse the inputs as intermediate representations
(IRs) based on their encoding grammar and mutate the IRs
with constraints. For example, Superion [42] uses an abstract
syntax tree as the IR and conducts three main operators on
the tree for mutation: replace a node in the tree with a newly
created sub-tree, splice two different trees, and minimize
trees without affecting execution.

e Coverage guided fuzzing. Guided by the coverage feed-
back, the inputs that trigger a new path will be kept, then the
fuzzer mutates them further to enter deeper branches or find
new bugs. Incorporating with the grammar-aware mutation
strategies, the fuzzer is able to effectively synthesize valid
test inputs that cover more branches and trigger new bugs.

We observe that constructing fuzz drivers for libraries resembles
implementing an interpreter for the inputs, and fuzzing the inter-
preter is equivalent to fuzzing the library under the hood. However,
MCFs interpret type-agnostic byte inputs into limited sequences of
API calls, which only partially explore the libraries. If we extend
the interpreter to accept any API usage as input, then a grammar-
aware coverage-based fuzzer can efficiently generate inputs for the
interpreter.

3 DESIGN

3.1 Overview

HoprpER transforms the problem of library fuzzing into the problem
of interpreter fuzzing. At a high level, HOPPER consists of two
main components: a grammar-aware fuzzer that generates inputs
encoded in a DSL format, and a lightweight interpreter that executes
these inputs, as shown in Figure 1.

The fuzzer produces high-quality inputs for invoking library
APIs. It first extracts function signatures and type definitions from
the library’s header files, which provide valuable information on
potential relations between API functions and argument types. By
leveraging this information, HOPPER generates a sequence of API
calls through random combinations of API functions and arguments.
At the early stage, the generated sequences may be invalid and ter-
minate with shallow paths in the APIs’ code. However, thanks
to coverage guidance, HOPPER keeps the inputs that explore new
branches as seeds and mutate them further. Ultimately, the gener-
ated sequences become valid and their execution can reach deeper
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code. Completely random fuzzing wastes enormous time in gen-
erating illegal and inefficient seeds. To accelerate the process of
evolution, HOPPER performs type-aware argument mutation (Sec-
tion 3.3.2) and learns intra- and inter-API constraints (Section 3.4).
Additionally, HoPPER minimizes the inputs (Section 3.3.3) to reduce
overhead.

The interpreter consumes the inputs and invokes the library
APIs. The libraries under test are linked against the interpreter
during the compiling stage. Before linking, HOPPER instruments
the binaries to capture internal states during execution, e.g., code
coverage. When new input arrives, the interpreter parses the input
according to the syntax of DSL and interprets the statements orderly
based on their semantics.

3.2 DSL and Input Interpretation

Fuzz drivers are usually developed with the same programming
language as the library’s specification. Therefore, for compiled
language like C/C++, fuzz drivers are crafted and compiled before
fuzzing begins. Only the input bytes are changed during each round
of fuzzing. To replace the composition of API calls during fuzzing,
while avoiding compilation overhead, we introduce a Domain Spe-
cific Language (DSL) and a lightweight interpreter in HOPPER for
accelerating the entire process.

3.2.1 DSL. For the sake of generality, the interpreter in HOPPER
takes DSL programs as input. The grammar of HopPEr DSL is listed
in Figure 6 in the appendix. Each DSL program comprises statements
as its most fundamental components, and each statement has an
ascending index that its successors can reference. We categorize
common fuzzing behaviors found in MCFs into five statement types
in our DSL.

o A load statement defines the type information and literal
representation of a value. Strong typing ensures that input
data of a specific type can be directly incorporated into the
call site of the APIs in a DSL program, eliminating the need
for a type-agnostic byte stream.

A call statement invokes a specific API function in libraries
by providing the function name and a list of arguments,
where each argument refers to the value defined in a previous
load statement.

An update statement overwrites the value returned by a
call statement at runtime.

e An assert statement checks a call’s return value at runtime.
If the assertion fails (e.g., the caller needs to dereference
the return value but the value is null), the program exits
immediately.

A file statement specifies a valid file name for file I/O. If the
statement is used for reading, a sequence of random bytes is
filled in the file for runtime reading.

To keep the grammar simple, our DSL does not support condi-
tional statements. Some fuzz drivers use conditional statements to
choose different API functions or arguments. By contrast, HOPPER
generates different DSL programs to enumerate those API functions
or arguments. For example, Figure 2 is a real-world fuzz driver writ-
ten by the developers of ¢JSON, and Figure 3 is a program written
in DSL that covers a path in Figure 2.
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3.2.2 Interpreter. The interpreter parses DSL programs, executes
the statements gracefully, and monitors the states of the program
after executing each statement. In order to invoke the library APIs,
Hopper links the interpreter against the libraries under test at com-
piling stage. It also constructs a table that correlates each function’s
name with its corresponding caller based on the header files of the
libraries. During program execution, the caller casts values to the
types of arguments it needs and then invokes the referenced func-
tion with the arguments. Before linking to the interpreter, HOPPER
instruments the library binaries with code that counts branches and
hooks compare instructions and resource management functions
(e.g., malloc, free and fopen). The interpreter then collects the
following feedback at runtime.

e Optional Branch Tracking. It is not necessary to track
branches of all the library API calls in the DSL program
every time, so HOPPER defines a global flag to guard the
branch tracking code. The value of the flag is determined by
the DSL input. When calling an API function that ends with
a question mark (e.g., Line 13 in Figure 3), the interpreter
activates the flag for branch tracking.

e Context-sensitive Code Coverage. To distinguish the same
branches visited by different API functions, the interpreter
sets the hash of the current function’s name as the context.
The instrumentation code reads the context and calculates
an exclusive code trace for each APL

o Overflow Detection. If the statement loads a variable-sized
value (e.g., an array), the interpreter of HOPPER stores them
in a memory arena and appends a canary right after it to
detect possible buffer overflow.

e Use-after-free Detection. The interpreter maintains a set
of memory chunks allocated by malloc and released by free
through instrumentation. For each pointer used in function
arguments, if the memory chunk pointed by this pointer is
freed, the interpreter exits the program immediately to avoid
the use-after-free issues.

e Comparison Hooking. The interpreter collects the param-
eters used in comparison instructions and functions to guide
the fuzzer to solve magic bytes.

The fuzz drivers utilized by LibFuzzer should have no side effects
since the code runs in a loop in the same process. However, it is
difficult to generate a program that can reset all resources before
exiting. HOPPER’s interpreter solves this problem by running each
input in an individual process. Once a DSL program terminates,
the operating system destroys the process and releases all allocated
resources for Hopper. This allows the interpreter to execute DSL
programs continuously without the need to release resources.

3.3 Grammar-aware Input Fuzzing

To find bugs in libraries rather than interpreters, HOPPER takes
a different approach compared to other grammar-aware fuzzers.
While other fuzzers traverse all possible combinations of syntaxes
based on input grammar, HoPPER instead focuses on generating
various effective API calls. This process involves two phases, as
shown in Figure 4. First, it generates inputs based on the information
available in function signatures to initialize a seed pool. Second, it
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int LLVMFuzzerTestOnelInput(const uint8_t* data, size_t
size) {
cJSON *json;
size_t offset = 4;
unsigned char *copied;
char *printed_json = NULL;
int minify = datal[@] == '1' ? 1 : ©@;
int require_termination = datal[1] == '1' ? 1 : ©@;
int formatted = data[2 ]== "1" 2?2 1 : 0;
int buffered = data[3] == '1" 2 1 : ©;
if (size <= offset) return 0;
json = cJSON_ParseWithOpts((const charx)data + offset,
NULL, require_termination);
12| if (json == NULL) return 0;
13 if(buffered) {
14 printed_json=cJSON_PrintBuffered(json, 1, formatted);
15 } else {

- ® W o N U A~ WDN

RN

16 if(formatted) printed_json = cJSON_Print(json);
17 else printed_json = cJSON_PrintUnformatted(json);
18] 3}

19 if(printed_json != NULL) free(printed_json);
20| if(minify) { ... }

21 cJSON_Delete(json);

22 return 0;

23|}

Figure 2: Fuzz driver written by the developer of cJSON. The
code is in cjson_read_fuzzer.c, which is used by OSS-Fuzz [32].

