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Abstract. We prove that minimizers and almost minimizers of one-phase free boundary en-
ergy functionals in periodic media satisfy large scale (1) Lipschitz estimates (2) free bound-
ary flat implies Lipschitz estimates. The proofs are based on techniques introduced by De
Silva and Savin [17] for almost minimizers in homogeneous media.
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1. INTRODUCTION
We consider minimizers of the one phase free boundary energy functional in a domain
UcR?:
(1.1) J(u,U) :/ Vu-ax)Vu+Q(x)*1 50 dx.
U
. d d sym d T
Here the heterogeneous media Q : R — (0,00) and a : R — M i d(IR) are Z“-periodic

measurable functions, sufficiently regular (to be specified), satisfying the ellipticity as-
sumptions, for some A > 1,

(1.2) A 'I<a(x)<AI and A7 < Q(x) < A.
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Consider the domain U to be very large compared to the unit period scale associated with
the coefficients.

The goal of this paper is to prove that almost minimizers of the energy functional J
satisfy a Lipschitz estimate and a large scale “flat implies Lipschitz" estimate for the free
boundary d{u > 0}. The results are also new for minimizers, but the generality of almost
minimizers is useful for applications. In a forthcoming paper [19] we will apply these reg-
ularity results to obtain quantitative estimates for homogenization rate of a shape opti-
mization problem.

This follows the now classical Avellaneda and Lin [7] idea of inheriting the C1'* regularity
iteration from a homogenized problem. The proof follows the recent quantitative strategy
forlarge scale regularity introduced by Armstrong and Smart [6]. In terms of free boundary
regularity theory we are using the very powerful ideas introduced by De Silva and Savin in
[17].

Local minimizers of satisfy the Euler-Lagrange equation

{—V-(a(x)Vu):O in{u>0nU

(1.3) ) )
n-ax)n|Vul=Q(x)* ond{u>0nU

which is called a one-phase Bernoulli-type free boundary problem. We will study global
(almost) energy minimizers which satisfy the additional property that

J(u,By) < (1+ (r/Ry)")J (v, B,)

forany B,cUand ve u+ H& (By). Here Ry > 1 introduces an additional length scale to
the problem associated with the almost minimality property, it is a slow scale compared
to the unit scale oscillations of the coefficients. This includes the case of minimizers when
Ry = +o0.

In the large scale limit there is I'-convergence to an effective energy functional

Jo(w, U) = / Vu-avu+{(Q*) 1 dx.
U

Here (-) is the average over a period cell, and a is the effective matrix from classical diver-
gence form elliptic homogenization theory. The Euler-Lagrange equation associated with
critical points of this functional is the classical Bernoulli-type free boundary problem

(1.4 {—V-(aVu):O in{u>0nU

n-an|Vul> =(Q? ono{u>0nU.

The free boundary problem has a well developed regularity theory for minimizers
and more general solutions of the Euler-Lagrange equation. In higher dimensions the free
boundary may have singular points, but if the free boundary is sufficiently flat in some
ball B, then it will be smooth in B;/;. The theory of almost minimizers of Jy has been
developed more recently [17, 14, 15]. We will show that this type of flat implies smooth
result for almost minimizers of the effective energy Jj is inherited by almost minimizers of
the heterogeneous energy J.
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The structure of the paper follows the Armstrong and Smart [6] quantitative approach
to large scale regularity. First we prove a suboptimal quantitative homogenization result,
then we employ the quantitative homogenization result within a C!'® iteration to achieve
a Lipschitz estimate of the free boundary. In order to establish the suboptimal quantitative
homogenization result we need to prove some initial regularity of the free boundary.

In this direction, our first main result is a large scale Lipschitz estimate for almost mini-
mizers of /. There are many proofs of the Lipschitz estimate for Bernoulli-type problems,
see the book of Velichkov [29]. Despite some effort the only proof which we were able to
adapt to homogenization setting, even for minimizers, is the recent proof of De Silva and
Savin [17]. Our argument closely follows theirs with some inputs from homogenization
theory.

Theorem 1.1 (Large scale Lipschitz estimate). Suppose that a and Q satisfy , aisZ%-
periodic, 1 < R < c(d, A, B)Ry, and u € H'(Br(0)) satisfies, forall0<r <R,

J(u, B+ (0)) < (1 + (r/Ro)P) J (v, B, (0))
wherev e u+ H(} (B;) is the a-harmonic replacement. Then forall1 <r <R
IVl g2 g,y < Cld, A + IVl g2 (5,,)-
If, additionally, a € C*Y then
IVu(0)| < Cd, A, y, [alcor) X+ IVl 2 (g,,)-

Note that Q does not need to be periodic for this result, the upper and lower bounds are
enough. Periodicity of a is of course important, interior Lipschitz estimates do not hold
for general bounded elliptic coefficient fields.

The other basic regularity estimates of free boundary theory require the Lipschitz esti-
mate and then follow by natural adaptations of established arguments: non-degeneracy
(Lemma, free boundary perimeter (Lemma and Hausdorff dimension estimates
(Lemmal4.6). We also give a proof of inner and outer density estimates in Section[A.4} this
is not directly needed for our main result but we include it for usefulness in applications.

With these important intermediate results in hand, we establish our (suboptimal) quan-
titative homogenization result in Section |5} We show that a regularization % of u in the do-
main {u > 0} N B, is close to minimizing Jy with the following type of minimality condition

Jo(@, Br) < Jo(v, By) + C | (r/ Ro)? + r—“] |B,| forall veu+H.(B)).

Note that there are two error terms in this energy estimate, the first from the almost min-
imality property of u which is good for r < Ry, and the second from the homogenization
which is good for r > 1 (the periodicity scale). Importantly both terms are summable
over a geometric sequence of scales between 1 and Ry. This allows us to apply De Silva
and Savin’s [17] C1'¢ iteration for flat almost minimizers to obtain a flat implies Lipschitz
result:
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Theorem 1.2 (Flat free boundaries are (large scale) Lipschitz graphs). Assume that a and
Q satisfy (fLZl), both are 7% -periodic, and a is Lipschitz continuous. Suppose that u is an
(Ro, P)-almost minimizer in Br, 1 < R < c(d, A, B)Ry, and ||Vull;~pB,) < L. There is a con-
stant6o(d, A\, L, |IVallo) so that if

<Q2>1/2

(v-av)1’2 S 50

(x-v)+

) 1
inf sup — )u(x) -
veSa-1 xe By

then, forall y € 0{u >0} N Bgp and foralll <r <R

1
inf  sup — u(x)—ﬂ((x—y)-vh

G2
veSa1 xep,(y) T (v-av)

<C(d,\ L|Val ) [(r/R)aé() + r_w] .

And, as a consequence, 0{u > 0} N B> is within distance C(d, A, L, ||Vallw) of a 1-Lipschitz
graph.

Remark 1.3. A large scale flatness assumption is needed because even minimizers of Jo can
have singular free boundary points in higher dimensions [22].

Remark 1.4. Note that both results are new even for minimizers Ry = +oo. We consider the
more general case of almost minimizers because it adds only minor additional difficulties
and it is useful for applications.

Remark 1.5. We must point out that it is extremely important that we are considering en-
ergy minimizers or almost minimizers and not general local minimizers or critical points
(1.3). It is not true in general that solutions of (1.3), or even local energy minimizers of J,
converge to solutions of in the large scale limit (9,18, 20].

Remark 1.6. The matching of the periodicity lattices of a and Q is actually not important
at all. In fact the arguments easily extend to non-periodic Q with a quantitative estimate
on the convergence of the spatial averages

1 _
supsupl—d/ Q(y)2 dy- (QH|<CR™™@
x+[_£ L)d

X r= r
r=R 35

where the important feature of the Holder rate is that it is summable over any geometric se-
quence of scales. Sufficiently mixing stationary ergodic random fields Q where the previous
estimate holds without the supremum and with a random variable C(x) satisfying some tail
bounds should also be easy to fit into the arguments.

We also expect that analogous results hold for finite range dependence random fields a(x)
alal6]. The proofs are set up to be adaptable to this case but this is a more difficult extension
and there could be unforeseen challenges.

Remark 1.7. The result Theorem[1.2 implies a Liouville result for large scale flat minimizers
on the whole space. This is independently interesting. The Liouville result and related dis-
cussion can be found below in Section[6.1. In particular, related to the difficulty of obtaining
C1¢ estimates of the free boundary all the way down to the unit scale, see Remark

Remark 1.8. The large scale flatness assumption would typically be justified in an appli-
cation by proving an initial sub-optimal convergence rate to a regular limiting object. The
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result Theorem|1.2)then takes this large scale flatness and iterates it down to all scales above
the unit scale. There is C* improvement of flatness at intermediate scales which could be
useful in some cases, we did not include the statement here in the introduction but it can be
found below in Section|6

Remark 1.9. Generally it is preferable to remove microscopic regularity hypotheses on the
coefficient field, which are philosophically unrelated to large scale regularity. There are
some impediments to completely removing these assumptions in Theorem In Theo-
rem we use a € C%Y to obtain pointwise gradient bounds on u. The pointwise gradient
bounds are convenient, but could probably be replaced by the large scale gradient bound in
Theorem|1.1] for most of the elements in the proof of Theorem|1.2]

The key place where we do seem to need local regularity of u(x), and therefore of a(x), is in
the strong non-degeneracy estimate Lemmal4.3, Strong non-degeneracy can be proved from
weak non-degeneracy using a now standard Harnack chain type argument due to Caffarelli
[11] which needs to start from weak non-degeneracy in a, possibly, very small ball near the
free boundary, see also Remark[4.4 below.

Also in the course of proving strong non-degeneracy we use a standard Hopf Lemma bar-
rier construction in Lemma This is the only place that Lipschitz as opposed to C%Y
is used in order to write the equation in non-divergence form. Hopf Lemma does hold for
Hdlder continuous coefficients, see 3], so the Lipschitz assumption could possibly be relaxed
to just C®Y with more work.

