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Large scale regularity of almost minimizers
of the one-phase problem in periodic media
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Abstract. We prove that minimizers and almost minimizers of one-phase free boundary en-
ergy functionals in periodic media satisfy large scale (1) Lipschitz estimates (2) free bound-
ary flat implies Lipschitz estimates. The proofs are based on techniques introduced by De
Silva and Savin [17] for almost minimizers in homogeneous media.
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1. INTRODUCTION

We consider minimizers of the one phase free boundary energy functional in a domain
U ΩRd :

(1.1) J (u,U ) =
ˆ

U
ru ·a(x)ru +Q(x)2

1{u>0} d x.

Here the heterogeneous media Q : Rd ! (0,1) and a : Rd ! M s ym
d£d (R) are Zd -periodic

measurable functions, sufficiently regular (to be specified), satisfying the ellipticity as-
sumptions, for some§> 1,

(1.2) §°1I … a(x) …§I and §°1 …Q(x) …§.
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Consider the domain U to be very large compared to the unit period scale associated with
the coefficients.

The goal of this paper is to prove that almost minimizers of the energy functional J
satisfy a Lipschitz estimate and a large scale “flat implies Lipschitz" estimate for the free
boundary @{u > 0}. The results are also new for minimizers, but the generality of almost
minimizers is useful for applications. In a forthcoming paper [19] we will apply these reg-
ularity results to obtain quantitative estimates for homogenization rate of a shape opti-
mization problem.

This follows the now classical Avellaneda and Lin [7] idea of inheriting the C 1,Æ regularity
iteration from a homogenized problem. The proof follows the recent quantitative strategy
for large scale regularity introduced by Armstrong and Smart [6]. In terms of free boundary
regularity theory we are using the very powerful ideas introduced by De Silva and Savin in
[17].

Local minimizers of (1.1) satisfy the Euler-Lagrange equation

(1.3)

(
°r · (a(x)ru) = 0 in {u > 0}\U

n ·a(x)n|ru|2 =Q(x)2 on @{u > 0}\U

which is called a one-phase Bernoulli-type free boundary problem. We will study global
(almost) energy minimizers which satisfy the additional property that

J (u,Br ) … (1+ (r /R0)Ø)J (v,Br )

for any Br Ω U and v 2 u + H 1
0 (Br ). Here R0 ¿ 1 introduces an additional length scale to

the problem associated with the almost minimality property, it is a slow scale compared
to the unit scale oscillations of the coefficients. This includes the case of minimizers when
R0 =+1.

In the large scale limit there is °-convergence to an effective energy functional

J0(u,U ) =
ˆ

U
ru · āru + hQ2i1{u>0} d x.

Here h·i is the average over a period cell, and ā is the effective matrix from classical diver-
gence form elliptic homogenization theory. The Euler-Lagrange equation associated with
critical points of this functional is the classical Bernoulli-type free boundary problem

(1.4)

(
°r · (āru) = 0 in {u > 0}\U

n · ān|ru|2 = hQ2i on @{u > 0}\U .

The free boundary problem (1.4) has a well developed regularity theory for minimizers
and more general solutions of the Euler-Lagrange equation. In higher dimensions the free
boundary may have singular points, but if the free boundary is sufficiently flat in some
ball Br then it will be smooth in Br /2. The theory of almost minimizers of J0 has been
developed more recently [17, 14, 15]. We will show that this type of flat implies smooth
result for almost minimizers of the effective energy J0 is inherited by almost minimizers of
the heterogeneous energy J .
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The structure of the paper follows the Armstrong and Smart [6] quantitative approach
to large scale regularity. First we prove a suboptimal quantitative homogenization result,
then we employ the quantitative homogenization result within a C 1,Æ iteration to achieve
a Lipschitz estimate of the free boundary. In order to establish the suboptimal quantitative
homogenization result we need to prove some initial regularity of the free boundary.

In this direction, our first main result is a large scale Lipschitz estimate for almost mini-
mizers of J . There are many proofs of the Lipschitz estimate for Bernoulli-type problems,
see the book of Velichkov [29]. Despite some effort the only proof which we were able to
adapt to homogenization setting, even for minimizers, is the recent proof of De Silva and
Savin [17]. Our argument closely follows theirs with some inputs from homogenization
theory.

Theorem 1.1 (Large scale Lipschitz estimate). Suppose that a and Q satisfy (1.2), a is Zd -
periodic, 1 … R … c(d ,§,Ø)R0, and u 2 H 1(BR (0)) satisfies, for all 0 … r … R,

J (u,Br (0)) … (1+ (r /R0)Ø)J (v,Br (0))

where v 2 u +H 1
0 (Br ) is the a-harmonic replacement. Then for all 1 … r … R

krukL2(Br ) …C (d ,§)(1+krukL2(BR )).

If, additionally, a 2C 0,∞ then

|ru(0)|…C (d ,§,∞, [a]C 0,∞)(1+krukL2(BR )).

Note that Q does not need to be periodic for this result, the upper and lower bounds are
enough. Periodicity of a is of course important, interior Lipschitz estimates do not hold
for general bounded elliptic coefficient fields.

The other basic regularity estimates of free boundary theory require the Lipschitz esti-
mate and then follow by natural adaptations of established arguments: non-degeneracy
(Lemma 4.3), free boundary perimeter (Lemma 4.5) and Hausdorff dimension estimates
(Lemma 4.6). We also give a proof of inner and outer density estimates in Section A.4, this
is not directly needed for our main result but we include it for usefulness in applications.

With these important intermediate results in hand, we establish our (suboptimal) quan-
titative homogenization result in Section 5. We show that a regularization u of u in the do-
main {u > 0}\Br is close to minimizing J0 with the following type of minimality condition

J0(u,Br ) … J0(v,Br )+C
h

(r /R0)Ø+ r°Æ
i
|Br | for all v 2 u +H 1

0 (Br ).

Note that there are two error terms in this energy estimate, the first from the almost min-
imality property of u which is good for r ø R0, and the second from the homogenization
which is good for r ¿ 1 (the periodicity scale). Importantly both terms are summable
over a geometric sequence of scales between 1 and R0. This allows us to apply De Silva
and Savin’s [17] C 1,Æ iteration for flat almost minimizers to obtain a flat implies Lipschitz
result:
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Theorem 1.2 (Flat free boundaries are (large scale) Lipschitz graphs). Assume that a and
Q satisfy (1.2), both are Zd -periodic, and a is Lipschitz continuous. Suppose that u is an
(R0,Ø)-almost minimizer in BR , 1 … R … c(d ,§,Ø)R0, and krukL1(BR ) … L. There is a con-
stant ±0(d ,§,L,krak1) so that if

inf
∫2Sd°1

sup
x2BR

1
R

ØØØu(x)° hQ2i1/2

(∫·ā∫)1/2 (x ·∫)+
ØØØ… ±0

then, for all y 2 @{u > 0}\BR/2 and for all 1 … r … R

inf
∫2Sd°1

sup
x2Br (y)

1
r

ØØØu(x)° hQ2i1/2

(∫·ā∫)1/2 ((x ° y) ·∫)+
ØØØ…C (d ,§,L,krak1)

£
(r /R)Æ±0 + r°!§

.

And, as a consequence, @{u > 0}\Br /2 is within distance C (d ,§,L,krak1) of a 1-Lipschitz
graph.

Remark 1.3. A large scale flatness assumption is needed because even minimizers of J0 can
have singular free boundary points in higher dimensions [22].

Remark 1.4. Note that both results are new even for minimizers R0 =+1. We consider the
more general case of almost minimizers because it adds only minor additional difficulties
and it is useful for applications.

Remark 1.5. We must point out that it is extremely important that we are considering en-
ergy minimizers or almost minimizers and not general local minimizers or critical points
(1.3). It is not true in general that solutions of (1.3), or even local energy minimizers of J ,
converge to solutions of (1.4) in the large scale limit [9, 18, 20].

Remark 1.6. The matching of the periodicity lattices of a and Q is actually not important
at all. In fact the arguments easily extend to non-periodic Q with a quantitative estimate
on the convergence of the spatial averages

sup
x

sup
r R

| 1

r d

ˆ
x+[° r

2 , r
2 )d

Q(y)2 d y °hQ2i|…C R°Æ

where the important feature of the Hölder rate is that it is summable over any geometric se-
quence of scales. Sufficiently mixing stationary ergodic random fields Q where the previous
estimate holds without the supremum and with a random variable C (x) satisfying some tail
bounds should also be easy to fit into the arguments.

We also expect that analogous results hold for finite range dependence random fields a(x)
a la [6]. The proofs are set up to be adaptable to this case but this is a more difficult extension
and there could be unforeseen challenges.

Remark 1.7. The result Theorem 1.2 implies a Liouville result for large scale flat minimizers
on the whole space. This is independently interesting. The Liouville result and related dis-
cussion can be found below in Section 6.1. In particular, related to the difficulty of obtaining
C 1,Æ estimates of the free boundary all the way down to the unit scale, see Remark 6.8.

Remark 1.8. The large scale flatness assumption would typically be justified in an appli-
cation by proving an initial sub-optimal convergence rate to a regular limiting object. The
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result Theorem 1.2 then takes this large scale flatness and iterates it down to all scales above
the unit scale. There is C 1,Æ improvement of flatness at intermediate scales which could be
useful in some cases, we did not include the statement here in the introduction but it can be
found below in Section 6.

Remark 1.9. Generally it is preferable to remove microscopic regularity hypotheses on the
coefficient field, which are philosophically unrelated to large scale regularity. There are
some impediments to completely removing these assumptions in Theorem 1.2. In Theo-
rem 1.1 we use a 2 C 0,∞ to obtain pointwise gradient bounds on u. The pointwise gradient
bounds are convenient, but could probably be replaced by the large scale gradient bound in
Theorem 1.1 for most of the elements in the proof of Theorem 1.2.

The key place where we do seem to need local regularity of u(x), and therefore of a(x), is in
the strong non-degeneracy estimate Lemma 4.3. Strong non-degeneracy can be proved from
weak non-degeneracy using a now standard Harnack chain type argument due to Caffarelli
[11] which needs to start from weak non-degeneracy in a, possibly, very small ball near the
free boundary, see also Remark 4.4 below.

Also in the course of proving strong non-degeneracy we use a standard Hopf Lemma bar-
rier construction in Lemma 4.2. This is the only place that Lipschitz as opposed to C 0,∞

is used in order to write the equation in non-divergence form. Hopf Lemma does hold for
Hölder continuous coefficients, see [3], so the Lipschitz assumption could possibly be relaxed
to just C 0,∞ with more work.

1.1. Literature. The idea that elliptic problems in heterogeneous media could inherit reg-
ularity, up to a certain threshold, from their large scale effective limit was first introduced
by Avellaneda and Lin in a series of papers [7]. Often this kind of regularity theory can be
used to obtain optimal quantitative convergence estimates for the homogenization limit.
This idea was re-emphasized by Armstrong and Smart [6] who were able to adapt the Avel-
laneda and Lin idea for the first time in random media. The idea of [6] is to first obtain a
suboptimal quantitative homogenization result, which can then be used within the C 1,Æ

iteration as long as the quantitative rate is summable over geometric sequences of scales.
It is exactly this idea which we are applying in the context of free boundary problems.

The regularity theory for minimizers of J0 was first significantly developed by Alt and
Caffarelli [2]. The topic has been extremely popular since then and we do not make an
attempt at a thorough recounting. We will just point out the most relevant, which is the
recent development of regularity theory of almost minimizers. A series of papers by (vari-
ous subsets of) the authors David, Engelstein, Smit Vega Garcia, and Toro [15, 14, 13] have
initiated and made major developments in the study of almost minimizers of the more
general two-phase version of the energy J . David, Engelstein, Smit Vega Garcia and Toro
[13] (two-phase) and, independently, Trey [27] (vector-valued) have proved a Lipschitz es-
timate for almost minimizers of variable coefficient Bernoulli-type problems. De Silva and
Savin [17] gave another account of the regularity theory for almost minimizers of the one
phase problem, and, as mentioned before, we will be following their ideas. Note that all
these works are considering small scale regularity, while we are considering large scales.
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In other words one can consider our work to be on oscillatory coefficients a(x/") which
do not satisfy a uniform in "> 0 Hölder regularity hypothesis.