<0> load Vec<char>= vec(32)["
GXSAAAAAAAAA09tSrXXoqw57 JWAAAAAAAAARNK+TAAA="]

<1> load char* = &<0>

<2> load char*x = null

<3> load int = @

<4> call cJSON_ParseWithOpts (<1>, <2>, <3>)

<5> assert non_null(<4>)

<6> load cJSON = { next: null, prev: null, child: null,
type_: 8, valuestring: null, valueint: 12345,
valuedouble: ©.2771, string: null, }

<7> update <4>[0.child] = <6>

<8> load Vec<char> = vec(7)[54, 52, -68, -43, 1, 122, @]

<9> load char* = &<8>

<10> call cJSON_AddFalseToObject (<4>, <9>)

<11> load int =1

<12> load int = @

<13> call cJSON_PrintBuffered ? (<4>, <11>, <12>)

Figure 3: Example program in the format of HopPER DSL.

selects inputs in the seed pool and mutates them with the guidance
of coverage feedback.

Pilot Phase. In the pilot phase, HOPPER infers constraints and draws
skeletons of the inputs. Initially, the seed pool contains no inputs.
Therefore, HOPPER tries to generate simple inputs for each API
function based on their signatures and learn constraints from them
(detailed in Section 3.4). To accomplish this, HOPPER selects an
API function in the library as a target and attempts to randomly
generate a call statement for it. This includes generating arguments
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Item);
void print_obj(obj*, int);

(a) Function Signature

(b) Generated Input
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Pilot Phase

struct Item {

char* name;

int len;
) <O> I o

i+ Generate oad Obj* = null

siruet Obf: input <1>load int =1 Mutate
: . input
Obj* create_obj(); || <2>callprint_obj ? (<0>,
void add_item(Obj*, <1>) 000

<0> load Obj* = null
<1> call create_obj()
<2> assert non_null(<1>) }
<3>load int=10—» Type-aware

Replal
argumg

e
nts

utate

Minimize input
Pk — —>
<0> call create_obj()
<1> assert non_null(<1>)
<2>load int=10

<4> load Vec<char> = ':re‘ﬁzte <3> load Vec<char> =
vec(4)[50, 51, 52, 53] P vec(4)[50, 51, 52, 53]
<5> |oad Item = { name: &<4>, 00 <4> |oad ltem = { name: &<3>,

len: 1024 }

<6> call add_item (<1>, <5>)

<7> call print_obj ? {(<1>, <3>)
~

A
Infer inter-API

onstraint

(c) Mutated Input

len: 4} —» Refineby inter-API constrai
<5> call add_item(<0>, <4>)
<6> call print_obj ? (<0>, <2>)

(d) Refined Input

t:

Evolution Phase

Figure 4: The workflow of input generation in HOPPER.

and inserting related calls that introduce the necessary context.
These statements finally form an input, which is then executed
by the interpreter. If the input triggers a new path in the libraries
without crashing, HOPPER saves it into the seed pool for further
mutation. To prevent irrelevant coverage feedback from other calls,
HopPpER tracks the coverage of the target call only.

Algorithm 1 describes the procedure of generating a call state-
ment. It generates each argument according to its type in the func-
tion signature, and one of the following three operators is used:

e HoPPER chooses an existing statement whose type matches
the argument!.

e The argument is obtained by inserting a new API invocation.
HoppER selects an API function whose return type matches
the argument randomly, and generates a call statement for it
recursively. The new call statements are placed ahead of the
current one. Additionally, an assertion statement indicating
whether the call statement runs successfully is added after
the new call statement (e.g., a non-null assertion statement
is inserted after a pointer-type returned call statement).

o A load statement with a typed value created from scratch is
used.

HoppER also attempts to affect the execution of the target call
by inserting other API invocations to change the internal states
of the program. It prioritizes API functions with non-primitive
argument types that overlap with those of the target call and
reuses the overlapping arguments as much as possible. To pre-
vent the program from becoming overly complex, HOPPER stops
generating new calls if the length of statements exceeds a specific
threshold or the recursion depth becomes too high. Take the pro-
gram in Figure 3 as an example. To generate the program with
cJSON_PrintBuffered (line 13), HorpPER randomly chooses the
return value of cJSON_ParseWithOpts (line 4) and generate two
integer value (line 11 and 12) as its arguments. In addition, it cre-
ates a call for cJSON_AddFalseToObject that may modify existing
arguments (line 10).

'HopPER treats const and non-const types equally when comparing types.

Evolution Phase. After running a certain number of rounds, HopPER
enters the evolution phase, which aims to build more complex pro-
grams based on the skeleton inputs. To achieve this, HOPPER selects
an input from the seed pool and randomly mutates the statements
based on their types. Guided by the execution branch coverage,
HoprpEeR keeps the mutated inputs that explore deeper code of li-
braries, which are more likely to find bugs. Overall, HOPPER mutates
program statements in five steps. ﬂ HopPpER selects an input from
the seed pool with priority. Fresh seeds are given higher priority to
be chosen, as they are more likely to reach deeper paths. @ Hop-
PER chooses statements to mutate from the input according to their
weights. The assert, file, and update statements are weighted as
zero and not mutated, while the weights of load and call statements
are determined by their complexity. €@ HoppEr mutates the load
statements and call statements by their corresponding strategies, as
described in Section 3.3.1 and Section 3.3.2 respectively. @ HopPEr
refines the input to use APIs correctly based on the constraints
learned during fuzzing, as described in Section 3.4. @ HopPER mini-
mizes the input to remove redundant statements that have no effect
on reaching the path yet increase the search space of mutation, as
described in Section 3.3.3.

3.3.1 Call Statement Mutation. HoPPER adopts the following mu-
tation strategies for call statements:

e Replace one of the arguments with a new argument that
retains the same type (line 4 to line 24 in Algorithm 1).

o Insert a new call before the target call (line 27 to line 29 in
Algorithm 1). The inserted call may modify the values of the
target call’s arguments or change the global states in libraries.
HoppER determines the effectiveness of the inserted calls
through branch feedback, which is detailed in Section 3.4.2.

e Update the return value of the call. An update statement is
inserted after the call to partially overwrite the return value
with a new value.

3.3.2 Type-aware Value Mutation. As libraries often use various ar-
gument types, including custom composite types, HOPPER needs to
generate appropriate types for such arguments when invoking the



Anonymous Submission to ACM CCS 2023, Due 19 Jan 2023, Copenhagen, Denmark

Algorithm 1 Generate a call statement randomly based on its
function signature. It stops generating new calls recursively if the
length of statements in the program exceeds a certain length.

1: function GENERATECALL(program, sig)
2 args < empty list
3: for all arg_type € sig.arg_types do
4 if toss a coin then > Uses existing statement as
argument

index « Choose statement with arg_type in the
program randomly.