1.1. Literature. The idea that elliptic problems in heterogeneous media could inherit reg-
ularity, up to a certain threshold, from their large scale effective limit was first introduced
by Avellaneda and Lin in a series of papers [7]. Often this kind of regularity theory can be
used to obtain optimal quantitative convergence estimates for the homogenization limit.
This idea was re-emphasized by Armstrong and Smart [6] who were able to adapt the Avel-
laneda and Lin idea for the first time in random media. The idea of [6] is to first obtain a
suboptimal quantitative homogenization result, which can then be used within the C1'¢
iteration as long as the quantitative rate is summable over geometric sequences of scales.
It is exactly this idea which we are applying in the context of free boundary problems.
The regularity theory for minimizers of J, was first significantly developed by Alt and
Caffarelli [2]. The topic has been extremely popular since then and we do not make an
attempt at a thorough recounting. We will just point out the most relevant, which is the
recent development of regularity theory of almost minimizers. A series of papers by (vari-
ous subsets of) the authors David, Engelstein, Smit Vega Garcia, and Toro [15,[14},13] have
initiated and made major developments in the study of almost minimizers of the more
general two-phase version of the energy /. David, Engelstein, Smit Vega Garcia and Toro
[13] (two-phase) and, independently, Trey [27] (vector-valued) have proved a Lipschitz es-
timate for almost minimizers of variable coefficient Bernoulli-type problems. De Silva and
Savin [17] gave another account of the regularity theory for almost minimizers of the one
phase problem, and, as mentioned before, we will be following their ideas. Note that all
these works are considering small scale regularity, while we are considering large scales.
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In other words one can consider our work to be on oscillatory coefficients a(x/¢e) which
do not satisfy a uniform in € > 0 Holder regularity hypothesis.

There are very few works on the large scale regularity theory of free boundary problems
in heterogeneous media. The only other result we are aware of is by Aleksanyan and Ku-
usi [1]. They obtain a result analogous to ours for a version of the obstacle problem in
random media. A major difficulty in studying the Bernoulli free boundary problem, as far
as we understand it, is that the Euler-Lagrange equation cannot be enough informa-
tion by itself to get regularity. This is already reflected in techniques for the homogeneous
problem which variously use the additional properties of being a minimizer, almost mini-
mizer, maximal subsolution, or minimal supersolution. As established in [9,123,20,[18] the
large scale limit of minimal supersolutions, maximal subsolutions, and minimizers are all
rather different Bernoulli free boundary problems and thus regularity theory techniques
would need to be adapted to each case. In fact the regularity theory for the homogenized
problem for minimal supersolutions and maximal subsolutions is not understood yet [18].
Thus we were led to consider first the case of minimizers and almost minimizers as we do
in this paper. In this case the large scale effective problem is a standard constant coeffi-
cient minimization problem and the regularity theory is well understood.

1.2. Acknowledgments. The author was supported by the NSF grant DMS-2009286. The
author would like to thank Farhan Abedin for extensive and motivating discussions on the
topics of the paper.

2. BACKGROUND RESULTS

This section introduces notations and conventions which will be used in the paper and
review some well known results from the literature about divergence form elliptic homog-
enization.

2.1. Assumptions and conventions. As described in the introduction we will study en-
ergy functionals of the following type

J(u,U) =/ Vu-a(x)Vu+ Q(x)*1ysq dx.
U

We make precise the assumptions on the coefficients which will be in place throughout
the paper, unless otherwise specified in some few locations.

(Q1) The coefficient Q : R? — (0,00) is assumed to satisfy the ellipticity condition

A l<Q) <A
(Q2) The coefficient Q is assumed to be Z%-periodic and satisfy the normalization con-

dition
Q% = / Q) dx=1
(0,112

(al) The coefficients a: R? — M (R) are Z?-periodic and satisfy the ellipticity bounds

A'T<a(x) <Al
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(a2) The coefficient field a: R? — M"" (R) is Lipschitz.

See Remark|1.9above for comments about the role of the microscopic regularity Assump-

tion

e Constants C and c in the text below which depend at most on d, A, 3, |Val« are
called universal. Such constants may change meaning from line to line without
mention. If we intend to fix the value of such a universal constant for a segment of
the argument we may denote it as ¢y, Cy, c; etc.

Notations:

o Balls are denoted B, (if the center does not need denotation) or B, (x). Boxes are
denoted
O, = [-r/2,r/2)% and O,(x) = x+0,.
o Lebesgue measure of a measurable set U is denoted |U|. This notation may also be
used for lower dimensional measures if the set is obviously a particular Hausdorff
dimension, i.e. |0B;| is the surface area of the sphere of radius r.

e Averaged integrals
1
dx=— dx
fra=wil s

1
=(— p Lp
£l = G /U IfIP dx)t'P.

 Averaged L” norms

2.2. Divergence form elliptic equations with periodic coefficients. We consider elliptic
energy functionals of the type

E(u,U) = / Vu-a(x)Vu dx
U

evaluated on a domain U of R,
Given g € WP (U) for some p = 2 we can consider the Dirichlet problem

min{E(u, U): ue g+ Hy (U)}
with the associated Euler-Lagrange PDE

-V-(ax)Vu) =0 inU
2.1)
u=g onoU

all interpreted in the appropriate weak sense.

We introduce the correctors ), which are the unique global 7% periodic and mean zero
solutions of the problem

~V-(a(x)(g+Vyy) =0 in R

existing for each g € R%. It follows from the previous properties that X4 depends linearly
onge R4
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We make a few notes about corrector bounds which will be useful. By multiplying the
corrector equation by g and integrating over a unit period cell,
||V)(q||Lz([0y1)d) < Azlql

By Poincaré and mean zero also

”Xq ”LZ([O,l)d) < Clq|

and using periodicity we can also conclude that forall r > 1

2.2) ||v7(q||]:2(3r) + ||7(q||]:2(3r) < Clql

for a universal C = 1. By standard elliptic regularity theory (2.2) can be upgraded to an L™
estimate if we assume that a € C%7, the new constant C will also depend on y and [a] coy.
The homogenized matrix is defined

2.3) aij = ((ei + Ve, (X)alx)(ej + Vye, ()

where e; are the standard basis vectors. We define the homogenized energy functional
Ey(u,U) = / Vu-aVudx
U

Given these definitions the following convergence result is classical. See [6,/4] for a proof
in the more difficult context of random media.

Theorem 2.1 (Homogenized replacement in balls). Supposer =1, g € WYP(B,) for some
p > 2, and u and u respectively minimize E and Ey over H& (By)+g. Then therearea € (0,1)
and C = 1 depending on d, A\, and p so that

1 _
|, By) ~ Eo(ug, Bp)| + — llu =tz < CIVE NGy 7~ 1Br

This result does hold in the more general class of Lipschitz domains, and that assump-
tion can be pushed a bit further, but we will not use that generality in our paper. We will
use a slightly different homogenization result in the positivity set {u > 0} which takes ad-
vantage of the a-priori Lipschitz bound from Section 3} see Section[5.1]for that statement
and more discussion.

From an initial quantitative homogenization result one can also prove a version of el-
liptic regularity for a-harmonic functions. We will make use of the following facts.

Theorem 2.2 (Interior regularity). (1) (Lipschitz estimate [7, Lemma 16]) If u is a-harmonic
in By then

Vil ros,,,) < 7|| Ul o8,
where the constant C is universal.

2) (CY“ estimate [7, Lemma 15]) If u is a-harmonic in By then for anyro <r <R

r
sup|u(x) —(A+q-x+xq4(x)| < C(E)H“IIuIILz(BR)
B, -
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for some q and A depending on r with |Al +rlq| < C”””LZ(BR)- And, since A+q-x+ x4 is
a-harmonic,

r 1
IV =G+ Vg, < C(" Zhul -

An analogous C!! estimate is also true, the general theory in [4] explains this, but the
statements there are for random media and in a less convenient form for our purposes.

3. LIPSCHITZ ESTIMATE

In this section we prove the Lipschitz estimate Theorem for almost minimizers of
energy functionals of the form

J(u, U) :/ a(xX)Vu-Vu+Q(x)*1yso dx.
U

In this section a(x) will be Z%-periodic, and a and Q will satisfy the ellipticity bounds
i.e. we are under Assumption[(al) and Assumption We do not need to assume any
further structural assumptions (e.g. periodicity, regularity) on Q at this stage.

A competitor u € H!(U) is called a (Ry, 8)-almost minimizer in a domain U if, for any
B,c U, and any v € u+ H)(B,)

(3.1) J(u,By) < (1+(r/Ry)P)J (v, B,).

Remark 3.1. As mentioned in the statement of Theorem/[1.1} for the purposes of the Lipschitz
estimate we only need the almost minimizing property to hold for the a-harmonic replace-
ment. That fact is convenient for making translations between slightly different notions of
almost minimality.

We also remark that the proofs go through with almost no change with an additional
additive term: for any B, c U, and any v € u+ H} (B;)

(3.2) J(u, By) < 1+ (r/Ry)P)J (v, By) + (r/ Ry)P| B, .

We follow the approach of De Silva and Savin [17] which proceeds in three steps:

o Step 1 (Dichotomy): if an almost minimizer u has large L?-averaged slope in a ball
B, then either the L? averaged slope decreases by half in a smaller ball By or uis
close to a corrected linear a-harmonic function in B,

« Step 2 (Interior-like improvement): In the second case of the previous dichotomy
u has interior C1%-like improvement down to the unit scale.

« Step 3 (Iteration): Iterating the dichotomy either case results in a Lipschitz bound.

The main point for us is to use the correctors and the Avellaneda-Lin [7] interior estimates
Theorem [2.2]in place of the corresponding results for homogeneous problems. Although
this sounds rather straightforward, we were unable to make such an idea succeed in any of
the other standard proofs of the Lipschitz estimate from the literature, see [29] for a survey
of such methods.

3.1. Step 1: Dichotomy.
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Lemma 3.2. Letuc H'(B,) and suppose that
J(u,B;) < (1 +0)](v,B,) forall veu+ Hy(B,).

Leti = 0 > 0 there exist constantsn, M and o (depending on 6 and universal constants) so
thatifo <og,nr =1, and

then the following dichotomy holds: either

1
”vu”LZ(Bm) < EHVUHLZ(BH
or
Vu—(q+ v){q(x)) ||L2(qu) < 5”V””L2(Br)
with some q € R" satisfying
Co IVull 25, < lql < CollVull 25,

with a constant Cy = 1 universal (not depending on 6).

Proof. 1. Let v be the a-harmonic replacement of « in B;. Then
/ ax)Vu-v)-Viu—-v)dx<J(u,B;)+ / a(x)Vv-Vv—-2a(x)Vu-Vv dx.
B, B,
Using the minimizing property of u and ellipticity

AHVUu=VulT, <1 +0)] (v, By) +/ a(x)Vv-Vv-2a(x)Vu-Vv dx.
r Br

Then combining the |Vv|? terms on the right
A—1||Vu—w||§2(3r)sa||Vv||§2(Br)+A|B,|+/B 2a(x)Vv-V(v—u) dx.

The last term is 0 because v is a-harmonic so

IVu—Vo|? < Col|lVv|%, . +C<C(o|Vul

L*(By) L*(By) D.

