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Abstract

We give efficient deterministic one-pass streaming algorithms for finding an ellipsoidal approxima-
tion of a symmetric convex polytope. The algorithms are near-optimal in that their approximation
factors differ from that of the optimal offline solution only by a factor sub-logarithmic in the aspect
ratio of the polytope.
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1. Introduction

Let X be a centrally symmetric convex body in R%. We say that an ellipsoid £ is an a-ellipsoidal
approximation for X if €/a C X C & (where o > 1). Calculating ellipsoidal approximations
has applications to problems in machine learning and data science, including sampling and volume
estimation (see, e.g., [CV15] and [JLLV21]), obstacle collision detection in robotics (see [RB97]),
differential privacy (see [NTZ13]), and online learning (see [LLS19]). Further, the ellipsoid £
provides a very succinct approximate representation of X — £ can be stored using only (d;rl) =
O(d?) floats, while the exact representation of X may be arbitrarily large.

John’s theorem [Joh48] states that the minimum-volume outer ellipsoid, called John’s Ellipsoid of
X, is a v/d-ellipsoidal approximation when X is symmetric — that is, when X = —X. Similarly,
John’s theorem implies that the maximum-volume inner ellipsoid also yields a v/d-ellipsoidal ap-
proximation when X is symmetric. Furthermore, the approximation factor of v/d given by John’s
Ellipsoid cannot be improved in the worst case (e.g. for the hypercube or cross-polytope). John’s
result can be made algorithmic: Cohen, Cousins, Lee, and Yang designed an highly efficient al-
gorithm for computing the maximum volume interior ellipsoid when X is a symmetric polytope
defined by linear constraints, giving a ~ \/d approximation in the offline setting [CCLY 19].

Streaming Algorithm. A natural follow-up question is whether a similar approximation guarantee
exists for convex polytopes given in the streaming setting. Specifically, suppose that we are given
points or constraints defining a symmetric convex polytope one-at-a-time. Our goal is to design an
algorithm that computes an «-ellipsoidal approximation to the polytope and uses as little memory
as possible. Such an algorithm will be useful in a memory-constrained environment. For instance,
consider a streaming data summarization task in which a user wishes to obtain an approximation
of a dataset that is too large to fit in memory. By computing a good ellipsoidal approximation, the
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user can summarize the dataset in only (d;rl) floating point numbers, whereas to store all vertices

of the polytope X we may need nd floats. To our knowledge, existing solutions (such as that of
[CCLY19]) require the entire dataset to be stored in memory and therefore cannot be applied to a
streaming setting.

Related Works and Applications The problem of calculating an ellipsoidal approximation to a
convex body has been well-studied; see [Tod16] for an overview of the area. The recent paper of
[CCLY19] presents an O (nd?)-time algorithm for computing a ~ \/d-approximation for X when
X is specified by symmetric linear constraints.

The problem of approximating a non-symmetric convex hull with an ellipsoid was introduced in
[MSS10]. The authors present a greedy algorithm for this problem and show that its approximation
factor is unbounded for every d > 2. However, they do not provide any upper bounds on the
approximation ratio.

Efficiently calculating ellipsoidal approximations has implications to the problem of estimating the
volume of a convex body. For instance, it is known (see [CV15]) that if a convex body X satisfies
B$ € X C R- BY, then its volume can be approximated in time 9] (max {dzRQ, d3}) using a
procedure known as Gaussian cooling. Observe that computing an a-ellipsoidal approximation
yields a linear transformation 7" that transforms a convex body X into a position such that B2d C
TX Ca- Bg. Hence, an efficient algorithm to compute an «a-ellipsoidal approximation for small
« yields an efficient algorithm for estimating the volume of a convex polytope.

Ellipsoidal approximations have also been used as exploration bases in some online optimization
problems. For instance, the work of [LLS19] considers a stochastic linear optimization setting
with adversarial corruptions. Here, a learner observes noisy evaluations of a linear function with
the goal of maximizing this function over a convex constraint set. The algorithm used in [LLS19]
uses an ellipsoidal rounding of the constraint set to construct an exploration basis. The learner
then uses this exploration basis to sample actions during its exploration phases. The approximation
factor of the rounding plays a role in the expected regret of the algorithm. Thus, a good, efficiently
computable ellipsoidal approximation can be used as a black box to obtain a more efficient, lower-
regret algorithm for this setting.

It is highly desirable to give a streaming algorithm for problems in compute-constrained scenarios.
For instance, the work of [RB97] studies a problem in which a robot must estimate the distance
between a collection of obstacles and itself. At a high level, their workflow involves computing an
ellipsoidal approximation of the convex hull of the set of obstacles. The robot then calculates the
distance between itself and this ellipsoidal approximation. Now, the robot could be operating using
a microcontroller or some other device with limited computing capabilities and at the same time,
the amount of data may be very large. Therefore, we need a memory-efficient algorithm for this
setting.

Finally, a streaming algorithm to compute ellipsoidal approximations would yield an algorithm that
can adapt to certain changes in a dataset over time while maintaining a consistent approximation
guarantee. For instance, suppose that the robot in the setting of [RB97] has only a limited sight
distance. As the robot moves, it acquires knowledge of new obstacles. A streaming algorithm
for ellipsoidal approximations would allow the robot to quickly update its summary of the set of
obstacles as it moves.
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1.1. Main Result

In this paper, we study the following formalization of the Ellipsoidal Approximation Problem, stated
below.

Problem 1 (Ellipsoidal Approximation Problem) Given a symmetric convex body X, find an el-
lipsoid € so that €/a C X C & for some o > 1. The goal is to find an approximation with a small
value of a.. We say that £ is an a-approximation to X.

We study the Ellipsoidal Approximation Problem in the following streaming model. We assume
that points x1, ..., x, € X arrive one-by-one. After the algorithm receives point x, it must output
an ellipsoid &; centered at the origin such that all points z1,...,x; lie in &. The approximation
factor of the algorithm is the smallest v such that €»/a C conv ({£z1,...,+x,}) C &, for every
input sequence. The value of n might not be known to the algorithm beforehand.

Problem 2 (Formal Problem Statement) We observe a stream of points x1, . .., x, where points
arrive one-by-one and n might not be known beforehand. Upon receiving point x4, find an ellipsoid
& such that:

* Forallt € {1,...,n}, we have conv ({xx1,...,£x:}) C &
* At the end of the stream, we have €n/a C conv ({£x1,...,tx,}) C &,
The primary results of our work are algorithms presented in Theorem 3.

Theorem 3 (Main Result) Let X = conv ({£z1,...,+x,}). Assume that X contains a ball of
radius r and is contained in a ball of radius R.

1. There is a streaming algorithm that given r and a stream of points 1, ..., x, provides a

solution for Problem 2 with o = O(y/dlog (B/r + 1)).

2. There is a streaming algorithm that given R/r (but not r and R) and a stream of points

x1,..., Ty provides a solution for Problem 2 with o = O(\/dlog (&/r 4 1)).