5

6: if index exists then
7: args < args U index
8: continue
9: end if
10: end if
1 if toss a coin and arg_type is not primitive then  »
Generates a new call statement as argument
12: f < Randomly choose an API function that returns
arg_type .
13: if f exists then
14: call < GENERATECALL(program, f)
15: index « insert call into program.
16: check < GENERATEASSERT(program, index)
17: insert check into program.
18: args < args U index
19: continue
20: end if
21: end if
22: load < GENERATELOAD(program, arg_type) >
Generates a new load statement as argument
23: index « insert load into program.
24: args «— args U index
25: end for
26: if toss a coin then > Generates a new call statement that
may affect the execution of call
27: f < Choose an API randomly. » Prefers API functions
whose argument types overlap with args
28: call « GENERATECALL(program, f)
29: insert call into program.
30: end if
31 call « CREATECALLSTMT(sig, args)
32: return call

33: end function

corresponding APIs. The same is true for value mutation, where ap-
plying mutations according to the value’s type can more effectively
explore new states. To achieve this, HOPPER parses type defini-
tions (e.g., struct, enum and union) and type aliases in header files
recursively. It then generates new typed values by the following
rules:

e Primitive Types. Almost all primitive types are numerical
types. Thus, HOPPER generates numbers within a small range
of uniform distribution. Additionally, HoPPER applies one of
four mutations to the primitive values. (1) Set an interesting
value (e.g., 0x80000000 for int); (2) Flip a bit or a byte; (3)
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Add or subtract a small number; (4) Set to a literal collected
from a comparison instruction, if the value is used as one of
the operands.

e Array. Based on the array’s length and element type, Hop-
PER generates a sequence of elements. If the length is variable,
HoppeR first randomly chooses a length. During mutation,
HOPPER selects one or more elements in the array and mu-
tates them respectively. In addition, HOPPER can resize the
array by inserting or removing elements if its length is not
fixed.

e Structure. Values with custom structure types are created by
recursively generating their fields. When mutating custom
structure values, HoOPPER randomly selects a field in the
structure and mutates it according to its type.
Trivial Pointer. Trivial pointers expose the layout of the
pointer type (i.e., primitive-type pointer and transparent
structure-type pointer). HoPPER mutates them by the fol-
lowing operations: (1) Set to a null pointer; (2) Point to the
location of an existing statement that holds the same pointer
type; (3) Point to a newly generated array whose element
type is the same as the pointee; (4) Point to the location of
the value returned by a newly generated call statement. The
call statement returns the same pointer type.

e Nontrivial Pointer. Nontrivial pointers, such as opaque
pointers, void pointers, and function pointers, cannot be mu-
tated straightforwardly due to their unpredictable nature.
Hence, HOPPER constructs them separately. For the opaque
pointers, HOPPER retrieves the API functions that initialize
the pointers via either returning the pointers or filling them
through reference. If void pointers have alias types, HOPPER
treats them as opaque pointers as well. Otherwise, HOPPER at-
tempts to cast an arbitrary-length byte array to the required
void pointer to see if it works (detailed in Section 3.4.1). For
the function pointers, HOPPER synthesizes empty functions
with the required signatures at compiling stage to allow the
fuzzer to use their addresses as pointers.

Besides, byte arrays may contain data with their own encoding,
which is not defined in header files. For example, cJSON_ParseWithOpt
in Figure 2 parses a byte array with JSON formatting. For these
values, HOPPER applies AFL’s random mutations that are designed

for byte arrays.

3.3.3 Input Minimization. Redundant statements and values slow
down execution speed and increase search space during mutating,
which makes fuzzing inefficient. To address this, HopPER employs
two phases to minimize the inputs:

1. Minimize inputs after mutation and refinement. HOpPPER
inspects the statement in the input backward, excluding the
target call statement. If a statement is no longer referenced by
other statements, HOPPER deletes it. For example, in Figure 4,
Line 0 in (c) is redundant after mutation and is thus removed
by HoPPER in (d).

2. Minimize inputs that trigger new paths. HOPPER removes
calls that have no impact on the execution path (detailed
in Section 3.4.2), as well as redundant values in load state-
ments. It tries to set the pointer values to null or shrink the
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length of arrays when possible. If the execution path remains
unchanged, HOPPER retains the mutation in the input.

3.4 Constraint Learning

To correctly invoke APIs, DSL programs generated by HOPPER must
satisfy both intra- and inter-API constraints. Intra-API constraints
dictate that APIs must be invoked with appropriate arguments,
while inter-API constraints specify the appropriate order in which
APIs are invoked. HOPPER learns these constraints through libraries’
runtime feedback rather than relying on external sources.

3.4.1 Intra-API Constraint. We propose six general intra-API con-
straints based on our observations of real-world libraries.

e Non-null Pointer(NON-NULL). APIs that do not check for
null pointers can crash when invoked with null pointers. It’s
often unclear whether this is a real bug, as some developers
argue it is the user’s responsibility to perform null checks.

e Correct File Name(FILE). When an API function reads
from or writes to a file, the file name provided as an argument
must be valid. If the file name is randomly generated, the
API call may terminate early, or it could mess up the disk if
used as an output stream.

e Specific Value(EQUAL). APIs that use a number in the
arguments to designate the boundary of an array pointer
may suffer from overflow errors if the number is incorrect.

¢ Bounded Range(RANGE). APIs that access or allocate lim-
ited resources based on argument numbers may encounter
resource exhaustion or overflow errors if the number is out
of range.

e Array Length(ARRAY-LEN). Some APIs assume that the
arrays referenced by the pointers have sufficient elements
rather than asking for arguments indicating boundaries. This
may result in overflow errors if the arrays don’t have ade-
quate elements.

o Specific Type Cast(CAST). Due to missing layout informa-
tion of the void type, developers have to generate objects
with concrete types and cast their references to the void
pointers.

HoppER learns intra-API constraints throughout the entire fuzzing
process, including both the pilot and evolution phases. Besides infer-
ring constraints for the arguments themselves, HOPPER recursively
explores composite structures to infer constraints for any objects
contained within, such as the pointees, fields in structs, and ele-
ments within arrays.

For voidx arguments without alias types, HOPPER assumes that
their pointees do not contain any pointer. Therefore, they can be
cast from a big enough random byte array, and Hopper adds CAST
constraints that treat them as char#* type. Conversely, in the case
of voidx pointers with alias types, HOPPER supposes that they are
opaque pointers and initializes them via invoking other APIs.

When new paths are explored by inputs, HOPPER checks to see
if any file open function (e.g., fopen) has been triggered, and com-
pares the file name with the arguments used to invoke the API. If
there is a match, a FILE constraint is created for the corresponding
argument.

Furthermore, if an input triggers a new crash, HOPPER infers
intra-API constraints by the following steps in order.
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(1) If the call triggers a segmentation fault due to accessing a
null pointer (si_addr is 0 or close to 0, where si_addr is the
address of the faulting memory reference), HoppER locates
each null pointer in the arguments, sets it to the address of
a protected memory chunk, and runs this mutated program
again. If the program crashes again at the same program
location (indicated by the rip register) and triggers illegal
access inside the protected memory chunk, it means the
pointer is accessed without a null check in the APIinvocation.
In that case, HoppER adds a NON-NULL constraint for this
pointer.

(2) If the crash is caused by accessing a canary appended right
after an array (si_addr is in the range of canary), HOPPER
tries to figure out whether there is a length or index of a
variable-sized array in the arguments. Firstly, HoPpER locates
which array has been overflowed. We denote the array’s
length as N. For each numerical value in the call’s arguments,
HoprpER attempts to set it as N — 1, N, and N + 1, respectively.
If both N and N + 1 lead to a crash by accessing the canary,
HorpER adds a RANGE constraint to set the value within
a range of [0, N). If only N + 1 makes a crash, an EQUAL
constraint is added to set the value to be the same as the
array’s length.

(3) If the above strategies fail to rectify illegal access of a canary,

HoPPER attempts to pad the arrays in the arguments to a

specific length (e.g., K) to see whether it resolves the crash.

If so, an ARRAY-LEN constraint is added to ensure that this

array is at least K bytes.

For other illegal access, if there are CAST constraints for the

arguments, HOPPER tries to mutate the byte array pointed

to by the arguments. If the illegal address varies with the

mutated bytes, the void pointer may be interpreted as a

structure containing pointers. Thus, HOPPER removes the

CAST constraints with char* type.

If the inputs lead to a timeout or out of memory, HoPPER

searches for large numerical values in the arguments and

mutates them. If the execution becomes significantly faster
or exits normally after setting the value to be small, Hop-

PER adds a RANGE constraint for the argument to limit its

maximal values.

—~
N
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—
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=

These constraints are used to refine inputs after mutation, and
inputs that violate the constraints are excluded from the seed set. As
an example, in Figure 4, HoPPER successfully infers the constraint
that the value of 1len should be the length of the array that name
refers to, and refines the value accordingly.

