
Hopper: Interpretative Fuzzing for Libraries

Peng Chen
Tencent Security Big Data Lab

spinpx@gmail.com

Yuxuan Xie
Tencent Security Big Data Lab

ryanyxie@tencent.com

Yunlong Lyu
Tencent Security Big Data Lab

loydlv@tencent.com

Yuxiao Wang
Tencent Security Big Data Lab
yuxiaowang@tencent.com

Hao Chen
University of California, Davis

chen@ucdavis.edu

ABSTRACT

Despite the fact that the state-of-the-art fuzzers can generate in-

puts efficiently, existing fuzz drivers still can’t adequately cover

entries in libraries. Most of these fuzz drivers are crafted manually

by developers, and their quality depends on the developers’ under-

standing of the code. Existing works have attempted to automate

the generation of fuzz drivers by learning API usage from code and

execution traces. However, the generated fuzz drivers are limited

to a few specific call sequences by the code being learned. To ad-

dress these challenges, we present Hopper, which can fuzz libraries

without requiring any domain knowledge to craft fuzz drivers. It

transforms the problem of library fuzzing into the problem of inter-

preter fuzzing. The interpreters linked against libraries under test

can interpret the inputs that describe arbitrary API usage. To gen-

erate semantically correct inputs for the interpreter, Hopper learns

the intra- and inter-API constraints in the libraries and mutates

the program with grammar awareness. We implemented Hopper

and evaluated its effectiveness on 11 real-world libraries against

manually crafted fuzzers and other automatic solutions. Our results

show that Hopper greatly outperformed the other fuzzers in both

code coverage and bug finding, having uncovered 25 previously

unknown bugs that other fuzzers couldn’t. Moreover, we have

demonstrated that the proposed intra- and inter-API constraint

learning methods can correctly learn constraints implied by the

library and, therefore, significantly improve the fuzzing efficiency.

The experiment results indicate that Hopper is able to explore a

vast range of API usages for library fuzzing out of the box.

1 INTRODUCTION

Fuzzing is one of the most popular techniques to find software

vulnerabilities. Fuzzers give the software a large number of ran-

dom inputs and observe if unexpected behaviors happen. Though

the idea is simple, fuzzing has successfully been applied to test-

ing various applications and found many bugs. In recent years,

the techniques have been greatly improved due to the advent of

grey-box fuzzing. Coverage-based grey-box fuzzers such as AFL [3]

and LibFuzzer [28] mutate inputs to explore deeper program states

without requiring knowledge about input format or program speci-

fications. Constraint-based grey-box fuzzers [10, 11, 15, 44, 36, 9], as

the state-of-the-art fuzzers, employ constraint-solving techniques

to reach code branches that are guarded by complex constraints.

While grey-box fuzzing techniques greatly facilitate the general-

ization and automation of program fuzzing (i.e., fuzzing techniques

Anonymous Submission to ACM CCS 2023, Due 19 Jan 2023, Copenhagen, Denmark

2023. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

that take ready-to-use binary programs as targets), replicating such

success in library fuzzing (i.e., fuzzing techniques that take APIs

as targets) is challenging. To use the state-of-the-art fuzzers for

libraries, users have to manually craft a fuzz driver that consumes

the type-agnostic inputs fed by fuzzers and transforms the byte

stream into API arguments. However, writing high-quality fuzz

drivers is difficult, as it is time-consuming and requires a deep un-

derstanding of the library. Consequently, most of the existing fuzz

drivers cover only a small part of library APIs. The APIs, especially

the rarely used ones, usually lack adequate testing. Library fuzzing

is still struggling to be usable out-of-box and scalable due to the

lack of an automated solution.

In library fuzzing, fuzz drivers need to use correct argument

types for invoking APIs and satisfy both intra- and inter-API con-

straints. Otherwise, the fuzz drivers would crash unexpectedly.

For instance, to test ares_send(ares_channel channel, char *qbuf,

int qlen, ares_callback callback, void *arg) from c-ares, a fuzz

driver should initialize the first argument channel with a call of

ares_init(ares_channel *channelptr) to meet the inter-API con-

straint, and then set the third argument qlen to be the length of

the second argument qbuf and set the forth argument callback to

be a non-null function pointer with the type of ares_callback to

comply with the intra-API constraints. Any violation of these three

constraints may result in spurious crashes. However, in practice,

information about these constraints is either missing or scattered

across library documents or comments, making it hard to collect

them in a fully automatic way.

Recently, researchers have proposed learning-based [7, 23, 45,

25] and model-based [19, 37, 22] methods to generate fuzz drivers

automatically. Learning-based methods, such as FuzzGen[23], try

to learn the correct usage of APIs from existing consumer code.

However, this method fails when consumer code is unavailable,

such as for new or work-in-progress libraries. Model-based meth-

ods, such as GraphFuzz [19], ask users to provide specifications

of the APIs under test, which requires domain-specific knowledge

and significant human involvement. Furthermore, the quality of

the fuzz drivers generated with these methods is largely affected

by the external inputs (i.e., consumer code or user-provided exper-

tise), which can be inaccurate or incomplete. For example, in our

experiments, we found that some of the fuzz drivers provided by

the authors of FuzzGen [23] and GraphFuzz [19] result in spurious

crashes due to misuses of the consumer code and incorrect user-

defined schemas (Section A.2 in Appendix). The fuzz drivers [1]

generated by FuzzGen only cover 5 of 26 API functions in the libvpx

decoding library and only support the vp9 codec. Similarly, the spec-

ifications [2] of sqlite3 written by the authors of GraphFuzz do not

1

Anonymous Submission to ACM CCS 2023, Due 19 Jan 2023, Copenhagen, Denmark Peng Chen, Yuxuan Xie, Yunlong Lyu, Yuxiao Wang, and Hao Chen

even include commonly used API functions, such as sqlite3_exec

and sqlite3_complete.

To address the aforementioned challenges, we present Hopper

to fuzz APIs without requiring external knowledge. Inspired by

coverage-based fuzzing, which learns valid format from mutating

random seeds [30], Hopper learns potential usage of the APIs from

mutating the composition of API calls and their arguments. If ex-

ecuting the mutated program triggers a new path or a new crash,

Hopper infers the intra- and inter-API constraints based on the

dynamic feedback. To achieve this, we introduce a Domain-Specific

Language (DSL) that describes arbitrary API usages. The DSL inputs

can be interpreted with a lightweight interpreter linked against the

library under test. In this way, we transform library fuzzing into

interpreter fuzzing. The fuzzer is now responsible for generating

programs encoded in the format of DSL to feed into the interpreter.

Then the interpreter executes the programs to see if unexpected

behavior happens. Thanks to the grammar-aware mutation and the

inferred constraints, Hopper is able to generate valid inputs that

explore different API usage while excluding false positive crashes.

We implemented Hopper and evaluated its effectiveness on 11

real-world libraries against manually crafted fuzzers (MCF) and

other automatic solutions (i.e., FuzzGen and GraphFuzz). Table 2

shows that Hopper greatly outperformed the other fuzzers in both

code coverage and bug finding. Notably, Hopper improves the code

coverage over MCFs in cJSON by 47.12% in line coverage and 37.50%

in branch coverage and achieves higher coverage than the total

of 9 fuzzers in zlib. In total, Hopper found 25 new bugs in the

libraries, and 17 of them have been confirmed, as shown in Table 4.

Moreover, we have demonstrated that the proposed intra- and inter-

API constraint learning methods can accurately learn constraints

implied by the library, thereby significantly improving the fuzzing

efficiency.

2 BACKGROUND

2.1 Library Fuzzing

Security vulnerabilities in libraries are fatal because they are widely

used in various programs. However, testing libraries through pro-

gram fuzzing alone is often inadequate. Library APIs may be in-

voked by programs under complex path constraints or with specific

arguments thatmake it difficult to fully exercise the APIs. To address

this issue, library fuzzing tools have been developed to specifically

test libraries, with LibFuzzer being a common choice for such test-

ing. Here are the required steps for effectively using LibFuzzer to

fuzz libraries:

• Craft a fuzz drivers. A fuzz driver describes the usage of

library APIs, including a sequence of API calls and their ar-

guments. A high-quality fuzz driver should provide an entry

to explore as much code in the library as possible. How-

ever, specific execution paths are not only determined by

the arguments in API calls but also by invoking their related

APIs. These related APIs may return values as arguments

or affect the context for other APIs that rely on them (e.g.,

global values). Hence, a deep understanding of the tested

library is necessary for thorough testing. But, enumerating

all valid API usages would be time-consuming and challeng-

ing, so fuzz drivers usually only contain a few common API

Table 1: Number of unique APIs used in fuzz drivers. The sec-

ond column is the total number of exported APIs in libraries.

Library Total MCFs FuzzGen∗ GraphFuzz Hopper

cJSON 78 6(7.69%) 4(4.13%) 40(51.28%) 78(100%)

c-ares 60 13(21.67%) - 20(33.33%) 58(96.67%)

libpng 241 25(10.37%) - 66(27.39%) 233(96.69%)

lcms 283 10(3.53%) - 38(13.43%) 274(96.82%)

libmagic 18 4(22.22%) - 10(55.56%) 18(100%)

libpcap 89 8(8.99%) - 29(32.58%) 73(82.02%)

zlib 84 29(34.52%) - 41(48.81%) 78(92.86%)

re2 70 35(50.00%) - 47(67.14%) 69(98.57%)

sqlite3 279 15(5.38%) - 74(26.52%) 225(80.65%)

libvpx 26 7(26.92%) 5(19.23%) 17(65.38%) 24(92.31%)

libaom 38 5(13.16%) 7(18.42%) 13(34.21%) 35(92.11%)

Average - 18.58% 13.93% 41.42% 93.52%

∗The authors of FuzzGen released the fuzz drivers for libvpx and libaom, and the
released code of FuzzGen is unable to run on the rest libraries, except for cJSON .

usages. As shown in Table 1, the MCFs of the listed 11 pop-

ular libraries only covered 18.58% of the APIs, whereas the

remaining 81.42% uncovered APIs will escape being fuzzed.

Even though some approaches have been proposed to au-

tomatically synthesize fuzz drivers, the coverage of APIs is

still limited (e.g., GraphFuzz [19] achieved API coverage of

41.42%). Besides, as different API usage has different search

spaces for fuzzing, putting all of them in sequence would

be inefficient. Instead, it would be more effective to write

them intomultiple fuzz drivers or conditionally execute them

within a fuzz driver. For example, in Figure 2, this fuzz dri-

ver calls the parsing function first and then calls different

printing functions according to the first 4 bytes of data.

• Specify the format of input. The blind byte stream gen-

erated by LibFuzzer makes it difficult to create structured

inputs that satisfy intra-API constraints. To address this

issue, we need to specify the input format and guide the

fuzzer to generate arguments beyond byte arrays. FuzzedDat-

aProvider [22] is capable of dividing the fuzz input into mul-

tiple parts of various types, while libprotobuf-mutator[37]

can generate structured inputs based on provided grammars.

However, the presence of intra-API constraints makes defin-

ing the potential argument range for fuzzing an enormous

task. Hence, developers might opt to encode arguments as

literal constants directly into fuzz drivers, such as the second

argument of cJSON_ParseWithOpts in Figure 2. Unfortunately,

this approach may lead to inadequate testing for API func-

tions.

