A Theoretical Study on Solving Continual Learning

Gyuhak Kim*!, Changnan Xiao*2, Tatsuya Konishi' 3, Zixuan Ke!, Bing Liu‘!
! University of Illinois at Chicago
2 ByteDance
3 KDDI Research

Abstract

Continual learning (CL) learns a sequence of tasks incrementally. There are two
popular CL settings, class incremental learning (CIL) and task incremental learn-
ing (TIL). A major challenge of CL is catastrophic forgetting (CF). While several
techniques are available to effectively overcome CF for TIL, CIL remains to be
challenging due to the additional difficulty of inter-task class separation. So far
little theoretical work has been done to provide a principled guidance and neces-
sary and sufficient conditions for solving the CIL problem. This paper performs
such a study. It first probabilistically decomposes the CIL problem into two sub-
problems: within-task prediction (WP) and task-id prediction (TP). It further proves
that TP is correlated with out-of-distribution (OOD) detection. The key result is
that regardless of whether WP and TP or OOD detection are defined explicitly
or implicitly by a CIL algorithm, good WP and good TP or OOD detection are
necessary and sufficient for good CIL performances. Additionally, TIL is simply
WP. Based on the theoretical result, new CIL methods are also designed, which
outperform strong baselines in both CIL and TIL settings by a large margin.*

1 Introduction

Continual learning aims to incrementally learn a sequence of tasks [1]. Each task consists of a set of
classes to be learned together. A major challenge of CL is catastrophic forgetting (CF). Although a
large number of CL techniques have been proposed, they are mainly empirical. Limited theoretical
research has done on how to solve CL. This paper performs such a theoretical study about the
necessary and sufficient conditions for effective CL. There are two main CL settings that have been
extensively studied: class incremental learning (CIL) and task incremental learning (TIL) [2]. In
CIL, the learning process builds a single classifier for all tasks/classes learned so far. In testing, a test
instance from any class may be presented for the model to classify. No prior task information (e.g.,
task-id) of the test instance is provided. Formally, CIL is defined as follows.

Class incremental learning (CIL). CIL learns a sequence of tasks, 1,2,...,T. Each task & has a
training dataset Dy, = {(z},, y;.);*, }, where ny, is the number of data samples in task k, and z}, € X
is an input sample and y; € Y}, (the set of all classes of task k) is its class label. All Y},’s are disjoint
YeNYy =0, Vk # k') and Ule Y = Y. The goal of CIL is to construct a single predictive
function or classifier f : X — Y that can identify the class label y of each given test instance x.

In the TIL setup, each task is a separate classification problem. For example, one task could be to
classify different breeds of dogs and another task could be to classify different types of animals (the

*Equal contribution

TThe work was done when this author was visiting Bing Liu’s group at University of Illinois at Chicago
Correspondance author. Bing Liu <liub@uic.edu>

“The code is available at https://github. com/k-gyuhak/WPTP

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/k-gyuhak/WPTP

tasks may not be disjoint). One model is built for each task in a shared network. In testing, the task-id
of each test instance is provided and the system uses only the specific model for the task (dog or
animal classification) to classify the test instance. Formally, TIL is defined as follows.

Task incremental learning (TIL). TIL learns a sequence of tasks, 1,2, ...,7. Each task k has a
training dataset Dy, = {((x, k), y%)*, }, where ny is the number of data samples in task k € T =
{1,2,...,T}, and 2t € X is an input sample and y§, € Y, C Y is its class label. The goal of TIL is
to construct a predictor f : X x T — Y to identify the class label y € Yy, for (z, k) (the given test
instance x from task k).

Several techniques are available to effectively overcome CF for TIL (with almost no CF) [3, 4].
However, CIL remains to be highly challenging due to the additional problem of Inter-task Class
Separation (ICS) (establishing decision boundaries between the classes of the new task and the
classes of the previous tasks) because the previous task data are not accessible. To our knowledge, the
ICS problem has not been discussed before but it is critical for the success of CIL. Before discussing
the proposed work, we recall the closed-world assumption made by traditional machine learning, i.e.,
the classes seen in testing must have been seen in training [1, 5]. However, in many applications,
there are unknowns in testing, which is called the open world setting [1, 5]. In open world learning,
the training (or known) classes are called in-distribution (IND) classes. A classifier built for the
open world can (1) classify test instances of training/IND classes to their respective classes, which
is called IND prediction, and (2) detect test instances that do not belong to any of the IND/known
classes but some unknown or out-of-distribution (OOD) classes, which is called OOD detection.
Many OOD detection algorithms can perform both IND prediction and OOD detection [6, 7, 8, 9].
The commonality of OOD detection and CIL is that they both need to consider future unknowns.