2
L*(By) +

2. Since v is a-harmonic in B, we can apply the interior C1'% estimate Theorem [2.2]to
find that, aslong as nr =1,

for some
lgl < CHVUHI_}(Br)-

Note also, by the corrector estimates (2.2),
3. Now we combine the previous parts to estimate
IVu—(q+ v)(q(x))||]:2(3nr) <[|Vv-(g+ Vxq(x)) ||]:2(qu) +Vu— VV”LZ(BW)

1/2, —d/2 -d/2
< CnlIVull 2,y + Co =0~ “2IVull 25, + Cn
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and so, also,

1/2 —dl2 -d/2
n

Both estimates require that nr = 1.
Now, we first fix n > 0 small depending on §, and then fix oy > 0 small and M > 1 large
depending on 6 and the choice of 1 so that

Cn®IVull 25, +Co *n~ VIV ull 25, + C~?

1 _ _
< ;0IVull 25, +Cn PMNVull 2,
Now, as long as nr = 1, we have the two inequalities
IVu-(g+ VXq(x)) ||I;2(Bnr) < 5”Vu||é2(3r)
and, using 6 < i,
1
”vu”]_}(Bm) < Z”quLZ(Br) + Cilql.
4. Finally we divide up into the dichotomy in the statement. If
1
1< 7C 1V ullpzg
then )
”quLZ(Bnr) < 5||Vu||]:2(3r)

while, otherwise,
V- (CI+V}(q(x))||L2(Bm) < 5”V””L2(Br)
with some .
ZCfIIIVMIILz(Br) <lql< ClVull 2,

O

3.2. Step 2: Close to planar implies interior-like C''* improvement. The next lemma
says that if Vu is 6|g| close to a corrector gradient g + Vy, in L2, then there is an interior
Cl%-like improvement of oscillation. Basically an energy argument shows that the zero
level {u = 0} must be relatively small and so the oscillation improvement of the a-harmonic
replacement carries over to u.

Lemma 3.3. Let u as in Lemma(3.2and r = 1. Suppose that |q| = 1 and
IVu—(g+Vxq)l2eg, <6lql

forsomel>6>0.
Thereareay >0, u>0,1>08 >0 and cy > 0 universal such that if

§<6, 0<cd? and ur=1

then
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with q' € R? satisfying
19"~ ql < Ciélq
for a universal C, = 1.

The result should be possible with any a € (0, 1) with parameters depending on a using
the C*! version of Theorem[2.2|

Proof. 1. (Harmonic replacement) Let 0 be the a-harmonic replacement of « in B,/ and
let v be
v=u in B;\B;;; and v=7 in By/.
Then
J(u,By) < (1+0)J(v,By)
or
J(u, Byj2) < 0J(u, By \ Br2) + (1 +0)J (v, By/2).
Also note, using the corrector estimate ||V Xqll 2B S Clq| from ,

Thus

/ a(x)Vu-Vu—a(x)Vv-Vv dx+ Q) >0 dxsa(C|q|2+A)|Br|+ Q(x) dx.
Br/Z Br/2 Br/2

Since v is the a-harmonic replacement for u in B;/»

/ ax)Vu-Vu—a(x)Vv-Vuv dx:/ ax)Vu-v)-V(iu—-v) dx
Br/2 Br/Z

so, plugging that in, re-arranging, and using ellipticity,

Vu-Vul|? <Co(g)*+1)+ X)iy=0 dx
|| V25,9 < CoUaP+ D+ o | QuLismo
or
_ 2 2 {u(x) =0} N By 2|
(3.3) IVu VV”LZ(Br/z) <Colql*+ A Bl

2. (Large slope implies small measure of zero level) Next we claim that
{u(x) =0} N B2l

< Co**P
| Br /2l
for some universal C, § > 0. Actually it will hold for 2+ f < 2* = 24 =2 + _% the Sobolev
embedding exponent for I? (or 2+ < 2* = +ooin d = 2).

Note that
(u—¥¢) dx=0 where £(x)=q-x+ )4(x) +][ u—yxqdx.
B, B,
So, by Poincaré,
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Sinceu=0
C”([)—HI_}(B” <6lqlr.

Ifg-x +fBr (u— y 4) were not positive in B3, /4 then |q- x| = %Iql r in some ball of radius r/16
contained in B; so, using [l x4/l ;23 ) < Klq| from li

I M)—”LZ(B» = C|Q|T - ”Xq”LZ(Br) = CICII(r— C_IK)

for a universal constant c. This is a contradiction for r = 2¢™!K and § sufficiently small

depending on K and other universal constants. Note that, given the hypothesis ur =1, we

can think of this as a requirement on the choice of u, that we must choose p < %CK -1,
Thus

1 1
tx) = 21gIr = lixglleo = 7191(r —4K) = clqlr in By

for a universal ¢ > 0 and using r = 8K (imposing additionally u < BLK).
By Poincaré-Sobolev

lu=2ll 2 5, < CrlIVu=Vel g, < Clqlr

(Br)
but also .
[{u=0}n B, p|"'?
|Br 22
So the claim follows combining the previous two inequalities.
3. Note that v(x) — (- x+ x4(x)) is the a-harmonic replacement of u(x) — (q- x + x 4(x)).
So

”u_£”L2*(Br) = C|q|r

By the Avellaneda-Lin interior C1% estimates for a-harmonic functions Theorem [2.2] ap-
plied to v(x) — (g - x + x4(x)), for any 0 < < 1/2 such that ur > 1,

IVv=(q+Y2q) = G+ VX2, < CuIVY = (q+Vel g, < Cudlql

ri2)

for some G € RY with
Write g’ = g + ¢ and recall the linearity of the corrector y, + x5 = X 4+4- Assuming C6 < %
we have 2|q'| = |q| = 1.

Combining this with estimate (3.3)
IVu—(q'+Vyxg) ||22(Bm) <Cou 4q1? +Ccu16%P + cp?*6%|q1%.

Now choose parameters in the following order: let @y = a/2 (or anything smaller than «a
works), then choose p small enough so that C ,uz(“_“‘)) < é for the third term (in addition to
the previous requirements), then choose & < § with § = %C‘l,ud”“o for the second term.
Finally the condition o < §C~'6%u?*2% gives that all three terms above are smaller than
tu2%62%|q'|? (note we are using |q'] = 31g1 = 3).

0J
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Lemma 3.4. Suppose that u is a (Ry, ) -almost minimizer of ] in Bg for some Ry = R =1
and for some|q| =2

IVu - (g+ vXq(x))||L2(BR) < 6|6]|
There is universal . > 0 so that if 6 < 0. then

IVul 2, < Clql forall 1<r<R.

Proof. We iterate Lemma[3.3]with a = f/2. Pick 8 so that
1

5.<6 and 4C; S.<1
1 a

where § is the universal constant from Lemma@
It suffices to consider the case
(3.4) 00 := (R/Ry)P < ¢y6>

where ¢y is the universal constant from Lemma|3.3/and & is defined above.
We claim that for all j such that /R > 1 there are q; such that

(3.5) ”Vu_(qj""v)(clj(X))IlLZ(Bij) s5*ua]|qj|
with
(3.6) 1gj01—qjl < Q18,4 |qj| and 1<1q;|<2lql.

We will prove this by induction. By the hypothesis of the theorem and hold
for j = 0. Suppose that and hold forall 0 < j < k.
Note that we have

(G141 < -;"”“ gyl <201 =004l
J
In particular
Gl < (L+2Ci 728141 <2lq]
because of the choice of § ,, and, similarly,
i1l = (1-2Cr - _luaé*nm > %Iql >1.

Thus we have established the second part of (3.6) for k + 1.
If u**1R < 1 then we are already done. Otherwise u is in the set up of Lemmain Bk

with and

(3.7 8 =06.u% and ot = (re/Ro)P = p*Poy.
Note that 6 <6, <4 and

(3.8) o= 2k = 5%6;200 < co(S?C

by (3.4). Thus all the assumptions of Lemma3.3|hold and we find that there is g+, such
that

”vu - (qk+1 + vqu+1 (X)) ”LZ(BNIH'IR) < 6ua(k+l) qu+1|
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and with
|qis1 = qel < Cr8klqrl = CLu® 8| qxl.
Then we have the result of the theorem because and imply

”V“”LZ(BHkR) < C|qj| < C|61|

and the estimate for intermediate values u**'R < r < u*R also holds up to an additional
factor of u~%'? which is also universal.
O

Remark 3.5. The previous proof will also go through when the almost minimality hypoth-
esis is replaced by
3.9) J(u,By) < 1+ w(r/Ro))J (v, By) + w(r/Ro)|By|
(for v the a-harmonic replacement in B,) as long as w? is a Dini modulus, in the sense that
fol w(t)% % < +o00, with w(1) < 1. The inductive hypotheses and with 8y = 8, @
are replaced by
1 1
8e=06.w(R/Ry) " 2w(u*R/Ro)2.
This choice is so that later in , when oy = w(,ukR/Ro), we will have
0k =070, 2w(R/Ry) < co05

as long as R/ Ry small enough depending on w so that o(R/Ry) < co62. The purpose of the
Dini modulus assumption is to guarantee that } 3, 6 < +oo.

3.3. Step 3: Iteration.

Theorem 3.6. Ifu is a minimizer of ] in Bg(0) then foralll1 <r <R

Proof. Letn > 0 small enough and M = 2C, large so that the statement of Lemma[3.2]holds
with § = Cj 15, constants Cy from Lemma|3.2/and 8, from Lemma Define

bk = ||Vu||£2(BnkR).
Consider the inequality
(3.10) b < Y2M+27p,.

This is true for k = 0, suppose that the statement holds for 0 < k < j. If n/*'R < 1 we are
done so we can assume n/ "1R > 1.
If bj < M then

bj+1 < ,r]—d/zbj < ,r’—d/ZM
so (3.10) holds for k= j +1.
Otherwise b; > M and so Lemma 3.2/applies and either

1 .
bj+1 < Eb]’ < n_d/ZM-i- 2_(]+1)b0,
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SO holds for k= j +1, or
IVu= @G+ VXl 0 < o' 0+bj
for some
Co'bj<1ql < Cobj.
Since bj = M = 2Cp we can apply LemmaMto find
IVull 25, < Chj < C~ "> M +277 by)

forall1<r<n/TIR. O

3.4. Local regularity. Finally we mention that when the C% hypothesis is added, As-
sumption|(@2)} we can also recover a true Lipschitz estimate from Theorem|L.1]

Corollary 3.7. Suppose Assumption|(Q1), Assumption and a € C*. If u is (Ry, B)-
almost minimal in Bg(0) for some Ry = R > 0 then

IVu0)| < CA+ ”VUHLZ(BR))
for C =1 dependingon A, d, B, v, and [a] co,y .