2.2 Fuzzing Interpreters

Grammar-aware grey-box fuzzing has succeeded in programs that

parse the inputs, especially in interpreters [35, 42, 4, 8, 20, 40, 27, 12].

The success of fuzzing interpreters is attributed to the following

two key techniques.

• Grammar-aware input mutation. Blindly mutated inputs

are likely to be rejected by the parsing procedure, while

2

Hopper: Interpretative Fuzzing for Libraries Anonymous Submission to ACM CCS 2023, Due 19 Jan 2023, Copenhagen, Denmark

Figure 1: Overview of Hopper’s architecture.

structured inputs can reach deeper paths. Grammar-aware

mutations parse the inputs as intermediate representations

(IRs) based on their encoding grammar and mutate the IRs

with constraints. For example, Superion [42] uses an abstract

syntax tree as the IR and conducts three main operators on

the tree for mutation: replace a node in the tree with a newly

created sub-tree, splice two different trees, and minimize

trees without affecting execution.

• Coverage guided fuzzing. Guided by the coverage feed-

back, the inputs that trigger a new path will be kept, then the

fuzzer mutates them further to enter deeper branches or find

new bugs. Incorporating with the grammar-aware mutation

strategies, the fuzzer is able to effectively synthesize valid

test inputs that cover more branches and trigger new bugs.

We observe that constructing fuzz drivers for libraries resembles

implementing an interpreter for the inputs, and fuzzing the inter-

preter is equivalent to fuzzing the library under the hood. However,

MCFs interpret type-agnostic byte inputs into limited sequences of

API calls, which only partially explore the libraries. If we extend

the interpreter to accept any API usage as input, then a grammar-

aware coverage-based fuzzer can efficiently generate inputs for the

interpreter.

3 DESIGN

3.1 Overview

Hopper transforms the problem of library fuzzing into the problem

of interpreter fuzzing. At a high level, Hopper consists of two

main components: a grammar-aware fuzzer that generates inputs

encoded in a DSL format, and a lightweight interpreter that executes

these inputs, as shown in Figure 1.

The fuzzer produces high-quality inputs for invoking library

APIs. It first extracts function signatures and type definitions from

the library’s header files, which provide valuable information on

potential relations between API functions and argument types. By

leveraging this information, Hopper generates a sequence of API

calls through random combinations of API functions and arguments.

At the early stage, the generated sequences may be invalid and ter-

minate with shallow paths in the APIs’ code. However, thanks

to coverage guidance, Hopper keeps the inputs that explore new

branches as seeds and mutate them further. Ultimately, the gener-

ated sequences become valid and their execution can reach deeper

code. Completely random fuzzing wastes enormous time in gen-

erating illegal and inefficient seeds. To accelerate the process of

evolution, Hopper performs type-aware argument mutation (Sec-

tion 3.3.2) and learns intra- and inter-API constraints (Section 3.4).

Additionally, Hopperminimizes the inputs (Section 3.3.3) to reduce

overhead.

The interpreter consumes the inputs and invokes the library

APIs. The libraries under test are linked against the interpreter

during the compiling stage. Before linking, Hopper instruments

the binaries to capture internal states during execution, e.g., code

coverage. When new input arrives, the interpreter parses the input

according to the syntax of DSL and interprets the statements orderly

based on their semantics.

3.2 DSL and Input Interpretation

Fuzz drivers are usually developed with the same programming

language as the library’s specification. Therefore, for compiled

language like C/C++, fuzz drivers are crafted and compiled before

fuzzing begins. Only the input bytes are changed during each round

of fuzzing. To replace the composition of API calls during fuzzing,

while avoiding compilation overhead, we introduce a Domain Spe-

cific Language (DSL) and a lightweight interpreter in Hopper for

accelerating the entire process.

3.2.1 DSL. For the sake of generality, the interpreter in Hopper

takes DSL programs as input. The grammar of Hopper DSL is listed

in Figure 6 in the appendix. Each DSL program comprises statements

as its most fundamental components, and each statement has an

ascending index that its successors can reference. We categorize

common fuzzing behaviors found in MCFs into five statement types

in our DSL.

• A load statement defines the type information and literal

representation of a value. Strong typing ensures that input

data of a specific type can be directly incorporated into the

call site of the APIs in a DSL program, eliminating the need

for a type-agnostic byte stream.

• A call statement invokes a specific API function in libraries

by providing the function name and a list of arguments,

where each argument refers to the value defined in a previous

load statement.

• An update statement overwrites the value returned by a

call statement at runtime.

• An assert statement checks a call’s return value at runtime.

If the assertion fails (e.g., the caller needs to dereference

the return value but the value is null), the program exits

immediately.

• A file statement specifies a valid file name for file I/O. If the

statement is used for reading, a sequence of random bytes is

filled in the file for runtime reading.

To keep the grammar simple, our DSL does not support condi-

tional statements. Some fuzz drivers use conditional statements to

choose different API functions or arguments. By contrast, Hopper

generates different DSL programs to enumerate those API functions

or arguments. For example, Figure 2 is a real-world fuzz driver writ-

ten by the developers of cJSON , and Figure 3 is a program written

in DSL that covers a path in Figure 2.

3

Anonymous Submission to ACM CCS 2023, Due 19 Jan 2023, Copenhagen, Denmark Peng Chen, Yuxuan Xie, Yunlong Lyu, Yuxiao Wang, and Hao Chen

3.2.2 Interpreter. The interpreter parses DSL programs, executes

the statements gracefully, and monitors the states of the program

after executing each statement. In order to invoke the library APIs,

Hopper links the interpreter against the libraries under test at com-

piling stage. It also constructs a table that correlates each function’s

name with its corresponding caller based on the header files of the

libraries. During program execution, the caller casts values to the

types of arguments it needs and then invokes the referenced func-

tion with the arguments. Before linking to the interpreter, Hopper

instruments the library binaries with code that counts branches and

hooks compare instructions and resource management functions

(e.g., malloc, free and fopen). The interpreter then collects the

following feedback at runtime.

• Optional Branch Tracking. It is not necessary to track

branches of all the library API calls in the DSL program

every time, so Hopper defines a global flag to guard the

branch tracking code. The value of the flag is determined by

the DSL input. When calling an API function that ends with

a question mark (e.g., Line 13 in Figure 3), the interpreter

activates the flag for branch tracking.

• Context-sensitiveCodeCoverage.To distinguish the same

branches visited by different API functions, the interpreter

sets the hash of the current function’s name as the context.

The instrumentation code reads the context and calculates

an exclusive code trace for each API.

• Overflow Detection. If the statement loads a variable-sized

value (e.g., an array), the interpreter of Hopper stores them

in a memory arena and appends a canary right after it to

detect possible buffer overflow.

• Use-after-free Detection. The interpreter maintains a set

of memory chunks allocated by malloc and released by free

through instrumentation. For each pointer used in function

arguments, if the memory chunk pointed by this pointer is

freed, the interpreter exits the program immediately to avoid

the use-after-free issues.

• Comparison Hooking. The interpreter collects the param-

eters used in comparison instructions and functions to guide

the fuzzer to solve magic bytes.

The fuzz drivers utilized by LibFuzzer should have no side effects

since the code runs in a loop in the same process. However, it is

difficult to generate a program that can reset all resources before

exiting. Hopper’s interpreter solves this problem by running each

input in an individual process. Once a DSL program terminates,

the operating system destroys the process and releases all allocated

resources for Hopper. This allows the interpreter to execute DSL

programs continuously without the need to release resources.

3.3 Grammar-aware Input Fuzzing

To find bugs in libraries rather than interpreters, Hopper takes

a different approach compared to other grammar-aware fuzzers.

While other fuzzers traverse all possible combinations of syntaxes

based on input grammar, Hopper instead focuses on generating

various effective API calls. This process involves two phases, as

shown in Figure 4. First, it generates inputs based on the information

available in function signatures to initialize a seed pool. Second, it

1 int LLVMFuzzerTestOneInput(const uint8_t* data, size_t

size) {

2 cJSON *json;

3 size_t offset = 4;

4 unsigned char *copied;

5 char *printed_json = NULL;

6 int minify = data[0] == '1' ? 1 : 0;

7 int require_termination = data[1] == '1' ? 1 : 0;

8 int formatted = data[2]== '1' ? 1 : 0;

9 int buffered = data[3] == '1' ? 1 : 0;

10 if (size <= offset) return 0;

11 json = cJSON_ParseWithOpts((const char*)data + offset,

NULL, require_termination);

12 if (json == NULL) return 0;

13 if(buffered) {

14 printed_json=cJSON_PrintBuffered(json, 1, formatted);

15 } else {

16 if(formatted) printed_json = cJSON_Print(json);

17 else printed_json = cJSON_PrintUnformatted(json);

18 }

19 if(printed_json != NULL) free(printed_json);

20 if(minify) { ... }

21 cJSON_Delete(json);

22 return 0;

23 }

Figure 2: Fuzz driver written by the developer of cJSON. The

code is in cjson_read_fuzzer.c, which is used byOSS-Fuzz [32].

<0> load Vec<char>= vec(32)["

GXsAAAAAAAAAo9tsrXXoqw57jwAAAAAAAAARNk+1AAA="]

<1> load char* = &<0>

<2> load char** = null

<3> load int = 0

<4> call cJSON_ParseWithOpts (<1>, <2>, <3>)

<5> assert non_null(<4>)

<6> load cJSON = { next: null, prev: null, child: null,

type_: 8, valuestring: null, valueint: 12345,

valuedouble: 0.2771, string: null, }

<7> update <4>[0.child] = <6>

<8> load Vec<char> = vec(7)[54, 52, -68, -43, 1, 122, 0]

<9> load char* = &<8>

<10> call cJSON_AddFalseToObject (<4>, <9>)

<11> load int = 1

<12> load int = 0

<13> call cJSON_PrintBuffered ? (<4>, <11>, <12>)

Figure 3: Example program in the format of Hopper DSL.

selects inputs in the seed pool and mutates them with the guidance

of coverage feedback.

Pilot Phase. In the pilot phase,Hopper infers constraints and draws

skeletons of the inputs. Initially, the seed pool contains no inputs.

Therefore, Hopper tries to generate simple inputs for each API

function based on their signatures and learn constraints from them

(detailed in Section 3.4). To accomplish this, Hopper selects an

API function in the library as a target and attempts to randomly

generate a call statement for it. This includes generating arguments

4

Hopper: Interpretative Fuzzing for Libraries Anonymous Submission to ACM CCS 2023, Due 19 Jan 2023, Copenhagen, Denmark

Figure 4: The workflow of input generation in Hopper.

and inserting related calls that introduce the necessary context.

These statements finally form an input, which is then executed

by the interpreter. If the input triggers a new path in the libraries

without crashing, Hopper saves it into the seed pool for further

mutation. To prevent irrelevant coverage feedback from other calls,

Hopper tracks the coverage of the target call only.

Algorithm 1 describes the procedure of generating a call state-

ment. It generates each argument according to its type in the func-

tion signature, and one of the following three operators is used:

• Hopper chooses an existing statement whose type matches

the argument1.

• The argument is obtained by inserting a new API invocation.

Hopper selects an API function whose return type matches

the argument randomly, and generates a call statement for it

recursively. The new call statements are placed ahead of the

current one. Additionally, an assertion statement indicating

whether the call statement runs successfully is added after

the new call statement (e.g., a non-null assertion statement

is inserted after a pointer-type returned call statement).