This paper conducts a theoretical study of CIL, which is applicable to any CIL classification model.
Instead of focusing on the traditional PAC generalization bound [10, 11], we focus on how to solve
the CIL problem. We first decompose the CIL problem into two sub-problems in a probabilistic
framework: Within-task Prediction (WP) and Task-id Prediction (TP). WP means that the prediction
for a test instance is only done within the classes of the task to which the test instance belongs,
which is basically the TIL problem. TP predicts the task-id. TP is needed because in CIL, task-id
is not provided in testing. This paper then proves based on the popular cross-entropy loss that (1)
the CIL performance is bounded by WP and TP performances, and (2) TP and task OOD detection
performance bound each other (which connects CL. and OOD detection). The key result is that
regardless of whether WP and TP or OOD detection are defined explicitly or implicitly by a CIL
algorithm, good WP and good TP or OOD detection are necessary and sufficient conditions for good
CIL performances. This result is applicable to both batch/offline and online CIL and to CIL problems
with blurry task boundaries. The intuition is also quite simple because if a CIL model is perfect at
detecting OOD samples for each task (which solves the ICS problem), then CIL is reduced to WP.

This theoretical result provides a principled guidance for solving the CIL problem, i.e., to help design
better CIL algorithms that can achieve strong WP and TP performances. Since WP is basically IND
prediction for each task and most OOD techniques perform both IND prediction and OOD detection,
to achieve good CIL accuracy, a strong OOD performance for each task is necessary.

Based on the theoretical guidance, several new CIL methods are designed, including techniques
based on the integration of a TIL method and an OOD detection method for CIL, which outperform
strong baselines in both the CIL and TIL settings by a large margin. This combination is particularly
attractive because TIL has achieved no forgetting, and we only need a strong OOD technique that can
perform both IND prediction and OOD detection to learn each task to achieve strong CIL results.

2 Related Work

Although numerous CL techniques have been proposed, little theoretical work has been done on
how to solve CL. Existing methods are mainly empirical and belong to several categories. Using
regularization [12, 13] to minimize changes to model parameters learned from previous tasks is a
popular approach [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. Memorizing some old examples
and using them to jointly train the new task is another popular approach (called replay) [27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]. Some systems learn to generate pseudo training data of
old tasks to be used in replay, called pseudo-replay [41, 42, 43, 44, 45, 46, 21, 47, 48]. Orthogonal
projection learns each task in an orthogonal space to other tasks [49, 50, 51].

Parameter isolation is yet another popular approach, which makes different subsets (which may
overlap) of the network parameters dedicated to different tasks using masks [3, 52, 53, 4, 54]. This
approach is particularly suited for TIL. Several methods have almost completely overcome forgetting.
HAT [3] and CAT [52] protect previous tasks by masking the important parameters to those tasks.
PackNet [53], CPG [54] and SupSup [4] find an isolated sub-network for each task. HyperNet [55]
initializes task-specific parameters conditioned on task-id. ADP [56] decomposes parameters into
shared and adaptive parts to construct an order robust TIL system. CCLL [57] uses task-adaptive
calibration in convolution layers. Our methods designed based on the proposed theory make use of two
parameter isolation-based TIL methods and two OOD detection methods. A strong OOD detection
method CSI in [6] helps produce very strong CIL results. CSI is based on data augmentation [58] and
contrastive learning [59]. Excellent surveys of OOD detection include [60, 61].

Some methods have used a TIL method for CIL with an additional task-id prediction technique.
iTAML [62] requires each test batch to be from a single task. This is not practical as test samples
usually come one by one. CCG [63] builds a separate network to predict the task-id. Expert Gate [64]
constructs a separate autoencoder for each task. HyperNet [55] and PR-Ent [65] use entropy to
predict the task id. Since none of these papers is a theoretical study, they did not know that strong
OOD detection is the key. Our methods based on OOD detection perform dramatically better.

Several theoretical studies have been made on lifelong/continual learning. However, they focus on
traditional generalization bound. [10] proposes a PAC-Bayesian framework to provide a learning
bound on expected error in future tasks by the average loss on the observed tasks. The work in [66]
studies the generalization error by task similarity and [11] studies the dependence of generalization
error on sample size or number of tasks including forward and backward transfer. [67] shows that
orthogonal gradient descent gives a tighter generalization bound than SGD. Our work is very different
as we focus on how to solve the CIL problem, which is orthogonal to the existing theoretical analysis.

3 CIL by Within-Task Prediction and Task-ID Prediction

This section presents our theory. It first shows that the CIL performance improves if the within-task
prediction (WP) performance and/or the task-id prediction (TP) performance improve, and then shows
that TP and OOD detection bound each other, which indicates that CIL performance is controlled
by WP and OOD detection. This connects CL and OOD detection. Finally, we study the necessary
conditions for a good CIL model, which includes a good WP, and a good TP (or OOD detection).