Proof. If R = 2r, then Theorem|[1.1]implies that
”VLL”LZ(BrO(XO)) <C(d,\ P+ ”VUHLZ(BR))

for all xp € Bg/2. If R < 2rp we can just do the below argument in Bg instead of in B,,.
Without loss we can consider the case xy = 0, define the functional centered at 0

Jo(v,U) :/ a(0)Vv-Vv+Q(x)*1;ysq dx.
U

Note that

|j0(v) Br(o)) _](Uy Br(o))l < [a]COrY ry||vvl|%2(3r(0)m{v>0})

by ellipticity the gradient norm on the right hand side can be bounded above by J(v, B;)
or by Jo(v, By).
So we can compute writing B, for B, (0)

Jo(u, B;) = J(u, By) + Uo(u, Br) — J (u, B,))
<+ /Ry’ J(v,B,) +Cr¥J(u, B,)
<1+ (r/R)PHA+Cr")J(v,B,)
<1+ (r/Rp)?) A +Cr"?Jo(v,B,)

on the second inequality we used the almost minimality of u. Thus u has an almost mini-
mality property for J, and so we can apply [17][Theorem 1.1] to get



One-phase almost minimizers in periodic media 17

4. INITIAL FREE BOUNDARY REGULARITY

In this section we explain the non-degeneracy at the free boundary of almost minimiz-
ers, see Section Some inputs from homogenization theory are needed, and since we
want to consider almost minimizers we again follow the arguments introduced by De Silva
and Savin [17]. Non-degeneracy then implies a Hausdorff dimension (d—1) estimate of the
free boundary, see Section[4.2| Together with the Lipschitz estimate proved previously this
is sufficient domain regularity to apply quantitative homogenization estimates in {u > 0},
see Section5.1]1ater.

The following hypotheses on u € H'(U) non-negative will be used in this section.

e (Lipschitz estimate)
4.1) IVul oy < L.

e (0-almost minimal) There is ¢ = 0 so that for any ball B, c U
4.2) J(u,By) < J(v,Bp) +0|B,| forall ve u+ Hy(B,).

The interior Lipschitz estimate of almost minimizers has been proved already in Section
and will be considered a hypothesis in this section.

Note that given the Lipschitz estimate the almost minimality condition above follows
from the almost minimality of the type via

J(u,B) < 1+ (r/Ro)P)J(v, B,) < J(v, B,) + (r Rp)P (A® + L?)| B, |

forall ve u+ Hy(B,).

4.1. Non-degeneracy. Under (4.1) and (4.2) we will show that u is non-degenerate at its
free boundary. More precisely, if o is sufficiently small, then for any x € 0{u > 0} and r >0
so that B, (x) c U then

sup u =CrT.
B (x)

If we were considering minimizers we could follow the original argument of Alt and
Caffarelli [2] with some small inputs from homogenization for the oscillatory operator.
Specifically we would use a Lipschitz estimate up to the boundary for the a-harmonic
function interpolating between 1 on 0B, and 0 on 0B, » in the annulus B, \ B;».

To consider almost minimizers we are instead following the line of arguments by De
Silva and Savin [17]. Still we view the adaptations as fairly natural, if a bit technical, using
a-harmonic and a-harmonic replacements and quantitative homogenization theory in
B,. Note that, importantly, we are not using quantitative homogenization theory for the
domain {u > 0} yet.

Lemma 4.1 (Weak non-degeneracy). Suppose u >0 and L-Lipschitz in B, and
J(u, B;) < J(v,B;) +0|B;| forall ve u+ Hy(B,)

then there is 0, depending on L and universal parameters, and ¢ > 0, universal, so that if
0 <0y then
u(0) =cr.
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Furthermore if there is x € 0B,(0) N 0{u > 0} then

sup u=(1+6)u(0)
aB(l_n),

for some constants § andn > 0 depending on L and universal parameters.
For the second part we will need the following technical Lemma.

Lemma 4.2. Givenrg = 1 thereis a constant ¢ depending on ro and universal parameters so
that the Poisson kernel at 0, p(y) = Pg, (0, y), for the operator —V - (a(x)V-) in B, (0) for any
0<r<rghas

n=c .
PRI =58,

The proof of is postponed to the Appendix, Section This is the only place that we
use the assumption that a € C%! as opposed to C%7.

Proof of Lemmal4.1] Note: constants in this proof may depend on universal parameters
and also on L. We will try to explicitly indicate the L dependence each time it appears, af-
terwards constants which depend on L will be denoted with k and K and constants which
are universal and don’t depend on L will be denoted ¢ and C. The values of k and K may
change from line to line as is the convention with ¢ and C.

1. Let h be the a-harmonic replacement of u in B,. Then, since u > 0in B, and h > 0 in
B, (strong maximum principle),

J(h,B))=E(h,B)+ | Q(x)*dx<Eu,By)+ | Qx)*dx=J(u,B,) <J(h,B,)+0c|B
B, B,

so subtracting the two energies and using the a-harmonic replacement property we find
/ IVu—Vh|*dx < Col|B,|.
B,

By Poincaré

(u—h)? dx< CarlerI.
B,
By the interior Lipschitz estimate Theorem [2.2|for a-harmonic functions and maximum
principle

C
VAl toB,,) < —0scp, h < —oscp u < CL.
T r r
So
d+2 2

Let ¢ be a standard smooth cutoff = 1 outside 0B,/ and = 0 in B, ;4 with |[V¢| < C/r.
Using, as earlier, that h and u are positive in B,

J(h,By) < J(u,B;) < ](h(p:Br) +0|By|.

From this point we argue differently for large and small r > 0.
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For r = ry large to be specified let 1 be the a-harmonic replacement of % in B, then, by

Theorem

— 1 — B
|E(h, BY) = Eo(h, Bl + = h =Rl ) < CLr™%|B, .

Note the same inequality holds for J(h, B,) — Jo(h, B,) by positivity. By similar arguments
to above for (4.3), using the interior Lipschitz estimate,

T d+2 2—a

(44) ”h_h”LOO(Br/g) < Kr |Br|
Since & = 0 solves a constant coefficient equationin B, (i.e. itis harmonic under a linear

non-degenerate change of variables) we have by Harnack inequality

17 Lo (Bs,,0) < CH(O)
and so for i we have

P
IAll foo(Bs,,) < Ch(0) + K1~ @2,
and also using the interior Lipschitz estimate for a-harmonic functions Theorem[2.2]
IVRl o8, ) < Cr IRl o8y, < Cr ™ h(0) + K~ @+,

So, using several of the previously established inequalities,

E(h,B))+ | Qx)dx<](h,B,)
B,

< ](h(/);Br) +0|B;|

:E(h¢»Br)+/ Q(x) dx+0|B;|

Br\By4

sE(h,Br)+/ Q(x) dx

Br\B;4

_ IB,|

1
Cl IRl qp, ) + IV Rl Eoip, ) + 0

<E(h,B;) +/ Q) dx +

By \By 14

1 a
C—h(0)* +Kr™ % + 0) |B,|
r
Rearranging this inequality we find

h0)2 > cr (— Q)dx—Kr @z —g) = cr’(A 44 - Kr~ @7 — g)
|Brl JB,,4
So aslongas K rTaz 40 is sufficiently small depending on universal parameters we find
h(0) = cr.
Then plugging in and
1

1
u(0) = (c— Ko@z —Kr~@2)r = SCr
This holds for r = ry and o < oy where ry and oy depend on universal constants and on

the Lipschitz constant L.
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Next we argue for r
mined, and then for r;

9. Note that we can actually argue for r < r; small, to be deter-
r < ro we simply use that B;, < B, and so

n N

u0) =cry = c:—;r

and the additional factor r;/ry still depends only on L and universal parameters.

The small r; case follows a very similar line of argument to the previous using the a(0)-
harmonic replacement # in B, (instead of a-harmonic replacement) along with the esti-
mate

Ih =Rl < CrPIV(h =7, < CL?r*rY|By|

which follows from the standard energy estimate
IV(h =)l 28,y < Clla— a(0)ll =, I VAl 25, < Cr'( / lullVup''? < CrYL|B, '
0B,

using that a is C%7.

2. Since u is Lipschitz in By, infg, u = 0, and u(0) = cr (from the first part of the proof)
we can also conclude that u(x) < iu(O) on a constant k(L) fraction of dB(;_), for some
n(L) > 0. Since

sup |u—h|< K@ @7 + 1~ @2)r < K(0T7 + 1~ 772) u(0)
Ba-nr
when o < o0¢(L) and r = ry(L) also h(x) < %B(O) on a constant fraction of 0B(; ). Then by
the Poisson kernel formula and the argument in Caffarelli [11][Lemma 7] we must have

sup h(x) = (1+28)h(0)

xEB(l—n)r

and choosing o, and ry smaller if necessary we get the same for u via

sup u(x)= sup l_z(x) —K(Uﬁ + r‘ﬁ)u(O)
XEB(I—n)r xEB(l_n)r

> (1+26)h(0) - K(Uﬁ + r_ﬁ)u(O)

= (1+26)u(0)— K(aﬁ + 1 @2)u(0)
= (1+0)u(0).
For r < ro we just do a-harmonic replacement & with the estimate
sup |u—h| < Kaﬁr < Koﬁ u(0)
Ba-mr
and then apply the Poisson kernel lower bound Lemma 4.2} depending on ry(L), and the

same argument from [11][Lemma 7]

sup h(x)=(1+26)h(0)
X€Ba-nr
where 7 is the same as above, and § will now depend on the Poisson kernel lower bound
from Lemma Using the supremum |u — k| estimate as before and choosing oy smaller
again if necessary we conclude. U



One-phase almost minimizers in periodic media 21

Lemma 4.3 (Strong non-degeneracy). Suppose u is L-Lipschitz (4.1), and satisfies in
B,(0). There are gy, c > 0 depending on L and universal parameters so that if 0 < 0 < 0y,
and if0 € 0{u > 0} N U then

sup u:=cr.
B (0)nU

Proof. As in [17][Lemma 3.5] the proof follows a standard argument applying Lemmal4.1}
see originally [11][Lemma 7]. We just need the following claim constructing a polygonal
chain along which u grows linearly.