There are very few works on the large scale regularity theory of free boundary problems
in heterogeneous media. The only other result we are aware of is by Aleksanyan and Ku-
usi [1]. They obtain a result analogous to ours for a version of the obstacle problem in
random media. A major difficulty in studying the Bernoulli free boundary problem, as far
as we understand it, is that the Euler-Lagrange equation (1.3) cannot be enough informa-
tion by itself to get regularity. This is already reflected in techniques for the homogeneous
problem which variously use the additional properties of being a minimizer, almost mini-
mizer, maximal subsolution, or minimal supersolution. As established in [9, 23, 20, 18] the
large scale limit of minimal supersolutions, maximal subsolutions, and minimizers are all
rather different Bernoulli free boundary problems and thus regularity theory techniques
would need to be adapted to each case. In fact the regularity theory for the homogenized
problem for minimal supersolutions and maximal subsolutions is not understood yet [18].
Thus we were led to consider first the case of minimizers and almost minimizers as we do
in this paper. In this case the large scale effective problem is a standard constant coeffi-
cient minimization problem and the regularity theory is well understood.

1.2. Acknowledgments. The author was supported by the NSF grant DMS-2009286. The
author would like to thank Farhan Abedin for extensive and motivating discussions on the
topics of the paper.

2. BACKGROUND RESULTS

This section introduces notations and conventions which will be used in the paper and
review some well known results from the literature about divergence form elliptic homog-
enization.

2.1. Assumptions and conventions. As described in the introduction we will study en-
ergy functionals of the following type

J (u,U ) =
ˆ

U
ru ·a(x)ru +Q(x)2

1{u>0} d x.

We make precise the assumptions on the coefficients which will be in place throughout
the paper, unless otherwise specified in some few locations.

(Q1) The coefficient Q :Rd ! (0,1) is assumed to satisfy the ellipticity condition

§°1 …Q(x) …§.

(Q2) The coefficient Q is assumed to be Zd -periodic and satisfy the normalization con-
dition

hQ2i=
ˆ

[0,1]2
Q(x)2 d x = 1

(a1) The coefficients a :Rd ! M s ym
d£d (R) areZd -periodic and satisfy the ellipticity bounds

§°1I … a(x) …§I
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(a2) The coefficient field a :Rd ! M s ym
d£d (R) is Lipschitz.

See Remark 1.9 above for comments about the role of the microscopic regularity Assump-
tion (a1).

• Constants C and c in the text below which depend at most on d , §, Ø, krak1 are
called universal. Such constants may change meaning from line to line without
mention. If we intend to fix the value of such a universal constant for a segment of
the argument we may denote it as c0, C0, c1 etc.

Notations:

• Balls are denoted Br (if the center does not need denotation) or Br (x). Boxes are
denoted

‰r = [°r /2,r /2)d and ‰r (x) = x +‰r .

• Lebesgue measure of a measurable set U is denoted |U |. This notation may also be
used for lower dimensional measures if the set is obviously a particular Hausdorff
dimension, i.e. |@Br | is the surface area of the sphere of radius r .

• Averaged integrals

°
ˆ

U
f d x = 1

|U |

ˆ
U

f d x

• Averaged Lp norms

k f kLp (U ) = (
1
|U |

ˆ
U
| f |p d x)1/p .

2.2. Divergence form elliptic equations with periodic coefficients. We consider elliptic
energy functionals of the type

E(u,U ) =
ˆ

U
ru ·a(x)ru d x

evaluated on a domain U of Rd .
Given g 2W 1,p (U ) for some p   2 we can consider the Dirichlet problem

min{E(u,U ) : u 2 g +H 1
0 (U )}

with the associated Euler-Lagrange PDE

(2.1)

(
°r · (a(x)ru) = 0 in U

u = g on @U

all interpreted in the appropriate weak sense.
We introduce the correctors ¬q which are the unique global Zd periodic and mean zero

solutions of the problem
°r · (a(x)(q +r¬q )) = 0 in Rd

existing for each q 2 Rd . It follows from the previous properties that ¬q depends linearly
on q 2Rd .
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We make a few notes about corrector bounds which will be useful. By multiplying the
corrector equation by q and integrating over a unit period cell,

kr¬qkL2([0,1)d ) …§2|q |.
By Poincaré and mean zero also

k¬qkL2([0,1)d ) …C |q |
and using periodicity we can also conclude that for all r   1

(2.2) kr¬qkL2(Br ) +k¬qkL2(Br ) …C |q |
for a universal C   1. By standard elliptic regularity theory (2.2) can be upgraded to an L1

estimate if we assume that a 2C 0,∞, the new constant C will also depend on ∞ and [a]C 0,∞ .
The homogenized matrix is defined

(2.3) āi j = h(ei +r¬ei (x))a(x)(e j +r¬e j (x))i
where ei are the standard basis vectors. We define the homogenized energy functional

E0(u,U ) =
ˆ

U
ru ·aru d x

Given these definitions the following convergence result is classical. See [6, 4] for a proof
in the more difficult context of random media.

Theorem 2.1 (Homogenized replacement in balls). Suppose r   1, g 2 W 1,p (Br ) for some
p > 2, and u and u0 respectively minimize E and E0 over H 1

0 (Br )+g . Then there areÆ 2 (0,1)
and C   1 depending on d,§, and p so that

|E(u,Br )°E0(u0,Br )|+ 1
r 2 ku °u0k2

L2(Br ) …Ckrgk2
Lp (U )r

°Æ|Br |.

This result does hold in the more general class of Lipschitz domains, and that assump-
tion can be pushed a bit further, but we will not use that generality in our paper. We will
use a slightly different homogenization result in the positivity set {u > 0} which takes ad-
vantage of the a-priori Lipschitz bound from Section 3, see Section 5.1 for that statement
and more discussion.

From an initial quantitative homogenization result one can also prove a version of el-
liptic regularity for a-harmonic functions. We will make use of the following facts.

Theorem 2.2 (Interior regularity). (1) (Lipschitz estimate [7, Lemma 16]) If u is a-harmonic
in Br then

krukL1(Br /2) …
C
r
kukL1(Br )

where the constant C is universal.
(2) (C 1,Æ estimate [7, Lemma 15]) If u is a-harmonic in BR then for any r0 … r … R

sup
Br

|u(x)° (A+q · x +¬q (x))|…C (
r
R

)1+ÆkukL2(BR )
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for some q and A depending on r with |A| + r |q| … CkukL2(BR ). And, since A + q · x +¬q is
a-harmonic,

kru ° (q +r¬q )kL2(Br ) …C (
r
R

)Æ
1
R
kukL2(BR ) .

An analogous C 1,1 estimate is also true, the general theory in [4] explains this, but the
statements there are for random media and in a less convenient form for our purposes.

3. LIPSCHITZ ESTIMATE

In this section we prove the Lipschitz estimate Theorem 1.1 for almost minimizers of
energy functionals of the form

J (u,U ) =
ˆ

U
a(x)ru ·ru +Q(x)2

1{u>0} d x.

In this section a(x) will be Zd -periodic, and a and Q will satisfy the ellipticity bounds
i.e. we are under Assumption (a1) and Assumption (Q1). We do not need to assume any
further structural assumptions (e.g. periodicity, regularity) on Q at this stage.

A competitor u 2 H 1(U ) is called a (R0,Ø)-almost minimizer in a domain U if, for any
Br ΩU , and any v 2 u +H 1

0 (Br )

(3.1) J (u,Br ) … (1+ (r /R0)Ø)J (v,Br ).

Remark 3.1. As mentioned in the statement of Theorem 1.1, for the purposes of the Lipschitz
estimate we only need the almost minimizing property to hold for the a-harmonic replace-
ment. That fact is convenient for making translations between slightly different notions of
almost minimality.

We also remark that the proofs go through with almost no change with an additional
additive term: for any Br ΩU , and any v 2 u +H 1

0 (Br )

(3.2) J (u,Br ) … (1+ (r /R0)Ø)J (v,Br )+ (r /R0)Ø|Br |.

We follow the approach of De Silva and Savin [17] which proceeds in three steps:

• Step 1 (Dichotomy): if an almost minimizer u has large L2-averaged slope in a ball
Br then either the L2 averaged slope decreases by half in a smaller ball B¥r or u is
close to a corrected linear a-harmonic function in B¥r .

• Step 2 (Interior-like improvement): In the second case of the previous dichotomy
u has interior C 1,Æ-like improvement down to the unit scale.

• Step 3 (Iteration): Iterating the dichotomy either case results in a Lipschitz bound.

The main point for us is to use the correctors and the Avellaneda-Lin [7] interior estimates
Theorem 2.2 in place of the corresponding results for homogeneous problems. Although
this sounds rather straightforward, we were unable to make such an idea succeed in any of
the other standard proofs of the Lipschitz estimate from the literature, see [29] for a survey
of such methods.

3.1. Step 1: Dichotomy.
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Lemma 3.2. Let u 2 H 1(Br ) and suppose that

J (u,Br ) … (1+æ)J (v,Br ) for all v 2 u +H 1
0 (Br ).

Let 1
4   ±> 0 there exist constants ¥, M and æ0 (depending on ± and universal constants) so

that if æ…æ0, ¥r   1, and
krukL2(Br )   M

then the following dichotomy holds: either

krukL2(B¥r ) …
1
2
krukL2(Br )

or
kru ° (q +r¬q (x))kL2(B¥r ) … ±krukL2(Br )

with some q 2Rn satisfying

C°1
0 krukL2(Br ) … |q |…C0krukL2(Br )

with a constant C0   1 universal (not depending on ±).

Proof. 1. Let v be the a-harmonic replacement of u in B1. Thenˆ
Br

a(x)r(u ° v) ·r(u ° v) d x … J (u,Br )+
ˆ

Br

a(x)rv ·rv °2a(x)ru ·rv d x.

Using the minimizing property of u and ellipticity

§°1kru °rvk2
L2(Br ) … (1+æ)J (v,Br )+

ˆ
Br

a(x)rv ·rv °2a(x)ru ·rv d x.

Then combining the |rv |2 terms on the right

§°1kru °rvk2
L2(Br ) …ækrvk2

L2(Br ) +§|Br |+
ˆ

Br

2a(x)rv ·r(v °u) d x.

The last term is 0 because v is a-harmonic so

kru °rvk2
L2(Br )

…Cækrvk2
L2(Br )

+C …C (ækruk2
L2(Br )

+1).

2. Since v is a-harmonic in Br we can apply the interior C 1,Æ estimate Theorem 2.2 to
find that, as long as ¥r   1,

krv ° (q +r¬q )kL2(B¥r ) …C¥ÆkrvkL2(Br ) …C¥ÆkrukL2(Br )

for some
|q|…CkrukL2(Br ).

Note also, by the corrector estimates (2.2),

kr¬qkL2(Br ) …C |q|.
3. Now we combine the previous parts to estimate

kru ° (q +r¬q (x))kL2(B¥r ) … krv ° (q +r¬q (x))kL2(B¥r ) +kru °rvkL2(B¥r )

…C¥ÆkrukL2(Br ) +Cæ1/2¥°d/2krukL2(Br ) +C¥°d/2
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and so, also,

krukL2(B¥r ) …C¥ÆkrukL2(Br ) +Cæ1/2¥°d/2krukL2(Br ) +C¥°d/2 +C |q|.
Both estimates require that ¥r   1.

Now, we first fix ¥ > 0 small depending on ±, and then fix æ0 > 0 small and M > 1 large
depending on ± and the choice of ¥ so that

C¥ÆkrukL2(Br )+Cæ1/2¥°d/2krukL2(Br ) +C¥°d/2

… 1
4
±krukL2(Br ) +C¥°d/2M°1krukL2(Br )

… ±krukL2(Br ).