3.1 CIL Problem Decomposition

This sub-section first presents the assumptions made by CIL based on its definition and then proposes
a decomposition of the CIL problem into two sub-problems. A CL system learns a sequence of tasks
{(Xk, Yi)}k=1,..,7» where X, is the domain of task k and Y, are classes of task k as Y, = {Y ; }.
where j indicates the jth class in task k. Let X, ; to be the domain of jth class of task k, where
Xk = U; Xk,;. For accuracy, we will use x € X, ; instead of Yy, ; in probabilistic analysis. Based
on the definition of class incremental learning (CIL) (Sec. 1), the following assumptions are implied,

Assumption 1. The domains of classes of the same task are disjoint, i.e., Xy ; N Xy j» = 0, Vj # j'.
Assumption 2. The domains of tasks are disjoint, i.e., X N Xy = 0, Vk # k.

For any ground event D, the goal of a CIL problem is to learn P(z € Xy ;|D). This can be
decomposed into two probabilities, within-task IND prediction (WP) probability and task-id prediction
(TP) probability. WP probability is P(z € Xy ;| € X, D) and TP probability is P(z € X;|D).
We can rewrite the CIL problem using WP and TP based on the two assumptions,

P(z € Xy, olD) = Y PlaeXyjyle e Xy, D)P(z € Xi|D) (1)
k=1,....,n
=P(z € Xp, jo |z € Xpy, D)P(z € Xy, | D))

where kg means a particular task and jj a particular class in the task.

Some remarks are in order about Eq. 2 and our subsequent analysis to set the stage.

Remark 1. Eq. 2 shows that if we can improve either the WP or TP performance, or both, we can
improve the CIL performance.

Remark 2. Tt is important to note that our theory is not concerned with the learning algorithm or the
training process, but we will propose some concrete learning algorithms based on the theoretical
result in the experiment section.

Remark 3. Note that the CIL definition and the subsequent analysis are applicable to tasks with
any number of classes (including only one class per task) and to online CIL where the training data
for each task or class comes gradually in a data stream and may also cross task boundaries (blurry
tasks [68]) because our analysis is based on an already-built CIL model after training. Regarding
blurry task boundaries, suppose dataset 1 has classes {dog, cat, tiger} and dataset 2 has classes {dog,
computer, car}. We can define task 1 as {dog, cat, tiger} and task 2 as {computer, car}. The shared
class dog in dataset 2 is just additional training data of dog appeared after task 1.

Remark 4. Furthermore, CIL = WP * TP in Eq. 2 means that when we have WP and TP (defined
either explicitly or implicitly by implementation), we can find a corresponding CIL model defined by
WP * TP. Similarly, when we have a CIL model, we can find the corresponding underlying WP and
TP defined by their probabilistic definitions.

In the following sub-sections, we develop this further concretely to derive the sufficient and necessary
conditions for solving the CIL problem in the context of cross-entropy loss as it is used in almost all
supervised CL systems.

3.2 CIL Improves as WP and/or TP Improve

As stated in Remark 2 above, the study here is based on a trained CIL model and not concerned
with the algorithm used in training the model. We use cross-entropy as the performance measure
of a trained model as it is the most popular loss function used in supervised CL. For experimental
evaluation, we use accuracy following CL papers. Denote the cross-entropy of two probability
distributions p and q as

de
H(p,q) < ~E,flogq) = =3 piloga. 3)

For any x € X, let y to be the CIL ground truth label of z, where yz, ;, = 1if © € Xy, j, otherwise
yi,; = 0,V(k,7) # (ko, jo). Let § be the WP ground truth label of x, where gy, ;, = 1if z € Xy,
otherwise i, ; = 0, Vj # jo. Let i be the TP ground truth label of x, where g, = 1if x € Xy,
otherwise 7, = 0, Vk # kg. Denote

Hyp(x) = H(g,{P(z € Xy, jlv € Xy,, D)};),)
Herp(x) = H(y,{P(z € Xk,;|D)}k,5), S
Hrp(z) = H(y,{P(z € Xy[D)}r) (6)

where Hy p, Hopr and Hrp are the cross-entropy values of WP, CIL and TP, respectively. We now
present our first theorem. The theorem connects CIL to WP and TP, and suggests that by having a
good WP or TP, the CIL performance improves as the upper bound for the CIL loss decreases.

Theorem 1. If Hrp(z) < § and Hyp(x) < €, we have Horp(x) < e+ 4.

The detailed proof is given in Appendix A.1. This theorem holds regardless of whether WP and
TP are trained together or separately. When they are trained separately, if WP is fixed and we let
e = Hwp(z), Horp(z) < Hwp(x) + 0, which means if TP is better, CIL is better. Similarly, if
TP is fixed, we have Hoyp,(z) < € + Hrp(z). When they are trained concurrently, there exists a
functional relationship between € and § depending on implementation. But no matter what it is, when
€ + ¢ decreases, CIL gets better.

Theorem 1 holds for any x € X = |, X, that satisfies Hrp(z) < 6§ or Hy p(x) < €. To measure
the overall performance under expectation, we present the following corollary.