The algorithms run in time 9] (nd2) and store O(d?) floating-point numbers.

The ratio 2/r gives an upper bound to the aspect ratio k(X), a quantity we formally define in
Definition 6. We present and analyze the algorithm for item 1 in Theorem 9 and the one for item 2
in Theorem 18. Our results provide a nearly optimal approximation, since \/d log (R/r + 1) is worse

than v/d (the best possible factor for the offline setting) by only a factor of O ( log (B/r + 1)) . Our

algorithms store only O(d?) floats — this amount of memory is necessary to represent an ellipsoid in
R?. We note that the algorithm from item 1 is similar to the algorithm for the non-symmetric case
of the problem presented in [MSS10].

Hyperplane representation of a polytope. Our algorithms also work in the setting where instead
of receiving points z;, we receive hyperplanes (or, more precisely, slabs) {y : |(x;,y)| < 1} defining
body X. We describe this setting in Appendix C.

Applications to volume estimation. Our algorithms directly yield concrete results for the prob-
lem of estimating the volume of a symmetric convex polytope. In particular, composing our
ellipsoidal approximation procedures with the Gaussian cooling algorithm of [CV15] yields an
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O (nd* + d*log (B/r) + d?)-time algorithm for approximating the volume of a symmetric convex
polytope. This guarantee is comparable to that obtained by using the algorithm of [CCLY19] as a
preprocessing step prior to Gaussian cooling. Furthermore, this improves upon the best guarantee
for this problem suggested by [JLLV21], which is O (nd3'2polylog (R/r)) time ([JLLV21] assumes
the KLS hyperplane conjecture but does not require that X be symmetric).

Limitations to approximating John’s ellipsoid. We note that one could try to obtain a good
ellipsoidal approximation £ for X in the streaming model by finding a S-approximation for John’s
ellipsoid. Such an ellipsoid £ would provide a 5v/d approximation for X. However, we give a lower
bound on the approximability of John’s ellipsoid for a natural class of streaming algorithms. We
show that none of the algorithms in this class can find a better than /d-approximation for John’s
ellipsoid. Thus, the approach of approximating X via approximating John’s ellipsoid potentially
may only yield an O(v/d - v/d) = O(d) approximation.

Independent and concurrent work on convex hull approximation. Independent of and concur-
rent to our work, Woodruff and Yasuda [WY22] consider a problem of maintaining a coreset for
{, subspace embedding: given a stream of points, choose a small subset of them so that the sym-
metric convex hull of this subset is a good approximation to the convex hull of the original points.
This problem and the one we study are closely related. In both of them, we need to maintain an
approximation for the symmetric convex hull of a stream of points. However, Woodruff and Ya-
suda approximate the convex hull with a convex hull of a small coreset, while we approximate the
convex hull with an ellipsoid. The approximation guarantee of [WY22] is O(+/dlog (nxOL(X)),
where xO'(X) is the online condition number. It has the same dependence on d as our guarantee;
xOL(X) is closely related to but different from the parameter x(X) we use. Also, by applying
John’s Theorem, the authors of [WY22] get an O(d+/log (nkOL(X))) ellipsoidal approximation to
the convex hull. Our approximation guarantee is better than this one by a factor of ~ v/d and does
not depend on n.

A Proof Sketch of the Main Result. We now give a proof outline of Theorem 3.

Our first algorithm, Algorithm 1, maintains an ellipsoid &; covering conv ({£z1,...,£x;}). Ini-
tially, &y is simply a ball of radius r. Upon receiving point x4 1, the algorithm updates &; to &1
by computing the minimal volume ellipsoid containing & and +z;.

We need to prove that this algorithm achieves an « = O(y/dlog (R&/r 4+ 1)) approximation. By
construction, &, contains X. Now we need to prove that £, C « - X. We first prove a different
statement. We compare ellipsoid &£, not to X but rather to an ellipsoid £* that contains X . We show
that £, C o/E* for every ellipsoid £* such that (i) £* contains X and (ii) £* has aspect ratio (the
ratio of its longest to shortest semi-axis) at most #/r. To this end, we define a potential function @
(see Definition 12) with the following properties:

« & C o/E* for o/ = O(V/®) (see Lemma 13)
* Initially, ® is O(dlog (B/r + 1)) (see Lemma 17).
* The value of the potential function is non-increasing over time (see Lemma 14).

These properties imply that &, C o/E* for o/ = O(y/dlog (R/r + 1)). Then we prove in Theo-
rem 10, that this implies that £, C aX with a = V2d/, as required.
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For this algorithm to perform well, it must know r or a reasonable estimate for ». However, if we
do not have any estimate on 7, the performance of the algorithm may be arbitrarily bad. On the
technical level, the challenge is that the initial value of potential ® may be arbitrarily large.

Algorithm 2 does not need to know r but instead needs to have an estimate & for the aspect ratio of
X. Algorithm 2 updates &; in two steps: first it performs the update step from Algorithm 1 and then
ensures that the aspect ratio of the obtained ellipsoid is roughly at most ¢ (if it is more than that, it
expands the semiaxes of the ellipsoid appropriately). The analysis of Algorithm 2 is based on that
of Algorithm 1 but is substantially more complex. We use a pair of potential function S and P and
keep track of their evolutions over time.

Outline The rest of our paper is organized as follows. In Section 2, we present definitions and
notation used in this paper. In Section 3, we describe the first algorithm from Theorem 1. The al-
gorithm itself is very simple but its analysis is insightful and captures the core technical ideas used
later. In Section 4, we present the second algorithm from Theorem 2. The analyses of Theorems 1
and 2 relies on the fact that every centrally symmetric convex body is well approximated by an inter-
section of ellipsoids with bounded aspect ratio. We prove this fact in Appendix A. In Appendix B,
we present our lower bound on the approximability of John’s ellipsoid. Finally, in Appendix C,
we discuss the equivalence between the problem we study and an alternate formulation wherein we
receive linear constraints one-at-a-time instead of points.

2. Preliminaries and Notation

Notation Consider a sequence of points {z1,...,2,} C R% We denote the symmetric convex
hull of the first ¢ points by X; = conv ({£x1,...,+z;}) and the symmetric convex hull of all
points {£x;} by X = X,,. We denote the standard Euclidean norm of a vector v by ||v|| and the
Frobenius norm of a matrix A by ||A|| ;. We denote the singular values of a matrix A € R%*¢
by 01(A),...,04(A). Let omax(A) and opin(A) be the largest and smallest singular values of A,
respectively. We say that X is centrally symmetric if X = —X.

Denote the £,-unit ball by BS = {z € R? : |lz[|, < 1}. Given aset S C R, its polar is
S° = {y € R%: sup,cg |(x,y)| < 1}. We use natural logarithms unless otherwise specified.