3.4.2 Inter-API Constraint. An API call can modify its referenced
arguments or internal states in the program, which affects the
behavior of its subsequent calls. These relationships between API
calls are referred to as inter-API constraints. Compared to intra-API
constraints, inter-API constraints are more difficult to identify and
apply universally. Each library defines its own pattern to coordinate
the API functions, making it hard to make abstractions. Instead
of imposing concrete constraints, HOPPER preserves the inter-API
constraints by saving the effective programs for later mutations. To
learn such constraints, HOPPER statically assembles library APIs by
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function signatures and then verifies their effectiveness dynamically
through coverage feedback.

At first, HOPPER statically infers naive constraints between API
functions by analyzing their signatures. By comparing the types of
their arguments and returns, we can deduce whether the two API
functions are likely related. For any given pair of API functions Fq
and Fy, they tend to be related if their types overlap in the following
ways.

e Type T is the type of one of the arguments in Fy, and it is
the type of return value of Fy.

o Both F; and Fy use type T as their arguments.

e F; uses an argument with type T while Fy uses a pointer T
that may modify the value it points to.

Besides the types of arguments, the two API functions are more
likely to be related if the identifiers of arguments in the latter two
cases are identical.

Two API functions have an effective relation if the former can
help the latter to reach a new path. As shown in Algorithm 1,
HopPER attempts to generate a large number of various API usages.
The API invocations may be composited in an interesting order
after several iterations. In case HoPPER finds a certain sequence
of API calls to be effective, the program is reserved for further
mutation. By incorporating the precise control of coverage tracking
described in Section 3.2.1, HOPPER learns the effective relations
between API functions by the following steps.

(1) When new calls are inserted before the target API call, only
the coverage of the target call will be tracked.

(2) If the insertions trigger a new path, HOPPER deletes the new
calls one by one from the input and checks whether the
coverage remains the same after removal. If the coverage
changes, HopPER identifies the removed call as critical for
reaching the new path. In other words, an efficient inter-API
constraint between the two API functions is found in the
program.

In addition to recognizing effective call sequences, HOPPER also
identifies the effective arguments among sequences of API invoca-
tions. Once a program triggers new paths, HopPER checks whether
the new paths were introduced by the mutation of certain argu-
ments. To reuse effective arguments for further mutation, HorPER
saves all the statements responsible for producing those arguments
into a cache. These statements contain both concrete values and
inter-API constraints. During mutation, HOPPER fetches one ef-
fective argument as a substitute for the original one to introduce
appropriate context to the API invocations.

4 IMPLEMENTATION

We implemented HOPPER in 23164 lines of Rust code and 1285 lines
of C/C++ code for instrumentation.

4.1 Fuzzer

HopPPER generates inputs with semantics parsed from C header files.
Combining Rust’s traits and macros, we implemented the process
elegantly. First, we adopted Rust bindgen [31] to automatically gen-
erate Rust FFI bindings, including type definitions and function
signatures, from library header files. For C++ libraries, only C-style
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API declaration is accepted by HOPPER since features like templates
are not yet supported in bindgen [17]. Next, we defined mutate,
generate, serialize, deserialize traits for the types in the bind-
ings, which apply customized behavior to objects of each type for
fuzzing. We manually implemented these traits for primitive types
since they have common memory layouts in libraries. As for custom
structures, we utilized Rust’s procedural macros to automatically
implement these traits. HOPPER also synthesizes empty functions
for function pointer types according to their function signatures.
When invoked as callbacks, these functions do nothing other than
return an object with zero-initialization. Finally, we generated a
table of object builders that HOPPER uses to call the trait imple-
mentations. These automatically generated codes are compiled and
linked against the fuzzer.

To report the inputs that trigger bugs to developers for analysis,
we have built a tool that translates DSL to C source code.

4.2 Interpreter

HopPPER instruments the library binaries by static binary rewrit-
ing with E9Patch [14]. We borrowed from E9AFL [16] the code
for branch tracking and improved it to be controllable and API-
sensitive. Additionally, the instrumentation collects the compare in-
structions and hooks resources management functions (e.g.,malloc,
free and fopen).

When executing inputs, HOPPER’s interpreter parses them based
on the code that implements deserialize traits. To invoke the
APIs, HOPPER generates the code of the caller mapping table de-
scribed in Section 3.2.2, using Rust FFI bindings and procedural
macros. This code is then compiled into the interpreter. Like AFL,
the interpreter incorporates the techniques of fork servers to reduce
the overhead of process initiation. It forks a new process once it
receives a new input for interpretation.

During interpretation, HOPPER detects memory overflow by
adding a page-size canary after the array values in a memory arena.
This memory arena is implemented by mmap a continuous memory
at a fixed address. In the arena, the address of the last byte of an
array is aligned to a page’s last byte. To detect overflow, HOPPER
reserves a page size memory after the array and sets the page as
unreadable and unwritable by mprotect.

5 EVALUATION

In this section, we evaluated HoPPER on 11 widely-used real-world
libraries. All of the selected libraries are commonly used by various
applications and have been evaluated by OSS-Fuzz [32]. To adapt
fuzzing on those libraries using LibFuzzer, their developers have
crafted several fuzz drivers. Among all the 11 libraries, re2 is both
developed and exported as C++ library in special. For the sake of
compatibility, HOPPER fuzzed re2 through its C wrapper: cre2 [13].
Additionally, all libraries included in our experiments were the most
recent versions available during the time of testing. To demonstrate
the effectiveness of HOPPER, the following research questions were
answered:

e RQ1: How effective is HOPPER in libraries?

e RQ2: Can HoppER correctly infer API constraints?

e RQ3: Can HOPPER generate programs that are comparable
with MCFs?
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All of our experiments are conducted on a server with an Intel
Xeon Platinum 8255C and 128 GB memory running 64-bit Ubuntu
20.04 LTS. In each experiment, we configured the tested fuzzer to
be executed on only one core.

5.1 RQ1: How effective is HOPPER in libraries?

Code coverage and bug finding are two key metrics used to evaluate
fuzzing effectiveness [26]. To answer the first research question, we
compared HoppeR with MCFs and other automatic solutions (i.e.,
FuzzGen and GraphFuzz) on 11 popular real-world libraries, using
these two metrics. For the MCFs, we either selected fuzz drivers
crafted by the library developers or collected them from the Google
0OSS-Fuzz project. The authors of FuzzGen provided the fuzz drivers
for libvpx and libaom and we used them directly in our evaluation
after rectifying the inaccuracies listed in Section A.2. However,
FuzzGen is unable to run successfully on the other libraries, except
for ¢JSON. Specifically, the fuzz driver that FuzzGen generated for
c-ares contained invalid arguments and could not be compiled. For
the rest of the libraries, FuzzGen encountered errors during fuzz
driver generation, such as violating assertions while determining
data types of arguments or getting stuck at static backward slicing.
GraphFuzz requires manually written schemas to synthesize fuzz
drivers. We adopted the author-provided schema for sqlite3 and
wrote the others ourselves. In each individual experiment, we set a
timeout of 24 hours and ran the fuzzers. Afterward, we recompiled
the tested library with LLVM’s source-based code coverage fea-
ture [33] enabled and re-ran the fuzzers with seed inputs to collect
coverage information. To reduce statistical errors, we repeated each
experiment five times and reported the average results. Addition-
ally, for libraries containing multiple MCFs, we ran each driver with
LibFuzzer for 24 hours separately.

5.1.1 Code Coverage. Table 2 shows the code coverage achieved
by different fuzzers on each library. HOPPER outperformed other
fuzzers on all libraries in both lines and branches coverage, except
for re2, libvpx, and libaom. Even though 9 MCFs of zlib have been
tested for a total of 216 hours with Libfuzzer, HOPPER is still better
than their overall result. The contrast on c-ares is the most signif-
icant, where HOPPER generated inputs that covered almost three
times as much code as the MCFs’ best effort. On the other hand, the
MCEFs for re2 were sophisticated enough to cover most of the source
codes, while HoppER managed to reach a coverage level that is close
to its opponent. In the case of libvpx and libaom, MCFs covered
more lines and branches than automatic solutions. This is because
they can reach complicated internal states by decoding multiple
frames in a loop, while all the automatic solutions are loop-free.
However, among the fuzz driver generated automatically, HOPPER
explores more lines and branches than FuzzGen and GraphFuzz.