Corollary 1. Let U(X) represents the uniform distribution on X. i) If B, yx)[Hrp(z)] < 0,

then B,y x)[Hern(v)] < Epopx)[Hwp(x)] + 6. Similarly, i) E, oy x)[Hwp(z)] < € then
Epvx)y[Hern(z)] < €+ Epovx)[Hrp(2)).

The proof is given in Appendix A.2. The corollary is a direct extension of Theorem 1 in expectation.
The implication is that given TP performance, CIL is positively related to WP. The better the WP is,
the better the CIL is as the upper bound of the CIL loss decreases. Similarly, given WP performance,
a better TP performance results in a better CIL performance. Due to the positive relation, we can
improve CIL by improving either WP or TP using their respective methods developed in each area.

3.3 Task Prediction (TP) to OOD Detection

Building on Eq. 2, we have studied the relationship of CIL, WP and TP in Theorem 1. We now
connect TP and OOD detection. They are shown to be dominated by each other to a constant factor.

We again use cross-entropy H to measure the performance of TP and OOD detection of a trained
network as in Sec. 3.2 To build the connection between Hyp(z) and OOD detection of each task,
we first define the notations of OOD detection. We use P}, (x € Xj,|D) to represent the probability
distribution predicted by the kth task’s OOD detector. Notice that the task prediction (TP) probability
distribution P(x € Xj|D) is a categorical distribution over T tasks, while the OOD detection
probability distribution P} (z € Xj,|D) is a Bernoulli distribution. For any z € X, define

H(1,P)(z € Xi|D)) = —log P}.(z € X¢|D), z € X,

7
H(0,P)(z € Xi|D)) = —log Ph(z ¢ Xi|D), z ¢ Xp.. 2

Hoopk(x) = {

In CIL, the OOD detection probability for a task can be defined using the output values corresponding
to the classes of the task. Some examples of the function is a sigmoid of maximum logit value or a
maximum softmax probability after re-scaling to 0 to 1. It is also possible to define the OOD detector
directly as a function of tasks instead of a function of the output values of all classes of tasks, i.e.
Mahalanobis distance. The following theorem shows that TP and OOD detection bound each other.

Theorem 2. i) IfHTP(.CC) <6, let P?C(.I S XHD) = P(x S X”D), then HOOD,k(I) < (5,Vk =

1,...,T. ii) If Hoopi(z) < 0pk = 1,...,T, let P(x € Xy|D) = % then

Hrp(x) < (X4 Loex,) (X, 1 — e7%), where 1,¢x, is an indicator function.

See Appendix A.3 for the proof. As we use cross-entropy, the lower the bound, the better the
performance is. The first statement (i) says that the OOD detection performance improves if the
TP performance gets better (i.e., lower ¢). Similarly, the second statement (ii) says that the TP
performance improves if the OOD detection performance on each task improves (i.e., lower dx).
Besides, since (3, 1.ex,€%)(>., 1 — e %) converges to 0 as &’s converge to 0 in order of
O(| >}, 9k|), we further know that H7p and), Hoop,, are equivalent in quantity up to a constant
factor.

In Theorem 1, we studied how CIL is related to WP and TP. In Theorem 2, we showed that TP and
OOD bound each other. Now we explicitly give the upper bound of CIL in relation to WP and OOD
detection of each task. The detailed proof can be found in Appendix A.4.

Theorem 3. IfHOOD’k(IL') S 5]@7 k= 1, . ,Tand HWP(CU) § €, we have

HCIL<37) S €+ (Z]-wEXkeék)(Z 1- e_ék)a
k

k

where 1,¢cx, is an indicator function.

3.4 Necessary Conditions for Improving CIL

In Theorem 1, we showed that good performances of WP and TP are sufficient to guarantee a good
performance of CIL. In Theorem 3, we showed that good performances of WP and OOD are sufficient
to guarantee a good performance of CIL. For completeness, we study the necessary conditions of a
well-performed CIL in this sub-section.

Theorem 4. If Horr(x) <, then there existi) a WP, s.t. Hy p(x) < n, ii)a TP, s.t. Hrp(z) < n,
and iii) an OOD detector for each task, s.t. Hoopx <n, k=1,...,T.

The detailed proof is given in Appendix A.5. This theorem tells that if a good CIL model is trained,
then a good WP, a good TP and a good OOD detector for each task are always implied. More
importantly, by transforming Theorem 4 into its contraposition, we have the following statements: If
for any WP, Hy p(z) > n, then Horp (x) > 0. If for any TP, Hrp(x) > 1, then Hoyp(x) > n. If
for any OOD detector, Hoop (z) > n, k= 1,...,T, then Horr(x) > n. Regardless of whether
WP and TP (or OOD detection) are defined explicitly or implicitly by a CIL algorithm, the existence
of a good WP and the existence of a good TP or OOD detection are necessary conditions for a good
CIL performance.