Claim: There are 6 > 0 small and C = 1 depending on L and universal constants so that:
given xy € {u > 0} N B, (near the origin) there is a sequence xy € B, N {u > 0} with

u(xgr1) = (1 +6) ulxr)
and
| Xk+1 — Xl = cd (xg, 0{u > 0}).
This is exactly what we proved in the second part of Lemma/4.1 0J

Remark 4.4. Note that Caffarelli’s Harnack chain argument requires starting from a possi-
bly arbitrarily small radius ball so we do need Lemmal4.1] for all values of r > 0 and so we do
need the a € C*Y assumption here. Maybe that assumption could be removed here by using
some stronger notion of “bulk" free boundary point.

4.2. Hausdorff dimension of the free boundary. In this section we recall estimates of the
Hausdorff dimension / measure of d{u > 0}.

Lemma 4.5 (Free boundary strip energy bound). Suppose that u€ H'(B,,) withr =1 has
J(u, Bo;) < J(v, Bay) + 0|Byr| forall ve u+ Hy(Byy)

Thenforl<t<r
t
with C = 1 universal.

Proof. The proof is standard, see [29][Lemma 5.6], and only uses the ellipticity of the co-
efficient fields a(x) and Q(x). The idea is to use the following energy competitor: take
0 < ¢ < 1 be a smooth cutoff function ¢ = 0 in B, ¢ =1 in a neighborhood of 0B, and
IVop| < C/r and define

v(x) = (1 =) (ulx) - 0+ + P ulx).

Using the almost minimality property and some computations give the result. U

Lemma 4.6 (Free boundary Hausdorff dimension). Suppose that u Lipschitz with constant
L =1 and ¢-non-degenerate in By,. Then there is a universal C = 1 so that for any covering
(1) ier of 0{u > 0} N B, by almost disjoint boxes of side length 1 < t < c(d)r

#1<Cd, N (L) 9w, 10 < u< c(d)tLyn Byy)
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Of course Lemma 4.5/ can then be used to bound the right hand side in the inequality
obtained here.

Proof. Let O be a cube with side length ¢ such that 0{u > 0} N O # @ and 20 be the cube
with the same center dilated by a factor of 2. Then by the non-degeneracy hypothesis

sup u(x) =c(d)lt
xe20

By the Lipschitz assumption there is a ball of radius c(d) % t inside of 300 with
u(x) = c(d)ft in B, ., <30

Tt
L
For each O; from the collection in the statement let B/ (y;) < 30; be the corresponding
2L

cube described above. Since OJ; are almost disjoint there is a dimensional constant C(d)
so that each x € B, is in at most C(d) of the (B ¢ (y;))ie;. Thus
2L

#1=3 1= 3 - N0i < C@AE)? YL IB, 46, () < C (G Uier Bygy e, (1)

iel iel ie]
and
|Uier B gy, (yi)l < AJ(w, Ui30) < AJ(w, {0 < u < c@LtinB, 5 /7,)
since t < ¢(d)r we have B, ,5vd: < Ber. O

5. HOLDER RATE OF HOMOGENIZATION

In this section we combine the previous regularity results to show a sub-optimal quan-
titative homogenization rate for almost minimizers. We will apply quantitative homoge-
nization results for Dirichlet boundary value problems.

5.1. Quantitative homogenization of Dirichlet problems. We recall some results about
quantitative homogenization results for Dirichlet boundary value problems in bounded
domains U c R". Recall the energy functionals

E(u,U) = / a(x)Vu-Vudx and Ey(u,U) = / avVu-Vu dx
U U
originally introduced in Section
Given a bounded domain U in R% we consider a function u € H'(U) satisfying
IVull powy < L

in our application u will be an almost minimizer of the functional J and U will be {u > 0},
but that information is not needed for the present statements.
We also consider a function ug € H! (U) satisfying

IVugll ooy < L

and
Eo(uo, U) < E(v,U) forall ve ug+ Hy(U).

The function u, will arise by doing a Jp minimizer replacement of an almost minimizer
and U will be {ug > 0}, but that information is not needed for the present statements.
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We will take advantage of the a-priori Lipschitz estimate. It is convenient to work di-
rectly with the explicit upscalings/downscalings, which usually appear as intermediate
tools in quantitative homogenization proofs, instead of with the usual comparison with
the a-harmonic replacement. See Remark[5.2/below.

o Specific choice of upscaling. Let ¢ : R — [0,1] be the piecewise linear continuous
cutoff function with () =0for t <1, ¢ =1for t =2, and |¢'| < 2. Let t < r be a scale to
be determined define

gr(x) = u(y)dy

x+B;
and

(5.1) () = (L&, (x) + (1 — p(L2)) u(x)
where d(x) is the distance function to the complement of U. It is easy to check

IVE el Loy < IVull ooy
and
= @l ooy < VUl oy t-
Since
Vit = p(X)VE, (x) + (1 - (L) Vu(x) + %Vd(x)w’(@)(ft(x) — u(x))
and |Vd| <1
IVl ooy < 2IVull ooy
o Specific choice of downscaling. Let ¢ : R — [0,1] be a fixed smooth cutoff function

with @(f)=0fort<1,¢p=1fort>2, and |¢'| < C. Let t < r be a scale to be determined
and

(5.2) (%) = (L) [0(x) + Yvp (V)] + (1 — (L) v(x)

where d(x) is the distance function to the complement of U and y, are the correctors
defined in Section[2.2]

Proposition 5.1 (Quantitative homogenization). Suppose that U is a bounded domain and
letu, i1, uy, and @iy as above. Let t = 1 be an integer, and let U; be the union of the t7% lattice
cubes which are contained in U. There is C = 1 depending on d and A so that

1
— U+ U\ Uyl
t2

Eo(@1,U) < E(u,U) + CL?

and

1
|E(iio, U) — Eg(ug, U)| < CL? [;|U| +|U\ Ul

Remark 5.2. We are presenting a somewhat atypical scenario for quantitative Dirichlet
data homogenization because we have assumed an a-priori Lipschitz estimate up to the
domain boundary. This usually would require significant domain regularity to prove, but
we will know it from Theorem/[1.1|for ] almost minimizers.

On the other hand we also know less domain regularity than one typically assumes for
such quantitative homogenization results. A typical assumption is that the domain U is
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Lipschitz, see for example [4][Theorem 1.12], but we are aiming to prove this. Actually an
inner and outer density bound is sufficient when the equation does not have a right hand
side, see [4]. We can indeed prove inner and outer density bounds at this stage, but the result
is not strictly needed for our main theorems so we have postponed it to the appendix in
Section[A.4.

Results in the literature also typically estimate the difference with the a-harmonic re-
placement. With the amount of domain regularity we currently know, the a-harmonic re-
placement is actually less regular up to the domain boundary. It will not necessarily be
Lipschitz up to the boundary of U (insufficient domain regularity) and we won’t have an
L™ convergence estimate (insufficient domain regularity again).

The proof follows standard lines. In particular, the statements and arguments in [26][Ch.
3.2 and 3.3] are very similar to what we will do here. We will refer there in some places but
we didn’t find any particular statement there to cover the entirety of Proposition We
also emphasize that we are not making any attempt to find optimal rate here, it is not
needed for our purposes.

Proof of Proposition[5.1, We will make use of the dual energy introduced by [6]

(5.3) ul,q) = inf{][ %Vv-a(x)Vv— g-Vvdx: ve HY(U)}.
U
This quantity has the following large scale limit
r__ 1
kBL @) +5q-a " ql< CNd)lqP -7

which we now justify. We only are interested in the lower bound, the upper bound is im-
mediate from testing the appropriate corrected linear function (below).
For 7 € [0,1)¢ let v be the minimizer for (5.3) solving
—V(@@ax)Vv)=0 in B,
n-(a(x)Vvy—q)=0 on 0B;
with mean zero on B; and let
vo=p-x+xpx) with ap=gq

note that p - x solves the effective version for the previous Neumann problem. Note
1 _ -
|]Z IV a(x)Vvg— q- Vo dx— (5p-ap—q-pl<Ct gl
B;

Then call

w=vx)-p-x—xpx)p(x)
where ¢ is a standard cutoff which goes from 1 to 0 in a unit neighborhood of 0B;. By
[26][Theorem 3.3.4]

1/2|

IVwl 25, < Ct™?|q]
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and so

]{3 %Vv-a(x)Vv—q-Vv dx 2][ %Vvo-a(x)Vvo—q-Vvo dx—Ct_l/Zqu.
t

By

Part 1 (estimate of the upscaling). Define, for x € U;

¢(x) = u(y) dy
X+B;
and
iu(x) = @(x0)Ex) + (1 —@r(x))ulx).
Call
p(x)=Vi(x) = / Vu(y) dy
X+B;
and

q(x) = ap(x)
Note that |g(y)| < AL. Now the dual quantity u is exactly useful for lower bounds of the
energy

/%Vu-a(x)Vudx?/f %Vu(x)-a(x)Vu(x)dxdy
U Uy y+B;
>/ KB q(y) +4q(y)-py)dy
U;

= / UBLqgy) +py)-ap(y)dy
Uy

>/ %p(y)-dp(y)dw/
U[ U[

= Ey(i1, Up) — CL?tY?|U|

1 =—1
gq(y) -a q()+uBq(y)| dy

Then we need to estimate the difference between the homogenized energy of i on U; and
onU

/ Ip(x)- ap(x)dx—/ IVia-avidx = —/ Vii-aViadx
U, U U\U,
> -AL?|U\ U,
Together we have
Eo(it,U) < E(u,U) + CL* [t MU+ U\ U{l].

Part 2 (estimate of the downscaling). This is basically the same as [26][Theorem 3.3.2].
Recall that ug is a minimizer of Ey on U, so Vuyg is @-harmonic and we have the C! esti-
mate

ID?*ug iz, < Ct L.
The downscaling was defined, we recall,

o (x) = up(x) + (%) - Vg (x) ¢ (x).
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The gradient is, with the primary term listed first and error terms listed after,
Viig=[Vug+VyViugl+ (1 - @) [VxVuel + )(Dzuo(pt + (x - Vug) V.

We make note of the following bounds following from the L-Lipschitz hypothesis of uy and
corrector bounds

Vo +VyVugl <CL, |(1—@)[VyVuell< L1 —¢,), |xD*upp: <CLt™ !
and
(x-Vug)Ve,; < CLt™ .