• A load statement with a typed value created from scratch is

used.

Hopper also attempts to affect the execution of the target call

by inserting other API invocations to change the internal states

of the program. It prioritizes API functions with non-primitive

argument types that overlap with those of the target call and

reuses the overlapping arguments as much as possible. To pre-

vent the program from becoming overly complex, Hopper stops

generating new calls if the length of statements exceeds a specific

threshold or the recursion depth becomes too high. Take the pro-

gram in Figure 3 as an example. To generate the program with

cJSON_PrintBuffered (line 13), Hopper randomly chooses the

return value of cJSON_ParseWithOpts (line 4) and generate two

integer value (line 11 and 12) as its arguments. In addition, it cre-

ates a call for cJSON_AddFalseToObject that may modify existing

arguments (line 10).

1
Hopper treats const and non-const types equally when comparing types.

Evolution Phase. After running a certain number of rounds,Hopper

enters the evolution phase, which aims to build more complex pro-

grams based on the skeleton inputs. To achieve this, Hopper selects

an input from the seed pool and randomly mutates the statements

based on their types. Guided by the execution branch coverage,

Hopper keeps the mutated inputs that explore deeper code of li-

braries, which are more likely to find bugs. Overall,Hoppermutates

program statements in five steps. 1 Hopper selects an input from

the seed pool with priority. Fresh seeds are given higher priority to

be chosen, as they are more likely to reach deeper paths. 2 Hop-

per chooses statements to mutate from the input according to their

weights. The assert, file, and update statements are weighted as

zero and not mutated, while the weights of load and call statements

are determined by their complexity. 3 Hopper mutates the load

statements and call statements by their corresponding strategies, as

described in Section 3.3.1 and Section 3.3.2 respectively. 4 Hopper

refines the input to use APIs correctly based on the constraints

learned during fuzzing, as described in Section 3.4. 5 Hoppermini-

mizes the input to remove redundant statements that have no effect

on reaching the path yet increase the search space of mutation, as

described in Section 3.3.3.

3.3.1 Call Statement Mutation. Hopper adopts the following mu-

tation strategies for call statements:

• Replace one of the arguments with a new argument that

retains the same type (line 4 to line 24 in Algorithm 1).

• Insert a new call before the target call (line 27 to line 29 in

Algorithm 1). The inserted call may modify the values of the

target call’s arguments or change the global states in libraries.

Hopper determines the effectiveness of the inserted calls

through branch feedback, which is detailed in Section 3.4.2.

• Update the return value of the call. An update statement is

inserted after the call to partially overwrite the return value

with a new value.

3.3.2 Type-aware Value Mutation. As libraries often use various ar-

gument types, including custom composite types, Hopper needs to

generate appropriate types for such arguments when invoking the

5

Anonymous Submission to ACM CCS 2023, Due 19 Jan 2023, Copenhagen, Denmark Peng Chen, Yuxuan Xie, Yunlong Lyu, Yuxiao Wang, and Hao Chen

Algorithm 1 Generate a call statement randomly based on its

function signature. It stops generating new calls recursively if the

length of statements in the 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 exceeds a certain length.

1: function GenerateCall(𝑝𝑟𝑜𝑔𝑟𝑎𝑚, 𝑠𝑖𝑔)

2: 𝑎𝑟𝑔𝑠 ← empty list

3: for all 𝑎𝑟𝑔_𝑡𝑦𝑝𝑒 ∈ 𝑠𝑖𝑔.𝑎𝑟𝑔_𝑡𝑦𝑝𝑒𝑠 do

4: if toss a coin then ⊲ Uses existing statement as

argument

5: 𝑖𝑛𝑑𝑒𝑥 ← Choose statement with 𝑎𝑟𝑔_𝑡𝑦𝑝𝑒 in the

𝑝𝑟𝑜𝑔𝑟𝑎𝑚 randomly.

6: if 𝑖𝑛𝑑𝑒𝑥 exists then

7: 𝑎𝑟𝑔𝑠 ← 𝑎𝑟𝑔𝑠 ∪ 𝑖𝑛𝑑𝑒𝑥

8: continue

9: end if

10: end if

11: if toss a coin and 𝑎𝑟𝑔_𝑡𝑦𝑝𝑒 is not primitive then ⊲

Generates a new call statement as argument

12: 𝑓 ← Randomly choose an API function that returns

𝑎𝑟𝑔_𝑡𝑦𝑝𝑒 .

13: if 𝑓 exists then

14: 𝑐𝑎𝑙𝑙 ← GenerateCall(𝑝𝑟𝑜𝑔𝑟𝑎𝑚, 𝑓)

15: 𝑖𝑛𝑑𝑒𝑥 ← insert 𝑐𝑎𝑙𝑙 into 𝑝𝑟𝑜𝑔𝑟𝑎𝑚.

16: 𝑐ℎ𝑒𝑐𝑘 ← GenerateAssert(𝑝𝑟𝑜𝑔𝑟𝑎𝑚, 𝑖𝑛𝑑𝑒𝑥)

17: insert 𝑐ℎ𝑒𝑐𝑘 into 𝑝𝑟𝑜𝑔𝑟𝑎𝑚.

18: 𝑎𝑟𝑔𝑠 ← 𝑎𝑟𝑔𝑠 ∪ 𝑖𝑛𝑑𝑒𝑥

19: continue

20: end if

21: end if

22: 𝑙𝑜𝑎𝑑 ← GenerateLoad(𝑝𝑟𝑜𝑔𝑟𝑎𝑚, 𝑎𝑟𝑔_𝑡𝑦𝑝𝑒) ⊲

Generates a new load statement as argument

23: 𝑖𝑛𝑑𝑒𝑥 ← insert 𝑙𝑜𝑎𝑑 into 𝑝𝑟𝑜𝑔𝑟𝑎𝑚.

24: 𝑎𝑟𝑔𝑠 ← 𝑎𝑟𝑔𝑠 ∪ 𝑖𝑛𝑑𝑒𝑥

25: end for

26: if toss a coin then ⊲ Generates a new call statement that

may affect the execution of 𝑐𝑎𝑙𝑙

27: 𝑓 ← Choose an API randomly. ⊲ Prefers API functions

whose argument types overlap with 𝑎𝑟𝑔𝑠

28: 𝑐𝑎𝑙𝑙 ← GenerateCall(𝑝𝑟𝑜𝑔𝑟𝑎𝑚, 𝑓)

29: insert 𝑐𝑎𝑙𝑙 into 𝑝𝑟𝑜𝑔𝑟𝑎𝑚.

30: end if

31: 𝑐𝑎𝑙𝑙 ← CreateCallStmt(𝑠𝑖𝑔, 𝑎𝑟𝑔𝑠)

32: return call

33: end function

corresponding APIs. The same is true for value mutation, where ap-

plying mutations according to the value’s type can more effectively

explore new states. To achieve this, Hopper parses type defini-

tions (e.g., struct, enum and union) and type aliases in header files

recursively. It then generates new typed values by the following

rules:

• Primitive Types. Almost all primitive types are numerical

types. Thus,Hopper generates numbers within a small range

of uniform distribution. Additionally, Hopper applies one of

four mutations to the primitive values. (1) Set an interesting

value (e.g., 0x80000000 for int); (2) Flip a bit or a byte; (3)

Add or subtract a small number; (4) Set to a literal collected

from a comparison instruction, if the value is used as one of

the operands.

• Array. Based on the array’s length and element type, Hop-

per generates a sequence of elements. If the length is variable,

Hopper first randomly chooses a length. During mutation,

Hopper selects one or more elements in the array and mu-

tates them respectively. In addition, Hopper can resize the

array by inserting or removing elements if its length is not

fixed.

• Structure.Values with custom structure types are created by

recursively generating their fields. When mutating custom

structure values, Hopper randomly selects a field in the

structure and mutates it according to its type.

• Trivial Pointer. Trivial pointers expose the layout of the

pointer type (i.e., primitive-type pointer and transparent

structure-type pointer). Hopper mutates them by the fol-

lowing operations: (1) Set to a null pointer; (2) Point to the

location of an existing statement that holds the same pointer

type; (3) Point to a newly generated array whose element

type is the same as the pointee; (4) Point to the location of

the value returned by a newly generated call statement. The

call statement returns the same pointer type.

• Nontrivial Pointer. Nontrivial pointers, such as opaque

pointers, void pointers, and function pointers, cannot be mu-

tated straightforwardly due to their unpredictable nature.

Hence, Hopper constructs them separately. For the opaque

pointers, Hopper retrieves the API functions that initialize

the pointers via either returning the pointers or filling them

through reference. If void pointers have alias types, Hopper

treats them as opaque pointers as well. Otherwise,Hopper at-

tempts to cast an arbitrary-length byte array to the required

void pointer to see if it works (detailed in Section 3.4.1). For

the function pointers, Hopper synthesizes empty functions

with the required signatures at compiling stage to allow the

fuzzer to use their addresses as pointers.

Besides, byte arrays may contain data with their own encoding,

which is not defined in header files. For example, cJSON_ParseWithOpt

in Figure 2 parses a byte array with JSON formatting. For these

values, Hopper applies AFL’s random mutations that are designed

for byte arrays.

3.3.3 Input Minimization. Redundant statements and values slow

down execution speed and increase search space during mutating,

which makes fuzzing inefficient. To address this, Hopper employs

two phases to minimize the inputs:

1. Minimize inputs after mutation and refinement. Hopper

inspects the statement in the input backward, excluding the

target call statement. If a statement is no longer referenced by

other statements,Hopper deletes it. For example, in Figure 4,

Line 0 in (c) is redundant after mutation and is thus removed

by Hopper in (d).

2. Minimize inputs that trigger new paths. Hopper removes

calls that have no impact on the execution path (detailed

in Section 3.4.2), as well as redundant values in load state-

ments. It tries to set the pointer values to null or shrink the

6

Hopper: Interpretative Fuzzing for Libraries Anonymous Submission to ACM CCS 2023, Due 19 Jan 2023, Copenhagen, Denmark

length of arrays when possible. If the execution path remains

unchanged, Hopper retains the mutation in the input.

3.4 Constraint Learning

To correctly invoke APIs, DSL programs generated byHoppermust

satisfy both intra- and inter-API constraints. Intra-API constraints

dictate that APIs must be invoked with appropriate arguments,

while inter-API constraints specify the appropriate order in which

APIs are invoked.Hopper learns these constraints through libraries’

runtime feedback rather than relying on external sources.

3.4.1 Intra-API Constraint. We propose six general intra-API con-

straints based on our observations of real-world libraries.

• Non-null Pointer(NON-NULL). APIs that do not check for

null pointers can crash when invoked with null pointers. It’s

often unclear whether this is a real bug, as some developers

argue it is the user’s responsibility to perform null checks.

• Correct File Name(FILE). When an API function reads

from or writes to a file, the file name provided as an argument

must be valid. If the file name is randomly generated, the

API call may terminate early, or it could mess up the disk if

used as an output stream.

• Specific Value(EQUAL). APIs that use a number in the

arguments to designate the boundary of an array pointer

may suffer from overflow errors if the number is incorrect.

• Bounded Range(RANGE). APIs that access or allocate lim-

ited resources based on argument numbers may encounter

resource exhaustion or overflow errors if the number is out

of range.