Remark 5. Tt is important to note again that our study in this section is based on a CIL model that
has already been built. In other words, our study tells the CIL designers what should be achieved in
the final model. Clearly, one would also like to know how to design a strong CIL model based on
the theoretical results, which also considers catastrophic forgetting (CF). One effective method is to
make use of a strong existing TIL algorithm, which can already achieve no or little forgetting (CF),
and combine it with a strong OOD detection algorithm (as mentioned earlier, most OOD detection
methods can also perform WP). Thus, any improved method from the OOD detection community can
be applied to CIL to produce improved CIL systems (see Sections 4.3 and 4.4).

Recall in Section 2, we reviewed prior works that have tried to use a TIL method for CIL with a
task-id prediction method [55, 64, 62, 63, 65]. However, since they did not know that the key to the
success of this approach is a strong OOD detection algorithm, they are quite weak (see Section 4).

4 New CIL Techniques and Experiments

Based on Theorem 3, we have designed several new CIL methods, each of which integrates an
existing CL algorithm and an OOD detection algorithm. The OOD detection algorithm that we use
can perform both within-task IND prediction (WP) and OOD detection. Our experiments have two
goals: (1) to show that a good OOD detection method can help improve the accuracy of an existing
CIL algorithm, and (2) to fully compare two of these methods (see some others in Sec. 4.5) with
strong baselines to show that they outperform the existing strong baselines considerably.

4.1 Datasets, CL Baselines and OOD Detection Methods

Datasets and CIL Tasks. Four popular benchmark image classification datasets are used, from which
six CIL problems are created following recent papers [25, 34, 26]. (1) MNIST consists of handwritten
images of 10 digits with 60,000/10,000 training/testing samples. We create a CIL problem (M-5T) of
5 tasks with 2 consecutive classes/digits as a task. (2) CIFAR-10 consists of 32x32 color images of
10 classes with 50,000/10,000 training/testing samples. We create a CIL problem (C10-5T) of 5 tasks
with 2 consecutive classes as a task. (3) CIFAR-100 consists of 60,000 32x32 color images with
50,000/10,000 training/testing samples. We create two CIL problems by splitting 100 classes into
10 tasks (C100-10T) and 20 tasks (C100-20T), where each task has 10 and 5 classes, respectively.
(4) Tiny-ImageNet has 120,000 64x64 color images of 200 classes with 500/50 images per class for
training/testing. We create two CIL problems by splitting 200 classes into 5 tasks (T-5T) and 10 tasks
(T-10T), where each task has 40 and 20 classes, respectively.

Baseline CL. Methods. We include different families of CL methods: regularization, replay,
orthogonal projection, and parameter isolation. MUC [25] and PASS [26] are regularization-based
methods. For replay methods, we use LwF [13], iCaRL [29], Mnemonics [69], BiC [32], DER++ [34],
and Co?L [37]. For orthogonal projection, we use OWM [49]. Finally, for parameter isolation, we use
CCG [63], HyperNet [55], HAT [3], SupSup [4] (Sup), and PR [65].° We use the official codes for
the baselines except for Co’L, CCG, and PR. For these three systems, we copy the results from their
papers as the code for CCG is not released and we are unable to run CoL and PR on our machines.

OOD Detection Methods. Two OOD detection methods are used. We combine them with the above
existing CL algorithms. Both these methods can also perform within-task IND prediction (WP).

(1). ODIN: Researchers have proposed several methods to improve the OOD detection performance
of a trained network by post-processing [7, 70, 71]. ODIN [7] is a representative method. It adds
perturbation to input and applies a temperature scaling to the softmax output of a trained network.

(2). CSI: It is a recently proposed OOD detection technique [6] that is highly effective. It is based
on data and class label augmentation and supervised contrastive learning [72]. Its rotation data

SiITAML [62] is not included as it requires a batch of test data from the same task to predict the task-id. When
each batch has only one test sample, which is our setting, it is very weak. For example, its CIL accuracy is only
33.5% on C100-10T. Expert Gate (EG) [64] is also very weak. Its CIL accuracy is only 43.2 on M-5T. They are
much weaker than many baselines. DER [38] is not included as it expands the network after each task, which is
somewhat unfair to other systems as all others do not expand the network. DER can generate a large number
of parameters after the last task, e.g., 117.6 millions (M) for C100-20T while our proposed methods require
44.6M (HAT+CSI) and 11.6M (Sup+CSI) (refer to Appendix H). The average accuracy of DER over the 6 CL
experiments is 61.4 while our methods achieve 67.9 (HAT+CSI+c) and 64.9 (Sup+CSI+c) (refer to Tab. 3).

augmentations create distributional shifted samples to act as negative data for the original samples for
contrastive learning. The details of CSI is given in Appendix D.