To demonstrate that HOPPER is capable of fuzzing more APIs, we
counted the number of unique APIs in the valid programs generated
by fuzzers. Table 1 shows that, on average, HOPPER successfully
invoked 93.52% of APIs, while MCFs, FuzzGen, and GraphFuzz only
cover 18.58%, 13.93%, and 41.42% APIs respectively.

5.1.2  Bug Finding. For the crashes triggered by HOPPER, we first
eliminated any spurious crashes that violated the inter-API con-
straints learned by HOPPER, and then sanitized the duplicated crashes
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Table 2: Comparison of coverage between HOPPER, Graph-

fuzz, FuzzGen, and MCFs on real world libraries.

Library Fuzzer Lines Branchs

¢JSON cjson_read_fuzzer 952 (42.92%) 473 (46.56%)

FuzzGen 186 (8.39%) 96 (9.45%)

GraphFuzz 1346 (60.69%) 612 (60.24%)

HoPPER 1997 (90.04%) 854 (84.06%)

parse_reply_fuzzer 1757 (23.94%) 744 (21.78%)

c-ares create_query_fuzzer 110 (1.50%) 47 ( 1.38%)

Total of MCFs 1865 (25.41%) 790 (23.13%)

GraphFuzz 2424 (33.02%) 994 (29.10%)

HopPER 5012 (67.06%) 2045 (59.03%)

libpng libpng_read_fuzzer 5005 (28.67%) 2041 (26.42%)

GraphFuzz 1629 (9.33%) 507 (6.56%)

HopPER 9610 (55.04%) 3903 (50.53%)

] 1T8_load_fuzzer 641 (3.41%) 271 (3.21%)

cms overwrite_transform_fuzzer 2964 (15.77%) 1271 (15.07%)

transform_fuzzer 4382 (23.32%) 1757 (20.84%)

Total of MCFs 5357 (28.50%) 2205 (26.15%)

GraphFuzz 2481 (13.20%) 872 (10.34%)

HoPPER 9001 (47.89%) 3135 (37.18%)

libmagic magic_fuzzer 3094 (30.87%) 2043 (28.69%)

GraphFuzz 3197 (31.90%) 2003 (28.10%)

HoPPER 4230 (45.26%) 2634 (39.51%)

lib fuzz_both 4301 (27.05%) 2346 (32.40%)

10PCapP  fuzz filter 5561 (34.97%) 2901 (40.07%)

fuzz_pcap 974 (6.13%) 365 ( 5.04%)

Total of MCFs 6870 (43.21%) 3479 (48.05%)

GraphFuzz 1736 (10.92%) 881 (12.17%)

HopPER 7536 (47.40%) 3669 (50.68%)

lib checksum_fuzzer 251(5.21%) 61 (2.12%)

zt compress_fuzzer 1880 (38.73%) 904 (31.48%)

example_dict_fuzzer 1901 (39.17%) 952 (33.15%)

example_flush_fuzzer 1631 (33.61%) 776 (27.02%)

example_large_fuzzer 1684 (34.70%) 795 (27.68%)

example_small_fuzzer 1429 (29.45%) 758 (26.39%)

minigzip_fuzzer 2227 (45.89%) 1071 (37.29%)

uncompress2_fuzzer 989 (20.37%) 468 (16.30%)

uncompress_fuzzer 976 (20.11%) 457 (15.91%)

Total of MCFs 2976 (61.32%) 1482 (51.60%)

GraphFuzz 2602 (53.62%) 1343 (46.76%)

HoprpER 3502 (72.16%) 1914 (66.64%)

re2 re2_fuzzer 6373 (67.85%) 3367 (67.75%)

GraphFuzz 5564 (59.23%) 2843 (57.21%)

HopPER 6413 (68.27%) 3299 (66.38%)

fi 22582 (30.96%) 9054 (25.99%

sqlite3 088 _uzz ( ) ( )

GraphFuzz 6261 ( 8.58%) 2172 (6.23%)

HopPER 25356 (34.76%) 9551 (27.41%)

lib vpx_dec_fuzzer_vp8 3604 (10.44%) 1138 (14.21%)

YPX ypx_dec_fuzzer_vp9 15654 (45.34%) 3475 (43.41%)

Total of MCFs 18787 (54.42%) 4463 (55.75%)

FuzzGen 15211 (44.06%) 3367 (42.05%)

GraphFuzz 15060 (43.62%) 3251 (40.61%)

HoPPER 15641 (45.30%) 3514 (43.89%)

. avl_dec_fuzzer 39762 (21.05%) 9722 (17.73%)
libaom

FuzzGen

32576 (17.25%) 7757 (13.35%)

GraphFuzz

30837 (16.33%) 7327 (12.61%)

HoppPER

36218 (19.18%) 9228 (15.88%)
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with the same stack traces at the program crash point. The remain-
ing crashes were verified manually by inspecting the code, debug-
ging the programs, and reading the official documents. HOPPER ul-
timately discovered 25 new bugs from 48 unique crashes, as shown
in Table 3. In contrast, none of the MCFs, FuzzGen, and GraphFuzz
found a valid bug under the same 24 hours running. Of the 48 unique
crashes, 23 were identified as spurious crashes as they violated the
constraints specified in the documentation or were rejected by li-
brary developers. The developers did not classify these crashes as
bugs since they have their own criteria for valid API usage. The
APIs must be used strictly within specified constraints, which may
be mentioned in the documents, or the program may crash unex-
pectedly. For example, an out-of-bound read error could occur if
the zFunctionName argument for sqlite3_create_function16
is not a UTF-16 string .

We have reported all the discovered bugs to the corresponding
communities. As of submission, 17 bugs have been confirmed by
library developers and the rest are still under review. The details of
the discovered bugs are listed in Table 4. Buffer overflow accounts
for the most bugs that HoppER has detected (12 out of 25). Eight of
those overflows were detected by HOPPER’s canary when reading or
writing out of bounds of arrays allocated as arguments by HOPPER.
The remaining four accessed the addresses of internally allocated
arrays in the API functions with large offsets generated by HoppPER.
Null pointer dereferences are also commonly detected (11 out of
25). These bugs occurred when null pointers were produced or
improperly initialized by library calls and accessed without null
pointer checking within the code of API functions. Additionally,
HoppER identified an uncontrolled format string bug and a double-
free bug, both of which are analyzed in detail in Section 5.3.

Furthermore, almost all buggy APIs discovered by HoppER could
not be covered by MCFs, FuzzGen, or GraphFuzz. This is not sur-
prising as the fuzz drivers for these libraries have been extensively
utilized for continuous fuzzing over an extended period. To ensure
a fair comparison with MCFs, GraphFuzz, and FuzzGen, we addi-
tionally evaluated HoppER and these fuzzers on previous versions
of the 11 libraries. As shown in Table 5, HOPPER surpasses MCFs,
GraphFuzz, and FuzzGen by detecting 28 unique bugs in previous
versions of the 11 libraries. Moreover, HOPPER was able to identify 7
out of the 14 bugs that other fuzzers had detected. Although HopPER
missed certain bugs reported by other fuzzers due to its inefficient
mutation power on those predefined API calls, it prioritized mutat-
ing API usages that are more likely to trigger bugs or explore new
states via its seed selection, which includes any API usage within
the libraries. Consequently, HopPER discovered a greater number
of bugs overall.

Answer to RQ1: HoppeR outperformed MCFs and other library
fuzzing approaches in terms of both code coverage and bug
finding. Specifically, HOPPER detects 25 new bugs and 17 of them
have been confirmed.

Zhttps://sqlite.org/forum/forumpost/7ace1408b.
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Table 3: Unique crashes reported by HoPPER.