• Array Length(ARRAY-LEN). Some APIs assume that the

arrays referenced by the pointers have sufficient elements

rather than asking for arguments indicating boundaries. This

may result in overflow errors if the arrays don’t have ade-

quate elements.

• Specific Type Cast(CAST). Due to missing layout informa-

tion of the void type, developers have to generate objects

with concrete types and cast their references to the void

pointers.

Hopper learns intra-API constraints throughout the entire fuzzing

process, including both the pilot and evolution phases. Besides infer-

ring constraints for the arguments themselves, Hopper recursively

explores composite structures to infer constraints for any objects

contained within, such as the pointees, fields in structs, and ele-

ments within arrays.

For void* arguments without alias types, Hopper assumes that

their pointees do not contain any pointer. Therefore, they can be

cast from a big enough random byte array, and Hopper adds CAST

constraints that treat them as char* type. Conversely, in the case

of void* pointers with alias types, Hopper supposes that they are

opaque pointers and initializes them via invoking other APIs.

When new paths are explored by inputs, Hopper checks to see

if any file open function (e.g., fopen) has been triggered, and com-

pares the file name with the arguments used to invoke the API. If

there is a match, a FILE constraint is created for the corresponding

argument.

Furthermore, if an input triggers a new crash, Hopper infers

intra-API constraints by the following steps in order.

(1) If the call triggers a segmentation fault due to accessing a

null pointer (𝑠𝑖_𝑎𝑑𝑑𝑟 is 0 or close to 0, where 𝑠𝑖_𝑎𝑑𝑑𝑟 is the

address of the faulting memory reference), Hopper locates

each null pointer in the arguments, sets it to the address of

a protected memory chunk, and runs this mutated program

again. If the program crashes again at the same program

location (indicated by the rip register) and triggers illegal

access inside the protected memory chunk, it means the

pointer is accessedwithout a null check in the API invocation.

In that case, Hopper adds a NON-NULL constraint for this

pointer.

(2) If the crash is caused by accessing a canary appended right

after an array (𝑠𝑖_𝑎𝑑𝑑𝑟 is in the range of canary), Hopper

tries to figure out whether there is a length or index of a

variable-sized array in the arguments. Firstly,Hopper locates

which array has been overflowed. We denote the array’s

length as𝑁 . For each numerical value in the call’s arguments,

Hopper attempts to set it as 𝑁 −1, 𝑁 , and 𝑁 +1, respectively.

If both 𝑁 and 𝑁 + 1 lead to a crash by accessing the canary,

Hopper adds a RANGE constraint to set the value within

a range of [0, 𝑁). If only 𝑁 + 1 makes a crash, an EQUAL

constraint is added to set the value to be the same as the

array’s length.

(3) If the above strategies fail to rectify illegal access of a canary,

Hopper attempts to pad the arrays in the arguments to a

specific length (e.g., 𝐾) to see whether it resolves the crash.

If so, an ARRAY-LEN constraint is added to ensure that this

array is at least 𝐾 bytes.

(4) For other illegal access, if there are CAST constraints for the

arguments, Hopper tries to mutate the byte array pointed

to by the arguments. If the illegal address varies with the

mutated bytes, the void pointer may be interpreted as a

structure containing pointers. Thus, Hopper removes the

CAST constraints with char* type.

(5) If the inputs lead to a timeout or out of memory, Hopper

searches for large numerical values in the arguments and

mutates them. If the execution becomes significantly faster

or exits normally after setting the value to be small, Hop-

per adds a RANGE constraint for the argument to limit its

maximal values.

These constraints are used to refine inputs after mutation, and

inputs that violate the constraints are excluded from the seed set. As

an example, in Figure 4, Hopper successfully infers the constraint

that the value of len should be the length of the array that name

refers to, and refines the value accordingly.

3.4.2 Inter-API Constraint. An API call can modify its referenced

arguments or internal states in the program, which affects the

behavior of its subsequent calls. These relationships between API

calls are referred to as inter-API constraints. Compared to intra-API

constraints, inter-API constraints are more difficult to identify and

apply universally. Each library defines its own pattern to coordinate

the API functions, making it hard to make abstractions. Instead

of imposing concrete constraints, Hopper preserves the inter-API

constraints by saving the effective programs for later mutations. To

learn such constraints, Hopper statically assembles library APIs by

7

Anonymous Submission to ACM CCS 2023, Due 19 Jan 2023, Copenhagen, Denmark Peng Chen, Yuxuan Xie, Yunlong Lyu, Yuxiao Wang, and Hao Chen

function signatures and then verifies their effectiveness dynamically

through coverage feedback.

At first, Hopper statically infers naive constraints between API

functions by analyzing their signatures. By comparing the types of

their arguments and returns, we can deduce whether the two API

functions are likely related. For any given pair of API functions F1
and F2, they tend to be related if their types overlap in the following

ways.

• Type T is the type of one of the arguments in F1, and it is

the type of return value of F2.

• Both F1 and F2 use type T as their arguments.

• F1 uses an argument with type T while F2 uses a pointer T∗

that may modify the value it points to.

Besides the types of arguments, the two API functions are more

likely to be related if the identifiers of arguments in the latter two

cases are identical.

Two API functions have an effective relation if the former can

help the latter to reach a new path. As shown in Algorithm 1,

Hopper attempts to generate a large number of various API usages.

The API invocations may be composited in an interesting order

after several iterations. In case Hopper finds a certain sequence

of API calls to be effective, the program is reserved for further

mutation. By incorporating the precise control of coverage tracking

described in Section 3.2.1, Hopper learns the effective relations

between API functions by the following steps.

(1) When new calls are inserted before the target API call, only

the coverage of the target call will be tracked.

(2) If the insertions trigger a new path, Hopper deletes the new

calls one by one from the input and checks whether the

coverage remains the same after removal. If the coverage

changes, Hopper identifies the removed call as critical for

reaching the new path. In other words, an efficient inter-API

constraint between the two API functions is found in the

program.

In addition to recognizing effective call sequences, Hopper also

identifies the effective arguments among sequences of API invoca-

tions. Once a program triggers new paths, Hopper checks whether

the new paths were introduced by the mutation of certain argu-

ments. To reuse effective arguments for further mutation, Hopper

saves all the statements responsible for producing those arguments

into a cache. These statements contain both concrete values and

inter-API constraints. During mutation, Hopper fetches one ef-

fective argument as a substitute for the original one to introduce

appropriate context to the API invocations.

4 IMPLEMENTATION

We implemented Hopper in 23164 lines of Rust code and 1285 lines

of C/C++ code for instrumentation.

4.1 Fuzzer

Hopper generates inputs with semantics parsed from C header files.

Combining Rust’s traits and macros, we implemented the process

elegantly. First, we adopted Rust bindgen [31] to automatically gen-

erate Rust FFI bindings, including type definitions and function

signatures, from library header files. For C++ libraries, only C-style

API declaration is accepted by Hopper since features like templates

are not yet supported in bindgen [17]. Next, we defined mutate,

generate, serialize, deserialize traits for the types in the bind-

ings, which apply customized behavior to objects of each type for

fuzzing. We manually implemented these traits for primitive types

since they have commonmemory layouts in libraries. As for custom

structures, we utilized Rust’s procedural macros to automatically

implement these traits. Hopper also synthesizes empty functions

for function pointer types according to their function signatures.

When invoked as callbacks, these functions do nothing other than

return an object with zero-initialization. Finally, we generated a

table of object builders that Hopper uses to call the trait imple-

mentations. These automatically generated codes are compiled and

linked against the fuzzer.

To report the inputs that trigger bugs to developers for analysis,

we have built a tool that translates DSL to C source code.

4.2 Interpreter

Hopper instruments the library binaries by static binary rewrit-

ing with E9Patch [14]. We borrowed from E9AFL [16] the code

for branch tracking and improved it to be controllable and API-

sensitive. Additionally, the instrumentation collects the compare in-

structions and hooks resources management functions (e.g., malloc,

free and fopen).

When executing inputs, Hopper’s interpreter parses them based

on the code that implements deserialize traits. To invoke the

APIs, Hopper generates the code of the caller mapping table de-

scribed in Section 3.2.2, using Rust FFI bindings and procedural

macros. This code is then compiled into the interpreter. Like AFL,

the interpreter incorporates the techniques of fork servers to reduce

the overhead of process initiation. It forks a new process once it

receives a new input for interpretation.

During interpretation, Hopper detects memory overflow by

adding a page-size canary after the array values in a memory arena.

This memory arena is implemented by mmap a continuous memory

at a fixed address. In the arena, the address of the last byte of an

array is aligned to a page’s last byte. To detect overflow, Hopper

reserves a page size memory after the array and sets the page as

unreadable and unwritable by mprotect.

5 EVALUATION

In this section, we evaluated Hopper on 11 widely-used real-world

libraries. All of the selected libraries are commonly used by various

applications and have been evaluated by OSS-Fuzz [32]. To adapt

fuzzing on those libraries using LibFuzzer, their developers have

crafted several fuzz drivers. Among all the 11 libraries, re2 is both

developed and exported as C++ library in special. For the sake of

compatibility, Hopper fuzzed re2 through its C wrapper: cre2 [13].

Additionally, all libraries included in our experiments were the most

recent versions available during the time of testing. To demonstrate

the effectiveness of Hopper, the following research questions were

answered:

• RQ1: How effective is Hopper in libraries?

• RQ2: Can Hopper correctly infer API constraints?

• RQ3: Can Hopper generate programs that are comparable

with MCFs?

8

Hopper: Interpretative Fuzzing for Libraries Anonymous Submission to ACM CCS 2023, Due 19 Jan 2023, Copenhagen, Denmark

All of our experiments are conducted on a server with an Intel

Xeon Platinum 8255C and 128 GB memory running 64-bit Ubuntu

20.04 LTS. In each experiment, we configured the tested fuzzer to

be executed on only one core.

5.1 RQ1: How effective is Hopper in libraries?

Code coverage and bug finding are two key metrics used to evaluate

fuzzing effectiveness [26]. To answer the first research question, we

compared Hopper with MCFs and other automatic solutions (i.e.,

FuzzGen and GraphFuzz) on 11 popular real-world libraries, using

these two metrics. For the MCFs, we either selected fuzz drivers

crafted by the library developers or collected them from the Google

OSS-Fuzz project. The authors of FuzzGen provided the fuzz drivers

for libvpx and libaom and we used them directly in our evaluation

after rectifying the inaccuracies listed in Section A.2. However,

FuzzGen is unable to run successfully on the other libraries, except

for cJSON . Specifically, the fuzz driver that FuzzGen generated for

c-ares contained invalid arguments and could not be compiled. For

the rest of the libraries, FuzzGen encountered errors during fuzz

driver generation, such as violating assertions while determining

data types of arguments or getting stuck at static backward slicing.

GraphFuzz requires manually written schemas to synthesize fuzz

drivers. We adopted the author-provided schema for sqlite3 and

wrote the others ourselves. In each individual experiment, we set a

timeout of 24 hours and ran the fuzzers. Afterward, we recompiled

the tested library with LLVM’s source-based code coverage fea-

ture [33] enabled and re-ran the fuzzers with seed inputs to collect

coverage information. To reduce statistical errors, we repeated each

experiment five times and reported the average results. Addition-

ally, for libraries containing multiple MCFs, we ran each driver with

LibFuzzer for 24 hours separately.

