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Abstract—Supervised deep learning is a subset of machine
learning (ML) that allows for the development of phenomeno-
logical models based on measured observations through layered
artificial neurons. A convolutional neural network (CNN) is
one model typically used in image recognition that allows
for classifying behavior in discrete sets or enabling regression
analysis. This work demonstrates a one-dimensional CNN to
analyze irradiated commercial off-the-shelf (COTS) electronics.
COTS microcontroller units (MCU) were irradiated with 10 keV
X-rays, and CNN models were trained on the resulting internally
generated noise signatures from the clock module. As a result,
the MCUs are accurately classified as either fresh or dosed, and
the total ionizing dose (TID) is predictable through a regression
model. This approach allows for part dosimetry and in situ device
health monitoring without additional components.

Index Terms—Convolutional Neural Network, Machine Learn-
ing, Radiation Effects, Total Ionizing Dose, Regression, Classifi-
cation, Complex Digital Device.

I. INTRODUCTION

HE continuous increase in complexity of microelectron-

ics allows for more efficient use of silicon area and
performance increases. In recent years, scaling limitations
have been overcome through multi-component systems-on-
chip (SoC), multi-die systems-in-package (SiP), heterogeneous
integration (HI) schemes, and three-dimensional integrated
circuits (3DIC) solutions. Moreover, these complex ICs are
becoming more interconnected. For example, a rising num-
ber of spacecraft are being launched due to the increased
commercialization of space that use system-level mitigation
methodologies to ensure network reliability and radiation
tolerance. Analysis and isolation of radiation vulnerabilities in
complex systems (network level or IC level) are complicated
due to the many inaccessible internal components. Radiation-
hardening-by-design (RHBD) is often not feasible for these
complex commercial-grade components. Automated system
health telemetry that includes reliability and radiation response
metrics can provide helpful guidance for assessing risk and
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ensuring spacecraft survivability; however, radiation teleme-
try generally requires additional components for conducting
dosimetry and only documents radiation environments, not
component responses. Real-time knowledge of system radi-
ation response health can aid in diagnosing and alleviating
possible issues.

This paper describes the use of machine learning (ML)
to identify total ionizing dose (TID) exposure in a mixed-
signal commercial-off-the-shelf (COTS) processor without the
need for external components and using only signals emitted
from the processor. Experiments were conducted on several
microcontroller units (MCU) manufactured by Texas Instru-
ments, irradiating the devices while biased in different low-
power modes (LPM) or idle sleep states. Clock output signals
were measured following irradiation in three different LPMs
to investigate how internal circuit biasing affects TID impact.
A convolutional neural network (CNN), trained purely on the
internally generated noise within the clock signals, was used
to develop models for binary classification of dosed versus
non-dosed devices and regression to predict the TID value.

II. BACKGROUND
A. Total lonizing Dose Effects in Systems-on-Chip

TID effects result from charge trapping in oxide insula-
tors and oxide-semiconductor interfaces. Due to their lower
mobility, holes are trapped more often than electrons and
can cause undesired responses in ICs. For example, transistor
shifts in threshold voltages, increases in leakage current,
and degradation in transconductance can result in increased
power, degradation in clock frequencies, decreased perfor-
mance, and long-term damage to semiconductor oxide layers,
with inevitable failure [1]. Fig. 1 displays an example of the
increase in average current consumption of one of the several
clock modules within a TI MSP430FR6989 MCU following
irradiation. In this case, the MODOSC clock module was
enabled post-irradiation, and the MCU irradiated in low-power
mode 0 (LPM 0), see Table I, which disabled the CPU and
the primary clock channel (MCLK) while keeping the clock
sources active. Negligible changes in DC current consumption
are visible until 30 krad(SiOs) when the current increases until
device failure at approximately 60 krad(SiO-).