Library Version #Programs Crashes Accuracy
#UC #S #B #C
cJSON 1.7.15 2,972 3 1 2 1 66.67%
c-ares 1.18.1 3,192 2 0 2 2 100%
libpng 1.6.37 5,612 7 1 6 4 85.71%
lems 2.13.1 2,660 13 8 5 5 38.46%
libmagic FILE5_42 1,662 0 0 0 0 -
libpcap 1.10.1 2,249 5 2 3 3 60%
zlib 1.2.12 5,598 2 1 1 1 50%
re2 0.4.0 27,355 4 2 2 0 50%
sqlite3 3.38.5 10,356 12 7 4 1 33.33%
libvpx 1.11.0 22,282 0 0 0 0 -
libaom 3.5.0 19,654 1 1 0 0 -
Total - 103,592 48 23 25 17 52.08%

UC = Total unique crashes; S = Spurious crashes caused by incorrect API usage;
B = Valid bugs that identified by manually review; C = Confirmed bugs after
reported to library developers.

5.2 RQ2: Can HoPPER correctly infer API
constraints?

One of the key insights that allows HOPPER to generate API usages
both correctly and efficiently is its learning of intra- and inter-API
constraints. To evaluate the benefits of these constraints, we com-
pared HopPER with and without constraints on the 11 libraries.
As shown in Table 6, HoppER with inferred constraints explores
more lines and branches across all the libraries. However, without
intra-API constraints, code coverage is substantially lower in libpng,
libmagic, libvpx, and libaom. This is because certain API functions
that many other APIs depend on could not be called properly. For
example, png_init_io in libpng initializes a file input for a han-
dler that is subsequently read by other APIs for processing. If the
fuzzer randomly generates a string as the file’s name without a
FILE constraint, png_init_io will return an invalid handler, caus-
ing all subsequent calls to terminate at a shallow state. As incorrect
API usages often lead to program crashes, we also measured the
success rate of execution for the generated inputs. Notably, after
imposing intra-API constraints, cJSON, c-ares, libvpx, and libaom
achieve almost 100% success rate of execution. In re2, the success
rate improves significantly after HOPPER learns not to generate
null pointers as arguments. On the other hand, in the absence of
inter-API constraints, HOPPER explores API usage in a less efficient
way by combining API functions blindly. This leads to poorer per-
formance in terms of both line and branch coverage, particularly in
libraries such as libpng, lcms, and sqlite3, which have a rich set of
APIs available and therefore a large number of possible combina-
tions to try out. To accelerate the search process, HOPPER leverages
inter-API constraints to pinpoint and reuse effective API usages.
Furthermore, we counted the number of intra-API constraints
learned from the 11 libraries and analyzed their correctness. In
total, HoppPER learned 973 intra-API constraints. Among them, NON-
NULL constraints were the most commonly inferred, as 609 out
of the 973 constraints ( 62.01%) pertained to pointer dereferences
without null checks in the API code. Additionally, HOPPER was able
to infer 17 FILE constraints, 147 EQAUL constraints, 35 RANGE
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Table 4: Bugs found by HOPPER in the tested libraries.

ID Library File:line_number Buggy function

Bug Type

Status Commit ID MCF FZ GF

Null pointer dereference  Reported 722(P) X XX
Null pointer dereference ~ Confirmed 726(P) X XX
Buffer overflow Fixed 496(S) X X
Buffer overflow Fixed 496(S) X X
Buffer overflow Confirmed 453(S) X X
Buffer overflow Confirmed 454(S) X X
Buffer overflow Confirmed 455(S) X X
Buffer overflow Reported  456(S) X X
Buffer overflow Confirmed 457(S) X X
Buffer overflow Reported  458(S) X X
Null pointer dereference  Fixed 761(P) X - X
Null pointer dereference  Reported  30(S) X - X
Null pointer dereference  Reported  29(S) X - X
Uncontrolled format string Fixed bbbbb66b6b(T) X - X
Null pointer dereference ~ Reported 0218d74c47(T) X - X
Null pointer dereference  Reported 0218d74c47(T) X - X
Null pointer dereference  Reported 0218d74c47(T) X - X
Buffer overflow Fixed 350(S) X - X
Buffer overflow Fixed 351(S) X - X
Null pointer dereference  Fixed 353(S) X - X
Buffer overflow Fixed 354(S) X - X
Buffer overflow Fixed 355(S) X - X
Null pointer dereference  Fixed 1147(P) X - X
Null pointer dereference  Fixed 1147(P) X - X
Double Free Fixed 1098(S) X - X

1. c¢JSON c¢JSON.c:2209 ¢JSON_DetachltemViaPointer
2. ¢JSON ¢JSON.c:2326 cJSON_ReplaceltemViaPointer
3. c-ares ares_init.c:2254 ares_set_sortlist

4. c-ares ares_init.c:2247 ares_set_sortlist

5. libpng pngerror.c:229 png_warning

6. libpng pngrtran.c:483 png_set_quantize

7. libpng pngrutil.c: 3675 png_progressive_combine_row
8. libpng pngrutil.c:3675 png_combine_row

9. libpng pngrutil.c:3984 png_read_filter_row_avg

10. libpng  pngrtran.c:4728  png_do_quantize

11. zlib deflate.c: 401 gzsetparams

12. re2 cre2.cpp: 195 cre2_find_named_capturing_groups
13. re2 cre2.cpp: 725 cre2_set_match

14. sqlite3  sqlite3.c:30121 sqlite3_overload_function

15. sqlite3  sqlite3.c:79786 sqlite3_value_bytes

16. sqlite3  sqlite3.c:79786 sqlite3_value_bytes16

17. sqlite3  sqlite3.c:85266 sqlite3_value_subtype

18. lems cmsiol.c:857 cmsIsCLUT

19. Iems msgamma.c:852  cmsBuildTabulatedToneCurveFloat
20. lems cmsnamed.c:760  cmsGetPostScriptCRD

21. lems cmslut.c:416 cmsStageAllocMatrix

22. lems cmscgats.c:1928 cmsIT8SaveToMem

23. libpcap pcap.c:2946 pcap_breakloop

24. libpcap pcap.c:493 pcap_can_set_rfmon

25. libpcap pcap-linux.c:835  pcap_activate

File:line_number : The source file location of the crash point. Buggy function : The function that cause the crash.
Commit ID : The bug trace id that committed to community developers. P=Pull request number, S=Issue number, T=Bug forum id.
MCEF, FZ, GF : Whether the bug could be discovered by MCFs, FuzzGen (FZ), and GraphFuzz (GF) under the same library version.

Table 5: Comparison with other fuzzers on previous versions
of libraries.

Library Version MCF GraphFuzz FuzzGen|MCF U GF |Hopper
¢JSON  1.7.0 1 0 0 1 4(1)
c-ares 1.16.0 1 0 - 1 4(1)
libpng  1.6.32 0 0 - 0 4
lems 2.8 2 1 - 2 6(1)

libmagic FILE5_25 1 1 - 1 1(1)
libpcap 190 4 0 - 4 3(3)

zlib 1.2.11 0 0 - 0 1
sqlite3  3.22.0 1 0 1 3
libaom 1.0.0 3 1 0 4 2
Total - 13 3 0 14 | 28(7)

Numbers in brackets show the number of bugs that were reported by multiple
fuzzers including HOPPER.

constraints, 110 CAST constraints, and 55 ARRAY-LEN constraints
across these libraries. The overall precision and recall of the learned
constraints are 96.51% and 97.61%, respectively. Most of the false-
positive constraints learned by HOPPER are actually approximations
of the ground truth constraints and work well in most cases. These
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constraints, although not completely correct, do help to reduce the
invalid search space and prevent spurious crashes. For example,
in cmsStageAllocCLut16bitGranular, setting the fourth argument
outputChan to be the length of the fifth argument table, although
incorrect, worked effectively in most cases. Regarding the recall of
the learned constraints, we identified false-negative constraints by
analyzing the spurious crashes reported by HoPpER since collecting
the entire ground truth is extremely labor-consuming. Moreover,
most of these missed constraints are specific to a particular library
and hard to describe in a general way. Typically, a spurious crash
indicates a violation of certain unlearned constraints. As an example
from sqlite3 described in Section 5.1.2, HOPPER cannot ensure that
the generated buffers are strictly UTF-16 encoded, which leads to a
spurious crash.