Let p(x) be the piecewise constant function which is the average of Vi over the tZ% trans-
lations of [0, 1) which contains x. Then

lp—Vuglg;<CLt™

by the previous C! estimate.
Thus, by standard algebra with the quadratic energy,

Elilp, U) - | (p(x)+Vx(x)p(x)-a(x)(p(x) + Vy(x) p(x) dx| < CL*[t ' |U|+|U\ U]l

Uy
Since ¢ =1 is an integer and by the definition of a, (2.3),

(p(x)+Vy(x)px)-ax)(px)+Vyx)px)) dx = / p(x)-ap(x) dx

U); UL‘

and

| p(x)-ap(x) dx—/ Vuv(x)-aVuy(x) dx| < cr?t U
U[ Ul‘

so finally, using one more time the Lipschitz estimate for Ey(uo, U \ U;) < CL2|U \ Uy,
|E(lo, U) — Eo(uo, U)| < CL*[t MU+ U\ Uyl
O

5.2. Rate of homogenization for /. In this section we combine all the previous regularity
results to obtain a rate of homogenization in the energy. We will consider u € H'(U) non-

negative satisfying (4.1) and (4.2).
Note that if u is L-Lipschitz and satisfies (4.2) for o > 0 sufficiently small depending on

L and universal constants then u satisfies the hypotheses of Lemma[4.3} Lemmal4.5} and
Lemmal4.6l

Lemma 5.3 (Energy convergence). Letr = 1.

(a) Suppose that u € H'(By;) non-negative satisfies and with0 <o <d(l)
sufficiently small so that Lemma|4.3 holds. There is a regularization i of u, u €
u+ Hy({u> 0}n B;) with

IVitll oo,y < Ly llu— il o5,y < L1

and
Jo(@, By) < J(u,B,) + C(d, A, L) (o + r~3]|B,|.
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(b) Suppose that v is a Jo-minimizer in By, satisfying in By,. Thereis UV € v+
H} ({v>0}n B;) such that

~ a5y
J(W,B;) < Jo(v,By)+C(d,N)L 2 r"“|B,|.
(¢) Letu and @ as in part (a). Forany w € u+ H&({u >0} N By)
Jo(@t,By) < Jo(w,B,) + C(L)[r™* + 0l|B;|

. . . _ 1
where w is a dimensional constant and can be taken to be w = IAd+5)76 -

Remark 5.4. This is the only place in the paper where the periodicity of Q is used. Other
assumptions on the convergence of the spatial averages of Q could be easily slotted in here
as long as they result in an error rate which is summable over geometric sequences of scales
(that property is used in the following section).

Remark 5.5. The constant w = m is certainly suboptimal, we compute it just to be
careful that we indeed have a Holder rate. The dependence on L in part (b) is followed for
the sake of computing w, so, again, it is not that important.

For the proof of Lemma [5.3| we will need one more technical Lemma about Jy mini-
mizers in a domain with Lipschitz Dirichlet data. The claim is that there is not too much
energy concentrated near the domain boundary.

Lemma 5.6 (Domain boundary strip energy bound). Suppose that u € g+ Hé (By), g isL-
Lipschitz, and u minimizes ], over g + H& (B;) then for every a <1/2

1
]0(”; Br \ B(l—n)r) < C(a,L)n“(l + ;)lBrI

The same result is probably true for all @ < 1 but we did not need this and it would
require some more work to prove. The result would also be true for a regular domain U
instead of a ball, but again we did not need that. The proof is technical and is postponed
to Section|A.2] There is a barrier argument to get Holder continuity up to 0B, and then an
energy comparison argument.

Proof of Lemmal5.3 In the proof throughout we will assume L = 1, constants which de-
pend on L and other universal constants will be denoted C(L) or ¢(L), universal constants
which do not depend on L will be denoted C, c etc. For parts (b) and (c) we need to be a
bit careful keeping track of L dependence.

Part (a). Let 6 > 0 depending on universal constants and on L so that Lemmaholds.
Let U = {u > 0} n B, and let & be the upscaling of u defined in Sectionwith parameter
t = 1 to be chosen shortly. Let U; be the union of the tZ¢ lattice cubes contained in U. By
the perimeter estimate Lemmaf4.6/and Lemmal4.5|

U\ < C(o + 1B
Thus to infimize the error term from Proposition [5.1jwe should choose ¢ = r?/3

e 1 -1/3
inf[—|U|+|U\U]<C()[o +r 11By|
t>0 ti
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Call 2 to be the cubes of the Z4 lattice
2={k+[0,1)%: kez%
and then define
o ={0e2:0c{u>0nB,)}

and
B={0e€2:0n0({u>0}nB,)# o}

Since u satisfies the conclusion of Lemmal4.6}
1
#B < Cr ' <C(L)[o+ =B,
r

Note that for any O € «f

/ Qx)? dx = / Q) dx=(Q* = / (Q% dx
({u>0}nB;)NO O ({u>0}nB,)nO

using, respectively, that O < {u > 0} n B, O is a period cell for Q, and that u and « have the
same positivity set.

Then applying Proposition[5.1]
Jo(u, By) — J(u, By) = Eo(u,{u >0} N B;) — E(u, {u> 0} N B;)
+ / (Q*) - Q(x)* dx
Dex/u® J {u>0in0ONB,
<C(Dlo+r 3B, |+ Al
<C(L) (o + 17 '3)B,l.

Part (b). The proof follows an analogous line of arguments to part (a). Since we need to
keep track of the dependence on the Lipschitz constant for the purpose of part (c). Note
that the non-degeneracy constant does not depend on the Lipschitz constant in the case
of Jo minimizers, it is universal. Let V = {v > 0} n B, and let ¥ be the downscaling of v in V
defined in Section[5.1} By the perimeter estimates Lemmaf4.6/and Lemma[4.5](with o = 0),
now keeping more carefully the dependence on L,

|U\U(| < CLY2¢2r7 B, |

Thus to infimize the error term from Proposition 5.1|we should choose ¢ = L~(@+D/21/2

ol LESR VP
inf[—|U[+|[U\UI<CL 2 ™ "7|By].
>0 ¢

The remainder of the argument is similar and we end up with the estimate

~ a5 _1/2
](vyBr)SJO(U,Br)'i'CL 2r |Br|

with the additional factor of L? coming from Proposition
Part (c). Let u be the upscaling of u in B, n{u > 0} defined earlier. Let v be a minimizer
of Jp in the class u + Hé ({u>0}n B;). Then, since v is a minimizer for J, in B;,

]O(UyBI’) < ]O(ﬁrBr)'
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In particular

Let 1 >7n > 0 to be chosen small and 2 be the class of nr-lattice cubes which are con-
tained in B(;_p),. Note that for every Q € 2 we have 2Q < B,. In particular by the interior
Lipschitz estimate of Jo minimizers v is Lipschitz in B ), with

(5.4) Vol < CA+ Vol 2gg,,)) < Cn V2L for x€ Bap.

d(d+1

Let 7 be the downscaling of v in Qn{v > 0} defined in Sectionﬂwith scale t = L~(@+D2p =5
the scale is chosen as in (b) taking into account the Lipschitz constant of v from (5.4). Note
that at this point it is really the n dependence and not the L dependence that we want to

track. We have the estimate from (b)
(d+

(5.5) J(50,Q) < Jo, Q)+ Cn~ = r2Q|

We will make an energy competitor

w=vlg\ugeeQt D Uolo
Qe2

which does have w € u + H(} (B;) due to the matching of appropriate traces on each cube
boundary. Since u is a minimizer for J in B,

Jw,By) <J(w,B;) = Y J(0g,Q)+J(v,B;\Uge2Q).
Qe2

The boundary layer term we will bound by applying Lemmal5.6} using that |V ;= g,) < L,
J(, B\ UgeaQ) < J(v,B- \ Ba—camr) < CLN""*|B, .
We also have, from part (a) and the above,
Jo(@, By) < J(u, B) + C(D[r™""? + 01| B, |

< Y J(g,Q+CWr P +n' +0]|B,|
Qe2

and by part (b)

> JgQ < ), {]o(v,Q)+C(L)n‘wr—1/z|Ql}
Qe2 Qe2

<Jo(v,Br)+C(L)n~

dd+5+1
T2 2B,
Combining all the above gives

- _ _d@d+5+1
Jo(@,By) < Jo(,By) + C(L)(r By "2 r V24914 5)|B,|

1 4
then choose n = r™ 22d@+5+3 to match the middle two error terms on the right.

(mr)'2,
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6. FLAT FREE BOUNDARIES ARE (LARGE SCALE) LIPSCHITZ

In this section we will show that the free boundaries of flat minimizers of J are C''¢ at
intermediate scales and Lipschitz down to the unit scale. This will prove Theorem as
a consequence of Lemmaand Corollarybelow. We will also show, in Section a
Liouville result for large scale flat minimizers of J on R? Theoreml@

We will combine the homogenization result Lemmawith the following C1¢ flatness
improvement result of De Silva and Savin [17] for almost minimizers of J:

Lemma 6.1 (De Silva and Savin [17] Lemma 4.5). Let u satisfy
(6.1) IVullzeosy) < L and Jo(u,B1) < Jo(v,B1) +0 forall ve u+ H&(Bl).

For any 0 < a < 1 there exist constants 5,1 > 0 and C = 1 depending on L and a so that if
0 € 0{u > 0} and, for somev € sa-1

|u(x) ~ Gz (6 V)+| <8 in By
— 1
for some0 < 6 <& then thereisv' € S~ with |v' —v| < C(§ + 0 @+)

|u(x) — =z (6 V)l <0'* (6 + Co@) in By(0).

w'-av

Remark 6.2. Note that [17] works with the standard Dirichlet energy, but we can transform
to this case by looking at v(x) = u(a'’?x).

We apply Lemmal6.1]to minimizers of J by doing an upscaling and applying Lemma
to see that the upscaling has (almost) minimal energy for Jj.
First we give the one step flatness improvement.

Lemma 6.3 (Improvement of flatness). Let u satisfy (4.1) and {4.2) in By, with0 <o <&
sufficiently small so that Lemma|4_3[ holds. For any 0 < a < 1 there exist constants 5,1 > 0
depending on L and a so that if0 € 0{u > 0} and, for somev € 471,

Iu(x)—m(x-vhl <dr in B,

- 1
for some0 < & <& then thereisv' € S~ with |V —v| < C[6 + 0@+ + 1] and

|u(x) - (x-V)4| <n"*9[6+ Co@ + Cr®Ir in By,

1
(v/,aVI)I/Z

where w > 0 is a dimensional constant.

Then Lemma|6.3|can be iterated to obtain the following C!¢ iteration for (Ry, )-almost
minimizers. Note that flatness improves down to a certain intermediate length scale, then
gets worse until the iteration is forced to stop at scale 1.