In this paper, we will work extensively with ellipsoids. We will always assume that all ellipsoids and
balls we consider are centered at the origin; we will not explicitly state that. We use the following
representation of ellipsoids. For a non-singular matrix A € R¥? let £4 := {x : ||Az| < 1}. In
other words, matrix A defines a bijective map of £4 to the unit ball Bg. Every ellipsoid (centered at
the origin) has such a representation. We note that this representation is not unique as matrices A and
M A define the same ellipsoid if matrix M is orthogonal (since || Av|| = ||M Awv|| for every vector
v). Now consider the singular value decomposition of A: A = UL~V (it will be convenient
for us to write ¥ ~! instead of standard X in the decomposition). The diagonal entries of X are
exactly the semi-axes of £4. As mentioned above, matrices U Y VT and U'S1VT define the
same ellipsoid for any orthogonal U’ € R%*¢; in particular, every ellipsoid can be represented by a
matrix of the form A = £~V 7,

Our goal is to design an algorithm for Problem 2 that achieves a good approximation « and at the
same time uses as little memory as possible. To understand what value of « is achievable in the
offline case, recall John’s Theorem.
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Theorem 4 (John’s Theorem, [Johd8]) I Let X be a centrally symmetric convex body. Consider
the minimum volume ellipsoid € containing X. Then we have €/vd C X C €£.

II. There exists a centrally symmetric body X in R? (e.g. hypercube B% and cross-polytope B‘li)
such that there is no ellipsoid £ that approximates X within a factor of o < Vd: E[NVaC X CE.

In this work, we consider a natural class of one-pass streaming algorithms that we call monotonic
algorithms.

Definition 5 (Monotonic Algorithm) We call an algorithm for Problem 2 monotonic if it produces
a sequence of ellipsoids &, satisfying X; C & and & C &1 for all timestamps t.

Monotonic algorithms have the advantage that once they decide that a certain point x belongs to
ellipsoid &, they commit to this decision: all consecutive ellipsoids &1, 42, ... also contain
point x. The approximation factor of our algorithms depend sublogarithmically on the aspect ratio
of the convex body X.

Definition 6 (Aspect Ratio) Consider a centrally symmetric convex body X. Let r be the radius
of the largest ball r - Bg contained in X and R be the radius of the smallest ball R - Bg that contains
X. Then the aspect ratio of X is written as k(X ) = R/r.

Logarithmic dependences on the aspect ratio have previously appeared for algorithms on convex
bodies; for example, the algorithms in [JLLV21] for rounding and computing the volume of a convex
body have a runtime that depends on log x(X'). We also recall the condition number of a matrix:

Definition 7 (Condition Number of a Matrix) The condition number k(A) of a symmetric non-
singular matrix A is the ratio of its largest to smallest singular values: K(A) = omax(A) /o, (A).

The notions of aspect ratio of a convex body and condition number of a matrix are closely related.
It is immediate that the aspect ratio of an ellipsoid £ equals the ratio of its longest to shortest semi-
axes. Consequently, x(€4) = k(A).

3. Scale-Dependent Algorithm for Ellipsoid Approximation

In this section, we present and analyze a simple algorithm for Problem 2; see Algorithm 1. This
algorithm must be given a radius r such that r - B¢ C X. The approximation guarantee of the
algorithm linearly depends on /log (%/r) where R = max; ||z;|| is the radius of the smallest ball
that contains X.

The key line in the algorithm is Line 6 which updates &; to contain x;; we refer to it as the “update
rule.” Claim 8, which we prove in Appendix D, shows how to compute the update.

Claim 8 Given a matrix AAt_l for E:_1, the updated matrix A; for & can be updated using the
following formula: Ay = AA;_1, where

i 1 (Apry) (Aroam)”
A=(I-(1- : 3.1
< < ||At1xt|r>( [Ererak )) oy

We first show that &, provides a good approximation to every ellipsoid £* with aspect ratio R/r
containing X .
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Algorithm 1 Streaming Ellipsoidal Approximation — Scale-Dependent Algorithm
1: Input: A stream of points 1, ..., z, and a value r such that:

r-BYC X =conv({£x1,...,£x,})

2: Output: Ellipsoid &, that covers X.

3: Initialize & = r - BY.

4: fort=1,...,ndo

5:  Read point x; from the stream.

6:  Let & be the ellipsoid of smallest volume (centered at 0) that contains both & _1 and ;.
7. end for

8: Output: &,.

Theorem 9 Let £ DO X be an ellipsoid containing X with aspect ratio at most B/r. Then the
output of Algorithm 1 &, satisfies:

EnCa-&EF

where o = O <\/d (log (B/r) + 1)) Algorithm 1 runs in time O(nd?) and stores at most O(d?)
floating point numbers.

As stated, Theorem 9 does not say that &, provides an « approximation for X. However, the
statement of Theorem 9 holds simultaneously for all ellipsoids £* whose aspect ratio is at most that
of X. As the following theorem shows, this is sufficient to get the desired result that £, C av2-X.

Theorem 10 Consider a centrally symmetric convex body X and an ellipsoid £. Assume that every
ellipsoid £* that satisfies properties (i) and (ii)

(i) & contains X  and  (ii) E* has aspect ratio of at most k(X )
also contains E. Then £ C /2 - X.

We prove Theorem 10 in Appendix A. Combining these theorems, we have Theorem 11.
Theorem 11 Algorithm 1 gets an o = O ( dlog (B/r + 1)) approximation: €n/a C X C &,.
We focus now on proving Theorem 9.

Proof [Proof of Theorem 9]

Runtime and Memory Complexity The key observation is that Algorithm 1 only stores the ma-
trix Ay representing the ellipsoid &£; between iterations and does not require additional memory
within an iteration. Hence, the memory complexity of Algorithm 1 is O(d?). Next, observe that
computing the update rule as per Claim 8 requires only three matrix-vector products, which takes
time O(d?). It immediately follows that the runtime of Algorithm 1 is O(nd?), as desired.

Correctness We assume without loss of generality that for all t > 1, ||A;—12¢|| > 1, since Algo-
rithm 1 ignores all points x; with || A;_1x¢|| < 1. In particular, when Algorithm 1 encounters such a
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point, it simply lets A; = A;_;. Additionally, we assume that the shortest semi-axis of £* is at most
R. If not, we prove the statement for £* = R - BY (which is contained in £* by our assumption)
and get £, C a&™ C af*, as required.

Let J* be a matrix that defines the ellipsoid £*: £* = {x : ||J*z|| < 1}. Since all points z; lie in
X C &% we have || J*z|| = ||J*(—x¢)|| < 1. Since the shortest semi-axis of £* is at most R, we
have opax(J*) > 1/R. Further, as r - Bg C X C &% we have opax(J*) < 1.

Now we define a potential function @ j«(&;). We will show that the value of this function does not
increase over time. We will then upper bound the approximation factor « in terms of ® j«(&,,).

Definition 12 (Potential Function ® ;- (-)) We define the potential function ® j«(A) as:
) d
So= A7 = S e A
i=1

d
P, = 2logdet (J* ~At_1) = IOgHUi(J*At)z
i=1

Oy (Ay) = S — P = ||J*- A7V — 2logdet (J* - A7)

Let us see how we use @ s« (-) to upper bound the singular values of J* A, and the approximation
factor a.