B. State of the Art SoC Testing and Dosimetry

For transistor-level TID testing, experimentalists must de-
termine the worst-case bias condition for irradiation, which is
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TABLE I: Power Mode Options in the MSP430

Power Mode

Description

Active
LPM 0
LPM 1
LPM 2
LPM 3
LPM 4
LPM 3.5/4.5

CPU is active, and clocks are enabled
The primary clock signal (MCLK) and CPU are disabled
The DCO clock source and DC generator are disabled
The secondary clock (SMCLK) signal is disabled, and DC generator remains active
SMCLK and DC generator are disabled
Low frequency clock (ACLK) signal and all clock sources are disabled
Power management module is disabled

*Each LPM inherits the rules of the lower LPM modes unless otherwise noted (e.g. LPM 1 disables the MCLK

signal, CPU, and the DCO clock source).
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Fig. 1: Example measurement of average current vs. TID for an
MSP430FR6989 running the MODOSC sub-circuit post-irradiation.
The device was biased in LPM 0 during irradiation.

most often the OFF state bias. However, determining a worst-
case response is problematic for SoCs and may involve in
situ irradiation. In this work, the MCUs were irradiated under
several low-power modes (LPM), described in Table I, which
turned off several internal modules and placed the device in
various states of “sleep” while being irradiated. The worst-
case bias condition depended on the internal component being
interrogated during the experiment.

While guidelines for single-event effects (SEE) testing of
SoCs have emerged in recent years [2], [3], the current
state-of-the-art methods for TID testing on SoC are mainly
limited to pass-fail testing due to the inherent complexity
and inaccessible terminals. Often, devices are irradiated until
communication between the MCU and the host computer
fails, denoted as the TID limitation [4]. TID testing of SoCs
generally involves irradiating the DUTs, pausing at discrete
dose steps, and characterizing the DUT performance [1],
[4]-[6]. Characterization may involve many electrical tests
or simply the monitoring of power consumption to provide
information regarding the overall TID limit of the device.
Additional information obtained during TID testing beyond
the overall dose limitation may aid in understanding specific
component vulnerabilities, allowing designers to program the
devices based on specific mission constraints.

Moreover, once a part has been deployed in a system,
the TID can be measured using specialized external hard-

ware, such as a dosimeter. Improvement and innovation of
dosimetry techniques is a large and continuing area of re-
search. Current techniques include using RADFETS, floating-
gate MOSFETS, and highly specialized on-chip circuitry such
as a Photocurrent-controlled Oscillatory (PCO) [7]-[9]. Here,
utilizing ML, TID is accurately predicted using only the clock
signal noise of a microcontroller.

C. Convolutional Neural Networks

Recent works have demonstrated the feasibility of super-
vised machine learning (ML) strategies for the identification
of TID degradation [10] and single-event transients (SET)
[11], [12] through the use of k-nearest neighbors (KNN)
algorithms. These papers analyze data from irradiated CMOS
phase-locked loop circuits; however, the KNN classifiers were
limited to only identifying the presence of radiation degra-
dation through a binary classifier or identifying discrete TID
levels through multi-bin classifiers. Additionally, KNN models
require storing all training data and are difficult to scale.
Consequently, it can be computationally expensive to evaluate
new data with KNN. This effort uses a supervised deep
learning technique that leverages artificial neural networks to
develop a model for analyzing TID data through a binary
classifier and a regression model for predicting a specific dose
level for an exposed part.

CNNs are a subset of ML and are deep learning algorithms
commonly used in image recognition applications due to
their ability to extract high-level features, although they can
also be used for one-dimensional data sets. CNNs can be
used to design classification and regression models to make
predictions with new measurements. Classification categorizes
observations into a finite number of discrete classes, while
regression outputs a continuous, non-restricted value.

A CNN works by sliding a kernel (filter) across a layer
output and performing matrix multiplication with the kernel
and each window to identify low-to-high-level features. This
process is similar to the statistical window analysis presented
in [11]. A pooling layer is then used to reduce the spatial
size of the layer output, which decreases computational cost.
These steps can be repeated as many times as needed to
extract higher-level features. The resulting features are then
flattened and fed into a fully-connected layer, which applies
variable weights to the output to increase or decrease the
significance of each output. Finally, a loss function is used to
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evaluate how well a model performs and to update the output
weights to improve accuracy. For example, classification is
obtained using a loss function such as CrossEntropy, while
regression is obtained using mean-squared error (MSE) as a
loss function. In addition, regression and classification models
use the rectified linear unit (ReLU) activation function.