Now, as long as ¥r   1, we have the two inequalities

kru ° (q +r¬q (x))kL2(B¥r ) … ±krukL2(Br )

and, using ±… 1
4 ,

krukL2(B¥r ) …
1
4
krukL2(Br ) +C1|q|.

4. Finally we divide up into the dichotomy in the statement. If

|q|… 1
4

C°1
1 krukL2(Br )

then
krukL2(B¥r ) …

1
2
krukL2(Br )

while, otherwise,
kru ° (q +r¬q (x))kL2(B¥r ) … ±krukL2(Br )

with some
1
4

C°1
1 krukL2(Br ) … |q|…CkrukL2(Br ).

⇤

3.2. Step 2: Close to planar implies interior-like C 1,Æ
improvement. The next lemma

says that if ru is ±|q | close to a corrector gradient q +r¬q in L2, then there is an interior
C 1,Æ-like improvement of oscillation. Basically an energy argument shows that the zero
level {u = 0} must be relatively small and so the oscillation improvement of the a-harmonic
replacement carries over to u.

Lemma 3.3. Let u as in Lemma 3.2 and r   1. Suppose that |q|  1 and

kru ° (q +r¬q (x))kL2(Br ) … ±|q |
for some 1 > ±> 0.

There are Æ0 > 0, µ> 0, 1 > ±̄> 0 and c0 > 0 universal such that if

±… ±̄, æ… c0±
2, and µr   1

then
kru ° (q 0+r¬q 0(x))kL2(Bµr ) …µÆ0±|q 0|
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with q 0 2Rd satisfying
|q 0 °q |…C1±|q|

for a universal C1   1.

The result should be possible with any Æ 2 (0,1) with parameters depending on Æ using
the C 1,1 version of Theorem 2.2.

Proof. 1. (Harmonic replacement) Let v̄ be the a-harmonic replacement of u in Br /2 and
let v be

v = u in Br \ Br /2 and v = v̄ in Br /2.

Then
J (u,Br ) … (1+æ)J (v,Br )

or
J (u,Br /2) …æJ (u,Br \ Br /2)+ (1+æ)J (v,Br /2).

Also note, using the corrector estimate kr¬qkL2(Br ) …C |q | from (2.2),

krukL2(Br ) …C |q|.
Thusˆ

Br /2

a(x)ru ·ru °a(x)rv ·rv d x +
ˆ

Br /2

Q(x)1{u>0} d x …æ(C |q |2 +§)|Br |+
ˆ

Br /2

Q(x) d x.

Since v is the a-harmonic replacement for u in Br /2ˆ
Br /2

a(x)ru ·ru °a(x)rv ·rv d x =
ˆ

Br /2

a(x)r(u ° v) ·r(u ° v) d x

so, plugging that in, re-arranging, and using ellipticity,

kru °rvk2
L2(Br /2)

…Cæ(|q|2 +1)+ 1
|Br /2|

ˆ
Br /2

Q(x)1{u=0} d x

or

(3.3) kru °rvk2
L2(Br /2)

…Cæ|q|2 +§ |{u(x) = 0}\Br /2|
|Br /2|

2. (Large slope implies small measure of zero level) Next we claim that

|{u(x) = 0}\Br /2|
|Br /2|

…C±2+Ø

for some universal C ,Ø> 0. Actually it will hold for 2+Ø… 2§ = 2d
d°2 = 2+ 4

d°2 the Sobolev
embedding exponent for L2 (or 2+Ø< 2§ =+1 in d = 2).

Note that ˆ
Br

(u °`) d x = 0 where `(x) = q ·x +¬q (x)+°
ˆ

Br

u °¬q d x.

So, by Poincaré,
cku °`kL2(Br ) … rkru °r`kL2(Br ) … ±|q|r.
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Since u   0
ck(`)°kL2(Br ) … ±|q |r.

If q ·x+ °́
Br

(u°¬q ) were not positive in B3r /4 then |q ·x|  1
8 |q |r in some ball of radius r /16

contained in Br so, using k¬qkL2(Br ) … K |q | from (2.2),

k(`)°kL2(Br )   c|q |r °k¬qkL2(Br )   c|q|(r ° c°1K )

for a universal constant c. This is a contradiction for r   2c°1K and ± sufficiently small
depending on K and other universal constants. Note that, given the hypothesis µr   1, we
can think of this as a requirement on the choice of µ, that we must choose µ… 1

2 cK °1.
Thus

`(x)   1
4
|q|r °k¬qk1   1

4
|q|(r °4K )   c|q|r in Br /2

for a universal c > 0 and using r   8K (imposing additionally µ… 1
8K ).

By Poincaré-Sobolev

ku °`kL2§ (Br ) …Crkru °r`kL2(Br ) …C±|q |r

but also

ku °`kL2§ (Br )   c|q|r |{u = 0}\Br /2|1/2§

|Br /2|1/2§
.

So the claim follows combining the previous two inequalities.
3. Note that v(x)° (q ·x +¬q (x)) is the a-harmonic replacement of u(x)° (q ·x +¬q (x)).

So
krv ° (q +r¬q )kL2(Br /2) …§2kru ° (q +r¬q )kL2(Br /2) … ±§2|q |.

By the Avellaneda-Lin interior C 1,Æ estimates for a-harmonic functions Theorem 2.2 ap-
plied to v(x)° (q · x +¬q (x)), for any 0 <µ< 1/2 such that µr   1,

krv ° (q +r¬q )° (q̄ +r¬q̄ )kL2(Bµr ) …CµÆkrv ° (q +r¬q )kL2(Br /2) …CµÆ±|q |

for some q̄ 2Rd with
|q̄ |…Ckrv ° (q +r¬q )kL2(Br /2) …C±|q |.

Write q 0 = q + q̄ and recall the linearity of the corrector ¬q +¬q̄ = ¬q+q̄ . Assuming C±… 1
2

we have 2|q 0|  |q|  1.
Combining this with estimate (3.3)

kru ° (q 0+r¬q 0)k2
L2(Bµr )

…Cæµ°d |q |2 +Cµ°d±2+Ø+Cµ2Æ±2|q|2.

Now choose parameters in the following order: let Æ0 = Æ/2 (or anything smaller than Æ

works), then choose µ small enough so that Cµ2(Æ°Æ0) … 1
6 for the third term (in addition to

the previous requirements), then choose ±… ±̄ with ±̄Ø = 1
6C°1µd+2Æ0 for the second term.

Finally the condition æ … 1
6C°1±2µd+2Æ0 gives that all three terms above are smaller than

1
6µ

2Æ0±2|q 0|2 (note we are using |q 0|  1
2 |q| 

1
2 ).

⇤
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Lemma 3.4. Suppose that u is a (R0,Ø)-almost minimizer of J in BR for some R0   R   1
and for some |q|  2

kru ° (q +r¬q (x))kL2(BR ) … ±|q |.
There is universal ±§ > 0 so that if ±… ±§ then

krukL2(Br ) …C |q| for all 1 … r … R.

Proof. We iterate Lemma 3.3 with Æ=Ø/2. Pick ±§ so that

±§ … ±̄ and 4C1
1

1°µÆ±§ … 1

where ±̄ is the universal constant from Lemma 3.3.
It suffices to consider the case

(3.4) æ0 := (R/R0)Ø … c0±
2
§

where c0 is the universal constant from Lemma 3.3 and ±§ is defined above.
We claim that for all j such that µ j R   1 there are q j such that

(3.5) kru ° (q j +r¬q j (x))kL2(B
µ j R ) … ±§µÆ j |q j |

with

(3.6) |q j+1 °q j |…C1±§µ
Æ j |q j | and 1 … |q j |… 2|q|.

We will prove this by induction. By the hypothesis of the theorem (3.5) and (3.6) hold
for j = 0. Suppose that (3.5) and (3.6) hold for all 0 … j … k.

Note that we have

|qk+1 °q |…
kX

j=0
|q j+1 °q j |… 2C1

1
1°µÆ±§|q|.

In particular

|qk+1|… (1+2C1
1

1°µÆ±§)|q|… 2|q|

because of the choice of ±§, and, similarly,

|qk+1|  (1°2C1
1

1°µÆ±§)|q|  1
2
|q|  1.

Thus we have established the second part of (3.6) for k +1.
If µk+1R … 1 then we are already done. Otherwise u is in the set up of Lemma 3.3 in Bµk R

with (3.5) and

(3.7) ±k = ±§µÆk and æk = (rk /R0)Ø =µkØæ0.

Note that ±k … ±§ … ±̄ and

(3.8) æk =µ2kÆæ0 = ±2
k±

°2
§ æ0 … c0±

2
k

by (3.4). Thus all the assumptions of Lemma 3.3 hold and we find that there is qk+1 such
that

kru ° (qk+1 +r¬qk+1 (x))kL2(B
µk+1R ) … ±µÆ(k+1)|qk+1|
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and with
|qk+1 °qk |…C1±k |qk | =C1µ

Æk±§|qk |.
Then we have the result of the theorem because (3.5) and (3.6) imply

krukL2(B
µk R ) …C |q j |…C |q|

and the estimate for intermediate values µk+1R … r < µk R also holds up to an additional
factor of µ°d/2 which is also universal.

⇤

Remark 3.5. The previous proof will also go through when the almost minimality hypoth-
esis (3.1) is replaced by

(3.9) J (u,Br ) … (1+!(r /R0))J (v,Br )+!(r /R0)|Br |
(for v the a-harmonic replacement in Br ) as long as !

1
2 is a Dini modulus, in the sense that´ 1

0 !(t )
1
2 d t

t <+1, with !(1) … 1. The inductive hypotheses (3.5) and (3.6) with ±k = ±§µkÆ

are replaced by
±k = ±§!(R/R0)°

1
2!(µk R/R0)

1
2 .

This choice is so that later in (3.7), when æk =!(µk R/R0), we will have

æk = ±2
k±

°2
§ !(R/R0) … c0±

2
k

as long as R/R0 small enough depending on ! so that !(R/R0) … c0±
2
§. The purpose of the

Dini modulus assumption is to guarantee that
P1

k=1±k <+1.

3.3. Step 3: Iteration.

Theorem 3.6. If u is a minimizer of J in BR (0) then for all 1 … r … R

krukL2(Br (0)) …C (krukL2(BR (0)) +1).

Proof. Let ¥> 0 small enough and M   2C0 large so that the statement of Lemma 3.2 holds
with ±=C°1

0 ±§ constants C0 from Lemma 3.2 and ±§ from Lemma 3.4. Define

bk = krukL2(B
¥k R ).

Consider the inequality

(3.10) bk … ¥°d/2M +2°k b0.

This is true for k = 0, suppose that the statement holds for 0 … k … j . If ¥ j+1R … 1 we are
done so we can assume ¥ j+1R   1.

If b j … M then
b j+1 … ¥°d/2b j … ¥°d/2M

so (3.10) holds for k = j +1.
Otherwise b j   M and so Lemma 3.2 applies and either

b j+1 …
1
2

b j … ¥°d/2M +2°( j+1)b0,
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so (3.10) holds for k = j +1, or

kru ° (q +r¬q )kL2(B
¥ j+1R ) …C°1

0 ±§b j

for some
C°1

0 b j … |q|…C0b j .

Since b j   M   2C0 we can apply Lemma 3.4 to find

krukL2(Br ) …C b j …C (¥°d/2M +2° j b0)

for all 1 … r … ¥ j+1R. ⇤

3.4. Local regularity. Finally we mention that when the C 0,∞ hypothesis is added, As-
sumption (a2), we can also recover a true Lipschitz estimate from Theorem 1.1.

Corollary 3.7. Suppose Assumption (Q1), Assumption (a1), and a 2 C 0,∞. If u is (R0,Ø)-
almost minimal in BR (0) for some R0   R > 0 then

|ru(0)|…C (1+krukL2(BR ))

for C   1 depending on§, d, Ø, ∞, and [a]C 0,∞ .

Proof. If R   2r0 then Theorem 1.1 implies that

krukL2(Br0 (x0)) …C (d ,§,Ø)(1+krukL2(BR ))

for all x0 2 BR/2. If R … 2r0 we can just do the below argument in BR instead of in Br0 .
Without loss we can consider the case x0 = 0, define the functional centered at 0

J̃0(v,U ) =
ˆ

U
a(0)rv ·rv +Q(x)2

1{v>0} d x.