4.2 Training Details and Evaluation Metrics

Training Details. For the backbone structure, we follow [4, 26, 34]. AlexNet-like architecture [73]
is used for MNIST and ResNet-18 [74] is used for CIFAR-10. For CIFAR-100 and Tiny-ImageNet,
ResNet-18 is also used as CIFAR-10, but the number of channels are doubled to fit more classes. All
the methods use the same backbone architecture except for OWM and HyperNet, for which we use
their original architectures. OWM uses AlexNet. It is not obvious how to apply the technique to the
ResNet structure. HyperNet uses a fully-connected network and ResNet-32 for MNIST and other
datasets, respectively. We are unable to change the structure due to model initialization arguments
unexplained in the original paper. For the replay methods, we use memory buffer 200 for MNIST and
CIFAR-10 and 2000 for CIFAR-100 and Tiny-ImageNet as in [29, 34]. We use the hyper-parameters
suggested by the authors. If we could not reproduce any result, we use 10% of the training data as a
validation set to grid-search for good hyper-parameters. For our proposed methods, we report the
hyper-parameters in Appendix G. All the results are averages over 5 runs with random seeds.

Evaluation Metrics.

(1). Average classification accuracy over all classes after learning the last task. The final class
prediction depends prediction methods (see below). We also report forgetting rate in Appendix J.

(2). Average AUC (Area Under the ROC Curve) over all task models for the evaluation of OOD
detection. AUC is the main measure used in OOD detection papers. Using this measure, we show
that a better OOD detection method will result in a better CIL performance. Let AUCy, be the AUC
score of task k. It is computed by using only the model (or classes) of task k to score the test data of
task k as the in-distribution (IND) data and the test data from other tasks as the out-of-distribution
(OOD) data. The average AUC score is: AUC' =), AUCy/n, where n is the number of tasks.

It is not straightforward to change existing CL algorithms to include a new OOD detection method
that needs training, e.g., CSI, except for TIL (task incremental learning) methods, e.g., HAT and Sup.
For HAT and Sup, we can simply switch their methods for learning each task with CSI (see Sec.4.4).

Prediction Methods. The theoretical result in Sec. 3 states that we use Eq. 2 to perform the final
prediction. The first probability (WP) in Eq. 2 is easy to get as we can simply use the softmax values
of the classes in each task. However, the second probability (TP) in Eq. 2 is tricky as each task is
learned without the data of other tasks. There can be many options. We take the following approaches
for prediction (which are a special case of Eq. 2, see below):

(1). For those approaches that use a single classification head to include all classes learned so far, we
predict as follows (which is also the approach taken by the existing papers.)

§ = argmax f(z) ®)
where f(z) is the logit output of the network.

(2). For multi-head methods (e.g., HAT, HyperNet, and Sup), which use one head for each task, we
use the concatenated output as

g = arg max@ f(@)k 9
k

where @ indicate concatenation and f () is the output of task &.°

These methods (in fact, they are the same method used in two different settings) is a special case of
Eq. 2 if we define OO Dy, as o(max f(x)y), where o is the sigmoid. Hence, the theoretical results in
Sec. 3 are still applicable. We present a detailed explanation about this prediction method and some
other options in Appendix C. These two approaches work quite well.

The Sup paper proposed an one-shot task-id prediction assuming that the test instances come in a batch
and all belong to the same task like iTAML. We assume a single test instance per batch. Its task-id prediction
results in accuracy of 50.2 on C10-5T, which is much lower than 62.6 by using Eq. 9. The task-id prediction of
HyperNet also works poorly. The accuracy by its id prediction is 49.34 on C10-5T while it is 53.4 using Eq. 9.
PR uses entropy to find task-id. Among many variations of PR, we use the variations that perform the best for
each dataset with exemplar-free and single sample per batch at testing (i.e., no PR-BW).

4.3 Better OOD Detection Produces Better CIL Performance

The key theoretical result in Sec. 3 is that better OOD detection will produce better CIL performance.
Recall our considered methods ODIN and CSI can perform both WP and OOD detection.

Applying ODIN. We first train the baseline models using their original algorithms, and then apply
temperature scaling and input noise of ODIN at testing for each task (no training data needed). More
precisely, the output of class j in task k£ changes by temperature scaling factor 7, of task & as

5(1';77@)]' _ ef(w)kj/‘l'k/zef(w)kj/‘rk (10)
J
and the input changes by the noise factor € as
T =x — esign(—V log s(x; 1)) (11)
where { is the class with the maximum output value in task k. This is a positive adversarial example

inspired by [75]. The values 7, and ¢, are hyper-parameters and we use the same values for all tasks
except for PASS, for which we had to use a validation set to tune 71 (see Appendix B).