Lemma 13
L omax(J* - AL1)2 < 55 - @ (Ay)
2. &, C af*, where a = opax(J* - A L).
Proof 1. Let M = J* - A;;'. Note that f(t) := t> —logt? > <1 .42 > 0 for t > 0. Therefore,

d

d
e—1
@5 (4n) = 3 (F(M) ~ logaZ(M)) = 3" F(o:(M)) 2 flomex(M) = S - 02, (M)
i=1 i=1
as desired.
2. Consider a point z € &,. Then ||A,z| < 1. We get
|J x| = HJ*A;L1 . Aan < Omax (J* 'Afll) | Apz] < a.
We conclude that x € o£*. Thus, &, C aE*. [ |

Let us describe the plan for the rest of the proof.

e In Lemma 14, we will prove that ®j«(A4;) < ®;+(A;—1) for all ¢ > 1; that is, values
® j«(A;—1) are non-increasing.

* In Lemma 17, we give an upper bound ® j«(Ap) < O(dlog(R/r 4+ 1)).
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From Lemma 13, we get that £, C a - £* with

a< OGP (A4,)) <OWPs+(Ao)) < O(y/dlog(B/r +1)).
It remains to prove Lemmas 14 and 17 mentioned above. We start with Lemma 14.
Lemma 14 Under the update rule for Algorithm 1, we have ® j«(A;) < @y« (As—1) forall t > 1.
Proof We first derive formulas that express P; and .S; in terms of P;_1 and S;_1.

Lemma 15 We have,

Py = 2log || As—124]| + Pr—1
1
Sp=Si-1+ <1 > (A

[ A1z

Proof By Claim 8, A; = A\At_l where A is given by (3.1).

(Ap—1z)(Ar—1a)T

Determinant Update We start by calculating det (2[) Note that (1 = At_llxt”) (

[ A—1e||”
is a symmetric rank-1 matrix, whose only non-zero eigenvalue equals {1 — m) Therefore,

the spectrum of A consists of 1 with multiplicity d — 1 and | A¢—12¢]| " with multiplicity 1. Thus,
det (ﬁ) = ||Ay—12¢||* and we have:

det (J*At—l) — det (J*At_—llle\_l) — det (J*At_—ll) . det (;1\—1)

Frobenius Norm Update It is well-known (see, e.g., [HI91]) that for any matrix A and orthonor-
mal matrix V' (with vy, ..., vq as its columns):

d
1Al = 1AVIIE =D Il Avi]®
i=1

Let V be a matrix consisting of the eigenvectors of A. Observe that one of these vectors must
be vy = At-1%t/||A,_1a||; let vo,. .., vg denote the remaining eigenvectors, all of which have an
associated eigenvalue of 1. Now we calculate:

d
~ 2
roat i -3
i=1

d
= [ Azl 177 AP+ DD (17 Al
=2

~ 2
Si= |- A5 = JATL Ay

d
= (WAsawel = 1) |7 Ao | + 3 (|07 Ao
=1

Apqze || 2
2 * —1 t—14¢ * —1
(e e

9

)
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1 2
S+ <1 - ) 17 - 2
A1z

Now are ready to prove Lemma 16, which implies Lemma 14. In fact, it is stronger than what we
need to prove Lemma 14; however, it will be necessary in the sequel.

Lemma 16 Forallt € {1,...,n}, we have:
St —Si—1 < (P = Pa) || T 2

Proof From Lemma 15, we have:

St — Si1 _ (1 =Y/ Ae ) ||J* - l“tHQ < HJ*thQ
Pt_Pt—l 210g(HAt—1fUt”) -

where the inequality follows from the fact that (12_1;?:) < 1 forall y > 1. We now multiply both

sides by P, — P,_1 to obtain S; — S;_1 < (P, — Pr_q) - || ¥y |% |

As z; € €%, we have || J*z|| < 1. Using Lemma 14 and rearranging, we find:
Dye(Ar) =St — P < Sp1 — Po1 = Py (A1)
This concludes the proof of Lemma 14. |

Lemma 17 We have ® ;- (Ap) < d (1 + 4log (E/r)).
Proof Recall that R = maxcx ||z

Let f(t) := t2 — log t? as in the proof of Lemma 13. By the definition of the potential function, we
have

d
Dy (Ag) = ||J*- Aglufw —2logdet (J*- Ag") =Y foi(J*- AFY))
=1

Now we bound the range of o;(J* - Ay'). Observe that we have & = r - BY and, accordingly,
Ag = 1/r- 1. Hence, J* - Ag' = rJ* and o;(J* - Ay") = r0;(J*). Now recall that by assumption
/R < omax(J*) < 1/r, and the condition number of J* is at most £/r. Thus opin (J*) > ‘7'“1},3‘7/5‘]*) >
r/R?, and consequently 7*/r? < o;(J* - Ay') < 1. Now we bound f(o;(J* - Ay')). Since f is
convex,

ft) <max{f(*/r?), f(1)} <1+ 2log (R*/r?) =1+ 4log (R/r) fort e [*/r21]
We conclude that

d
e (A0) =) flou(J" - Agh)) < d(1+ 4dlog (Br)).
i=1
|
We have proven Lemmas 14 and 17. This concludes the proof of Theorem 9. |

10
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4. Scale-Independent Algorithm

To use Algorithm 1, we need to know some lower bound r on the radius of the largest ball con-
tained in X. The approximation guarantee of the algorithm linearly depends on 4/log (&/r), so
as long as we have a reasonable estimate on 7, we can use Algorithm 1. However, if we have no
prior information about the scale of X and do not have any reasonable estimate r, we cannot use
Algorithm 1. In this section, we present Algorithm 2 that only requires an upper bound £ > x(X)
on the aspect ratio of X. We present Algorithm 2 with its full implementation details. However,

Algorithm 2 Streaming Ellipsoidal Approximation
1: Input: A stream of points z1, . .., T,, and an aspect ratio estimate &

2: Output: Matrix A,, that defines ellipsoid &, = {z : || Anz| < 1}.

3: Receive point .

4: Set Vj to be an orthonormal matrix satisfying V' 1 = ||z1]| - e1.

5: Uy = I, % = diag (||xq ||, l=all/e, . . . llzall/g)

6: Ay = Uo7V

7. fort=2,...,ndo

8:  Receive point xy

9: if HAt—lxtH > 1 then

10: a = Avazi/| A,z and b = AL a.