Note that
| J̃0(v,Br (0))° J (v,Br (0))|… [a]C 0,∞r ∞krvk2

L2(Br (0)\{v>0})

by ellipticity the gradient norm on the right hand side can be bounded above by J (v,Br )
or by J̃0(v,Br ).

So we can compute writing Br for Br (0)

J̃0(u,Br ) = J (u,Br )+ ( J̃0(u,Br )° J (u,Br ))

… (1+ (r /R0)Ø)J (v,Br )+Cr ∞ J (u,Br )

… (1+ (r /R0)Ø)(1+Cr ∞)J (v,Br )

… (1+ (r /R0)Ø)(1+Cr ∞)2 J̃0(v,Br )

on the second inequality we used the almost minimality of u. Thus u has an almost mini-
mality property for J̃0 and so we can apply [17][Theorem 1.1] to get

|ru(0)|…C (1+krukL2(Br0 )) …C (1+krukL2(BR )).

⇤
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4. INITIAL FREE BOUNDARY REGULARITY

In this section we explain the non-degeneracy at the free boundary of almost minimiz-
ers, see Section 4.1. Some inputs from homogenization theory are needed, and since we
want to consider almost minimizers we again follow the arguments introduced by De Silva
and Savin [17]. Non-degeneracy then implies a Hausdorff dimension (d°1) estimate of the
free boundary, see Section 4.2. Together with the Lipschitz estimate proved previously this
is sufficient domain regularity to apply quantitative homogenization estimates in {u > 0},
see Section 5.1 later.

The following hypotheses on u 2 H 1(U ) non-negative will be used in this section.

• (Lipschitz estimate)

(4.1) krukL1(U ) … L.

• (æ-almost minimal) There is æ  0 so that for any ball BΩ ΩU

(4.2) J (u,BΩ) … J (v,BΩ)+æ|BΩ| for all v 2 u +H 1
0 (BΩ).

The interior Lipschitz estimate of almost minimizers has been proved already in Section
3, and will be considered a hypothesis in this section.

Note that given the Lipschitz estimate the almost minimality condition above follows
from the almost minimality of the type (3.1) via

J (u,Br ) … (1+ (r /R0)Ø)J (v,Br ) … J (v,Br )+ (r /R0)Ø(§2 +L2)|Br |
for all v 2 u +H 1

0 (Br ).

4.1. Non-degeneracy. Under (4.1) and (4.2) we will show that u is non-degenerate at its
free boundary. More precisely, if æ is sufficiently small, then for any x 2 @{u > 0} and r > 0
so that Br (x) ΩU then

sup
Br (x)

u   cr.

If we were considering minimizers we could follow the original argument of Alt and
Caffarelli [2] with some small inputs from homogenization for the oscillatory operator.
Specifically we would use a Lipschitz estimate up to the boundary for the a-harmonic
function interpolating between 1 on @Br and 0 on @Br /2 in the annulus Br \ Br /2.

To consider almost minimizers we are instead following the line of arguments by De
Silva and Savin [17]. Still we view the adaptations as fairly natural, if a bit technical, using
a-harmonic and a-harmonic replacements and quantitative homogenization theory in
Br . Note that, importantly, we are not using quantitative homogenization theory for the
domain {u > 0} yet.

Lemma 4.1 (Weak non-degeneracy). Suppose u > 0 and L-Lipschitz in Br and

J (u,Br ) … J (v,Br )+æ|Br | for all v 2 u +H 1
0 (Br )

then there is æ0, depending on L and universal parameters, and c > 0, universal, so that if
æ…æ0 then

u(0)   cr.
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Furthermore if there is x 2 @Br (0)\@{u > 0} then

sup
@B(1°¥)r

u   (1+±)u(0)

for some constants ± and ¥> 0 depending on L and universal parameters.

For the second part we will need the following technical Lemma.

Lemma 4.2. Given r0   1 there is a constant c depending on r0 and universal parameters so
that the Poisson kernel at 0, p(y) = PBr (0, y), for the operator °r · (a(x)r·) in Br (0) for any
0 < r … r0 has

p(y)   c
1

|@Br |
.

The proof of is postponed to the Appendix, Section A.1. This is the only place that we
use the assumption that a 2C 0,1 as opposed to C 0,∞.

Proof of Lemma 4.1. Note: constants in this proof may depend on universal parameters
and also on L. We will try to explicitly indicate the L dependence each time it appears, af-
terwards constants which depend on L will be denoted with k and K and constants which
are universal and don’t depend on L will be denoted c and C . The values of k and K may
change from line to line as is the convention with c and C .

1. Let h be the a-harmonic replacement of u in Br . Then, since u > 0 in Br and h > 0 in
Br (strong maximum principle),

J (h,Br ) = E(h,Br )+
ˆ

Br

Q(x)2 d x … E(u,Br )+
ˆ

Br

Q(x)2 d x = J (u,Br ) … J (h,Br )+æ|Br |

so subtracting the two energies and using the a-harmonic replacement property we findˆ
Br

|ru °rh|2d x …Cæ|Br |.

By Poincaré ˆ
Br

(u °h)2 d x …Cær 2|Br |.

By the interior Lipschitz estimate Theorem 2.2 for a-harmonic functions and maximum
principle

krhkL1(B 3r
4

) …
C
r

oscBr h … C
r

oscBr u …C L.

So

(4.3) ku °hkd+2
L1(Br /2) … Kær 2|Br |.

Let ¡ be a standard smooth cutoff ¥ 1 outside @Br /2 and ¥ 0 in Br /4 with |r¡| … C /r .
Using, as earlier, that h and u are positive in Br

J (h,Br ) … J (u,Br ) … J (h¡,Br )+æ|Br |.
From this point we argue differently for large and small r > 0.
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For r   r0 large to be specified let h be the a-harmonic replacement of h in Br then, by
Theorem 2.1,

|E(h,Br )°E0(h,Br )|+ 1
r 2 kh °hk2

L2(Br ) …C L2r°Æ|Br |.

Note the same inequality holds for J (h,Br )° J0(h,Br ) by positivity. By similar arguments
to above for (4.3), using the interior Lipschitz estimate,

(4.4) kh °hkd+2
L1(Br /2) … K r 2°Æ|Br |.

Since h   0 solves a constant coefficient equation in Br (i.e. it is harmonic under a linear
non-degenerate change of variables) we have by Harnack inequality

kh̄kL1(B3r /4) …C h̄(0)

and so for h we have
khkL1(B3r /4) …C h(0)+K r 1° Æ

d+2 .

and also using the interior Lipschitz estimate for a-harmonic functions Theorem 2.2

krhkL1(Br /2) …Cr°1khkL1(B2r /4) …Cr°1h(0)+K r° Æ
d+2 .

So, using several of the previously established inequalities,

E(h,Br )+
ˆ

Br

Q(x) d x … J (h,Br )

… J (h¡,Br )+æ|Br |

= E(h¡,Br )+
ˆ

Br \Br /4

Q(x) d x +æ|Br |

… E(h,Br )+
ˆ

Br \Br /4

Q(x) d x

· · ·+
∑

C (
1

r 2 khk2
L1(Br /2) +krhk2

L1(Br /2))+æ
∏
|Br |

… E(h,Br )+
ˆ

Br \Br /4

Q(x) d x +
µ
C

1
r 2 h(0)2 +K r° Æ

d+2 +æ
∂
|Br |

Rearranging this inequality we find

h(0)2   cr 2(
1

|Br |

ˆ
Br /4

Q(x)d x °K r° Æ
d+2 °æ)   cr 2(§°14°d °K r° Æ

d+2 °æ)

So as long as K r° Æ
d+2 +æ is sufficiently small depending on universal parameters we find

h(0)   cr.

Then plugging in (4.3) and (4.4)

u(0)   (c °Kæ
1

d+2 °K r° Æ
d+2 )r   1

2
cr

This holds for r   r0 and æ … æ0 where r0 and æ0 depend on universal constants and on
the Lipschitz constant L.
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Next we argue for r … r0. Note that we can actually argue for r … r1 small, to be deter-
mined, and then for r1 … r … r0 we simply use that Br1 Ω Br and so

u(0)   cr1   c r1
r0

r

and the additional factor r1/r0 still depends only on L and universal parameters.
The small r1 case follows a very similar line of argument to the previous using the a(0)-

harmonic replacement h̃ in Br (instead of a-harmonic replacement) along with the esti-
mate

kh ° h̃k2
L2(Br )

…Cr 2kr(h ° h̃)k2
L2(Br )

…C L2r 2r 2∞|Br |
which follows from the standard energy estimate

kr(h ° h̃)kL2(Br ) …Cka °a(0)kL1(Br )krh̃kL2(Br ) …Cr ∞(
ˆ
@Br

|u||ru|)1/2 …Cr ∞L|Br |1/2

using that a is C 0,∞.
2. Since u is Lipschitz in Br , infBr u = 0, and u(0)   cr (from the first part of the proof)

we can also conclude that u(x) … 1
4 u(0) on a constant k(L) fraction of @B(1°¥)r for some

¥(L) > 0. Since

sup
B(1°¥)r

|u ° h̄|… K (æ
1

d+2 + r° Æ
d+2 )r … K (æ

1
d+2 + r° Æ

d+2 )u(0)

when æ…æ0(L) and r   r0(L) also h̄(x) … 1
2 h̄(0) on a constant fraction of @B(1°¥)r . Then by

the Poisson kernel formula and the argument in Caffarelli [11][Lemma 7] we must have

sup
x2B(1°¥)r

h̄(x)   (1+2±)h̄(0)

and choosing æ0, and r0 smaller if necessary we get the same for u via

sup
x2B(1°¥)r

u(x)   sup
x2B(1°¥)r

h̄(x)°K (æ
1

d+2 + r° Æ
d+2 )u(0)

  (1+2±)h̄(0)°K (æ
1

d+2 + r° Æ
d+2 )u(0)

  (1+2±)u(0)°K (æ
1

d+2 + r° Æ
d+2 )u(0)

  (1+±)u(0).

For r … r0 we just do a-harmonic replacement h with the estimate

sup
B(1°¥)r

|u °h|… Kæ
1

d+2 r … Kæ
1

d+2 u(0)

and then apply the Poisson kernel lower bound Lemma 4.2, depending on r0(L), and the
same argument from [11][Lemma 7]

sup
x2B(1°¥)r

h(x)   (1+2±)h(0)

where ¥ is the same as above, and ± will now depend on the Poisson kernel lower bound
from Lemma 4.2. Using the supremum |u°h| estimate as before and choosing æ0 smaller
again if necessary we conclude. ⇤
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Lemma 4.3 (Strong non-degeneracy). Suppose u is L-Lipschitz (4.1), and satisfies (4.2) in
Br (0). There are æ0,c > 0 depending on L and universal parameters so that if 0 < æ … æ0,
and if 0 2 @{u > 0}\U then

sup
Br (0)\U

u   cr.

Proof. As in [17][Lemma 3.5] the proof follows a standard argument applying Lemma 4.1,
see originally [11][Lemma 7]. We just need the following claim constructing a polygonal
chain along which u grows linearly.

Claim: There are ±> 0 small and C   1 depending on L and universal constants so that:
given x0 2 {u > 0}\Br (near the origin) there is a sequence xk 2 Br \ {u > 0} with

u(xk+1)   (1+±)u(xk )

and
|xk+1 °xk | = cd(xk ,@{u > 0}).

This is exactly what we proved in the second part of Lemma 4.1. ⇤

Remark 4.4. Note that Caffarelli’s Harnack chain argument requires starting from a possi-
bly arbitrarily small radius ball so we do need Lemma 4.1 for all values of r > 0 and so we do
need the a 2C 0,∞ assumption here. Maybe that assumption could be removed here by using
some stronger notion of “bulk" free boundary point.

4.2. Hausdorff dimension of the free boundary. In this section we recall estimates of the
Hausdorff dimension / measure of @{u > 0}.