Lemma 6.4 (Flat implies C1'% iteration for heterogeneous problem). Suppose thatu : Br —
[0,00) has IIVullLoo(BR) < L and u is an (Ry, p) -almost minimizer of ] in Bg.
Thereisd(d, A, L) >0 and c(d, A, L, B) > 0 so that if0 <5 < 6 and

|u(x) — W(X V)+| <OR in Bg forsome 1< R<cRy

(v-av
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and 0 € 0{u > 0} then for any 1 < r < R there is a unit direction v' so that

1 / ¢ b -0
Iu(x)—W(x-v)JrlsC[(E) &+ (R/Rg) @) + ]rfor X€EB,

and ,
V' =VI<C |5+ (RIR) T + 17|
where w > 0 is a dimensional constant.
This maintenance of flatness result down to the microscale directly implies that the free

boundary stays a unit distance from a Lipschitz graph over the approximate normal direc-
tion v.

Corollary 6.5. Under the hypotheses of Lemmal6.4 there is a functiony : {x-v = 0} N Bg/g —
R with v (0) = 0 which is 2-Lipschitz and
{x-v2yx)-ClnBrgc{u>0iNB,pcix-v=y(x)+ClNBgs
where x' = x— (x-v)v,and C=C(A,d, L).
Since this Corollary is just a technical reinterpretation of Lemma [6.4]we will postpone

the proof to Section
Now we proceed to the proofs of Lemma[6.3]and Lemma6.4

Proof of Lemmal6.3| Let u asin the statement, and u € u+ H(} ({u > 0}nB;) be the upscaling
of u defined in Lemma(5.3|then, by Lemma[5.3]

Jo(it, By) < Jo(v, By) + C(L) [0+ r~®°]|B,| forall ve u+ H(} (Br)

where w is the dimensional constant from Lemmal5.3| Also
- 1 - -1/3
(6.2) ||Vu||L00(Br) <2L and ;” u-— u||L<>0(Br) <Lr .

Thus u has |Vii| [~ ,) < 2L,
Ia(x)—m(x-vhl <[6+Lr '3r in B,,

and satisfies
Jo(it, B;) < Jo(v, By) + 0¢|B;| forall ve u+ Hy(By)
with
o9=C(L)[o+r~ .

Applying Lemma|6;1‘we find, absorbing the Cr~'/2 term into the C @ term,
|u(x) — m(x-v'hl <npt5+ Co @i + Cr_ﬁ]r in By, (0)

for some v’ with o0

Vv —v|<C S+oda @ |
From here we will call w = ﬁ. Then we carry the flatness condition back to u using lh

() = Gz X V' < [U(x) —

Waniz 1/)1/2 (x'V,)+| +C17_1r_”217r in Bnr(o)

'-av

and the new error term can also be absorbed into the Cr~% term.
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O
Proof of Lemmal6.4, Iterate Lemmal6.3]taking o = R, 8o =6,
Ik =Nre-1, 0k = Clri/ Ro)”,

and .

8k =1"Or-1+Co{™ +Cr .
As long as .
0p<od

and o < ¢ then Lemmal6.4]applies. This holds, for example, if

_ B _ _
(6.3) 5 <6/3, C(RIRy) @ <min{6/3,5}, and ry = C5~8@+9

with & from Lemmal@ Note that this requires that R < cRy for a small enough constant
¢ depending on f and 6. Call k to be the largest integer k so that the third requirement of
holds, note that ri < C(d, A, L).
We compute the iteration of 0
_1
Or=n%0r_1+ CUZ?‘I + Cr,;f’l)
r k-1 k- i) 1
_ nka —-jay, da+a -
=7 60+Cj;017 [0 +1;]

k-1
, i

<n**8o+C Y n* P (rjI R T + 17

Jj=0

k-1 ) 6 . 6 )
<n*8o+C Y "M@t (RIR) T +17 R
j=0

B
<n*¥8 + Cn**(R/Ry) @ + Cyp " R~
p

< [(rk/R)“(ao + C(R/Rp) @) + r*

B

using for the second to last line that we can take 0 < & < 7.

estimate of the variation of the normal directions
k-1 1 B

(6]' + (7]‘?”4 + er_w) < C[6g+ (R/Rp) @+ + r,;‘”].
=0

We also obtain the following

k
Vi — Vol < Z |Vj—Vj_1| <C
j=1 J
We are using several times here that we are summing geometric series and the finite sum is
bounded by a constant times the largest term, of course the constant depends on 1, which
dependson d, A, L, and on S.
Finally the intermediate radii rp < r < ri_; or 1 < r < r are estimated by using the

flatness on B;,_, or By, respectively. L]

Remark 6.6. The almost minimality hypothesis in Lemmal6.4 could be replaced by a more
generalone: foralll<r<Randanyve u+ H(} (B(0))

(6.4) J(u, Br(0)) < J(v, By (0)) + w(r/Ro)| B,
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aslong asw@ is a Dini modulus with w(1) < 1. In the proof the parameter o ;. would change
too=w(rie/Ry) = a)(nkR/RO). This would then affect the estimate of the term

k-1 . ) 1 k-1 . 1 nklz 1 dt
n* D% RIR) T <n*'2 + 3" w(n/ R/ Ry) T < %%/ 1 C(n)/ W (1) —.
j=0 ki/2 0

This results in a decay of oscillations with an altered modulus
~(r) /(r/R)llz (t)d;dl‘
wl—) = w +4 —

R/, t

assuming that this is not better than the (r/ R)*'?> modulus.

6.1. Liouville property of flat energy minimizers on R%. We conclude the section with an
interesting corollary about the plane-like property of large scale flat absolute minimizers
on the whole space (global).

A function ue H }OC(IRd) is called an absolute minimizer if it is minimizing with respect
to compact perturbations, i.e. if

J(u,B) < J(v,B) forall veu+ Hy(B)

where B is any finite radius ball in R?. This property is also referred to as class-A minimizer
in the literature [12].

It is known that there are global plane-like absolute minimizers [28], i.e. the minimiz-
ers are sandwiched between two translations of a planar solution of the effective problem
(v-av)~!(v-x),. In general it seems to be a very difficult problem to classify all the global
absolute minimizers. Even for homogeneous media there can be non planar global abso-
lute minimizers in higher dimensions [16], which is why the flatness assumption we have
been using is essential. The following result says that all large scale flat global absolute
minimizers grow sublinearly away from a planar solution of the effective problem. It is
not clear whether such solutions are a constant distance from a planar solution of the ef-
fective problem, this seems like a very difficult question.

Theorem 6.7. Suppose that u is an absolute minimizer of ] on R? with

L =limsup IVull;2g.) < +oo
r—o0 =7
and
1

w(X'V).J <0

|
— inf suplu(x)—(w_W

I vesd-1 g,
for all r sufficiently large.
There is 5 depending on universal constants and L so that if0 < 5 < 5 then there is a slope
v, € SV with|v, —v| < C8 so that forallr =1

1
(V*'av*)llz

w

1
;suplu(x)— x-va)e<Cr .

B,

Remark 6.8. This kind of Liouville property is a standard corollary of the C'% estimate, see
(4, 5, 18} 25] for related results. In the case of standard elliptic homogenization the decay
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Cr~% can be upgraded to Cr~!, the key point is subtracting off an appropriate corrector
and then re-applying the estimates. This relies on invariance of the equations with re-
spect to vertical translations u — u + ¢, our PDE is more analogous to the minimization of
integral functionals [ a(x, u)Vu-Vu dx where a is periodic in (x, ) and this invariance is
missing. See Moser [24] and Moser and Struwe [25] for some discussion of related Liouville
questions for those models.

Proof. By Theorem|1.1]u is Lipschitz in R” with constant CL with C universal. Let
S(d, A, IVl =) > 0

from Lemma(6.4, By Lemmal6.4} there is @ < 1 so that for all R sufficiently large (so that
the 6 flatness assumption holds) and for 1 <r <R
: )
+ [
rw

First of all, since the term in square brackets on the right is smaller than ¢ for all R suffi-
ciently large, sending R — oo we find,

1
(xv)Ll<sC 7 inf sup|u(x)— (x-v)4|

1
— inf suplu(x)-
plu(x) ( vesd-1 g (v-av)l/2

r
G172 ()*
I vesd-1 p, v-av) R

1
— inf suplu(x)-— (x-v)4|<Cr .

I vesd-1 g (v-av)l/2

r

For each r = 1let v(r) € S9! achieve the previous infimum. Then this estimate shows that
forall r <s<2r

(x-v(r)+lsCri

S}Bl})l (v(s)-av(s))l/? (x-v(s$)+ =

(v(r)-av(r)t/?
applying this with x = £ r(v(s) - av(s))?v(r) and with x = £ r(v(r) - av(r))/?v(s) gives
(v(s)-av(s)'? v v = av(n)'”?
(v(r)-av(r)'/? (v(s)-av(s))'/?

since v(r) - v(s) is close to two numbers which are reciprocals of one another

l<sCr ¢

[v(r)-v(s) -

%Iv(r) —v()P=1-v(r)-v(s) <Cr*.

Thus the sequence v(2¥ry) converges as k — oo, call v, to be the limit. Now for any r = ry
choose k so that 2%~! ro<rs 2k and then, using the previous estimate again,

w . .
V() = vil < V() =vFro)l + Y v@/ ) = vl rg) < Cre.
j=k

APPENDIX A. PROOFS OF TECHNICAL RESULTS

In this section we provide the detailed proofs of several of the technical results appear-
ing in the paper.

A.1. Proof of Lemmal4.2. The result is a standard Hopf Lemma barrier argument, using
that a is Lipschitz to write the equation in non-divergence form. We just need to establish
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that the Green’s function G(x, y) for the operator —V - (a(rx)V-) in B; has

inf G(0,y)=c
yeBn

for n and ¢ depending on universal constants and ry.
For this take Gy(x, y) to be the Green’s function for -V - (a(0)V:) in B, and G(x, y) to be
the Green'’s function for —V - (a(rx)V-) in B;. Call w(x) = G(x,0) — Gy(x,0) so that

=V (a(0®)Vw)=V-((a(rx) —a(0))VG(x,0)) and w =0 on 0B;.
Then
w(x) :/B VGo(x, y)(a(y) —a(0)VG(y,0) dy.
Applying Green’s function boun(is [21][Lemma 2.5],
IVG(x,p)| < Clx—y|'™"

which hold uniformly in r > 0, and the Holder continuity of a

lwx)|<C [ |x=y" "My yl' " dy.
B

We estimate in a standard way splitting the integral

lw(x)| < Cry[/ |y|y 201 dy+/ lx* "y dy
1=|y|=2|x|

lyl<|xl/2
_y|l-n y+1—nd
ot lx—yI" "lx| y
|x|/2<|yl<2|x|

lw(x)| < CrY|x> "7,

Because Gy solves a constant coefficient equation we have Gy(x,0) = clx2" so

G(x,0) = Go(x,0) — w(x) = (c— Cr¥|x|")|x|*™"

this results in

S0 we can guarantee a universal positive lower bound on |x| < cry 1 O

A.2. Proof of Lemma (5.6, Without loss, by a linear transformation, we can assume that
a = id. This comes at the cost of changing the coefficient of 1y, to det(a), since this
is just another constant depending on ellipticity we will just pretend it is 1 to reduce the
number of constants below.