11: My = max(M;_1, ||x¢||)  (that is, My = maxj<i<¢ ||xi]|)

12: (U, (24)71,V;) = SVDRANKONEUPDATE((Uy—1, %, Y, Vie1), — (1 — 1| A_12¢]) @, b)
13: ¥, = diag (11,4, . - ., Ta), where 73y = max([X}];, Mt/¢) for every i € [d]
14:  else

15: Uy =U1,Vi=Vi1, 2 = X

16:  end if

17: Ay = UtEt_l‘/tT

18: end for

19: Output: &, = {z : ||Apz| <1}

conceptually the only difference between Algorithms 1 and 2 is a new “singular value correction
step”, presented on line 13. As in Algorithm 1, we perform the basic update rule (line 12) — com-
pute the minimum volume ellipsoid &/ containing the current ellipsoid &1 and the new point z.
Then, we increase the semi-axes of &/ (if necessary) so that all of them are at least M, /&, where
M; = max(||z1]], ..., ||x¢]|) is the length of the longest vector we have received so far. This ensures
that the matrix A; is well-conditioned.

Formally, we compute matrix A} = XAt_l where A is given by (3.1), and update its singular values.
To implement this efficiently, we use a procedure

(U, V') = SVDRANKONEUPDATE((U, X, V), y, 2),
which gives U, ¥/, V' as the SVD of the matrix UXV T +y2T. Per [Sta08], this can be implemented

in time O(d? log? d). As noted in Section 2, the U;s have no effect on the definition of &s and thus
will not factor into our analysis. In fact, the algorithm may discard the value of Uy after it computes
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the SVD for A; and later use the identity matrix instead of U;. However, we keep them in the
algorithm so that the exposition is closer to that of Algorithm 1.

The remainder of this section is devoted to proving Theorem 18.

Theorem 18 Algorithm 2 outputs an ellipsoid &, satisfying:

En CXCE,
V6 +28dlog€+16d —

assuming & > r(X). Moreover, Algorithm 2 runs in time O(nd?log? d) and stores at most O(d?)
floats.

Proof We first compute the running time and then prove the correctness of the algorithm.

Runtime and Memory Complexity Itis easy to see that Algorithm 2 keeps track of three matrices
U, 3, V; at every iteration, in addition to the new point x;. The algorithm does not explicitly
store the matrices A; = U;X, 1V,. Instead, when it is asked to compute A;w or Al w, it simply
consecutively performs 3 matrix-vector multiplications. Algorithm 2 does not store anything else in
between iterations, so the memory complexity is O(d?) floating-point numbers, as desired.

We now analyze the running time. The matrix-vector multiplications require time O(d?). With the
rank-one update, each iteration takes time O(d?log? d). Hence, Algorithm 2 has time complexity
O(nd?log? d) = O (nd?) as desired.

Correctness As in the analysis of Algorithm 1, it will in fact be enough to show that for all
ellipsoids £* that cover X and have aspect ratio at most &, we have:

£0 C /3 + 1ddlogé +8d - £

Then, by Theorem 10, we will have that the intersection of all ellipsoids £* covering X with aspect
ratio at most ¢ is itself a y/2-approximation to X . Hence, &, will be a /2 - \/3 + 14dlog € + &d to
X, as required. Similarly, as in the analysis of Algorithm 1, we assume without loss of generality
that for all ¢, || Ay_12¢]| > 1.

Observe that Lemma 13 implies that it is sufficient to analyze omax (J AL 1) for our choice of J*
defining the ellipsoid £* = {z : ||J*z|| < 1} satisfying x(E*) < . Specifically, our goal is now
to show that oy« (J* . A,‘Ll)Q < 3+ l4dlog & + 8d.

Define ; = max;<;<¢ HJ*l'ZH2 Clearly, Q1 < --- < @,,. Now we prove a version of Lemma 16
that applies to Algorithm 2. We give the proofs of all the lemmas stated below in Appendix E.

Lemma 19 Under the update rule for Algorithm 2, we have the following

* For any two timestamps u, t, such that 1 < u <t < n:

S < Su+ Q- (P — Py) 4.1

e For any timestamp 2 <t < n,
St < Si—1+d-Qy 4.2)

12
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Let 0;; be the ith singular value of J*Aj_1 and opmax,; = max;o;;. By Lemma 13 (part 2),

zn’

a < Omaxn < \/Zf 1 o? . hence upper bounding S Zle Jzn is sufficient to finish the
analysis. We do this by bounding 57 and then applying Lemma 19, as described below.

Lemma 20 We have S7 < d.

By applying the equations from Lemma 19 in sequence, we can relate .S, to S;. Only applying
(4.2) repeatedly is insufficient, as then the resulting upper bound on S,, — S grows linearly with
n. Even though (4.1) is efficient for large stretches where ¢ is much later than w, it also does not
give a good bound when (); is more than a constant factor larger than @), (this phenomenon may
not be apparent from the equation itself, but becomes clear from the upcoming analysis). In order
to obtain the desired bound on S, we split the ;s into contiguous groups such that (); does not
increase significantly within any group, and differs by at least e outside the groups.

Lemma 21 After running Algorithm 2 for n steps, we have

d
Sn=Y 0}, <3+ 14dlogé +8d
=1

Finally, we write afnaxn < Zf 102, < 3+ 14dlog& + 8d. Recall that this is sufficient to

,n
conclude the proof of Theorem 18 — specifically, since we have omaxn = Omax (J AL ) <

V3 + 14dlog € + 8d, we can invoke part 2 of Lemma 13 to arrive at £, C /3 + 14dlog & + 8d-E*.
|
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Appendix A. Proof of Theorem 10: Approximating Convex Polytopes with Ellipsoids

In this section, we prove Theorem 10. To this end, we show that every centrally symmetric con-
vex polytope X is well-approximated by the intersection of all ellipsoids £ containing X with
comparable aspect ratio. This will immediately imply Theorem 10. Let ¢ > 1/k(X) and § =

V14 1/¢? — 1. Define

Ey={€ : XCEand k(&) <q-k(X)} and A= ()€
ECE,

We show that .4, provides a good approximation for X.

Lemma 22 We have A, € X C A,

1+5
Proof The first inclusion X C A, is trivial, since all ellipsoids £ in E, contain X. We now prove

the the first inclusion:
cAq C (1+9)X. (A.1)

Consider the set of all slabs of the form {x : |{a,z)| < 1} that contain X. Since X is a centrally
symmetric convex body, the intersection of all the slabs in S equals X. Further, let set S’ consist
of the slabs in S expanded by a factor of (1 + §): for every slab |(a,x)| < 1in S, there is a slab
|{a,z)] < (1 4 §)in S’. Then the intersection of slabs in S” equals (1 + ¢)X. Thus, to prove
inclusion (A.1), it is sufficient to prove that |(a,z)| < (1 4 §) in S. To this end, we construct an
ellipsoid £ in Ej that lies in the slab |(a, z)| < (1 + J) (and contains A,, by the definition of A,).