Lemma 4.5 (Free boundary strip energy bound). Suppose that u 2 H 1(B2r ) with r   1 has

J (u,B2r ) … J (v,B2r )+æ|B2r | for all v 2 u +H 1
0 (B2r )

Then for 1 … t … r

J (u, {0 < u … t }\Br ) …C
∑
æ+ t

r
(1+krukL2(B2r ))

∏
|Br |

with C   1 universal.

Proof. The proof is standard, see [29][Lemma 5.6], and only uses the ellipticity of the co-
efficient fields a(x) and Q(x). The idea is to use the following energy competitor: take
0 … ¡ … 1 be a smooth cutoff function ¡ = 0 in Br , ¡ = 1 in a neighborhood of @B2r and
|r¡|…C /r and define

v(x) = (1°¡(x))(u(x)° t )++¡(x)u(x).

Using the almost minimality property and some computations give the result. ⇤

Lemma 4.6 (Free boundary Hausdorff dimension). Suppose that u Lipschitz with constant
L   1 and `-non-degenerate in B2r . Then there is a universal C   1 so that for any covering
(‰i )i2I of @{u > 0}\Br by almost disjoint boxes of side length 1 … t … c(d)r

#I …C (d ,§)
°L
`

¢d
t°d J (u, {0 < u … c(d)tL}\B2r )
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Of course Lemma 4.5 can then be used to bound the right hand side in the inequality
obtained here.

Proof. Let ‰ be a cube with side length t such that @{u > 0}\‰ 6= ; and 2‰ be the cube
with the same center dilated by a factor of 2. Then by the non-degeneracy hypothesis

sup
x22‰

u(x)   c(d)`t

By the Lipschitz assumption there is a ball of radius c(d)`L t inside of 3‰ with

u(x)   c(d)`t in Bc(d) `L t Ω 3‰.

For each ‰i from the collection in the statement let B `
2L

(yi ) Ω 3‰i be the corresponding
cube described above. Since ‰i are almost disjoint there is a dimensional constant C (d)
so that each x 2 Br is in at most C (d) of the (B `

2L
(yi ))i2I . Thus

#I =
X

i2I
1 =

X

i2I
t°d |‰i |…C (d)( L

`t )d
X

i2J
|Bc(d) `L t (yi )|…C (d)( L

`t )d |[i2I Bc(d) `L t (yi )|

and
|[i2I Bc(d) `L t (yi )|…§J (u,[i 3‰i ) …§J (u, {0 < u < c(d)Lt }\Br+3

p
d t )

since t … c(d)r we have Br+3
p

d t Ω B2r . ⇤

5. HÖLDER RATE OF HOMOGENIZATION

In this section we combine the previous regularity results to show a sub-optimal quan-
titative homogenization rate for almost minimizers. We will apply quantitative homoge-
nization results for Dirichlet boundary value problems.

5.1. Quantitative homogenization of Dirichlet problems. We recall some results about
quantitative homogenization results for Dirichlet boundary value problems in bounded
domains U ΩRn . Recall the energy functionals

E(u,U ) =
ˆ

U
a(x)ru ·ru d x and E0(u,U ) =

ˆ
U

āru ·ru d x

originally introduced in Section 2.2.
Given a bounded domain U in Rd we consider a function u 2 H 1(U ) satisfying

krukL1(U ) … L

in our application u will be an almost minimizer of the functional J and U will be {u > 0},
but that information is not needed for the present statements.

We also consider a function u0 2 H 1(U ) satisfying

kru0kL1(U ) … L

and
E0(u0,U ) … E(v,U ) for all v 2 u0 +H 1

0 (U ).

The function u0 will arise by doing a J0 minimizer replacement of an almost minimizer
and U will be {u0 > 0}, but that information is not needed for the present statements.
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We will take advantage of the a-priori Lipschitz estimate. It is convenient to work di-
rectly with the explicit upscalings/downscalings, which usually appear as intermediate
tools in quantitative homogenization proofs, instead of with the usual comparison with
the ā-harmonic replacement. See Remark 5.2 below.

± Specific choice of upscaling. Let ' : R ! [0,1] be the piecewise linear continuous
cutoff function with '(t ) ¥ 0 for t … 1, ' ¥ 1 for t   2, and |'0| … 2. Let t ø r be a scale to
be determined define

ªt (x) =°
ˆ

x+Bt

u(y) d y

and

(5.1) ū(x) ='( d(x)
t )ªt (x)+ (1°'( d(x)

t ))u(x)

where d(x) is the distance function to the complement of U . It is easy to check

krªtkL1(U ) … krukL1(U )

and
ku ° ūkL1(U ) … krukL1(U )t .

Since

rū ='( d(x)
t )rªt (x)+ (1°'( d(x)

t ))ru(x)+ 1
t
rd(x)'0( d(x)

t )(ªt (x)°u(x))

and |rd |… 1
krūkL1(U ) … 2krukL1(U ).

± Specific choice of downscaling. Let ' : R! [0,1] be a fixed smooth cutoff function
with '(t ) ¥ 0 for t … 1, ' ¥ 1 for t   2, and |'0|… C . Let t ø r be a scale to be determined
and

(5.2) ṽ(x) ='( d(x)
t )[v(x)+¬rv(x)(x)rv(x)]+ (1°'( d(x)

t ))v(x)

where d(x) is the distance function to the complement of U and ¬q are the correctors
defined in Section 2.2.

Proposition 5.1 (Quantitative homogenization). Suppose that U is a bounded domain and
let u, ū, u0, and ũ0 as above. Let t   1 be an integer, and let Ut be the union of the tZd lattice
cubes which are contained in U . There is C   1 depending on d and§ so that

E0(ū,U ) … E(u,U )+C L2
∑

1

t
1
2

|U |+ |U \Ut |
∏

and

|E(ũ0,U )°E0(u0,U )|…C L2
∑

1
t
|U |+ |U \Ut |

∏
.

Remark 5.2. We are presenting a somewhat atypical scenario for quantitative Dirichlet
data homogenization because we have assumed an a-priori Lipschitz estimate up to the
domain boundary. This usually would require significant domain regularity to prove, but
we will know it from Theorem 1.1 for J almost minimizers.

On the other hand we also know less domain regularity than one typically assumes for
such quantitative homogenization results. A typical assumption is that the domain U is
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Lipschitz, see for example [4][Theorem 1.12], but we are aiming to prove this. Actually an
inner and outer density bound is sufficient when the equation does not have a right hand
side, see [4]. We can indeed prove inner and outer density bounds at this stage, but the result
is not strictly needed for our main theorems so we have postponed it to the appendix in
Section A.4.

Results in the literature also typically estimate the difference with the ā-harmonic re-
placement. With the amount of domain regularity we currently know, the ā-harmonic re-
placement is actually less regular up to the domain boundary. It will not necessarily be
Lipschitz up to the boundary of U (insufficient domain regularity) and we won’t have an
L1 convergence estimate (insufficient domain regularity again).

The proof follows standard lines. In particular, the statements and arguments in [26][Ch.
3.2 and 3.3] are very similar to what we will do here. We will refer there in some places but
we didn’t find any particular statement there to cover the entirety of Proposition 5.1. We
also emphasize that we are not making any attempt to find optimal rate here, it is not
needed for our purposes.

Proof of Proposition 5.1. We will make use of the dual energy introduced by [6]

(5.3) µ(U , q) = inf{°
ˆ

U

1
2rv ·a(x)rv °q ·rv d x : v 2 H 1(U )}.

This quantity has the following large scale limit

|µ(Bt , q)+ 1
2

q · ā°1q|…C (§,d)|q|2 1
t 1/2

which we now justify. We only are interested in the lower bound, the upper bound is im-
mediate from testing the appropriate corrected linear function (below).

For ø 2 [0,1)d let v be the minimizer for (5.3) solving
(
°r(a(x)rv) = 0 in Bt

n · (a(x)rvø°q) = 0 on @Bt

with mean zero on Bt and let

v0 = p · x +¬p (x) with āp = q

note that p · x solves the effective version for the previous Neumann problem. Note

|°
ˆ

Bt

1
2rv0 ·a(x)rv0 °q ·rv0 d x ° (

1
2

p · āp °q ·p)|…C t°1|q |2.

Then call
w = v(x)°p ·x °¬p (x)¡(x)

where ¡ is a standard cutoff which goes from 1 to 0 in a unit neighborhood of @Bt . By
[26][Theorem 3.3.4]

krwkL2(Bt ) …C t°1/2|q|
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and so

°
ˆ

Bt

1
2rv ·a(x)rv °q ·rv d x  °

ˆ
Bt

1
2rv0 ·a(x)rv0 °q ·rv0 d x °C t°1/2|q |.

Part 1 (estimate of the upscaling). Define, for x 2Ut

ª(x) =°
ˆ

x+Bt

u(y) d y

and
ū(x) ='t (x)ª(x)+ (1°'t (x))u(x).

Call

p(x) =rª(x) =
ˆ

x+Bt

ru(y) d y

and
q(x) = āp(x)

Note that |q(y)| … §L. Now the dual quantity µ is exactly useful for lower bounds of the
energyˆ

U

1
2ru ·a(x)ru d x  

ˆ
Ut

°
ˆ

y+Bt

1
2ru(x) ·a(x)ru(x)d xd y

 
ˆ

Ut

µ(Bt , q(y))+q(y) ·p(y)d y

=
ˆ

Ut

µ(Bt , q(y))+p(y) · āp(y)d y

 
ˆ

Ut

1
2 p(y) · āp(y)d y +

ˆ
Ut

∑
1
2

q(y) · ā°1q(y)+µ(Bt , q(y))
∏

d y

= E0(ū,Ut )°C L2t°1/2|U |
Then we need to estimate the difference between the homogenized energy of ū on Ut and
on U ˆ

Ut

1
2 p(x) · āp(x)d x °

ˆ
U

1
2rū · ārūd x =°

ˆ
U \Ut

rū · ārūd x

 °§L2|U \Ut |
Together we have

E0(ū,U ) … E(u,U )+C L2 £
t°1|U |+ |U \Ut |

§
.

Part 2 (estimate of the downscaling). This is basically the same as [26][Theorem 3.3.2].
Recall that u0 is a minimizer of E0 on U , so ru0 is ā-harmonic and we have the C 1,1 esti-
mate

kD2u0kL1(Ut ) …C t°1L.

The downscaling was defined, we recall,

ũ0(x) = u0(x)+¬(x) ·ru0(x)'t (x).
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The gradient is, with the primary term listed first and error terms listed after,

rũ0 = [ru0 +r¬ru0]+ (1°'t )[r¬ru0]+¬D2u0't + (¬ ·ru0)r't .

We make note of the following bounds following from the L-Lipschitz hypothesis of u0 and
corrector bounds (2.2)

|ru0 +r¬ru0|…C L, |(1°'t )[r¬ru0]|… L(1°'t ), |¬D2u0't |…C Lt°1

and
(¬ ·ru0)r't …C Lt°1.

Let p(x) be the piecewise constant function which is the average of ru0 over the tZd trans-
lations of [0, t )d which contains x. Then

|p °ru0|'t …C Lt°1

by the previous C 1,1 estimate.
Thus, by standard algebra with the quadratic energy,
ØØØØE(ũ0,U )°

ˆ
Ut

(p(x)+r¬(x)p(x)) ·a(x)(p(x)+r¬(x)p(x)) d x
ØØØØ…C L2[t°1|U |+ |U \Ut |].

Since t   1 is an integer and by the definition of ā, (2.3),ˆ
Ut

(p(x)+r¬(x)p(x)) ·a(x)(p(x)+r¬(x)p(x)) d x =
ˆ

Ut

p(x) · āp(x) d x

and

|
ˆ

Ut

p(x) · āp(x) d x °
ˆ

Ut

rv(x) · āru0(x) d x|…C L2t°1|U |

so finally, using one more time the Lipschitz estimate for E0(u0,U \Ut ) …C L2|U \Ut |,
|E(ũ0,U )°E0(u0,U )|…C L2[t°1|U |+ |U \Ut |].