5.1.1 Code Coverage. Table 2 shows the code coverage achieved

by different fuzzers on each library. Hopper outperformed other

fuzzers on all libraries in both lines and branches coverage, except

for re2, libvpx, and libaom. Even though 9 MCFs of zlib have been

tested for a total of 216 hours with Libfuzzer, Hopper is still better

than their overall result. The contrast on c-ares is the most signif-

icant, where Hopper generated inputs that covered almost three

times as much code as the MCFs’ best effort. On the other hand, the

MCFs for re2 were sophisticated enough to cover most of the source

codes, whileHoppermanaged to reach a coverage level that is close

to its opponent. In the case of libvpx and libaom, MCFs covered

more lines and branches than automatic solutions. This is because

they can reach complicated internal states by decoding multiple

frames in a loop, while all the automatic solutions are loop-free.

However, among the fuzz driver generated automatically, Hopper

explores more lines and branches than FuzzGen and GraphFuzz.

To demonstrate that Hopper is capable of fuzzing more APIs, we

counted the number of unique APIs in the valid programs generated

by fuzzers. Table 1 shows that, on average, Hopper successfully

invoked 93.52% of APIs, while MCFs, FuzzGen, and GraphFuzz only

cover 18.58%, 13.93%, and 41.42% APIs respectively.

5.1.2 Bug Finding. For the crashes triggered by Hopper, we first

eliminated any spurious crashes that violated the inter-API con-

straints learned byHopper, and then sanitized the duplicated crashes

Table 2: Comparison of coverage between Hopper, Graph-

fuzz, FuzzGen, and MCFs on real world libraries.

Library Fuzzer Lines Branchs

cJSON
cjson_read_fuzzer 952 (42.92%) 473 (46.56%)

FuzzGen 186 (8.39%) 96 (9.45%)

GraphFuzz 1346 (60.69%) 612 (60.24%)

Hopper 1997 (90.04%) 854 (84.06%)

c-ares

parse_reply_fuzzer 1757 (23.94%) 744 (21.78%)
create_query_fuzzer 110 (1.50%) 47 (1.38%)
Total of MCFs 1865 (25.41%) 790 (23.13%)

GraphFuzz 2424 (33.02%) 994 (29.10%)

Hopper 5012 (67.06%) 2045 (59.03%)

libpng
libpng_read_fuzzer 5005 (28.67%) 2041 (26.42%)

GraphFuzz 1629 (9.33%) 507 (6.56%)

Hopper 9610 (55.04%) 3903 (50.53%)

lcms
IT8_load_fuzzer 641 (3.41%) 271 (3.21%)
overwrite_transform_fuzzer 2964 (15.77%) 1271 (15.07%)
transform_fuzzer 4382 (23.32%) 1757 (20.84%)
Total of MCFs 5357 (28.50%) 2205 (26.15%)

GraphFuzz 2481 (13.20%) 872 (10.34%)

Hopper 9001 (47.89%) 3135 (37.18%)

libmagic
magic_fuzzer 3094 (30.87%) 2043 (28.69%)

GraphFuzz 3197 (31.90%) 2003 (28.10%)

Hopper 4230 (45.26%) 2634 (39.51%)

libpcap
fuzz_both 4301 (27.05%) 2346 (32.40%)
fuzz_filter 5561 (34.97%) 2901 (40.07%)
fuzz_pcap 974 (6.13%) 365 (5.04%)
Total of MCFs 6870 (43.21%) 3479 (48.05%)

GraphFuzz 1736 (10.92%) 881 (12.17%)

Hopper 7536 (47.40%) 3669 (50.68%)

zlib
checksum_fuzzer 251 (5.21%) 61 (2.12%)
compress_fuzzer 1880 (38.73%) 904 (31.48%)
example_dict_fuzzer 1901 (39.17%) 952 (33.15%)
example_flush_fuzzer 1631 (33.61%) 776 (27.02%)
example_large_fuzzer 1684 (34.70%) 795 (27.68%)
example_small_fuzzer 1429 (29.45%) 758 (26.39%)
minigzip_fuzzer 2227 (45.89%) 1071 (37.29%)
uncompress2_fuzzer 989 (20.37%) 468 (16.30%)
uncompress_fuzzer 976 (20.11%) 457 (15.91%)
Total of MCFs 2976 (61.32%) 1482 (51.60%)

GraphFuzz 2602 (53.62%) 1343 (46.76%)

Hopper 3502 (72.16%) 1914 (66.64%)

re2
re2_fuzzer 6373 (67.85%) 3367 (67.75%)

GraphFuzz 5564 (59.23%) 2843 (57.21%)

Hopper 6413 (68.27%) 3299 (66.38%)

sqlite3
oss_fuzz 22582 (30.96%) 9054 (25.99%)

GraphFuzz 6261 (8.58%) 2172 (6.23%)

Hopper 25356 (34.76%) 9551 (27.41%)

libvpx
vpx_dec_fuzzer_vp8 3604 (10.44%) 1138 (14.21%)
vpx_dec_fuzzer_vp9 15654 (45.34%) 3475 (43.41%)
Total of MCFs 18787 (54.42%) 4463 (55.75%)

FuzzGen 15211 (44.06%) 3367 (42.05%)

GraphFuzz 15060 (43.62%) 3251 (40.61%)

Hopper 15641 (45.30%) 3514 (43.89%)

libaom
av1_dec_fuzzer 39762 (21.05%) 9722 (17.73%)

FuzzGen 32576 (17.25%) 7757 (13.35%)

GraphFuzz 30837 (16.33%) 7327 (12.61%)

Hopper 36218 (19.18%) 9228 (15.88%)

9

Anonymous Submission to ACM CCS 2023, Due 19 Jan 2023, Copenhagen, Denmark Peng Chen, Yuxuan Xie, Yunlong Lyu, Yuxiao Wang, and Hao Chen

with the same stack traces at the program crash point. The remain-

ing crashes were verified manually by inspecting the code, debug-

ging the programs, and reading the official documents. Hopper ul-

timately discovered 25 new bugs from 48 unique crashes, as shown

in Table 3. In contrast, none of the MCFs, FuzzGen, and GraphFuzz

found a valid bug under the same 24 hours running. Of the 48 unique

crashes, 23 were identified as spurious crashes as they violated the

constraints specified in the documentation or were rejected by li-

brary developers. The developers did not classify these crashes as

bugs since they have their own criteria for valid API usage. The

APIs must be used strictly within specified constraints, which may

be mentioned in the documents, or the program may crash unex-

pectedly. For example, an out-of-bound read error could occur if

the zFunctionName argument for sqlite3_create_function16

is not a UTF-16 string 2.

We have reported all the discovered bugs to the corresponding

communities. As of submission, 17 bugs have been confirmed by

library developers and the rest are still under review. The details of

the discovered bugs are listed in Table 4. Buffer overflow accounts

for the most bugs that Hopper has detected (12 out of 25). Eight of

those overflows were detected byHopper’s canary when reading or

writing out of bounds of arrays allocated as arguments by Hopper.

The remaining four accessed the addresses of internally allocated

arrays in the API functions with large offsets generated by Hopper.

Null pointer dereferences are also commonly detected (11 out of

25). These bugs occurred when null pointers were produced or

improperly initialized by library calls and accessed without null

pointer checking within the code of API functions. Additionally,

Hopper identified an uncontrolled format string bug and a double-

free bug, both of which are analyzed in detail in Section 5.3.

Furthermore, almost all buggy APIs discovered by Hopper could

not be covered by MCFs, FuzzGen, or GraphFuzz. This is not sur-

prising as the fuzz drivers for these libraries have been extensively

utilized for continuous fuzzing over an extended period. To ensure

a fair comparison with MCFs, GraphFuzz, and FuzzGen, we addi-

tionally evaluated Hopper and these fuzzers on previous versions

of the 11 libraries. As shown in Table 5, Hopper surpasses MCFs,

GraphFuzz, and FuzzGen by detecting 28 unique bugs in previous

versions of the 11 libraries. Moreover,Hopperwas able to identify 7

out of the 14 bugs that other fuzzers had detected. AlthoughHopper

missed certain bugs reported by other fuzzers due to its inefficient

mutation power on those predefined API calls, it prioritized mutat-

ing API usages that are more likely to trigger bugs or explore new

states via its seed selection, which includes any API usage within

the libraries. Consequently, Hopper discovered a greater number

of bugs overall.

Answer to RQ1: Hopper outperformed MCFs and other library

fuzzing approaches in terms of both code coverage and bug

finding. Specifically, Hopper detects 25 new bugs and 17 of them

have been confirmed.

2https://sqlite.org/forum/forumpost/7ace1408b.

Table 3: Unique crashes reported by Hopper.

Library Version #Programs
Crashes

Accuracy
#UC #S #B #C

cJSON 1.7.15 2,972 3 1 2 1 66.67%

c-ares 1.18.1 3,192 2 0 2 2 100%

libpng 1.6.37 5,612 7 1 6 4 85.71%

lcms 2.13.1 2,660 13 8 5 5 38.46%

libmagic FILE5_42 1,662 0 0 0 0 -

libpcap 1.10.1 2,249 5 2 3 3 60%

zlib 1.2.12 5,598 2 1 1 1 50%

re2 0.4.0 27,355 4 2 2 0 50%

sqlite3 3.38.5 10,356 12 7 4 1 33.33%

libvpx 1.11.0 22,282 0 0 0 0 -

libaom 3.5.0 19,654 1 1 0 0 -

Total - 103,592 48 23 25 17 52.08%

UC = Total unique crashes; S = Spurious crashes caused by incorrect API usage;

B = Valid bugs that identified by manually review; C = Confirmed bugs after

reported to library developers.

5.2 RQ2: Can Hopper correctly infer API
constraints?

One of the key insights that allows Hopper to generate API usages

both correctly and efficiently is its learning of intra- and inter-API

constraints. To evaluate the benefits of these constraints, we com-

pared Hopper with and without constraints on the 11 libraries.

As shown in Table 6, Hopper with inferred constraints explores

more lines and branches across all the libraries. However, without

intra-API constraints, code coverage is substantially lower in libpng,

libmagic, libvpx, and libaom. This is because certain API functions

that many other APIs depend on could not be called properly. For

example, png_init_io in libpng initializes a file input for a han-

dler that is subsequently read by other APIs for processing. If the

fuzzer randomly generates a string as the file’s name without a

FILE constraint, png_init_io will return an invalid handler, caus-

ing all subsequent calls to terminate at a shallow state. As incorrect

API usages often lead to program crashes, we also measured the

success rate of execution for the generated inputs. Notably, after

imposing intra-API constraints, cJSON , c-ares, libvpx, and libaom

achieve almost 100% success rate of execution. In re2, the success

rate improves significantly after Hopper learns not to generate

null pointers as arguments. On the other hand, in the absence of

inter-API constraints, Hopper explores API usage in a less efficient

way by combining API functions blindly. This leads to poorer per-

formance in terms of both line and branch coverage, particularly in

libraries such as libpng, lcms, and sqlite3, which have a rich set of

APIs available and therefore a large number of possible combina-

tions to try out. To accelerate the search process, Hopper leverages

inter-API constraints to pinpoint and reuse effective API usages.