We complement vector ¢/|ja| to an orthonormal basis for R w; = @/||al|, wa, ..., wq. Recall
that the condition number x(X) equals the ratio of the radius r of the largest inscribed ball to
the radius R of the smallest circumscribed ball. Since the width of slab |(a,z)| < 1 containing
X is 2/||a|l, we have r < 1/|ja||. Accordingly, R < #(X)/||a||. Therefore, forx € X C R - BY,
Z?:1<wi,a:>2 = ||lz||2 < R? < (x(X)/|jal})?. Also note that (wy, )2 = (@)*/|ja)? < 1/|la|?. We are
ready to define ellipsoid £:

(wi, x 1 1
5:{ A +an rrar2(”q2>}'

Now we verify that (i) £ € E, and (ii) all points in & satisfy |(a,x)| < (1 4 6). First, note that the
aspect ratio of £ is gr(X). Using the bounds we derived above, we get that for all x € X

wz, 1 K(X)? 1 1 1
(wi, )% + + : - (1 + —).
Z = TalP ¥ a7 @r(X? ~ TP q°

Therefore, all points from X lie in £; thatis, X C £. We conclude that £ € E,, as required.

Finally, if z € £, then

a) = /a2 (w1, 2)2 < 1+ =1+34.
This concludes the proof. -

To get Theorem 10, we apply Theorem 22 with ¢ = 1. Clearly, an ellipsoid £ that is contained in
every £* € Fj is also contained in A C V2 X.
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Appendix B. Tracking the Minimum-Volume Outer Ellipsoid

Observe that the guarantee of Theorem 18 gives a guarantee similar to that given by John’s Theorem
for centrally-symmetric convex bodies. Therefore, a natural question is, “how closely can any
one-pass monotonic algorithm approximate the minimum-volume outer ellipsoid for a centrally-
symmetric convex body?” We formalize this notion below.

Definition 23 (Approximation to Minimum Volume Outer Ellipsoid) We say a streaming algo-
rithm A a-approximates the minimum volume outer ellipsoid if A outputs an ellipsoid &, satisfying
En Ca- J(X), where J(X) is the minimum volume outer ellipsoid for X.

Theorem 24 asserts that for a natural class of streaming algorithms, it is not possible to approximate
the minimum volume outer ellipsoid up to factor < v/d in the worst case.

Theorem 24 Every one-pass monotonic deterministic streaming algorithm for Problem 2 has ap-
proximation factor to the minimum volume outer ellipsoid of at least \/d, for infinitely many d.

Proof Before we begin, recall that a Hadamard basis is a set of vectors vy, . .., vq such that:
o ||vs|| =1, for all ¢ € [d];
e Forall i # j, (v;,v;) = 0;
* Every entry of v; is in {£1/vd}.

Our family of hard instances proceeds in two phases.

Phase 1 Let d be such that there exists a Hadamard basis for R%. Consider a corresponding
Hadamard basis v, . . ., vq. The adversary gives the algorithm the points vy, . .., vq.

Phase 2 The adversary selects ¢ € [d] arbitrarily and £ € (0,d — 1) arbitrarily. They then define
the vectors w; = e, - I/vd—< and w; = e; - \/@—1/c for all j # i. The adversary gives the algorithm
the points wy, . . ., wq. Call the outcome here “Outcome (i).”

It is easy to see that at the end of Phase 1, the minimum volume outer ellipsoid is simply Bg.
Furthermore, the algorithm’s solution £ contains conv (£wv1, ..., +v4). On the other hand, consider
the following claim.

Lemma 25 The following ellipsoid is the minimum-volume outer ellipsoid for Outcome (i):

x2 d $2

Sopriy =y 1> —~"—— +273 5

o= ()

Proof Notice that all the points w; are orthogonal. Thus, the minimum-volume outer ellipsoid
containing all the w; must be the one whose axes are along the directions of w; and whose poles
are located on w;. Observe that Eopr(;) satisfies this, so it must be the minimum-volume outer
ellipsoid for the convex body whose vertices are determined by the w;.
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It now remains to show that every Hadamard basis vector is on the surface of Eopr(;):

d

(yva)? (VA V(o gy )
(Vﬁ)QJr;(\/m)Q_d((d Jra=y d—1>_1

Since the minimum volume ellipsoid containing all the w; also contains the Hadamard basis vectors,
it (i.e., o pr(;)) must be the minimum-volume outer ellipsoid for Outcome (i). |

We will now show that any that outputs an ellipsoid £ at the end of Phase 1 must have an approx-
imation factor of at least v/d — € on at least one of Outcomes (1, ...,%7). Suppose that in each of
Outcome (i), we obtain an ellipsoid &; that satisfies C - Eopr(i) 2 5 We now have:

d d
conv ({£wv1,...,v4}) C EC ﬂ &CC- ﬂ EopT(i)
i=1 i=1

We therefore want to argue about g given that it must contain conv ({£wv1,...,v4}) and be con-
tained by C' - ﬂz 1 €opr(i)- Let A be a matrix mapping € to the unit ball. Then, notice that we can
write for all ¢ € [d]:

C €;
vd—¢
In particular, the rightmost exclusion follows from the fact that Ce:/\/d— lies on the boundary of C -

ﬂ?zl Eopr(b.i)- Now, recall the well-known fact that for any unitary matrix W, we have || AW ||, =
| Al - (see, e.g., [HI91]), and observe that we have:

>1

v <1 HA

d

d
d(d —e)
2 2 2 2 2
d>) || Av)? = |AVIE = |AlE = |ALIE = Y | Aeil* > 7
i=1 i=1
Rearranging gives C' > v/d — ¢, as desired. |
Appendix C. Dual Problem - Inner Ellipsoidal Approximation
We design our algorithms for Problem 2 in the setting where we receive points 1, . . . , x,, defining
X = conv ({£=x1,...,+x,}). Alternatively, we may define a centrally symmetric convex polytope

is by providing a set of its faces, or more generally, a set of slabs of the form {z : |a”z| < 1}.
Accordingly, we may consider a different online model where inequalities {x : [a” x| < 1} arrive
one-by-one and the resulting polytope is their intersection. Using the notion of a polar set, we show
that this model is essentially equivalent to the model we study in this paper. All our results equally
apply to it.

Thus, another possible formulation for Problem 2 involves the algorithm receiving the linear con-
straints one-at-a-time instead of points from the body.
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In this section, we show that this choice of formulation does not matter. Specifically, an algorithm
for one of these variants yields an algorithm for the other. In fact, as written in Table 1, these
problems are dual to one another.

Primal Dual

Find £ (outer ellipsoid) such that: Find & (inner ellipsoid) such that:

la CX CE ECYCa-€&

where X = conv ({£z1,...,£tx,}) | where Y = {y : [(z;,y)| < 1foralli € [n]}

Table 1: The primal and dual version of the ellipsoidal approximation problem.

We first address the duality between the two problems in Table 1. To do so, observe the following
useful facts regarding convex polars.

» If A and B are convex bodies, and if A C B, then B° C A° (see Proposition 7.16(iv) in
[BC17)).

e InTablel, X°=Y,and Y° = X.

* Ifanellipsoid & = {z : ||Az|| <1}, then &° = {x : HA_TIL‘H < 1} (see Definition 2.17
in [Vis21]).

The first and third are well-known, and the second follows from the definition of the polar and that
if X is closed, convex, and contains the origin, then (X°)° = X (see Corollary 7.19(i) in [BC17]).