⇤

5.2. Rate of homogenization for J . In this section we combine all the previous regularity
results to obtain a rate of homogenization in the energy. We will consider u 2 H 1(U ) non-
negative satisfying (4.1) and (4.2).

Note that if u is L-Lipschitz and satisfies (4.2) for æ> 0 sufficiently small depending on
L and universal constants then u satisfies the hypotheses of Lemma 4.3, Lemma 4.5, and
Lemma 4.6.

Lemma 5.3 (Energy convergence). Let r   1.

(a) Suppose that u 2 H 1(B2r ) non-negative satisfies (4.1) and (4.2) with 0 < æ … ǣ(L)
sufficiently small so that Lemma 4.3 holds. There is a regularization ū of u, u 2
u +H 1

0 ({u > 0}\Br ) with

krūkL1(Br ) … L, ku ° ūkL1(Br ) … Lr 2/3

and
J0(ū,Br ) … J (u,Br )+C (d ,§,L)[æ+ r°1/3]|Br |.
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(b) Suppose that v is a J0-minimizer in B2r satisfying (4.1) in B2r . There is ṽ 2 v +
H 1

0 ({v > 0}\Br ) such that

J (ṽ ,Br ) … J0(v,Br )+C (d ,§)L
d+5

2 r°1/2|Br |.
(c) Let u and ū as in part (a). For any w 2 u +H 1

0 ({u > 0}\Br )

J0(ū,Br ) … J0(w,Br )+C (L)[r°!+æ]|Br |
where ! is a dimensional constant and can be taken to be != 1

4d(d+5)+6 .

Remark 5.4. This is the only place in the paper where the periodicity of Q is used. Other
assumptions on the convergence of the spatial averages of Q could be easily slotted in here
as long as they result in an error rate which is summable over geometric sequences of scales
(that property is used in the following section).

Remark 5.5. The constant ! = 1
4d(d+5)+6 is certainly suboptimal, we compute it just to be

careful that we indeed have a Hölder rate. The dependence on L in part (b) is followed for
the sake of computing !, so, again, it is not that important.

For the proof of Lemma 5.3 we will need one more technical Lemma about J0 mini-
mizers in a domain with Lipschitz Dirichlet data. The claim is that there is not too much
energy concentrated near the domain boundary.

Lemma 5.6 (Domain boundary strip energy bound). Suppose that u 2 g +H 1
0 (Br ), g is L-

Lipschitz, and u minimizes J0 over g +H 1
0 (Br ) then for every Æ< 1/2

J0(u,Br \ B(1°¥)r ) …C (Æ,L)¥Æ(1+ 1
r

)|Br |.

The same result is probably true for all Æ < 1 but we did not need this and it would
require some more work to prove. The result would also be true for a regular domain U
instead of a ball, but again we did not need that. The proof is technical and is postponed
to Section A.2. There is a barrier argument to get Hölder continuity up to @Br and then an
energy comparison argument.

Proof of Lemma 5.3. In the proof throughout we will assume L   1, constants which de-
pend on L and other universal constants will be denoted C (L) or c(L), universal constants
which do not depend on L will be denoted C , c etc. For parts (b) and (c) we need to be a
bit careful keeping track of L dependence.

Part (a). Let ǣ> 0 depending on universal constants and on L so that Lemma 4.3 holds.
Let U = {u > 0}\Br and let ū be the upscaling of u defined in Section 5.1 with parameter
t   1 to be chosen shortly. Let Ut be the union of the tZd lattice cubes contained in U . By
the perimeter estimate Lemma 4.6 and Lemma 4.5

|U \Ut |…C (L)(æ+ t
r

)|Br |

Thus to infimize the error term from Proposition 5.1 we should choose t = r 2/3

inf
t>0

[
1

t
1
2

|U |+ |U \Ut |] …C (L)[æ+ r°1/3]|Br |
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Call Q to be the cubes of the Zd lattice

Q = {k + [0,1)d : k 2Zd }

and then define
A = {‰2Q : ‰Ω ({u > 0}\Br )}

and
B = {‰2Q : ‰\@({u > 0}\Br ) 6=;}.

Since u satisfies the conclusion of Lemma 4.6,

#B …Cr d°1 …C (L)[æ+ 1
r

]|Br |.

Note that for any ‰2Aˆ
({u>0}\Br )\‰

Q(x)2 d x =
ˆ
‰

Q(x)2 d x = hQ2i=
ˆ

({u>0}\Br )\‰
hQ2i d x

using, respectively, that ‰Ω {u > 0}\Br , ‰ is a period cell for Q, and that u and u have the
same positivity set.

Then applying Proposition 5.1

J0(u,Br )° J (u,Br ) = E0(u, {u > 0}\Br )°E(u, {u > 0}\Br )

· · ·+
X

‰2A[B

ˆ
{u>0}\‰\B1

hQ2i°Q(x)2 d x

…C (L)[æ+ r°1/3]|Br |+§|B|
…C (L)(æ+ r°1/3)|Br |.

Part (b). The proof follows an analogous line of arguments to part (a). Since we need to
keep track of the dependence on the Lipschitz constant for the purpose of part (c). Note
that the non-degeneracy constant does not depend on the Lipschitz constant in the case
of J0 minimizers, it is universal. Let V = {v > 0}\Br and let ṽ be the downscaling of v in V
defined in Section 5.1. By the perimeter estimates Lemma 4.6 and Lemma 4.5 (withæ= 0),
now keeping more carefully the dependence on L,

|U \Ut |…C Ld+2t 2r°1|Br |
Thus to infimize the error term from Proposition 5.1 we should choose t = L°(d+1)/2r 1/2

inf
t>0

[
1
t
|U |+ |U \Ut |] …C L

d+1
2 r°1/2|Br |.

The remainder of the argument is similar and we end up with the estimate

J (ṽ ,Br ) … J0(v,Br )+C L
d+5

2 r°1/2|Br |
with the additional factor of L2 coming from Proposition 5.1.

Part (c). Let u be the upscaling of u in Br \ {u > 0} defined earlier. Let v be a minimizer
of J0 in the class u +H 1

0 ({u > 0}\Br ). Then, since v is a minimizer for J0 in Br ,

J0(v,Br ) … J0(u,Br ).
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In particular
krvkL2(Br ) …C (krukL2(Br ) +1) …C L.

Let 1 > ¥ > 0 to be chosen small and Q be the class of ¥r -lattice cubes which are con-
tained in B(1°¥)r . Note that for every Q 2 Q we have 2Q Ω Br . In particular by the interior
Lipschitz estimate of J0 minimizers v is Lipschitz in B(1°¥)r with

(5.4) |rv(x)|…C (1+krvkL2(B¥r )) …C¥°d/2L for x 2 B(1°¥)r .

Let ṽQ be the downscaling of v in Q\{v > 0} defined in Section 5.1 with scale t = L°(d+1)/2¥
d(d+1)

2 (¥r )1/2,
the scale is chosen as in (b) taking into account the Lipschitz constant of v from (5.4). Note
that at this point it is really the ¥ dependence and not the L dependence that we want to
track. We have the estimate from (b)

(5.5) J (ṽQ ,Q) … J0(v,Q)+C (L)¥°
(d+5)d

2 (¥r )°1/2|Q|
We will make an energy competitor

w = v1Br \[Q2QQ +
X

Q2Q

ṽQ 1Q

which does have w 2 u +H 1
0 (Br ) due to the matching of appropriate traces on each cube

boundary. Since u is a minimizer for J in Br ,

J (u,Br ) … J (w,Br ) =
X

Q2Q

J (ṽQ ,Q)+ J (v,Br \[Q2QQ).

The boundary layer term we will bound by applying Lemma 5.6, using that krukL1(Br ) … L,

J (v,Br \[Q2QQ) … J (v,Br \ B(1°C (d)¥)r ) …C (L)¥1/4|Br |.
We also have, from part (a) and the above,

J0(u,Br ) … J (u,Br )+C (L)[r°1/2 +æ]|Br |
…

X

Q2Q

J (ṽQ ,Q)+C (L)[r°1/3 +¥1/4 +æ]|Br |

and by part (b)
X

Q2Q

J (ṽQ ,Q) …
X

Q2Q

n
J0(v,Q)+C (L)¥°

d(d+5)+1
2 r°1/2|Q|

o

… J0(v,Br )+C (L)¥°
d(d+5)+1

2 r°1/2|Br |.
Combining all the above gives

J0(u,Br ) … J0(v,Br )+C (L)(r°1/3 +¥°
d(d+5)+1

2 r°1/2 +¥1/4 +æ)|Br |

then choose ¥= r° 1
2

4
2d(d+5)+3 to match the middle two error terms on the right.

⇤
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6. FLAT FREE BOUNDARIES ARE (LARGE SCALE) LIPSCHITZ

In this section we will show that the free boundaries of flat minimizers of J are C 1,Æ at
intermediate scales and Lipschitz down to the unit scale. This will prove Theorem 1.2 as
a consequence of Lemma 6.4 and Corollary 6.5 below. We will also show, in Section 6.1, a
Liouville result for large scale flat minimizers of J on Rd Theorem 6.7.

We will combine the homogenization result Lemma 5.3 with the following C 1,Æ flatness
improvement result of De Silva and Savin [17] for almost minimizers of J0:

Lemma 6.1 (De Silva and Savin [17] Lemma 4.5). Let u satisfy

(6.1) krukL1(B1) … L and J0(u,B1) … J0(v,B1)+æ for all v 2 u +H 1
0 (B1).

For any 0 < Æ < 1 there exist constants ±̄,¥ > 0 and C   1 depending on L and Æ so that if
0 2 @{u > 0} and, for some ∫ 2 Sd°1,

|u(x)° 1
(∫·a∫)1/2 (x ·∫)+|… ± in B1

for some 0 < ±… ±̄ then there is ∫0 2 Sd°1 with |∫0 °∫|…C (±+æ 1
d+4 )

|u(x)° 1
(∫0·a∫0)1/2 (x ·∫0)+|… ¥1+Æ(±+Cæ

1
d+4 ) in B¥(0).

Remark 6.2. Note that [17] works with the standard Dirichlet energy, but we can transform
to this case by looking at v(x) = u(ā1/2x).

We apply Lemma 6.1 to minimizers of J by doing an upscaling and applying Lemma 5.3
to see that the upscaling has (almost) minimal energy for J0.

First we give the one step flatness improvement.

Lemma 6.3 (Improvement of flatness). Let u satisfy (4.1) and (4.2) in B2r with 0 < æ … ǣ

sufficiently small so that Lemma 4.3 holds. For any 0 < Æ < 1 there exist constants ±̄,¥ > 0
depending on L and Æ so that if 0 2 @{u > 0} and, for some ∫ 2 Sd°1,

|u(x)° 1
(∫·a∫)1/2 (x ·∫)+|… ±r in Br

for some 0 … ±… ±̄ then there is ∫0 2 Sd°1 with |∫0 °∫|…C [±+æ 1
d+4 + r°!] and

|u(x)° 1
(∫0·a∫0)1/2 (x ·∫0)+|… ¥1+Æ[±+Cæ

1
d+4 +Cr°!]r in B¥r

where !> 0 is a dimensional constant.

Then Lemma 6.3 can be iterated to obtain the following C 1,Æ iteration for (R0,Ø)-almost
minimizers. Note that flatness improves down to a certain intermediate length scale, then
gets worse until the iteration is forced to stop at scale 1.

Lemma 6.4 (Flat implies C 1,Æ iteration for heterogeneous problem). Suppose that u : BR !
[0,1) has krukL1(BR ) … L and u is an (R0,Ø)-almost minimizer of J in BR .

There is ±̄(d ,§,L) > 0 and c(d ,§,L,Ø) > 0 so that if 0 < ±… ±̄ and

|u(x)° 1
(∫·a∫)1/2 (x ·∫)+|… ±R in BR for some 1 … R … cR0
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and 0 2 @{u > 0} then for any 1 … r … R there is a unit direction ∫0 so that

|u(x)° 1
(∫0·a∫0)1/2 (x ·∫0)+|…C

h≥ r
R

¥Æ
(±+ (R/R0)

Ø
d+4 )+ r°!

i
r for x 2 Br

and
|∫0 °∫|…C

h
±+ (R/R0)

Ø
d+4 + r°!

i

where !> 0 is a dimensional constant.