Tab. 1 gives the results for C100-10T. The CIL results Table 1: Performance comparison based
clearly show that the CIL performance increases if the on C100-10T between the original out-
AUC increases with ODIN. For instance, the CIL of put and the output post-processed with
DER++ and Sup improves from 53.71 to 55.29 and 44.58 OOD detection technique ODIN. Note
to 46.74, respectively, as the AUC increases from 85.99 that ODIN is not applicable to iCaRL and
to 88.21 and 79.16 to 80.58. It shows that when this Mnemonics as they are not based on soft-
method is incorporated into each task model in exist- max but some distance functions. The
ing trained CIL network, the CIL performance of the results for other datasets are reported in
original method improves. We note that ODIN does not Appendix B.
always improve the average AUC. For those experienced
a decrease in AUC, the CIL performance also decreases ~ Method OOD AUC CIL
except LwWF. The inconsistency of LwF is due to its se- Original 7131 2891
vere classification bias towards later tasks as discussed ~OWM £) ’
N L ODIN 70.06 28.88
in BiC [32]. The temperature scaling in ODIN has a Onigi

. . - riginal 72.69 30.42
similar effect as the bias correction in BiC, and the CIL ~ MUC

. : ODIN 72.53 29.79

of LwF becomes close to that of BiC after the correction. Original 6989 33.00
Regardless of whether ODIN improves AUC or not, the ~ PASS '8) ’

" . ODIN 69.60 31.00
positive correlation between AUC and CIL (except LWF) Original 8830 4576
verifies the efficacy of Theorem 3, indicating better OOD LwF Og%\? a 87. 11 5 1' g2
detection results in better CIL performances. Original 87: %05 2: N5

BiC

Applying CSI. We now apply the OOD detection ODIN 86.73 48.65
method CSI. Due to its sophisticated data augmentation, Original 8599 53.71
supervised constrative learning and results ensemble, it DER-++ ODIN 88.21 55.29
is hard to apply CSI to other baselines without fundamen- HAT Original 77.72 41.06
tally change them except for HAT and Sup (SupSup) as ODIN 77.80 41.21
these methods are parameter isolation-based TIL meth- Original 71.82° 30.23
ods. We can simply replace their model for training each HyperNet ODIN 7232 30.83
task With CSI Whol§sale (the.full detail is given in Ap- Original 79.16 4458
pendix D). As mentioned earlier, both HAT and SupSup Sup ODIN 80.58 46.74

as TIL methods have almost no forgetting.

Tab. 2 reports the results of using CSI and ODIN. ODIN is a weaker OOD method than CSI. Both
HAT and Sup improve greatly as the systems are equipped with a better OOD detection method
CSI. These experiment results empirically demonstrate the efficacy of Theorem 3, i.e., the CIL
performance can be improved if a better OOD detection method is used.

4.4 Full Comparison of HAT+CSI and Sup+CSI with Baselines

We now make a full comparison of the two strong systems (HAT+CSI and Sup+CSI) designed based
on the theoretical results. These combinations are particularly attractive because both HAT and Sup
are TIL systems and have little or no CF. Then a strong OOD method (that can also perform WP
(within-task/IND prediction) will result in a strong CIL method. Since HAT and Sup are exemplar-
free CL methods, HAT+CSI and Sup+CSI also do not need to save any previous task data. Tab. 3

Table 2: Average CIL and AUC of HAT and Sup with OOD detection methods ODIN and CSI. ODIN
is a traditional OOD detection method while CSI is a recent OOD detection method known to be
better than ODIN. As CL methods produce better OOD detection performance by CSI, their CIL
performances are better than the ODIN counterparts.

CL OOD C10-5T C100-10T C100-20T T-5T T-10T
AUC CIL AUC CIL AUC CIL AUC CIL AUC C(CIL

ODIN 825 626 77.8 412 754 258 723 38.6 71.8 30.0
CSI 912 87.8 845 633 865 546 765 457 785 47.1

ODIN 824 626 806 467 81.6 364 740 41.1 746 365
CSI 91.6 86.0 86.8 651 883 602 771 489 794 457

HAT

Sup

Table 3: Average accuracy after all tasks are learned. Exemplar-free methods are italicized. t indicates
that in their original papers, PASS and Mnemonics are pre-trained with the first half of the classes.
Their results with pre-train are 50.1 and 53.5 on C100-10T, respectively, which are still much lower
than the proposed HAT+CSI and Sup+CSI without pre-training. We do not use pre-training in our
experiment for fairness. * indicates that iCaRL and Mnemonics report average incremental accuracy
in their original papers. We report average accuracy over all classes after all tasks are learned.