We now put these facts together to show that a solution to the primal problem can be converted to
one for the dual problem. First, notice that we have £ and « such that £/ C X C £. Using the first
fact, we have £° C X° C (£/a)°. Using the second fact, we have £° C Y C (£/a)°. Finally, using
the third fact, we have (£/a)° = « - £°, which yields £° C Y C « - £°. A similar argument shows
that a solution to the dual yields a solution to the primal.

We now address how a solution to the streaming variant of the primal problem can be converted
to a solution to the streaming variant of the dual problem. Specifically, suppose we are in the dual
setting, wherein we receive linear constraints one-at-a-time. Our task is to find an a-ellipsoidal
approximation to Y; = {y : |(z;,y)| < 1foralli € [t]}. Observe that every incoming linear con-
straint {y : |(x;,y)| < 1} can be treated as an incoming point +x; in the primal space. This means
that we can apply our algorithm in the primal setting to obtain a solution in the primal space, which
for all ¢ gives an ellipsoid such that X; C &;. We then compute the polar of the outer ellipsoid we
obtain in the primal space (i.e., &) to obtain an inner ellipsoid in the dual space (i.e., &), which
yields & C Y;. As per our previous argument, this preserves the approximation factor — at the end
of the stream, we have &, C Y C « - £, as desired.

Appendix D. Proof of Claim 8

Note that the volume of the ellipsoid determined by A; is proportional to det (At_ 1). Therefore, A;
is the solution to the following optimization problem, where we use that the volume of the ellipsoid
determined by A is proportional to det (A; ).

max det (A;) such that A, < A;_; and ||Awxe|] < 1
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Additionally, since det (AB) = det (A) - det (B), we have that this objective is invariant under
linear transformations. It thus follows that our objective can be rewritten as:

max det (Ay) such that A; < A;_; and ||Awxe]] < 1
= maxdet (At . A;ll) such that A; - At:ll < T and H (At . A;ll) At_lxtH <1
=maxdet (ﬁ) such that A < I and HgAt_la;tH <1

where the last line follows from using the intermediate variable A= A - A;ll.

In other words, after the transformation, the problem is equivalent to finding the minimum volume
ellipsoid that contains (i) the unit ball and (ii) point A;_jx;. Geometrically, it is clear what the
optimal ellipsoid for this problem is: one of its semi-axes is A;_1xy; all others are orthogonal to
A1z and have length 1 (this can be formally proved using symmetrization). However, we do not
use this observation and derive a formula for A using linear algebra.

We first give an upper bound on the objective value of the above optimization problem. Since
>

A =< I, we have that all its singular values must be at most 1. Additionally, since 1 > HﬁAt_lxt

Omin (ﬁ) - ||As—12¢||, we have that at least one singular value of A must be < )| Ay—12¢||. Putting
everything together and using the fact that the determinant is the product of the singular values gives
det (A) < 1/c- szl

We now show that there exists a setting of A that achieves this upper bound. Let v; be a unit vector
in the direction of A;_1x; and ve, . . ., vg complete the orthonormal basis for R? from vy, and write
A= mvlvf + Z?:2 viviT . We will show that A satisfies the constraints imposed by the
optimization problem. Since we have ||A;—jz¢|| > 1 (as we impose that x; ¢ £4, ,), the fact that

A =< I follows immediately. For the second constraint, we write:

d
~ 1
AA, H [ T o7 A,
H t—1T ||<\|At—1xt||vwl +;Uzvz t—1T¢

- il =
| Ar—124]]

Furthermore, it is easy to see that det <E> = 1/]|A;—12||, which achieves our upper bound.

Finally, recall that we wrote A= Ay At__ll; rearranging this gives us what we want.

Appendix E. Proofs from Section 4

For the purposes of our analysis, we will “simulate” the singular value correction step using the

following procedure. Let wi,...,wy be the the i-th column of V; (note that the w;-s are unit
vectors that are the directions of the semi-axes of £;). Let &/ be the ellipsoid obtained prior to Line
13. ie., & = {z : [|(Z) 7'V x| < 1}. We create “ghost” points z1, ..., 24 2 = Tiqw; =

max([X}]i;, Me/¢)w; (see line 13 in Algorithm 2). Note that X contains the ball of radius M;/¢
centered at 0, since the aspect ratio of X is at most £. Thus, each point z; either lies in X (if
||zil| = Me/¢) orin & Gf ||z;|| = [X}]is). We finally start with matrix A;_; and consecutively apply
the update rule from Algorithm 1 for each of the points ¢, 21, . . . , 24.
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Next, we show Lemma 26, which states that this simulation of the singular value correction step
yields A;, the same matrix that we obtain when we perform the update rule from Algorithm 2.

Lemma 26 The process described above yields matrix As.

Proof Consider the executions of Algorithms 1 and 2. After Algorithm 1 processes point z; and
Algorithm 2 executes Line 12, both algorithms are in the same state. Namely they store matrix A}
given by Claim 8§,

T
A=Ay — <1 _ 1 ) (Ay_12y) (At—;l't) A
[Ae—1z4 [ A

It remains to show that executing Line 13 in Algorithm 2 is equivalent to injecting these “ghost”
points z1, ..., zq into Algorithm 1.

It is sufficient to consider the effect of injecting one point z;. Assume we started with matrix A and
obtained matrix A’ by injecting z;. Observe that if o;(A) < 1/|1z| (that is, 2; lies in the ellipsoid
defined by A; in particular, if z; € &), then A’ = A. We prove that if 0;(A) > 1/||z], then
A" = US'WT where A = US™'VT, entry 3/, = ||2]|, and all other entries of 5 are equal to
the corresponding entries of 3. We have,

O (Az) (Az)T
A—AA—<I <1 HAziI!)( 14z]* ))A

Since z; = T;w;, we have VT2 = |lzille; = Titei. Accordingly, Az; = UE_ITZ'7,56¢ =5 Ue;.

Thus, A=1—(1— %)U@ieij’UT. Since U is an orthogonal matrix, UU” = I and thus

i _ _ i
A= (I— <1 - > UeieiTUT> Uxtvt =u <E ! <I— <1 - ) eieiT>> VT,
Tit Tig

/-1

Note that I — (1 — %)eieiT is a diagonal matrix; all of its diagonal entries are equal to 1 except for
the i-th diagonal entry, which is Zii/r; ,. We get that ¥~ ! differs from ¥ ~! only in the i-th diagonal
entry: (X'71);; = 1/7,, as required. [

Proof [Proof of Lemma 19] By Lemma 26, we can break the evolution of our potential functions
into two main steps: that after Algorithm 1 gets x; and that after Algorithm 1 gets the ghost points.
Let S}, P/, Q represent ||J* - (A}) ™| ?,, 2logdet ((A})~1), and max;ey ||.J* 2|2, respectively,
where Aj is the matrix defined in Lemma 26.