ITII. CNN ARCHITECTURE
The CNN architecture used in this work for developing

classification and regression models is shown in Fig. 2. The
CNN consists of three convolutional layers, each followed by
a max-pooling layer except the final one. Each convolutional
layer uses twelve kernels to extract varying features, creating
twelve feature vectors. Following the last convolutional layer,
a flattening layer converts the resulting stack of feature vectors
into a single one-dimensional (1D) vector. The classification
architecture (seen at the top of Fig. 2) uses a Dense layer
and the SoftMax activation function to calculate the prediction
probabilities for each class. Here, a binary classifier (2 classes)
was used to determine if TID is less than 25 krad(SiOs,),
denoted as “Fresh,” or greater than 25 krad(SiO2), denoted
as “Dosed.” The regression architecture (seen at the bottom
of Fig. 2) feeds the output of the flattened layer into a Dense
layer containing one neuron. Each convolutional layer uses
L2 regularization, and dropout was added after flattening to
prevent over-fitting. The ML models were built in Visual-
Studio Code using the Python programming language.
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Fig. 2: Convolutional Neural Network (CNN) Architecture of the
classification (top) and regression (bottom) models.

IV. EXPERIMENTAL SETUP
A. Devices Under Test

The devices under test (DUT) were Texas Instrument’s (TIs)
MSP430FR6989 (MSP) mixed-signal microcontroller units.
Five DUTs were tested in LPMs 0, 2, and 4 to investigate

varied susceptibility to radiation effects. Two clock sources
were specifically interrogated: the programmable digitally-
controlled oscillator (DCO) and the fixed-frequency very-low-
frequency oscillator (VLO). TI’s EnergyTrace technology also
measured real-time current, energy, and power consumption.
The MSP was configured using the Code Composer Studio
(CCS) IDE in computer language C.

Protoboard

MSP430FR6989

Ethernet Hub

1
ACLK MCLK

0-SCOPE

Fig. 3: Block diagram of the measurement setup for the Xray
irradiation of the MSP430FR6989.

The five MSP devices were tested at Vanderbilt University
using the 10 keV ARACOR X-ray source. All MSPs were
biased at 3.3 V' during irradiation and measurement. However,
several LPMs were used to turn off peripheral circuits within
the MSP during irradiation. Three of the DUTs were biased
in LPM 4 (lowest power consumption), whereas the other two
were biased in LPM 0 (highest power consumption) and LPM
2 (median power consumption). All DUT packages were de-
lidded to expose the underlying die. In addition, the DUTSs
were irradiated at 5.44 krad(SiO;)/min at dose increments
of 2.72 krad (SiO2) or 5.44 krad (SiOs). Testing continued
until a maximum dose of 60 krad (SiOs) or when the DUT
malfunctioned. At each incremental dose point, the DUT was
biased in the active power mode (all peripheral modules biased
on), and measurements of the current consumption, clock
frequencies, and analog-to-digital (ADC) performance were
conducted.

Two clock sources within the MSP’s clock system (CS)
module were activated using C-code in the MSP’s integrated
development environment (IDE). The VLO clock source (mea-
sured to be approximately 8 kHz for each of the five DUTs)
was activated via the auxiliary clock (ACLK) signal path, and
the programmable DCO (set to 16 MHz) was activated with
the master clock signal path (MCLK). Here, results are limited
to the output data associated with the ACLK signal path and
the VLO clock source. In addition, a Tektronix DPO7104
oscilloscope (O-Scope) was programmed using Python to
record the waveform of each clock.

The MSP was attached to a custom test board that interfaced
the DUT with the O-Scope, a digital to analog converter
(DAC), and the host computer. The connections to the O-Scope
were for measurement of the clock signals. The DAC enabled
testing of the on-chip analog-to-digital converter (ADC), and
the host computer was used to program the MCU and receive
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data. The O-scope was programmed using the Python com-
puter language and Jupyter Notebook, a web-based computing
platform, to capture at least 100 periods of the clock signal
waveform at each trigger initiated by the host machine; data
were saved to a CSV file for post-processing and training of
the CNN models.

The DUT was programmed using the C programming
language to configure the DUT in the LPMs or activate and
run a benchmark program. A benchmark program invoking the
VLO clock source on the ACLK line was used in this case.
The DAC was managed by a Raspberry Pi (Pi) to measure and
analyze the MSP’s ADC. In this case, the digital output of the
ADC can be converted to an analog signal for processing.

The clock connections were made using coaxial cables and
BNC connectors. Finally, the Pi, host computer, and the O-
Scope were connected to an ethernet hub to communicate.
After the modules were activated and the measurements con-
ducted, the EnergyTrace profiles were saved. Fig. 3 displays
a schematic illustrating all connections during testing.