Step 1 (Holder continuity): We consider continuity at a boundary point y € 0B;. Call
L =max{l,||Vgl}. First we use a barrier argument to show that u is positive in a ball of
radius 7 = c¢(d)L~'g(y) centered at y. Then u is harmonic in B; N B, (y).

Since u is subharmonic in the entire By, see [2], we can do a standard barrier argument
from above to find, forany 0 < a < 1,

< +C(d,a)Lp“.
B2 S8+ Cd )L

This argument also works from below if r = 2 since then u is harmonic in the entire ball
B;.
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In the case r < 2 we can apply a similar barrier argument from below in B,(y) n By to
findforall0<a<landO<ps<r
min u=g(y)-C(d,a)g(y)(p/N*=g(y) - CL g(y)' " *p”.
BlﬂBp(y)

)l—a

Note that since r <2 also L*g(y < CL so the estimate from below is of the same form

as the one from above.
We just need to check the positivity in B, (y) for r = coL™'g(y) and cy > 0 chosen suffi-
ciently small dimensional. We can assume to start that ¢y > 0 small enough so that

1
inf g= —2Lr=— .
Bgl(y)g gy r 2g(y)

Let ¢ be the harmonic function in B, \ B; which is equal to 1 on dB; and 0 on 0B,, extend
¢ by 0 outside of B,. Make a family of barriers with r = coL ™' g(y)

1
Yi(x) = Eg(y)d)(r_l(x— z1))

where (z¢) rej0,1] 1S

zr=01+ (1+t))y

so that By, (zy) is exterior tangent to B; at y and B (z;) is exterior tangent to B; at y. Note
that

1 .
Yy < 5g(y) < g(x) for x in By,(z;) N By < By, (y) N By

and y; = 0 < g outside of By, (z;).

The plan is to show that y; are subsolutions of the Euler-Lagrange equation and below
g on 0B; and then slide inwards from ¢ =0 to ¢ = 1 to find ¥; < u. Note that y < v in By
because ¥, = 0 in B;. We have also established above that ¢, < g on 0B, forall £ € [0, 1].

Note that on 0B5;(z;)

IVl =cld)cg'L=1

where the last inequality comes from L = 1 and choosing ¢ large enough dimensional. In
particular v, is a smooth strict subsolution of the Euler-Lagrange equation for Jy outside
of B, (z;).

Technically we are using that u being a Jo minimizer in B is a viscosity solution of the
Euler-Lagrange equation

—Au=0in {u>0}nB; and |[Vu|=1 on 0{u>0}nB;.

Then we are applying a sliding maximum principle, for reference see [10][Theorem 2.2].
Step 2 (Energy comparison): Define an energy competitor

V=58 + ull —¢s)
where ¢ is a Lipschitz function with 0 < ¢p5 < 1, |V¢ps| < C(67) 71, and

1 |xIs1-20)r

Polx) = {o x> (1-5)r.
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Since ¢s = 0 in a neighborhood of 0B, we do have v € H(} ) +g.
Energy comparison gives

J(u,By) < J(v,By) = J(u, Ba-26)r) + J(v, By \ Ba—25)r)

SO

J(u, By \ Ba_g)r) < J(v, By \ Ba—25);) — J(, Ba—g)r \ B1-26)r)

s/ |(/)5Vg+(1—(p5)Vu+(g—u)V(p5|2 dx
Br\Bu-26)r
"—/ IVul*dx + AlB; \ Bu_28),]
Ba-8)r\Ba-26)r
1
s/ L +mpsVg+ (1 —ps)Vul* + (1 + )| (g — w)Ves|* dx
Br\B-28)r n
"—/ IVul?dx+ AlB; \ Bu_26)/
Ba-6r\B-26)r
1
s/ A +mPsIVgIF+ A +m) A — ) Vul® + (1 +2)(g — w)*IVps|* dx
Br\B-26)r n
"—/ IVul*dx + AIB; \ Bu_28),]
Ba—-syr\B—-26)r

< (A+2L%)|B; \ By _og)r| + /
Br\Ba-26)r

<HIVulTs g )+ CA+77 8272 B\ Baozgy, .

1
nIVul® + (1 + E)I(g— u)[*|Vepsl* dx

We used Young’s inequality in the form 2ab < na® + %’bz for the third inequality, and we
used convexity of a — |a|? for the fourth inequality. Note that

IVulZs s, < J(u, By) < J(g, By) < C(L)|By|
and |B; \ B1_25)r| < C6|B;| so
J(u, By \ Ba_gs);) <C+8+n 182 @ V172 B, |
choosingn =0 2+@=1 ;=1 ¢4 match the first and third terms

J(, By \ B_5),) < C(6 + 17169 2)|B, .

A.3. Proof of Corollary[6.5. We can take the flatness direction in the assumption to be
v = e4. By the assumption of the corollary then

|U(X) = 5o (Xa)+| < 6.

Let y= (¥, yq) and z = (z/, z;) be two points in d{u > 0} N B,/g. So, in particular,
Z € Brj4(y) € Byj2(y) < Bsr8(0)

Now we aim to apply Lemma[6.4]to u in B,/2(y). By the original flatness assumption u is
26r-flatin B;2(y) so as long as 46 < 6 from Lemma|6;4lwe can apply the result at the scale
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s=]y—z|+ sp to obtain
|u(x) — m(x-vhl < Ar with A=C(@6 +s?)
for a direction v with
lv—eql< A
where the scale s is chosen depending on L and universal constants so that we can have
A< i, also choosing 6 smaller if necessary.
In particular
[(z—y)-vI< As=A(lz— yl+ so)
and
(z=y)-vIzl(z=y)-eql—(z—y) - (eq — V)| = |xq — 24l — Alz— yI.
So )
122 = yal <2A0z =y +50) < S (122 = yal +12' =1 +50)
and we can move the first term over to the left and get
(A.1) |zqg — yal <212’ = y'| + 250.
The final conclusion follows then from taking the graph v to be the supremum of cones
a—2|x' - xy| whose subgraph lies inside {u > 0} in B, /5. Then implies that {u > 0} is

contained between the graphs of ¢ and y + 25sp.
OJ

A.4. Density estimates. In this appendix we show interior and exterior density estimates.
The main result of the section is

Proposition A.1. Suppose that u is non-negative H' function in a ball B, (0) with
(@) u is L-Lipschitz
(b) u is ¢ -non-degenerate at its free boundary
(c) Thereiso >0 so that for any ball B, < B;(0)

J(u, Bp) < J(v, Bp) + 0| Byl
wherev e u+ H(} (By) is the a-harmonic replacement.

Thereisog>0andc >0, C =1 depending on L, ¢ and universal parameters so that ifo < 0
then

[{u>0}nB,(x)|
(A.2) c< B.] <1-c forany B, < B;(0).
p

The interior density only requires the Lipschitz and non-degenerate hypotheses so the
conclusion is standard, the exterior density estimate does require the almost minimality
property and some inputs from homogenization.

Proof of Proposition[A.1, The inner density follows directly from non-degeneracy and the
Lipschitz estimate, see for example [10].

Now we consider the exterior density. We follow a standard line of argument, see [29,
Lemma 5.1], but we need to additionally use homogenized problem replacement at large
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scales and continuity of a at small scales to apply the constant coefficient argument (Pois-
son kernel lower bound).
Let h be the a-harmonic replacement of © in B,. Then

o|B;| + Al{u =0} N B, 2/ a(x)Vu-Vu—a(x)Vh-Vhdx
B,

:/ ax)V(u—-h)-V(iu-h) dx
B,

>N [ |IV(u-h)? dx.
B,
We will first argue for r = ro = 1 large enough but bounded by universal constants, then we
will argue for r < ry at the end. Let & be the a-harmonic replacement of / in B, then by
Theorem[2.1]
-2 012 -a
r“llh— h”LZ(B,) < Cr™%|B;l.
By Poincaré inequality in B,
-1

Ca

A
IV(u—h)? dx= (h—u)? dx

2
B, r

> ¢ / (

/rz Br
c (1 —a

= — h—udx| —Cr %|B,|.
|Br| \1 B,

By the non-degeneracy assumption of u we know maxap u = ¢r. By Lipschitz continuity
u= %E r in a 1 £r-neighborhood of the point where the maximum is achieved so

2L
1 [2
u(x)dsS = Eh l{u(x)zlmdSZCTrlaBrl
0B, 0B,

2

B,

h— u)? dx—%/ (E—h)2 dx
r B,
2

By the Poisson kernel formula for i, now dropping the ¢ and L dependence of the con-
stant, B
h(0) = cr.
and by Harnack inequality (recall 7 is harmonic up to a linear transformation)
E(x) > CE(O) =cr in x € Byo.
The Lipschitz estimate of u gives
u(x) < L|x|.
Thus )
u(x) — h(x) = chr in|x|<clr/2L.

Combining this with previous

1 (1 [ = 2 111 1 2
(—/ h—udx) = (—/ —clr dx) = 3¢yl Brl.
IBrl r Br |Br| r Bc(r/ZL 2
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For r = ry (universal) the term C& (%) < ¢y SO

IV(u—h)? dx = 2cy|By|
By

and for o < ¢y as well we get finally
Al{u=0}N Br| = col By .

Next we argue for r < ry. Actually it is more convenient to argue for r < r; < 1 again a
universal constant. For intermediate values r < r < ry we will just use a lower bound

.
l{w=0}NB,| = {u=0}NBy|>c1|By| = cl(r—l)dmrl.
0

The small r; case follows a very similar line of argument to the previous using the a(0)-
harmonic replacement & in B, (instead of a-harmonic replacement) along with the esti-
mate

1= I3, < CrAIV(R=R)IZ, , < Cr?r|B,]

which follows from the standard energy estimate
IV(h =)l 28,y < Clla— a(0)ll 1=, | VAl 25, < Cr'( / lullVup'? < CrYL|B, "2
0B,

using that a is C%7. O
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