This maintenance of flatness result down to the microscale directly implies that the free
boundary stays a unit distance from a Lipschitz graph over the approximate normal direc-
tion ∫.

Corollary 6.5. Under the hypotheses of Lemma 6.4 there is a function√ : {x ·∫= 0}\BR/8 !
Rwith √(0) = 0 which is 2-Lipschitz and

{x ·∫ √(x 0)°C }\BR/8 Ω {u > 0}\Br /2 Ω {x ·∫ √(x 0)+C }\BR/8

where x 0 = x ° (x ·∫)∫, and C =C (§,d ,L).

Since this Corollary is just a technical reinterpretation of Lemma 6.4 we will postpone
the proof to Section A.3.

Now we proceed to the proofs of Lemma 6.3 and Lemma 6.4.

Proof of Lemma 6.3. Let u as in the statement, and u 2 u+H 1
0 ({u > 0}\Br ) be the upscaling

of u defined in Lemma 5.3 then, by Lemma 5.3,

J0(ū,Br ) … J0(v,Br )+C (L)[æ+ r°!0 ]|Br | for all v 2 u +H 1
0 (Br )

where !0 is the dimensional constant from Lemma 5.3. Also

(6.2) krūkL1(Br ) … 2L and
1
r
ku ° ūkL1(Br ) … Lr°1/3.

Thus u has krūkL1(Br ) … 2L,

|ū(x)° 1
(∫·a∫)1/2 (x ·∫)+|… [±+Lr°1/3]r in Br ,

and satisfies
J0(ū,Br ) … J0(v,Br )+æ0|Br | for all v 2 u +H 1

0 (Br )

with
æ0 =C (L)[æ+ r°!0 ].

Applying Lemma 6.1 we find, absorbing the Cr°1/2 term into the Cr° !0
(d+4) term,

|u(x)° 1
(∫0·a∫0)1/2 (x ·∫0)+|… ¥1+Æ[±+Cæ

1
d+4 +Cr° !0

(d+4) ]r in B¥r (0)

for some ∫0 with
|∫0 °∫|…C

h
±+æ

1
d+4 + r° !0

(d+4)

i
.

From here we will call != !0
d+4 . Then we carry the flatness condition back to u using (6.2)

|u(x)° 1
(∫0·a∫0)1/2 x ·∫0|… |u(x)° 1

(∫0·a∫0)1/2 (x ·∫0)+|+C¥°1r°1/2¥r in B¥r (0)

and the new error term can also be absorbed into the Cr°! term.
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⇤
Proof of Lemma 6.4. Iterate Lemma 6.3 taking r0 = R, ±0 = ±,

rk = ¥rk°1, æk =C (rk /R0)Ø,

and
±k = ¥Æ(±k°1 +Cæ

1
d+4
k°1 +Cr°!

k°1).

As long as
±k … ±̄

and æ0 … ǣ then Lemma 6.4 applies. This holds, for example, if

(6.3) ±… ±̄/3, C (R/R0)
Ø

d+4 … min{±̄/3, ǣ}, and rk  C ±̄°6(d+4)

with ±̄ from Lemma 6.4. Note that this requires that R … cR0 for a small enough constant
c depending on Ø and ±̄. Call k̄ to be the largest integer k so that the third requirement of
(6.3) holds, note that rk̄ …C (d ,§,L).

We compute the iteration of ±k

±k = ¥Æ(±k°1 +Cæ
1

d+4
k°1 +Cr°!

k°1)

= ¥kÆ±0 +C
k°1X

j=0
¥(k° j )Æ[æ

1
d+4
j + r°!

j ]

… ¥kÆ±0 +C
k°1X

j=0
¥(k° j )Æ[(r j /R0)

Ø
d+4 + r°!

j ]

… ¥kÆ±0 +C
k°1X

j=0
¥(k° j )Æ[¥

Ø
d+4 j (R/R0)

Ø
d+4 +¥°! j R°!]

… ¥kÆ±0 +C¥kÆ(R/R0)
Ø

d+4 +C¥°k!R°!

…
h

(rk /R)Æ(±0 +C (R/R0)
Ø

d+4 )+ r°!
k

i

using for the second to last line that we can take 0 <Æ< Ø
d+4 . We also obtain the following

estimate of the variation of the normal directions

|∫k °∫0|…
kX

j=1
|∫ j °∫ j°1|…C

k°1X

j=0
(± j +æ

1
d+4
j +Cr°!

j ) …C [±0 + (R/R0)
Ø

d+4 + r°!
k ].

We are using several times here that we are summing geometric series and the finite sum is
bounded by a constant times the largest term, of course the constant depends on ¥, which
depends on d ,§,L, and on Ø.

Finally the intermediate radii rk < r < rk°1 or 1 … r … rk̄ are estimated by using the
flatness on Brk°1 or Brk̄

respectively. ⇤
Remark 6.6. The almost minimality hypothesis in Lemma 6.4 could be replaced by a more
general one: for all 1 … r … R and any v 2 u +H 1

0 (Br (0))

(6.4) J (u,Br (0)) … J (v,Br (0))+!(r /R0)|Br |,
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as long as!
1

d+4 is a Dini modulus with!(1) … 1. In the proof the parameteræk would change
to æk =!(rk /R0) =!(¥k R/R0). This would then affect the estimate of the term

k°1X

j=0
¥(k° j )Æ!(¥ j R/R0)

1
d+4 … ¥kÆ/2 +

k°1X

k/2
!(¥ j R/R0)

1
d+4 … ¥kÆ/2 +C (¥)

ˆ ¥k/2

0
!(t )

1
d+4

d t
t

.

This results in a decay of oscillations with an altered modulus

!̃(
r
R

) =
ˆ (r /R)1/2

0
!(t )

1
d+4

d t
t

assuming that this is not better than the (r /R)Æ/2 modulus.

6.1. Liouville property of flat energy minimizers onRd
. We conclude the section with an

interesting corollary about the plane-like property of large scale flat absolute minimizers
on the whole space (global).

A function u 2 H 1
loc (Rd ) is called an absolute minimizer if it is minimizing with respect

to compact perturbations, i.e. if

J (u,B) … J (v,B) for all v 2 u +H 1
0 (B)

where B is any finite radius ball inRd . This property is also referred to as class-A minimizer
in the literature [12].

It is known that there are global plane-like absolute minimizers [28], i.e. the minimiz-
ers are sandwiched between two translations of a planar solution of the effective problem
(∫ ·a∫)°1(∫ · x)+. In general it seems to be a very difficult problem to classify all the global
absolute minimizers. Even for homogeneous media there can be non planar global abso-
lute minimizers in higher dimensions [16], which is why the flatness assumption we have
been using is essential. The following result says that all large scale flat global absolute
minimizers grow sublinearly away from a planar solution of the effective problem. It is
not clear whether such solutions are a constant distance from a planar solution of the ef-
fective problem, this seems like a very difficult question.

Theorem 6.7. Suppose that u is an absolute minimizer of J on Rd with

L = limsup
r!1

krukL2(Br ) <+1

and
1
r

inf
∫2Sd°1

sup
Br

|u(x)° 1
(∫·ā∫)1/2 (x ·∫)+|… ±

for all r sufficiently large.
There is ±̄ depending on universal constants and L so that if 0 < ±… ±̄ then there is a slope

∫§ 2 Sd°1 with |∫§°∫|…C± so that for all r   1
1
r

sup
Br

|u(x)° 1
(∫§·ā∫§)1/2 (x ·∫§)+|…Cr°!.

Remark 6.8. This kind of Liouville property is a standard corollary of the C 1,Æ estimate, see
[4, 5, 8, 25] for related results. In the case of standard elliptic homogenization the decay
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Cr°± can be upgraded to Cr°1, the key point is subtracting off an appropriate corrector
and then re-applying the estimates. This relies on invariance of the equations with re-
spect to vertical translations u 7! u +c, our PDE is more analogous to the minimization of
integral functionals

´
a(x,u)ru ·ru d x where a is periodic in (x,u) and this invariance is

missing. See Moser [24] and Moser and Struwe [25] for some discussion of related Liouville
questions for those models.

Proof. By Theorem 1.1 u is Lipschitz in Rn with constant C L with C universal. Let

±̄(d ,§,krukL1) > 0

from Lemma 6.4. By Lemma 6.4, there is Æ < 1 so that for all R sufficiently large (so that
the ±̄ flatness assumption holds) and for 1 … r … R

1
r

inf
∫2Sd°1

sup
Br

|u(x)° 1
(∫ · ā∫)1/2

(x·∫)+|…C

√
(

r
R

)Æ
"

1
R

inf
∫2Sd°1

sup
BR

|u(x)° 1
(∫ · ā∫)1/2

(x ·∫)+|
#
+ 1

r!

!

First of all, since the term in square brackets on the right is smaller than ± for all R suffi-
ciently large, sending R !1 we find,

1
r

inf
∫2Sd°1

sup
Br

|u(x)° 1
(∫ · ā∫)1/2

(x ·∫)+|…Cr°!.

For each r   1 let ∫(r ) 2 Sd°1 achieve the previous infimum. Then this estimate shows that
for all r … s … 2r

sup
Br

| 1
(∫(s) · ā∫(s))1/2

(x ·∫(s))+°
1

(∫(r ) · ā∫(r ))1/2
(x ·∫(r ))+|…Cr 1°!

applying this with x = 1
§r (∫(s) · ā∫(s))1/2∫(r ) and with x = 1

§r (∫(r ) · ā∫(r ))1/2∫(s) gives

|∫(r ) ·∫(s)° (∫(s) · ā∫(s))1/2

(∫(r ) · ā∫(r ))1/2
|+ |∫(r ) ·∫(s)° (∫(r ) · ā∫(r ))1/2

(∫(s) · ā∫(s))1/2
|…Cr°!

since ∫(r ) ·∫(s) is close to two numbers which are reciprocals of one another
1
2
|∫(r )°∫(s)|2 = 1°∫(r ) ·∫(s) …Cr°!.

Thus the sequence ∫(2k r0) converges as k !1, call ∫§ to be the limit. Now for any r   r0

choose k so that 2k°1r0 < r … 2k r and then, using the previous estimate again,

|∫(r )°∫§|… |∫(r )°∫(2k r0)|+
1X

j=k
|∫(2 j+1r0)°∫(2 j r0)|…Cr°!.

⇤

APPENDIX A. PROOFS OF TECHNICAL RESULTS

In this section we provide the detailed proofs of several of the technical results appear-
ing in the paper.

A.1. Proof of Lemma 4.2. The result is a standard Hopf Lemma barrier argument, using
that a is Lipschitz to write the equation in non-divergence form. We just need to establish
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that the Green’s function G(x, y) for the operator °r · (a(r x)r·) in B1 has

inf
y2B¥

G(0, y)   c

for ¥ and c depending on universal constants and r0.
For this take G0(x, y) to be the Green’s function for °r · (a(0)r·) in B1 and G(x, y) to be

the Green’s function for °r · (a(r x)r·) in B1. Call w(x) =G(x,0)°G0(x,0) so that

°r · (a(0)rw) =r · ((a(r x)°a(0))rG(x,0)) and w = 0 on @B1.

Then

w(x) =
ˆ

Br

rG0(x, y)(a(y)°a(0))rG(y,0) d y.

Applying Green’s function bounds [21][Lemma 2.5],

|rG(x, y)|…C |x ° y |1°n

which hold uniformly in r > 0, and the Hölder continuity of a

|w(x)|…C
ˆ

B1

|x ° y |1°nr ∞|y |∞|y |1°n d y.

We estimate in a standard way splitting the integral

|w(x)|…Cr ∞
hˆ

1 |y | 2|x|
|y |∞°2(n°1) d y +

ˆ
|y |…|x|/2

|x|1°n |y |∞+1°n d y · · ·

· · ·+
ˆ
|x|/2…|y |…2|x|

|x ° y |1°n |x|∞+1°n d y
i

this results in
|w(x)|…Cr ∞|x|2°n+∞.