Answer to RQ2: HoppER has the ability to learn intra-API con-
straints with high precision (96.51%) and recall (97.61%), while
also being capable of speeding up the search process during
fuzzing through the use of inter-API constraints.
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Table 6: Impact of inter- and intra-API constraints on HOPPER’s efficiency.

. ‘ Learned intra-API Constraints
Library

Success Rate ‘

Line Coverage ‘ Branch Coverage

#N #F #E #R #C  #A | TTL #FN PRC RCL |w/o Intra HOPPER|w/o Intra w/o Inter HoPPER|w/o Intra w/o Inter HOPPER
c¢JSON 15 0 10 4 1 0 30 1 100% 96.77% | 99.4291% 99.9999% | 80.93% 88.86% 90.04% 75.00% 82.48% 84.06%
c-ares 87 0 26(1) 2 16(1) 2 133(2) 0 9850% 100% | 91.4087% 99.9999% | 47.78% 65.31% 67.06% 43.91% 56.90% 59.63%
libpng | 34(1) 2 20 5(1) 14 16(6) | 91(8) 1 91.21% 98.81%| 98.8973% 99.9917% | 12.03%  39.05%  55.04% | 7.39%  36.46%  50.53%
lems 233 6 25(6) 1(1) 25(3) 13(3) |303(13) 8 95.71% 97.32% | 95.3159% 99.2425% 46.65% 28.37% 47.89% 34.54% 21.05% 37.18%
libmagic 3 1 2(1) 0 3 1 10(1) 0 90.00% 100% | 99.4833% 99.9935% 13.16% 42.20% 45.26% 9.96% 36.08% 39.51%
libpcap 59 4 1(1) 4 1 4(2) 73(3) 2 95.89% 97.22% | 94.4091% 99.9797% | 40.92% 40.89% 47.40% 43.56% 43.14% 50.68%
zlib 6 1 20 3 6 6 42 1 100% 97.67% | 97.0134% 99.9865% | 52.94% 59.28% 72.16% 44.46% 48.96% 66.64%
re2 93 0 26 0 0 4 123 2 100% 98.40% | 86.1034% 99.9427% | 58.21% 63.72% 68.27% 54.81% 61.91% 66.38%
sqlite3 72 3 8 10(2) 38(2) 9(1) 140(5) 7 96.43% 95.07% | 99.3814% 99.5527% | 30.52% 29.44% 34.76% 23.72% 23.34% 27.41%
libvpx 3 0 2 1(1) 4 0 10(1) 0 90.00% 100% | 98.8642% 99.9999% 1.14% 42.51% 45.30% 3.35% 42.61% 43.89%
libaom 4 0 7 5(1) 2 0 18(1) 1  94.44% 94.44% | 94.2413% 99.9999% 1.73% 16.67% 19.18% 3.12% 13.32% 15.88%
Total ‘609(1) 17 147(9) 35(6) 110(6) 55(12)‘973(34) 23 96.51% 97.61%| 90.4769% 99.8808%| 35.09% 46.94% 53.85% 31.26% 42.39 49.25%

N = NON-NULL; F = FILE; E = EQUAL; R = RANGE; C = CAST; A = ARRAY-LEN; TTL = Total number; FN = False negative; PRC = Precision; RCL = Recall.

Numbers in brackets show the number of false positive constraints.

(a) An uncontrolled format string bug found in sqlite3.

<0> load sqlite3 * = null //db

<1> load Vec<char> = vec(2)[96, 0] //file_buf
<2> file option <1> //filename

<3> load sqlite3 ** = 8&<@> //ppDb

<4> call relative: sqlite3_open ? (<2>, <3>)
<5> assert non_null(<@>

<6> load Vec<char> = vec(22)["JSFuMPRKm/RVAABApl6+

vy6ib8NjAA=="] //zFuncName, decoded as "%!n@Jjue*.o"

<7> load char* = &<6>
<8> load i32 = 55767322 //nArg
<9> call target: sqlite3_overload_function ? (<@>,<7>,<8>)

(b) A double free bug found in libpcap.

<@> load char * = null //device

<1> load char * = null //errbuf

<2> call pcap_create ? (<0>, <1>) //p

<3> assert non_null(<2>)

<4> load pcap_t * = <2> //p

<5> load int = 128 //buffer_size

<6> call relative: pcap_set_buffer_size ? (<4>, <5>)
<7> load int = 15 //snaplen

<8> call relative: pcap_set_snaplen ? (<4>, <7>)

<9> load int = 1833782204 //immediate

<10> call relative: pcap_set_immediate_mode ? (<4>, <9>)
<11> call target: pcap_activate ? (<4>)

Figure 5: Example programs that trigger bugs in sqlite3 and
libpcap respectively.

5.3 RQ3: Can HOPPER generate programs that
are comparable with MCFs?

To demonstrate the ability of HoppER for generating high-quality
fuzz drivers, in Figure 5, we select two representative programs
generated by HOPPER in our experiment as case studies.

Case 1. Figure 5a shows an uncontrolled format string bug
found in sqlite3 (ID 14 in Table 4). In sqlite3_overload_function,
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zFuncName is passed to sqlite3_mprintf to clone a string, but at
worst, sqlite3_mprintf would perform formatting if the string con-
tains specifiers. HOPPER crafted this program successfully through
the following steps. In the beginning, it generated a simple program
that passes a null sqlite3 pointer and a random zFuncName string
to sqlite3_overload_function. However, since the API function re-
quires a non-null sqlite3, HOPPER used intra-API constraints to
initialize the pointer by invoking sqlite3_open. This made the pro-
gram reach the code that calls sqlite3_mprintf. Shortly thereafter,
HoppER randomly mutates the strings for zFuncName and fortunately
produces a’%’ symbol in the string. This case indicates that HoppER
is able to synthesize valid code to invoke an API function with
intra-API constraints and find bugs using type-aware mutation for
arguments.

Case 2. Figure 5b shows a double-free bug found in libpcap (ID
25 in Table 4). This bug occurs when pcap_activate fails to enable
memory-mapped capture due to mmap with zero length under the
immediate mode. In such a case, a memory location would be re-
leased twice in the error handling code. The length is computed
from the combination of buffer_size and snaplen. Even worse, the
pcap_activate is a commonly used API function for activating a
packet capture handle rather than those rarely-used ones. Tepdump,
as a popular Linux application, is able to invoke those libpcap APIs
sequentially by a simple command: tcpdump -i any -B 1 -s 15 --
immediate-mode. By utilizing inter-API constraints, HOPPER care-
fully crafted a sequence of API calls that triggered the bug. Specifi-
cally, it inferred that pcap_set_buffer_size, pcap_set_snaplen, and
pcap_set_immediate_mode would modify pcap_t pointer to change
the behavior of pcap_activate. Then, HOPPER mutated the integers
fed into the API calls and triggered the bug finally. The case demon-
strates that HOPPER can explore different API usages by learning
inter-API constraints, which traditional fuzz testing tools typically
ignore.

Answer to RQ3: With grammar-aware input fuzzing, HoPPER
synthesizes programs that satisfy both intra- and inter-API con-
straints. As compared to MCFs, the programs generated by Hop-
PER can explore a much broader range of API usages.
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6 DISCUSSIONS

6.1 Multiple-dimensional Search Space in Input
Generation

Traditional library fuzzing generates a byte array as input and leaves
the job of constructing arguments to fuzz drivers. In contrast, in
HoPPER, the search space for input generation is multidimensional
as it involves both API functions and arguments, which poses a
significant challenge. Furthermore, each argument has its own
encoding format and requires specific mutation strategies. Although
HoppER mitigates this issue by implementing novel techniques such
as constraint learning and type-aware mutation, there is still much
room for improvement.

6.2 Compatibility with C++ Libraries

Currently, HopPER only supports fuzzing libraries with C-style
header files. The use of templates in C++ headers delays the com-
pilation of template functions to the time of instantiation by the
users, thus making it challenging for HOPPER to generate callers of
C++ functions and their arguments. Moreover, it is non-trivial to
decide the concrete types of template parameters to instantiate the
templates. To enable compatibility with C++, a more generalized
implementation of generation and mutation is required. We plan to
address this in future work.