By Lemma 16, for all ¢, we have S; — S;_1 < (P[ — P,_1) - Q¢. Similarly, as ||J*z;]| < 1 and
|As—12¢]| > 1, we have:

1 1
Sp—St-1= <1 > T2 ||* < (1 ) Qt < Q

1A 1] [Ere s

We now analyze the singular value correction step. By Lemma 26,it can be simulated by adding the
ghost points 21, ..., 24. First, observe that we only need to analyze points z; with z; = Mi/ew;
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(because other points are in & and do not cause any update). We now show that ||J*z| <
max;eft |J*z¢|| = +/Q¢. We have:

* M * UmaX J* *
72 = S 17w < i 5” < Guun (J*) - M,

Let p := argmax;cy [|2i|. Then:
1772l < omin (J7) - My = i (T7) - [lzpll < (|7 2pl| < maxc]l 2| = v/ Qe

Consider the state of Algorithm 1 in the simulation after it gets points 2, ..., z;. Let A}, be the
resulting state matrix, and S; ; and P/; be the values of functions S and P. Observe that S ; = 5}
and P/, = P/ and that S; = S} ; and P, = P/ ;. We now invoke Lemma 16 repeatedly:

Sto—Si—1 < (Plog—P—1) - Q:
St — Sto < (Piy— Plo) - Q

Sz{,,i - Sz{,,ifl < (Pt/l - Pt/,zel) - Qt

St —Sig1 < (Pe—Plgq) Q

Adding all these inequalities yields S; — S;—1 < (P, — P;,—1) - ;. Since numbers (); are non-
decreasing, this implies that for all u < ¢, we have S; < S, + Q; - (P, — P,,).

Similarly, we repeatedly write:
Sio—Si-1 < Q:
/ /
11— Sto < Qt

/ /
Sii— Stic1 < Qu

St — Szé,dfl < Q¢

Note that at least one of the semi-axes of &/ has length at least M (since all points x1, ..., xz; are
in &)). That is, [X']; > M; > M,;/&; for some point z;. This means that we do not perform any
updates for z; and Sy, = S}, ;. Summing up the inequalities above and taking into account that

Sii=S;; 1 foratleast one i yields Sy < S;—1 + d - Qy, as required. |
Proof [Proof of Lemma 20] Consider ellipsoid &;. It has semi-axes w; = x1 and some wWs, . . . , Wq.
Since ||w;|| = l=1ll/¢ for i > 2 (see step 5 of Algorithm 2), all points w; lie inside X C £*. In
particular, ||J*w;|| < 1. Finally, note that A1w; = e;. We have:
d d
Su=|1T A p =) I A el =) 1w < d
i=1 i=1
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Proof [Proof of Lemma 21] Set ¢ty = n, and define ¢; € {1,...,n} fori > 1 recursively as follows:
1. Sett; = max{j S {1, .. ,n}: Qj < Qti_1/e}
2. If there is no such j, then finish.

Letty > ... > t,, be the indices defined by this process. Observe that for each 0 < ¢ < m, we
have (), < e™". Further, for each 0 < ¢ < m — 1, we have Qti/QtH_l-‘rl < e, and @tm/Q, < e.

Now we apply bound (4.1). For every 0 < ¢ < m — 1, we have

S Stz+1+1 + Qt ( Ptz+1+1)

From bound (4.2), we get
Stii+1 < Sty +d- Q11

Combining these equations, we obtain for each 0 <7 < m — 1:

Sti - Sti+1 < d- Qti+1+1 + Qti ' (Pt1 - Pti+1+1> (El)

Now we add up inequalities (E.1) for all 0 < i < m — 1 and get:

m—1 m—
St — Sty = Z (Stz- Z+1 <d Z tip1+1 T Z Qi - P, + Z Qt, - Pti+1+1)
i=0 1=0 1=0
By (4.1) we have S;,, — S1 < Qy,, - (P, — P1). Combining this with the previous inequality, we
get
m—1 m—1
Sp =81 <d- Y Qi +2Qt P4 (—Qu PO+ D Qi (<Piy1) (2
=0 =0 =0

I 1I 111

Now, we bound each individual term in (E.2). For I, observe that as ¢;4; + 1 < ¢;, we have
Qt;y1+1 < Qi < e . Thus

m—1 m— 00 ' e
ZQti+1+1§Z Z 26—1
=0 =0 =0

For II, we have P, < P, for all ¢, therefore

m m e
z;QtiPti SPto'Z;Qtz‘ SPto'e_
1= 7=

Now we bound III. First, we prove the following lemma to bound terms of the form —Q); - P,

22



STREAMING ALGORITHMS FOR ELLIPSOIDAL APPROXIMATION OF CONVEX POLYTOPES

Lemma 27 Consider indices u < t. If Qt/Q., < e, then

—Q:- P, < Q- (d+4dlog§+dlog (5))
t

Proof By definition, we have — P, = — Z?Zl log(aﬁu). Next, notice that forall t € {1,...,u}:

Omin (J* : qul) > Omin (J™) - Omin (A_l)

u

> Omin (J) - ”?H since the correction step ensures that i, (A; 1) > ng’
 owa (7%) [l

§ §
s Lz

Since this is true for all ¢ € [u], we can maximize the RHS over ¢ € [u], and we obtain 07, > Qu/¢*.

Hence, —P, < dlog (1/Q.) + 4dlog&. As1/qQ. < €/Q., we get —P, < d + 4dlog & + dlog (1/qQ;).
Multiplying by @Q; gives the claim. |

Applying Lemma 27 to each term in III, we obtain

m—1 m m
1
Q- PL+ Y Qi Py < (d+4dlogé) - > Qu +d- Y Qylog <Qt >
i=0 i=0 i=0 ¢

As before, we can bound the first term with Zzﬁ;o Q¢, < =% . For the second term, observe that

e—1°
y ~ ylog(1/y) is increasing on [0, 1/e]. Thus, Q¢, log(1/q:,) < e *log(1/e~i) = e~* - i fori > 1.
< 1/e. Thus we can bound the second

The maximum of y log (1/y)) is 1/e; therefore Q¢ log(1/Q,
1 e
d-|—+——=].
(e aer)

term by
d 1+Zm:' ] <d 1+i' !
. i:1ze < . i:1ze

To summarize, we bound term III by

1 e e e
d-| - 4d1 —
<6+6—1+(1—6)2>+ 08¢ e—1
Combining the bounds on the terms of (E.2) results in:
1 2-e e e e
Sp—=51<d- |- P, - ——+2dl —
norh = (e—i_e—l—i_(l—eﬁ)+ o1t 08¢ e—1
Rearranging and applying Theorem 20, we obtain
S P —<a (1424 2% 4 C ) 4 adloge - —© (E.3)
J— . . —_— O - —_— .
T e—1 7 e e—1 (1-—e)? 85 e 1
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Observe that S, — P, - =55 = >4 (02, — =% log(02,,)). Asy — =57 logy > <=3y forall y > 0,

Te—1
we get
9 e—1 e

Using (E.3) and replacing constants with their integer ceilings, we finish with

d
> o7, <3+ l4dlogé + 8d

i=1
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