Furthermore, we counted the number of intra-API constraints

learned from the 11 libraries and analyzed their correctness. In

total,Hopper learned 973 intra-API constraints. Among them, NON-

NULL constraints were the most commonly inferred, as 609 out

of the 973 constraints (62.01%) pertained to pointer dereferences

without null checks in the API code. Additionally, Hopper was able

to infer 17 FILE constraints, 147 EQAUL constraints, 35 RANGE

10

Hopper: Interpretative Fuzzing for Libraries Anonymous Submission to ACM CCS 2023, Due 19 Jan 2023, Copenhagen, Denmark

Table 4: Bugs found by Hopper in the tested libraries.

ID Library File:line_number Buggy function Bug Type Status Commit ID MCF FZ GF

1. cJSON cJSON.c:2209 cJSON_DetachItemViaPointer Null pointer dereference Reported 722(P) # # #

2. cJSON cJSON.c:2326 cJSON_ReplaceItemViaPointer Null pointer dereference Confirmed 726(P) # # #

3. c-ares ares_init.c:2254 ares_set_sortlist Buffer overflow Fixed 496(S) # - #

4. c-ares ares_init.c:2247 ares_set_sortlist Buffer overflow Fixed 496(S) # - #

5. libpng pngerror.c:229 png_warning Buffer overflow Confirmed 453(S) # - #

6. libpng pngrtran.c:483 png_set_quantize Buffer overflow Confirmed 454(S) # - #

7. libpng pngrutil.c: 3675 png_progressive_combine_row Buffer overflow Confirmed 455(S) # - #

8. libpng pngrutil.c:3675 png_combine_row Buffer overflow Reported 456(S) # - #

9. libpng pngrutil.c:3984 png_read_filter_row_avg Buffer overflow Confirmed 457(S) # - #

10. libpng pngrtran.c:4728 png_do_quantize Buffer overflow Reported 458(S) # - #

11. zlib deflate.c: 401 gzsetparams Null pointer dereference Fixed 761(P) # - #

12. re2 cre2.cpp: 195 cre2_find_named_capturing_groups Null pointer dereference Reported 30(S) # - #

13. re2 cre2.cpp: 725 cre2_set_match Null pointer dereference Reported 29(S) # - #

14. sqlite3 sqlite3.c:30121 sqlite3_overload_function Uncontrolled format string Fixed bbbbb66b6b(T) # - #

15. sqlite3 sqlite3.c:79786 sqlite3_value_bytes Null pointer dereference Reported 0218d74c47(T) # - #

16. sqlite3 sqlite3.c:79786 sqlite3_value_bytes16 Null pointer dereference Reported 0218d74c47(T) # - #

17. sqlite3 sqlite3.c:85266 sqlite3_value_subtype Null pointer dereference Reported 0218d74c47(T) # - #

18. lcms cmsio1.c:857 cmsIsCLUT Buffer overflow Fixed 350(S) # - #

19. lcms msgamma.c:852 cmsBuildTabulatedToneCurveFloat Buffer overflow Fixed 351(S) # - #

20. lcms cmsnamed.c:760 cmsGetPostScriptCRD Null pointer dereference Fixed 353(S) # - #

21. lcms cmslut.c:416 cmsStageAllocMatrix Buffer overflow Fixed 354(S) # - #

22. lcms cmscgats.c:1928 cmsIT8SaveToMem Buffer overflow Fixed 355(S) # - #

23. libpcap pcap.c:2946 pcap_breakloop Null pointer dereference Fixed 1147(P) # - #

24. libpcap pcap.c:493 pcap_can_set_rfmon Null pointer dereference Fixed 1147(P) # - #

25. libpcap pcap-linux.c:835 pcap_activate Double Free Fixed 1098(S) # - #

File:line_number : The source file location of the crash point. Buggy function : The function that cause the crash.

Commit ID : The bug trace id that committed to community developers. P=Pull request number, S=Issue number, T=Bug forum id.

MCF, FZ, GF : Whether the bug could be discovered by MCFs, FuzzGen (FZ), and GraphFuzz (GF) under the same library version.

Table 5: Comparison with other fuzzers on previous versions

of libraries.

Library Version MCF GraphFuzz FuzzGen MCF ∪ GF Hopper

cJSON 1.7.0 1 0 0 1 4(1)

c-ares 1.16.0 1 0 - 1 4(1)

libpng 1.6.32 0 0 - 0 4

lcms 2.8 2 1 - 2 6(1)

libmagic FILE5_25 1 1 - 1 1(1)

libpcap 1.9.0 4 0 - 4 3(3)

zlib 1.2.11 0 0 - 0 1

sqlite3 3.22.0 1 0 - 1 3

libaom 1.0.0 3 1 0 4 2

Total - 13 3 0 14 28(7)

Numbers in brackets show the number of bugs that were reported by multiple

fuzzers including Hopper.

constraints, 110 CAST constraints, and 55 ARRAY-LEN constraints

across these libraries. The overall precision and recall of the learned

constraints are 96.51% and 97.61%, respectively. Most of the false-

positive constraints learned byHopper are actually approximations

of the ground truth constraints and work well in most cases. These

constraints, although not completely correct, do help to reduce the

invalid search space and prevent spurious crashes. For example,

in cmsStageAllocCLut16bitGranular, setting the fourth argument

outputChan to be the length of the fifth argument table, although

incorrect, worked effectively in most cases. Regarding the recall of

the learned constraints, we identified false-negative constraints by

analyzing the spurious crashes reported by Hopper since collecting

the entire ground truth is extremely labor-consuming. Moreover,

most of these missed constraints are specific to a particular library

and hard to describe in a general way. Typically, a spurious crash

indicates a violation of certain unlearned constraints. As an example

from sqlite3 described in Section 5.1.2, Hopper cannot ensure that

the generated buffers are strictly UTF-16 encoded, which leads to a

spurious crash.

Answer to RQ2: Hopper has the ability to learn intra-API con-

straints with high precision (96.51%) and recall (97.61%), while

also being capable of speeding up the search process during

fuzzing through the use of inter-API constraints.

11

Anonymous Submission to ACM CCS 2023, Due 19 Jan 2023, Copenhagen, Denmark Peng Chen, Yuxuan Xie, Yunlong Lyu, Yuxiao Wang, and Hao Chen

Table 6: Impact of inter- and intra-API constraints on Hopper’s efficiency.

Library
Learned intra-API Constraints Success Rate Line Coverage Branch Coverage

#N #F #E #R #C #A TTL #FN PRC RCL w/o Intra Hopper w/o Intra w/o Inter Hopper w/o Intra w/o Inter Hopper

cJSON 15 0 10 4 1 0 30 1 100% 96.77% 99.4291% 99.9999% 80.93% 88.86% 90.04% 75.00% 82.48% 84.06%

c-ares 87 0 26(1) 2 16(1) 2 133(2) 0 98.50% 100% 91.4087% 99.9999% 47.78% 65.31% 67.06% 43.91% 56.90% 59.63%

libpng 34(1) 2 20 5(1) 14 16(6) 91(8) 1 91.21% 98.81% 98.8973% 99.9917% 12.03% 39.05% 55.04% 7.39% 36.46% 50.53%

lcms 233 6 25(6) 1(1) 25(3) 13(3) 303(13) 8 95.71% 97.32% 95.3159% 99.2425% 46.65% 28.37% 47.89% 34.54% 21.05% 37.18%

libmagic 3 1 2(1) 0 3 1 10(1) 0 90.00% 100% 99.4833% 99.9935% 13.16% 42.20% 45.26% 9.96% 36.08% 39.51%

libpcap 59 4 1(1) 4 1 4(2) 73(3) 2 95.89% 97.22% 94.4091% 99.9797% 40.92% 40.89% 47.40% 43.56% 43.14% 50.68%

zlib 6 1 20 3 6 6 42 1 100% 97.67% 97.0134% 99.9865% 52.94% 59.28% 72.16% 44.46% 48.96% 66.64%

re2 93 0 26 0 0 4 123 2 100% 98.40% 86.1034% 99.9427% 58.21% 63.72% 68.27% 54.81% 61.91% 66.38%

sqlite3 72 3 8 10(2) 38(2) 9(1) 140(5) 7 96.43% 95.07% 99.3814% 99.5527% 30.52% 29.44% 34.76% 23.72% 23.34% 27.41%

libvpx 3 0 2 1(1) 4 0 10(1) 0 90.00% 100% 98.8642% 99.9999% 1.14% 42.51% 45.30% 3.35% 42.61% 43.89%

libaom 4 0 7 5(1) 2 0 18(1) 1 94.44% 94.44% 94.2413% 99.9999% 1.73% 16.67% 19.18% 3.12% 13.32% 15.88%

Total 609(1) 17 147(9) 35(6) 110(6) 55(12) 973(34) 23 96.51% 97.61% 90.4769% 99.8808% 35.09% 46.94% 53.85% 31.26% 42.39 49.25%

N = NON-NULL; F = FILE; E = EQUAL; R = RANGE; C = CAST; A = ARRAY-LEN; TTL = Total number; FN = False negative; PRC = Precision; RCL = Recall.

Numbers in brackets show the number of false positive constraints.

(a) An uncontrolled format string bug found in sqlite3.

<0> load sqlite3 * = null //db

<1> load Vec<char> = vec(2)[96, 0] //file_buf

<2> file option <1> //filename

<3> load sqlite3 ** = &<0> //ppDb

<4> call relative: sqlite3_open ? (<2>, <3>)

<5> assert non_null(<0>

<6> load Vec<char> = vec(22)["JSFuMPRKm/RVAABApl6+

vy6ib8NjAA=="] //zFuncName, decoded as "%!n0JU@^.o"

<7> load char* = &<6>

<8> load i32 = 55767322 //nArg

<9> call target: sqlite3_overload_function ? (<0>,<7>,<8>)

(b) A double free bug found in libpcap.

<0> load char * = null //device

<1> load char * = null //errbuf

<2> call pcap_create ? (<0>, <1>) //p

<3> assert non_null(<2>)

<4> load pcap_t * = <2> //p

<5> load int = 128 //buffer_size

<6> call relative: pcap_set_buffer_size ? (<4>, <5>)

<7> load int = 15 //snaplen

<8> call relative: pcap_set_snaplen ? (<4>, <7>)

<9> load int = 1833782204 //immediate

<10> call relative: pcap_set_immediate_mode ? (<4>, <9>)

<11> call target: pcap_activate ? (<4>)

Figure 5: Example programs that trigger bugs in sqlite3 and

libpcap respectively.

5.3 RQ3: Can Hopper generate programs that
are comparable with MCFs?

To demonstrate the ability of Hopper for generating high-quality

fuzz drivers, in Figure 5, we select two representative programs

generated by Hopper in our experiment as case studies.

Case 1. Figure 5a shows an uncontrolled format string bug

found in sqlite3 (ID 14 in Table 4). In sqlite3_overload_function,

zFuncName is passed to sqlite3_mprintf to clone a string, but at

worst, sqlite3_mprintf would perform formatting if the string con-

tains specifiers. Hopper crafted this program successfully through

the following steps. In the beginning, it generated a simple program

that passes a null sqlite3 pointer and a random zFuncName string

to sqlite3_overload_function. However, since the API function re-

quires a non-null sqlite3, Hopper used intra-API constraints to

initialize the pointer by invoking sqlite3_open. This made the pro-

gram reach the code that calls sqlite3_mprintf. Shortly thereafter,

Hopper randomly mutates the strings for zFuncName and fortunately

produces a ’%’ symbol in the string. This case indicates thatHopper

is able to synthesize valid code to invoke an API function with

intra-API constraints and find bugs using type-aware mutation for

arguments.