Because G0 solves a constant coefficient equation we have G0(x,0)   c|x|2°n so

G(x,0)  G0(x,0)°w(x)   (c °Cr ∞|x|∞)|x|2°n

so we can guarantee a universal positive lower bound on |x|… cr°1
0 . ⇤

A.2. Proof of Lemma 5.6. Without loss, by a linear transformation, we can assume that
a = i d . This comes at the cost of changing the coefficient of 1{u>0} to det(a), since this
is just another constant depending on ellipticity we will just pretend it is 1 to reduce the
number of constants below.

Step 1 (Hölder continuity): We consider continuity at a boundary point y 2 @B1. Call
L = max{1,krgk1}. First we use a barrier argument to show that u is positive in a ball of
radius r = c(d)L°1g (y) centered at y . Then u is harmonic in B1 \Br (y).

Since u is subharmonic in the entire B1, see [2], we can do a standard barrier argument
from above to find, for any 0 <Æ< 1,

max
B1\BΩ(y)

u … g (y)+C (d ,Æ)LΩÆ.

This argument also works from below if r   2 since then u is harmonic in the entire ball
B1.
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In the case r … 2 we can apply a similar barrier argument from below in Br (y)\B1 to
find for all 0 <Æ< 1 and 0 … Ω … r

min
B1\BΩ(y)

u   g (y)°C (d ,Æ)g (y)(Ω/r )Æ = g (y)°C LÆg (y)1°ÆΩÆ.

Note that since r … 2 also LÆg (y)1°Æ …C L so the estimate from below is of the same form
as the one from above.

We just need to check the positivity in Br (y) for r = c0L°1g (y) and c0 > 0 chosen suffi-
ciently small dimensional. We can assume to start that c0 > 0 small enough so that

inf
B2r (y)

g   g (y)°2Lr   1
2

g (y).

Let ¡ be the harmonic function in B2 \ B1 which is equal to 1 on @B1 and 0 on @B2, extend
¡ by 0 outside of B2. Make a family of barriers with r = c0L°1g (y)

√t (x) = 1
2

g (y)¡(r°1(x ° zt ))

where (zt )t2[0,1] is

zt = (1+ 2r
(1+ t )

)y

so that B2r (z0) is exterior tangent to B1 at y and Br (z1) is exterior tangent to B1 at y . Note
that

√t …
1
2

g (y) … g (x) for x in B2r (zt )\B1 Ω B2r (y)\B1

and √t = 0 … g outside of B2r (zt ).
The plan is to show that √t are subsolutions of the Euler-Lagrange equation and below

g on @B1 and then slide inwards from t = 0 to t = 1 to find √1 … u. Note that √0 … u in B1

because √0 ¥ 0 in B1. We have also established above that √t … g on @B1 for all t 2 [0,1].
Note that on @B2r (zt )

|r√t | = c(d)c°1
0 L   1

where the last inequality comes from L   1 and choosing c0 large enough dimensional. In
particular √t is a smooth strict subsolution of the Euler-Lagrange equation for J0 outside
of Br (zt ).

Technically we are using that u being a J0 minimizer in B1 is a viscosity solution of the
Euler-Lagrange equation

°¢u = 0 in {u > 0}\B1 and |ru| = 1 on @{u > 0}\B1.

Then we are applying a sliding maximum principle, for reference see [10][Theorem 2.2].
Step 2 (Energy comparison): Define an energy competitor

v =¡±g +u(1°¡±)

where ¡± is a Lipschitz function with 0 …¡± … 1, |r¡±|…C (±r )°1, and

¡±(x) =
(

1 |x|… (1°2±)r

0 |x|  (1°±)r.
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Since ¡± ¥ 0 in a neighborhood of @Br we do have v 2 H 1
0 (U )+ g .

Energy comparison gives

J (u,Br ) … J (v,Br ) = J (u,B(1°2±)r )+ J (v,Br \ B(1°2±)r )

so

J (u,Br \ B(1°±)r ) … J (v,Br \ B(1°2±)r )° J (u,B(1°±)r \ B(1°2±)r )

…
ˆ

Br \B(1°2±)r

|¡±rg + (1°¡±)ru + (g °u)r¡±|2 d x

· · ·°
ˆ

B(1°±)r \B(1°2±)r

|ru|2d x +§|Br \ B(1°2±)r |

…
ˆ

Br \B(1°2±)r

(1+¥)|¡±rg + (1°¡±)ru|2 + (1+ 1
¥

)|(g °u)r¡±|2 d x

· · ·°
ˆ

B(1°±)r \B(1°2±)r

|ru|2d x +§|Br \ B(1°2±)r |

…
ˆ

Br \B(1°2±)r

(1+¥)¡±|rg |2 + (1+¥)(1°¡±)|ru|2 + (1+ 1
¥

)|(g °u)|2|r¡±|2 d x

· · ·°
ˆ

B(1°±)r \B(1°2±)r

|ru|2d x +§|Br \ B(1°2±)r |

… (§+2L2)|Br \ B(1°2±)r |+
ˆ

Br \B(1°2±)r

¥|ru|2 + (1+ 1
¥

)|(g °u)|2|r¡±|2 d x

… ¥kruk2
L2(Br ) +C (1+¥°1±2(Æ°1)r°2)|Br \ B(1°2±)r |.

We used Young’s inequality in the form 2ab … ¥a2 + 1
¥b2 for the third inequality, and we

used convexity of a 7! |a|2 for the fourth inequality. Note that

kruk2
L2(Br ) … J (u,Br ) … J (g ,Br ) …C (L)|Br |

and |Br \ B(1°2±)r |…C±|Br | so

J (u,Br \ B(1°±)r ) …C (¥+±+¥°1±2(Æ°1)+1r°2)|Br |

choosing ¥= ± 1
2+(Æ°1)r°1 to match the first and third terms

J (u,Br \ B(1°±)r ) …C (±+ r°1±Æ°
1
2 )|Br |.

A.3. Proof of Corollary 6.5. We can take the flatness direction in the assumption to be
∫= ed . By the assumption of the corollary then

|u(x)° 1
ed ·aed

(xd )+|… ±r.

Let y = (y 0, yd ) and z = (z 0, zd ) be two points in @{u > 0}\Br /8. So, in particular,

z 2 Br /4(y) Ω Br /2(y) Ω B5r /8(0)

Now we aim to apply Lemma 6.4 to u in Br /2(y). By the original flatness assumption u is
2±r -flat in Br /2(y) so as long as 4±… ±̄ from Lemma 6.4 we can apply the result at the scale
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s = |y ° z|+ s0 to obtain

|u(x)° 1
(∫·a∫)1/2 (x ·∫)+|… Ar with A =C (±̄+ s°!)

for a direction ∫ with
|∫°ed |… A

where the scale s0 is chosen depending on L and universal constants so that we can have
A … 1

4 , also choosing ±̄ smaller if necessary.
In particular

|(z ° y) ·∫|… As = A(|z ° y |+ s0)

and
|(z ° y) ·∫|  |(z ° y) ·ed |° |(z ° y) · (ed °∫)|  |xd ° zd |° A|z ° y |.

So

|zd ° yd |… 2A(|z ° y |+ s0) … 1
2

(|zd ° yd |+ |z 0 ° y 0|+ s0)

and we can move the first term over to the left and get

(A.1) |zd ° yd |… 2|z 0 ° y 0|+2s0.

The final conclusion follows then from taking the graph √ to be the supremum of cones
a °2|x 0 ° x 0

0| whose subgraph lies inside {u > 0} in Br /8. Then (A.1) implies that @{u > 0} is
contained between the graphs of √ and √+2s0.

⇤
A.4. Density estimates. In this appendix we show interior and exterior density estimates.

The main result of the section is

Proposition A.1. Suppose that u is non-negative H 1 function in a ball Br (0) with

(a) u is L-Lipschitz
(b) u is `-non-degenerate at its free boundary
(c) There is æ> 0 so that for any ball BΩ Ω Br (0)

J (u,BΩ) … J (v,BΩ)+æ|BΩ|
where v 2 u +H 1

0 (BΩ) is the a-harmonic replacement.

There isæ0 > 0 and c > 0, C   1 depending on L, ` and universal parameters so that ifæ…æ0

then

(A.2) c …
|{u > 0}\BΩ(x)|

|BΩ|
… 1° c for any BΩ Ω Br (0).

The interior density only requires the Lipschitz and non-degenerate hypotheses so the
conclusion is standard, the exterior density estimate does require the almost minimality
property and some inputs from homogenization.

Proof of Proposition A.1. The inner density follows directly from non-degeneracy and the
Lipschitz estimate, see for example [10].

Now we consider the exterior density. We follow a standard line of argument, see [29,
Lemma 5.1], but we need to additionally use homogenized problem replacement at large
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scales and continuity of a at small scales to apply the constant coefficient argument (Pois-
son kernel lower bound).

Let h be the a-harmonic replacement of u in Br . Then

æ|Br |+§|{u = 0}\Br | 
ˆ

Br

a(x)ru ·ru °a(x)rh ·rh d x

=
ˆ

Br

a(x)r(u °h) ·r(u °h) d x

 §°1
ˆ

Br

|r(u °h)|2 d x.

We will first argue for r   r0   1 large enough but bounded by universal constants, then we
will argue for r … r0 at the end. Let h be the a-harmonic replacement of h in Br then by
Theorem 2.1

r°2kh °hk2
L2(Br ) …Cr°Æ|Br |.

By Poincaré inequality in Brˆ
Br

|r(u °h)|2 d x   §°1cd

r 2

ˆ
Br

(h °u)2 d x

  c
r 2

ˆ
Br

(h °u)2 d x ° c
r 2

ˆ
Br

(h °h)2 d x

  c
|Br |

µ
1
r

ˆ
Br

h °u d x
∂2

°Cr°Æ|Br |.

By the non-degeneracy assumption of u we know max@Br u   `r . By Lipschitz continuity
u   1

2`r in a 1
2
`
L r -neighborhood of the point where the maximum is achieved soˆ

@Br

u(x)dS   1
2
`r
ˆ
@Br

1{u(x)  1
2`r }dS   c `

2

L r |@Br |

By the Poisson kernel formula for h, now dropping the ` and L dependence of the con-
stant,

h(0)   cr.

and by Harnack inequality (recall h is harmonic up to a linear transformation)

h(x)   ch(0)   cr in x 2 Br /2.

The Lipschitz estimate of u gives
u(x) … L|x|.

Thus
u(x)°h(x)   1

2
c`r in |x|… c`r /2L.

Combining this with previous

1
|Br |

µ
1
r

ˆ
Br

h °u d x
∂2

  1
|Br |

µ
1
r

ˆ
Bc`r /2L

1
2

c`r d x
∂2

  3c0|Br |.
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For r   r0 (universal) the term CE ( 1
r ) … c0 soˆ

Br

|r(u °h)|2 d x   2c0|Br |

and for æ… c0 as well we get finally

§|{u = 0}\Br |  c0|Br |.
Next we argue for r … r0. Actually it is more convenient to argue for r … r1 ø 1 again a

universal constant. For intermediate values r1 … r … r0 we will just use a lower bound

|{u = 0}\Br |  |{u = 0}\Br1 |  c1|Br1 |  c1(
r1

r0
)d |Br |.

The small r1 case follows a very similar line of argument to the previous using the a(0)-
harmonic replacement h̃ in Br (instead of a-harmonic replacement) along with the esti-
mate

kh ° h̃k2
L2(Br )

…Cr 2kr(h ° h̃)k2
L2(Br )

…Cr 2r 2∞|Br |
which follows from the standard energy estimate

kr(h ° h̃)kL2(Br ) …Cka °a(0)kL1(Br )krh̃kL2(Br ) …Cr ∞(
ˆ
@Br

|u||ru|)1/2 …Cr ∞L|Br |1/2

using that a is C 0,∞. ⇤
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