B. CNN Model Training

Several CNN models were developed, including one trained
on the raw waveforms; however, the CNN classifier resulted in
poor performance when the primary clock frequency was not
removed. Trade-offs in accuracy and training time of using dif-
ferent signal characteristics may be of interest in future works.
The standardized noise signal was chosen to train the models
due to the well-understood relationship between transistor-
level noise and radiation. Increases in charge at oxide-silicon
interface trap sites following radiation exposure can result in
increased capture and emission of carriers with increasing TID,
leading to decreased noise figures and increased 1/f noise [13].

The CNN models were trained with data measured on the
ACLK signal line, removing the primary frequency component
of approximately 8 kHz from the signal before passing the
data to the model. The noise signal of ACLK was obtained by
standardizing the data set using the z-score according to (1)
where X is the observed at time step ¢, u is the signal mean,
and o is the signal standard deviation. The absolute value of
the clock data was taken before standardization so that the
mean could be subtracted from each value regardless of the
high or low state of the clock. Fig. 4 illustrates an example
measurement of the VLO clock via the ACLK signal line and
the resulting noise signal extracted via (1).
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At each dose increment, 50,000 clock cycles were mea-
sured. Windows of 1,000 cycles each were randomly sampled
from the original signal to increase the number of CNN
inputs. The windows were randomly segmented into training,
validation, and testing sets to prevent overfitting based on time
dependencies; 60% of these data were used to train the CNN
models, whereas 20% of these data were used to check the
accuracy of the models. The final 20% of the measurements
were used to test the ability of the models to evaluate new,
unseen data. Three separate models were developed for the
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Fig. 4: Example measurement of the VLO clock on the ACLK signal
line (top). Also shown is the extracted noise signal (bottom) used to
train the CNN models.
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DUTs biased in LPM modes 0, 2, and 4 during irradiation.
The CNNs were trained with a batch size of 2,048 time
steps and for up to 80 and 40 epochs for the binary classifier
and regression models, respectively. Higher accuracy may be
obtained through experimentation of batch size and the number
of epochs.

V. RESULTS
A. Binary Classification Model

Classification results are presented in confusion matrices, as
shown in Table II. The confusion matrices show the number
of correct dosed predictions (true positive or TP) and correct
fresh (un-irradiated) predictions (true negative or TN). The
matrix also displays the number of incorrect dosed predictions
(false positive or FP) and incorrect fresh predictions (false
negative or FN). Positive predictive value (PPV), given by (1),
represents how well the model can predict a device is dosed,
and negative predictive value (NPV), given by (2), represents
how well the model predicts a new (fresh) device.

TP
PPV = ——— 2
v TP+ FP @
TN
N ==
rv TN+ FN ®

TABLE II: Confusion Matrix Legend for Binary Classifier

Power Mode Actual Class
Dosed | Fresh
Predicted Class | Dosed TP FP PPV
Fresh FN TN NPV

The binary classification model assigns data to one of two
categories representing a radiation dose of 0-25 krad(SiOs)
(i.e.,fresh) or 25-60 krad(SiOs) (i.e.,dosed). The CNN archi-
tecture is identical to that used for regression; however, a
softmax activation function assigns a probability to the two
classes. The CNN model is trained using back-propagation to
optimize binary cross entropy loss. The model was trained with
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a batch size of 2048 and 80 epochs. The classification needs
approximately twice as many epochs as the regression model
to converge to a low loss. The increase in training (train) and
validation (val) accuracy is shown in Fig. 5 for DUTs biased in
LPM 0, 2, and 4. The model trained from data when the MCU
was biased in LPM 0, which keeps all clock sources active and
disables the MCLK signal line and the CPU, converges to an
accuracy of approximately 80% after 40 epochs.

Similarly, the devices irradiated under LPM 2 converge
at approximately 40 epochs with higher accuracy. LPMs 0
and 2 maintain the VLO functionality; thus, the DUTs were
biased ON during irradiation. However, the model trained from
data when the DUT was biased in LPM 4 showed superior
performance, the training and validation accuracy converging
to approximately 90% accuracy after 30 epochs. This quicker
convergence is likely due to the monotonic shifts with TID
while the VLO module was biased OFF during irradiation (i.e.,
less competing effects). The confusion matrices are illustrated
in Table III, and the total accuracy of the classifier is shown in
Table IV, indicating 100% PPV for dosed devices irradiated
under LPM 4, with a total accuracy of approximately 90%.