Case 2. Figure 5b shows a double-free bug found in libpcap (ID

25 in Table 4). This bug occurs when pcap_activate fails to enable

memory-mapped capture due to mmap with zero length under the

immediate mode. In such a case, a memory location would be re-

leased twice in the error handling code. The length is computed

from the combination of buffer_size and snaplen. Even worse, the

pcap_activate is a commonly used API function for activating a

packet capture handle rather than those rarely-used ones. Tcpdump,

as a popular Linux application, is able to invoke those libpcap APIs

sequentially by a simple command: tcpdump -i any -B 1 -s 15 --

immediate-mode. By utilizing inter-API constraints, Hopper care-

fully crafted a sequence of API calls that triggered the bug. Specifi-

cally, it inferred that pcap_set_buffer_size, pcap_set_snaplen, and

pcap_set_immediate_mode would modify pcap_t pointer to change

the behavior of pcap_activate. Then, Hopper mutated the integers

fed into the API calls and triggered the bug finally. The case demon-

strates that Hopper can explore different API usages by learning

inter-API constraints, which traditional fuzz testing tools typically

ignore.

Answer to RQ3:With grammar-aware input fuzzing, Hopper

synthesizes programs that satisfy both intra- and inter-API con-

straints. As compared to MCFs, the programs generated by Hop-

per can explore a much broader range of API usages.

12

Hopper: Interpretative Fuzzing for Libraries Anonymous Submission to ACM CCS 2023, Due 19 Jan 2023, Copenhagen, Denmark

6 DISCUSSIONS

6.1 Multiple-dimensional Search Space in Input
Generation

Traditional library fuzzing generates a byte array as input and leaves

the job of constructing arguments to fuzz drivers. In contrast, in

Hopper, the search space for input generation is multidimensional

as it involves both API functions and arguments, which poses a

significant challenge. Furthermore, each argument has its own

encoding format and requires specificmutation strategies. Although

Hoppermitigates this issue by implementing novel techniques such

as constraint learning and type-aware mutation, there is still much

room for improvement.

6.2 Compatibility with C++ Libraries

Currently, Hopper only supports fuzzing libraries with C-style

header files. The use of templates in C++ headers delays the com-

pilation of template functions to the time of instantiation by the

users, thus making it challenging for Hopper to generate callers of

C++ functions and their arguments. Moreover, it is non-trivial to

decide the concrete types of template parameters to instantiate the

templates. To enable compatibility with C++, a more generalized

implementation of generation and mutation is required. We plan to

address this in future work.

6.3 False Positive Crashes

Although Hopper is highly effective at inferring common con-

straints to filter out most spurious crashes, the remaining crashes

may still be false positives since the APIs need to be used in specific

ways. Learning these constraints through dynamic feedback can

be challenging as they have no universal criteria, as discussed in

Section 5.2. However, during fuzzing, Hopper will no longer gen-

erate input for APIs that have failed to learn constraints and have

a high probability of crashing spuriously. To make Hopper more

practical and user-friendly, we plan to add warnings for users about

unlearned constraints and provide a convenient way for them to

add these custom constraints themselves.

7 RELATED WORK

7.1 API Fuzzing

APIs have long been favored as fuzzing targets, given their role in

allowing codemodules to interact with others. For example, RESTler

generates requests for RESTful APIs using a grammar automatically

inferred from Swagger specification, and employs coarse-grained

feedback from service responses to guide mutations to reach deeper

service states [5]. Similarly, Pythia fuzz stateful REST APIs using

coverage-guided feedback and learning-based mutations [6]. In the

realm of kernel fuzzers, Syzkaller [39] is a coverage-guided fuzzer

that generates system call sequences using system API descriptions.

To further improve the efficiency and effectiveness of kernel fuzzing,

MoonShine [29] generates seed inputs by extracting system call

traces from the execution of real programs, while Healer [38] uses

dynamic analysis to learn the relationships between system calls

and uses that knowledge to guide input generation.

Besides the adoption of fuzzing in service and system APIs, OSS-

Fuzz [32] gathers hundreds of manually written fuzzers to contin-

uously fuzz APIs of open source libraries. In recent years, there

has also been a trend towards generating fuzz drivers for library

APIs automatically [7, 23, 45, 25, 19]. FUDGE [7] and FuzzGen [23]

extract the code of API usage from practical code to create fuzz

drivers. APICRAFT [45] and WINNIE [25] record the API call se-

quences from the execution trace of existing consumer programs

and combine them to generate fuzz drivers. GraphFuzz [19] views

fuzz drivers as dataflow graphs and performs graph-based mutation

with a manually specified schema. UTOPIA [24] statically analyzes

the library to identify attributes of API arguments and automatically

synthesize valid fuzz drivers from existing unit tests. In contrast

to generating fuzz drivers in limited domains, Hopper is a fuzzer

for library APIs without any specific domain knowledge, including

any knowledge from practical examples and schema specifications.

Hopper searches the combinations of APIs and arguments in a large

space and learns the features of high-quality inputs simultaneously

through runtime feedback.

7.2 Grammar-aware Fuzzing

Grammar-aware fuzzers leverage grammar to generate structured

inputs that bypass syntax checking at the beginning of the program

execution [21, 40, 27, 46, 42, 4, 34]. For example, LangFuzz [21]

and IFuzzer [40] utilize the syntax of JavaScript language to fuzz

Javascript interpreters, while SQLsmith [34] and SQUIRREL [46]

generate SQL queries for testing DBMSs based on SQL grammar.

Superion [42] and NAUTILUS [4] improve grammar-aware fuzzing

by combining code coverage guidance. These tools manipulate

input as an AST and mutate it according to coverage feedback.

As writing grammar rules require much human effort, some

fuzzers try to automatically learn the grammar [41, 18, 8, 43]. Sky-

fire [41] uses probabilistic modeling to learn grammar from inputs,

while Learn&Fuzz [18] employs a recurrent neural network model.

Nevertheless, the accuracy of the learned grammar is dependent

on the quality of the corpus provided. Alternatively, GRIMOIRE [8]

automatically infers the structural properties of input language

based on code coverage feedback. Similarly, Profuzzer [43] probes

the types of input bytes through per-byte mutations.

General grammar-based fuzzers are intended to test parsers or

interpreters by exploring all feasible combinations based on in-

put grammar. However, Hopper operates differently by focusing

on generating various effective API calls rather than exhaustively

exploring the input language’s grammar.

8 CONCLUSION

In this paper, we present Hopper, a novel fuzzer that aims to fuzz

libraries without any domain knowledge required in crafting fuzz

drivers. Hopper links the libraries under test against an interpreter,

which takes DSL programs as input and drives libraries to perform

requested fuzzing behavior. To generates effective API calls in the

format of DSL, Hopper learns intra- and inter-API constraints in

the libraries and mutates the inputs with grammar awareness. We

evaluated the effectiveness of Hopper on 11 real-world libraries.

Hopper outperformed MCFs and the other automatic solutions in

both code coverage and bug finding. Specifically, Hopper found

13

Anonymous Submission to ACM CCS 2023, Due 19 Jan 2023, Copenhagen, Denmark Peng Chen, Yuxuan Xie, Yunlong Lyu, Yuxiao Wang, and Hao Chen

25 new bugs that others could not find. Our experimental results

demonstrate that Hopper effectively explores a vast range of API

usages for library fuzzing out of the box.

REFERENCES

[1] A fuzz driver generated by FuzzGen for libvpx. url: https:

//github.com/HexHive/FuzzGen/tree/master/examples/

libvpx.

[2] A schema for generating sqlite3 fuzz drivers written by Graph-

Fuzz. url: https://github.com/hgarrereyn/GraphFuzz/blob/

master/experiments/sqlite3/in/f1/schema.yaml.

[3] American fuzzy lop. url: http://lcamtuf.coredump.cx/afl/.

[4] Cornelius Aschermann et al. łNAUTILUS: Fishing for Deep

Bugs with Grammars.ž In: Proceedings of the 2019 Network

and Distributed System Security Symposium (NDSS). 2019.

[5] Vaggelis Atlidakis, Patrice Godefroid, andMarina Polishchuk.

łRestler: Stateful rest api fuzzingž. In: 2019 IEEE/ACM 41st

International Conference on Software Engineering (ICSE). IEEE.

2019, pp. 748ś758.

[6] Vaggelis Atlidakis et al. łPythia: grammar-based fuzzing of

REST APIs with coverage-guided feedback and learning-

based mutationsž. In: arXiv preprint arXiv:2005.11498 (2020).

[7] Domagoj Babić et al. łFudge: fuzz driver generation at scalež.

In: Proceedings of the 2019 27th ACM Joint Meeting on Euro-

pean Software Engineering Conference and Symposium on the

Foundations of Software Engineering. 2019, pp. 975ś985.

[8] TimBlazytko et al. łGRIMOIRE: Synthesizing structurewhile

fuzzingž. In: 28th USENIX Security Symposium (USENIX Se-

curity 19). 2019, pp. 1985ś2002.

[9] Ju Chen et al. łJIGSAW: Efficient and Scalable Path Con-

straints Fuzzingž. In: 2022 IEEE Symposium on Security and

Privacy (SP). IEEE Computer Society. 2022, pp. 1531ś1531.

[10] Peng Chen and Hao Chen. łAngora: efficient fuzzing by prin-

cipled searchž. In: IEEE Symposium on Security and Privacy

(S&P). San Francisco, CA, May 2018.

[11] Peng Chen, Jianzhong Liu, and Hao Chen. łMatryoshka:

fuzzing deeply nested branchesž. In: ACM Conference on

Computer and Communications Security (CCS). London, UK,

Nov. 2019.

[12] Yongheng Chen et al. łOne engine to fuzz’em all: Generic

language processor testing with semantic validationž. In:

2021 IEEE Symposium on Security and Privacy (SP). IEEE.

2021, pp. 642ś658.

[13] cre2. url: https://github.com/marcomaggi/cre2/.

[14] Gregory J Duck, Xiang Gao, and Abhik Roychoudhury. łBi-

nary rewriting without control flow recoveryž. In: Proceed-

ings of the 41st ACM SIGPLAN Conference on Programming

Language Design and Implementation. 2020, pp. 151ś163.

[15] Shuitao Gan et al. łGREYONE: Data Flow Sensitive Fuzzingž.

In: USENIX Security Symposium (USENIX Security). Boston,

MA, Aug. 2020.

[16] Xiang Gao, Gregory J Duck, and Abhik Roychoudhury. łScal-

able Fuzzing of Program Binaries with E9AFLž. In: 2021 36th

IEEE/ACM International Conference on Automated Software

Engineering (ASE). IEEE. 2021, pp. 1247ś1251.

[17] Generating Bindings to C++. url: https://rust-lang.github.io/

rust-bindgen/cpp.html.

[18] Patrice Godefroid, Hila Peleg, and Rishabh Singh. łLearn&fuzz:

Machine learning for input fuzzingž. In: 2017 32nd IEEE/ACM

International Conference on Automated Software Engineering

(ASE). IEEE. 2017, pp. 50ś59.

[19] Harrison Green and Thanassis Avgerinos. łGraphFuzz: Li-

brary API Fuzzing with Lifetime-aware Dataflow Graphsž.