6.3 False Positive Crashes

Although HoprpEr is highly effective at inferring common con-
straints to filter out most spurious crashes, the remaining crashes
may still be false positives since the APIs need to be used in specific
ways. Learning these constraints through dynamic feedback can
be challenging as they have no universal criteria, as discussed in
Section 5.2. However, during fuzzing, HoppER will no longer gen-
erate input for APIs that have failed to learn constraints and have
a high probability of crashing spuriously. To make HOPPER more
practical and user-friendly, we plan to add warnings for users about
unlearned constraints and provide a convenient way for them to
add these custom constraints themselves.

7 RELATED WORK
7.1 API Fuzzing

APIs have long been favored as fuzzing targets, given their role in
allowing code modules to interact with others. For example, RESTler
generates requests for RESTful APIs using a grammar automatically
inferred from Swagger specification, and employs coarse-grained
feedback from service responses to guide mutations to reach deeper
service states [5]. Similarly, Pythia fuzz stateful REST APIs using
coverage-guided feedback and learning-based mutations [6]. In the
realm of kernel fuzzers, Syzkaller [39] is a coverage-guided fuzzer
that generates system call sequences using system API descriptions.
To further improve the efficiency and effectiveness of kernel fuzzing,
MoonShine [29] generates seed inputs by extracting system call
traces from the execution of real programs, while Healer [38] uses
dynamic analysis to learn the relationships between system calls
and uses that knowledge to guide input generation.
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Besides the adoption of fuzzing in service and system APIs, OSS-
Fuzz [32] gathers hundreds of manually written fuzzers to contin-
uously fuzz APIs of open source libraries. In recent years, there
has also been a trend towards generating fuzz drivers for library
APIs automatically [7, 23, 45, 25, 19]. FUDGE [7] and FuzzGen [23]
extract the code of API usage from practical code to create fuzz
drivers. APICRAFT [45] and WINNIE [25] record the API call se-
quences from the execution trace of existing consumer programs
and combine them to generate fuzz drivers. GraphFuzz [19] views
fuzz drivers as dataflow graphs and performs graph-based mutation
with a manually specified schema. UTOPIA [24] statically analyzes
the library to identify attributes of API arguments and automatically
synthesize valid fuzz drivers from existing unit tests. In contrast
to generating fuzz drivers in limited domains, HOPPER is a fuzzer
for library APIs without any specific domain knowledge, including
any knowledge from practical examples and schema specifications.
HoppER searches the combinations of APIs and arguments in a large
space and learns the features of high-quality inputs simultaneously
through runtime feedback.

7.2 Grammar-aware Fuzzing

Grammar-aware fuzzers leverage grammar to generate structured
inputs that bypass syntax checking at the beginning of the program
execution [21, 40, 27, 46, 42, 4, 34]. For example, LangFuzz [21]
and IFuzzer [40] utilize the syntax of JavaScript language to fuzz
Javascript interpreters, while SQLsmith [34] and SQUIRREL [46]
generate SQL queries for testing DBMSs based on SQL grammar.
Superion [42] and NAUTILUS [4] improve grammar-aware fuzzing
by combining code coverage guidance. These tools manipulate
input as an AST and mutate it according to coverage feedback.

As writing grammar rules require much human effort, some
fuzzers try to automatically learn the grammar [41, 18, 8, 43]. Sky-
fire [41] uses probabilistic modeling to learn grammar from inputs,
while Learn&Fuzz [18] employs a recurrent neural network model.
Nevertheless, the accuracy of the learned grammar is dependent
on the quality of the corpus provided. Alternatively, GRIMOIRE (8]
automatically infers the structural properties of input language
based on code coverage feedback. Similarly, Profuzzer [43] probes
the types of input bytes through per-byte mutations.

General grammar-based fuzzers are intended to test parsers or
interpreters by exploring all feasible combinations based on in-
put grammar. However, HOPPER operates differently by focusing
on generating various effective API calls rather than exhaustively
exploring the input language’s grammar.

8 CONCLUSION

In this paper, we present HOPPER, a novel fuzzer that aims to fuzz
libraries without any domain knowledge required in crafting fuzz
drivers. HopPER links the libraries under test against an interpreter,
which takes DSL programs as input and drives libraries to perform
requested fuzzing behavior. To generates effective API calls in the
format of DSL, HoPPER learns intra- and inter-API constraints in
the libraries and mutates the inputs with grammar awareness. We
evaluated the effectiveness of HOPPER on 11 real-world libraries.
HoppER outperformed MCFs and the other automatic solutions in
both code coverage and bug finding. Specifically, HopPER found
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25 new bugs that others could not find. Our experimental results
demonstrate that HoppER effectively explores a vast range of API
usages for library fuzzing out of the box.
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A APPENDIX
A.1 DSL Grammar

As shown in Figure 6, an individual DSL Program consists of a
sequence of lines. The index at the beginning of each line is a unique
ID (e.g., an incremental number), which can be referenced by other
statements. Since the values in arguments can have various types,
our DSL encodes them accordingly. Primitive types are easy to
convert to and from strings. In the case of composite data types, such
as an array or custom struct, we serialize their internal elements,
following a structured order similar to the JSON format. Specifically,
when dealing with long lists of primitive values, we optimize them
for efficiency by encoding them in Base64 (as seen in line 0 of
Figure 3). However, serializing a pointer is tricky since it may point
to a value shared by multiple objects. Therefore, we only serialize
the destination to which it points in the DSL program, without
including any additional information.

A.2 Examples of inaccurate fuzz drivers

Figure 7 shows a fuzz driver for libvpx generated automatically
by FuzzGen. On Line 415, the value of ctx_hEP_1 is an uninitialized

415
416
417
418
419
420
421
422

423
424
425
426
427

428
429
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Program := Line | Line; Program
Line := Index Statement
Statement := Call | Load | File | Assert | Update
Call := call Name(ArgList)
Load :=load Type = Value
Update := update Index[Fields] = Index
Assert := assert Rule
File := file write | file read Index
ArgList := Index | Index, ArgList
Rule := non_null(Index) | eq(Index, Index)
Index := <numeric literal>
Name := function name
Type := type name of value
Value := serialized value
Fields := path to locate a value inside struct or array

Figure 6: Grammar of HoPPER’s DSL.

struct vpx_codec_ctx *ctx_hEP_1;// = &ctx_hEP_0;

// Dependence family #3 Definition

dep_3 = (struct vpx_codec_ctx *)ctx_hEP_1;
// initializing argument 'cfg_Ywn'
struct vpx_codec_dec_cfg cfg_Ywn_0;
*(uint32_tx) ((uint64_t)&cfg_Ywn_0 + @) =
+ 1; /* UNKNOWN */

(E.eat1() & 0x3f)

*(uint32_tx) ((uint64_t)&cfg_Ywn_0 + 4) = @; /* UNKNOWN x/
*(uint32_t*) ((uint64_t)&cfg_Ywn_0 + 8) = @; /* UNKNOWN */
struct vpx_codec_dec_cfg *cfg_Ywn_1 = &cfg_Ywn_0;
if (vpx_codec_dec_init_ver(dep_3, dep_6, cfg_Ywn_1, 0, 12))
{ /* vertex #4 */
return 0;
}

Figure 7: An example of misuse of consumer code in libvpx’s
fuzz driver [1] generated by FuzzGen.

pointer, which is then used directly as an argument in the call on
Line 427. In addition, upon examining the fuzz driver for libaom that
was released by the authors of FuzzGen, we found an incompatibil-
ity with the newest version of libaom. Specifically, the initialization
of aom_codec_dec_cfg objects in the driver overwrites 17-20 bytes
despite the size of the object being reduced to only 16 bytes.

The schema [2] for sqlite3 is written by the authors of GraphFuzz.
When the program fails to invoke sqlite3_prepare_v2 on line 72,
it calls close_all to release all sqlite3x pointers, but other types
of allocated resources, such as sqlite3_str* pointers may still be
leaked. Moreover, the schema does not verify whether sqlite3x is
initialized successfully or not in new_database.
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