TABLE III: Classification Results for DUTs Biased in LPMs
0, 2, and 4
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LPM 0O Actual Class
Dosed | Fresh
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Fresh 28 290 91.2%
LPM 2 Actual Class
Dosed | Fresh
Predicted Class | Dosed 431 17 96.2%
Fresh 39 377 90.6%
LPM 4 Actual Class
Dosed | Fresh
Predicted Class [ Dosed 383 0 100%
Fresh 87 394 81.9%

TABLE IV: Classification Accuracy for LPMs 0, 2, and 4

Power Mode  Accuracy (%) (80 epochs)
LPM 0 84.7
LPM 2 93.5
LPM 4 89.9

B. Regression Model

The regression model was designed to predict the TID in
krad(SiO3) based on the noise, or standardized clock output,
measured on the ACLK signal line. The CNN model was
trained using back-propagation using a kernel size equal to
the length of the time sample (at least 100 clock periods).
The mean-squared error (MSE) was used as the loss function.
The MSE measures how close a model’s predictions are to the
regression line. As the error is squared, the effect of negative
values is removed, and the weights of significant errors are
magnified. A lower MSE value equates to a better model.
Fig. 6 shows the model reducing the training and validation
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Fig. 5: Training (train) and validation (val) accuracy for up to 80
epochs for (a) LPM 0, (b) LPM 2, and (c) LPM 4.

MSE as the model learns in each epoch, meaning the model’s
predictions are becoming more accurate. The model performs
best in the lowest power mode (LPM 4) and worst in the
highest power mode (LPM 0).

The regression model’s performance after being irradiated in
LPM 4 is shown below in Fig. 7. The box plot statistics for the
model’s predictions are shown at each incremental dose point
where data was collected. The dotted line represents the actual
dose of the part. It can be seen that the predictions coarsely
track the expected dose. Furthermore, information regarding
how to best determine classifier bins can be gained using this
plot. For example, the binary classifier presented here classifies
a part with a dose below 25 krad(SiO2) as fresh and above
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25 krad(SiOs3) as dosed. However, it is seen that from 20
to 30 krad(SiOs), the model’s predictions stay relatively the
same. Moreover, according to Fig. 1, the MCU performance
remains relatively constant with dose until rapid degradation
above 30 krad(SiO»).

A simple solution to improve the accuracy of the binary
classifier would be to shift the classification threshold from 25
to 30 krad(SiO2), where a significant increase in the model’s
predictions occurs. Increasing the number of bins is another
option that may lead to higher accuracy. The regression model
is helpful for loosely tracking TID and understanding the
device’s response, which can help create a high-accuracy
classifier.
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Fig. 6: Mean-squared error (MSE) training (train) and validation
(val) data versus epoch for the TID regression models for DUTs
biased in (a) LPM 0, (b) LPM 2, and (c) LPM 4.
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VI. CONCLUSIONS

This paper describes two methodologies for using machine
learning (ML) to predict an SoC’s total ionizing dose (TID).
First, a binary classifier based on a convolutional neural
network (CNN) was used to classify devices as either being
new/unirradiated or dosed over 25 krad(Si)O2). Second, CNN-
based regression was used to build predictive TID models by
minimizing the mean-squared error (MSE).

Data were collected from X-ray exposures of TI
MSP430FR6989 mixed-signal microcontroller units (MCU)
under irradiation in various sleep states or low-power modes.
The models were trained with the noise signatures obtained
from the output of the processor clock signals. The regression
model effectively predicts the TID value with an MSE as low
as 0.14. The classification model results in accuracy up to
93.5% with positive predictive values (PPV) as high as 100%.
Additionally, the models were sensitive to DUT bias under
irradiation, performing worse when modules were active.

The regression and classification models demonstrate the
ability to use ML to analyze TID. The ML model can also be
easily trained on other data such as clock frequency, analog-to-
digital (ADC) converter output, power consumption, or other
electrical characteristics, and thus varying degrees of accuracy
may be obtained in the future. Once the ML models are trained
with prior test data, it is possible to deploy them on FPGA
devices included on critical missions to perform real-time
analysis of TID. A similar method may also be used to predict
displacement damage. Real-time knowledge of system health
concerning TID is a metric that can be utilized to diagnose
and address issues while a mission is active.
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