In: 2022 IEEE/ACM 44th International Conference on Software

Engineering (ICSE). 2022, pp. 1070ś1081.

[20] Samuel Groß. łFuzzil: Coverage guided fuzzing for javascript

enginesž. In: Department of Informatics, Karlsruhe Institute

of Technology (2018).

[21] Christian Holler, Kim Herzig, and Andreas Zeller. łFuzzing

with code fragmentsž. In: 21st USENIX Security Symposium

(USENIX Security 12). 2012, pp. 445ś458.

[22] How To Split A Fuzzer-Generated Input Into Several. url: https:

/ / github . com/google / fuzzing / blob /master / docs / split -

inputs.md.

[23] Kyriakos Ispoglou et al. łFuzzGen: Automatic Fuzzer Genera-

tionž. In: 29th USENIX Security Symposium (USENIX Security

20). 2020, pp. 2271ś2287.

[24] Bokdeuk Jeong et al. łUTOPIA: Automatic Generation of

Fuzz Driver using Unit Testsž. In: 2023 IEEE Symposium

on Security and Privacy (SP). IEEE Computer Society. 2022,

pp. 746ś762.

[25] Jinho Jung et al. łWinnie: Fuzzing windows applications

with harness synthesis and fast cloningž. In: Proceedings of

the 2021 Network and Distributed System Security Symposium

(NDSS 2021). 2021.

[26] George Klees et al. łEvaluating fuzz testingž. In: Proceed-

ings of the 2018 ACM SIGSAC conference on computer and

communications security. 2018, pp. 2123ś2138.

[27] Suyoung Lee et al. łMontage: A Neural Network Language

Model-Guided JavaScript Engine Fuzzerž. In: 29th USENIX

Security Symposium (USENIX Security 20). 2020, pp. 2613ś

2630.

[28] libFuzzer ś a library for coverage-guided fuzz testing. url:

https://llvm.org/docs/LibFuzzer.html.

[29] Shankara Pailoor, Andrew Aday, and Suman Jana. łMoon-

Shine: Optimizing OS Fuzzer Seed Selection with Trace Dis-

tillationž. In: 27th USENIX Security Symposium (USENIX Se-

curity 18). 2018, pp. 729ś743.

[30] Pulling JPEGs out of thin air. url: https://lcamtuf.blogspot.

com/2014/11/pulling-jpegs-out-of-thin-air.html.

[31] rust-bindgen. url: https : / / github . com / rust - lang / rust -

bindgen.

[32] Kostya Serebryany. łOSS-Fuzz-Google’s continuous fuzzing

service for open source softwarež. In: USENIX Association,

2017.

[33] Source-based Code Coverage. url: https://clang.llvm.org/

docs/SourceBasedCodeCoverage.html.

[34] SQLsmith. url: https://github.com/anse1/sqlsmith.

[35] Prashast Srivastava and Mathias Payer. łGramatron: Effec-

tive grammar-aware fuzzingž. In: Proceedings of the 30th

ACM SIGSOFT International Symposium on Software Testing

and Analysis. 2021, pp. 244ś256.

14

Hopper: Interpretative Fuzzing for Libraries Anonymous Submission to ACM CCS 2023, Due 19 Jan 2023, Copenhagen, Denmark

[36] Nick Stephens et al. łDriller: augmenting fuzzing through

selective symbolic executionž. In: Proceedings of the Network

and Distributed System Security Symposium. 2016.

[37] Structure-Aware Fuzzing with libFuzzer. url: https://github.

com/google/fuzzing/blob/master/docs/structure-aware-

fuzzing.md.

[38] Hao Sun et al. łHEALER: Relation Learning Guided Kernel

Fuzzingž. In: Proceedings of the ACM SIGOPS 28th Symposium

on Operating Systems Principles. 2021, pp. 344ś358.

[39] syzkaller - kernel fuzzer. url: https://github.com/google/

syzkaller.

[40] Spandan Veggalam et al. łIfuzzer: An evolutionary inter-

preter fuzzer using genetic programmingž. In: European Sym-

posium on Research in Computer Security. Springer. 2016,

pp. 581ś601.

[41] Junjie Wang et al. łSkyfire: Data-driven seed generation for

fuzzingž. In: 2017 IEEE Symposium on Security and Privacy

(SP). IEEE. 2017, pp. 579ś594.

[42] JunjieWang et al. łSuperion: Grammar-aware greybox fuzzingž.

In: 2019 IEEE/ACM 41st International Conference on Software

Engineering (ICSE). IEEE. 2019, pp. 724ś735.

[43] Wei You et al. łProfuzzer: On-the-fly input type probing

for better zero-day vulnerability discoveryž. In: 2019 IEEE

symposium on security and privacy (SP). IEEE. 2019, pp. 769ś

786.

[44] Insu Yun et al. łQSYM: A practical concolic execution en-

gine tailored for hybrid fuzzingž. In: 27th USENIX Security

Symposium (USENIX Security 18). 2018, pp. 745ś761.

[45] Cen Zhang et al. łAPICraft: Fuzz Driver Generation for

Closed-source SDK Librariesž. In: 30th USENIX Security Sym-

posium (USENIX Security 21). 2021, pp. 2811ś2828.

[46] Rui Zhong et al. łSquirrel: Testing database management

systems with language validity and coverage feedbackž. In:

Proceedings of the 2020 ACM SIGSAC Conference on Computer

and Communications Security. 2020, pp. 955ś970.

A APPENDIX

A.1 DSL Grammar

As shown in Figure 6, an individual DSL Program consists of a

sequence of lines. The index at the beginning of each line is a unique

ID (e.g., an incremental number), which can be referenced by other

statements. Since the values in arguments can have various types,

our DSL encodes them accordingly. Primitive types are easy to

convert to and from strings. In the case of composite data types, such

as an array or custom struct, we serialize their internal elements,

following a structured order similar to the JSON format. Specifically,

when dealing with long lists of primitive values, we optimize them

for efficiency by encoding them in Base64 (as seen in line 0 of

Figure 3). However, serializing a pointer is tricky since it may point

to a value shared by multiple objects. Therefore, we only serialize

the destination to which it points in the DSL program, without

including any additional information.

A.2 Examples of inaccurate fuzz drivers

Figure 7 shows a fuzz driver for libvpx generated automatically

by FuzzGen. On Line 415, the value of ctx_hEP_1 is an uninitialized

𝑃𝑟𝑜𝑔𝑟𝑎𝑚 := 𝐿𝑖𝑛𝑒 | 𝐿𝑖𝑛𝑒; 𝑃𝑟𝑜𝑔𝑟𝑎𝑚

𝐿𝑖𝑛𝑒 := 𝐼𝑛𝑑𝑒𝑥 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡

𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 := 𝐶𝑎𝑙𝑙 | 𝐿𝑜𝑎𝑑 | 𝐹𝑖𝑙𝑒 | 𝐴𝑠𝑠𝑒𝑟𝑡 | 𝑈𝑝𝑑𝑎𝑡𝑒

𝐶𝑎𝑙𝑙 := call 𝑁𝑎𝑚𝑒 (𝐴𝑟𝑔𝐿𝑖𝑠𝑡)

𝐿𝑜𝑎𝑑 := load 𝑇𝑦𝑝𝑒 = 𝑉𝑎𝑙𝑢𝑒

𝑈𝑝𝑑𝑎𝑡𝑒 := update 𝐼𝑛𝑑𝑒𝑥 [𝐹𝑖𝑒𝑙𝑑𝑠] = 𝐼𝑛𝑑𝑒𝑥

𝐴𝑠𝑠𝑒𝑟𝑡 := assert 𝑅𝑢𝑙𝑒

𝐹𝑖𝑙𝑒 := file write | file read 𝐼𝑛𝑑𝑒𝑥

𝐴𝑟𝑔𝐿𝑖𝑠𝑡 := 𝐼𝑛𝑑𝑒𝑥 | 𝐼𝑛𝑑𝑒𝑥,𝐴𝑟𝑔𝐿𝑖𝑠𝑡

𝑅𝑢𝑙𝑒 := non_null(𝐼𝑛𝑑𝑒𝑥) | eq(𝐼𝑛𝑑𝑒𝑥, 𝐼𝑛𝑑𝑒𝑥)

𝐼𝑛𝑑𝑒𝑥 := <numeric literal>

𝑁𝑎𝑚𝑒 := function name

𝑇𝑦𝑝𝑒 := type name of value

𝑉𝑎𝑙𝑢𝑒 := serialized value

𝐹𝑖𝑒𝑙𝑑𝑠 := path to locate a value inside struct or array

Figure 6: Grammar of Hopper’s DSL.

415 struct vpx_codec_ctx *ctx_hEP_1;// = &ctx_hEP_0;

416

417 // Dependence family #3 Definition

418 dep_3 = (struct vpx_codec_ctx *)ctx_hEP_1;

419 // initializing argument 'cfg_Ywn'

420 struct vpx_codec_dec_cfg cfg_Ywn_0;

421

422 *(uint32_t*)((uint64_t)&cfg_Ywn_0 + 0) = (E.eat1() & 0x3f)

+ 1; /* UNKNOWN */

423 *(uint32_t*)((uint64_t)&cfg_Ywn_0 + 4) = 0; /* UNKNOWN */

424 *(uint32_t*)((uint64_t)&cfg_Ywn_0 + 8) = 0; /* UNKNOWN */

425 struct vpx_codec_dec_cfg *cfg_Ywn_1 = &cfg_Ywn_0;

426

427 if (vpx_codec_dec_init_ver(dep_3, dep_6, cfg_Ywn_1, 0, 12))

{ /* vertex #4 */

428 return 0;

429 }

Figure 7: An example of misuse of consumer code in libvpx’s

fuzz driver [1] generated by FuzzGen.

pointer, which is then used directly as an argument in the call on

Line 427. In addition, upon examining the fuzz driver for libaom that

was released by the authors of FuzzGen, we found an incompatibil-

ity with the newest version of libaom. Specifically, the initialization

of aom_codec_dec_cfg objects in the driver overwrites 17-20 bytes

despite the size of the object being reduced to only 16 bytes.

The schema [2] for sqlite3 is written by the authors of GraphFuzz.

When the program fails to invoke sqlite3_prepare_v2 on line 72,

it calls close_all to release all sqlite3* pointers, but other types

of allocated resources, such as sqlite3_str* pointers may still be

leaked. Moreover, the schema does not verify whether sqlite3* is

initialized successfully or not in new_database.

15

	Abstract
	1 Introduction
	2 Background
	2.1 Library Fuzzing
	2.2 Fuzzing Interpreters

	3 Design
	3.1 Overview
	3.2 DSL and Input Interpretation
	3.3 Grammar-aware Input Fuzzing
	3.4 Constraint Learning

	4 Implementation
	4.1 Fuzzer
	4.2 Interpreter

	5 Evaluation
	5.1 RQ1: How effective is Hopper in libraries?
	5.2 RQ2: Can Hopper correctly infer API constraints?
	5.3 RQ3: Can Hopper generate programs that are comparable with MCFs?

	6 Discussions
	6.1 Multiple-dimensional Search Space in Input Generation
	6.2 Compatibility with C++ Libraries
	6.3 False Positive Crashes

	7 Related work
	7.1 API Fuzzing
	7.2 Grammar-aware Fuzzing

	8 Conclusion
	A Appendix
	A.1 DSL Grammar
	A.2 Examples of inaccurate fuzz drivers