Method M-5T C10-5T C100-10T C100-20T T-5T T-10T
OWM 95.840.13 51.840.05 28.9+0.60 24.1+0.26 10.040.55 8.6+0.42
MUC 7494046 529+1.03 30.4+1.18 14.2+030 33.6+0.19 17.440.17
PASST 76.6+1.67 47.3+£0.98 33.0+£0.58 25.0+£0.69 28.440.51 19.1+0.46
LwF 85.543.11 54.7+1.18 45.34+0.75 4434046 32.240.50 24.34+0.26
iCaRL* 96.0+0.43 63.4+1.11 51.4+099 47.840.48 37.0+0.41 28.340.18
Mnemonics™ 96.340.36 64.1+1.47 51.0£0.34 47.6£074 37.1+0.46 28.540.72
BiC 94.1+0.65 61.4+1.74 52.9+0.64 48.9+0.54 41.7+0.74 33.840.40
DER++ 95.3+0.69 66.0+£1.20 53.7+1.30 46.6+1.44 35.8+0.77 30.5+0.47
Co’L 65.6

CCG 97.3 70.1

HAT 81.9+£3.74 62.7+£1.45 41.1+£0.93 25.6+0.51 38.5+£1.85 29.8+0.65
HyperNet 56.6+4.85 53.442.19 30.2+1.54 18.7+1.10 7.94+0.69 5.3+0.50
Sup 70.1+£1.51 6244145 44.6+044 34.7+030 41.841.50 36.54+0.36
PR-Ent 74.1 61.9 45.2

HAT+CSI 94.440.26 87.840.71 63.3+1.00 54.6+092 45.74+026 47.14+0.18
Sup+CSI 80.7£2.71 86.0+£0.41 65.1+£0.39 60.24+0.51 48.9+0.25 45.7+0.76

HAT+CSI+c 96.9+0.30 88.0+0.48 65.2+0.71 58.0+0.45 51.7+0.37 47.6+0.32
Sup+CSI+c 81.0+2.30 87.3+0.37 65.24+0.37 60.5+£0.64 49.2+0.28 46.2+0.53

shows that HAT and Sup equipped with CSI outperform the baselines by large margins. DER++, the
best replay method, achieves 66.0 and 53.7 on C10-5T and C100-10T, respectively, while HAT+CSI
achieves 87.8 and 63.3 and Sup+CSI achieves 86.0 and 65.1. The large performance gap remains
consistent in more challenging problems, T-5T and T-10T. We note that Sup works very poorly on
M-5T, but Sup+CSI improved it drastically, although still very weak compared to HAT+CSI.

Due to the definition of OOD in the prediction method and the fact that each task is trained separately
in HAT and Sup, the outputs f () from different tasks can be in different scales, which will result in
incorrect predictions. To deal with the problem, we can calibrate the output as a f () + B and use
OODy, = o(awf(x)r + Br). The optimal o} and 3;; for each task k can be found by optimization
with a memory buffer to save a very small number of training examples from previous tasks like that
in the replay-based methods. We refer the calibrated methods as HAT+CSI+c and Sup+CSI+c. They
are trained by using the memory buffer of the same size as the replay methods (see Sec. 4.2). Tab. 3
shows that the calibration improves from their memory free versions, i.e., without calibration. We
provide the details about how to train the calibration parameters «y, and [y in Appendix E.

As shown in Theorem 1, the CIL performance also depends on the TIL (WP) performance. We
compare the TIL accuracies of the baselines and our methods in Tab. 4. Our systems again outperform
the baselines by large margins on more challenging datasets (e.g., CIFAR100 and Tiny-ImageNet).

Table 4: TIL (WP) results of 3 best performing baselines and our methods. The full results are given
in Appendix F. The calibrated versions (+c) of our methods are omitted as calibration does not affect
TIL performances.

Method M-5T C10-5T C100-10T C100-20T T-5T T-10T

DER++ 99.74£0.08 92.0+£0.54 84.0+9.43 86.6+£9.44 57.4+1.31 60.0+0.74
HAT 99.9+0.02 96.7+0.18 84.0+0.23 85.0+0.98 61.2+0.72 63.8+0.41
Sup 99.6+0.01 96.6+0.21 87.9+0.27 91.6+0.15 64.3+0.24 68.4+0.22

HAT+CSI 99.94+0.00 98.7+£0.06 92.0+0.37 94.3+0.06 68.4+0.16 72.4+0.21
Sup+CSI 99.0+0.08 98.7+0.07 93.0+0.13 95.3+020 65.9+0.25 74.1+0.28

4.5 Implications for Existing CL. Methods, Open-World Learning and Future Research

Implication for regularization and replay methods. Regularization-based (exemplar-free) methods
try to protect important parameters of old tasks to mitigate CF. However, since the training of each
task does not consider OOD detection, TP will be weak, which causes difficulty for inter-task class
separation (ICS) and thus low CL accuracy. Replay-based methods are better as the replay data from
old tasks can be naturally regarded as OOD data for the current task, then a better OOD model is
built, which improves TP. However, since the replay data is small. the OOD model is sub-optimal,
especially for earlier tasks as their training cannot see any future task data. For both approaches, it
will be beneficial to consider CF and OOD together in learning each task (e.g., [76]).

Implication for open-world learning. Since our theory says that CL needs OOD detection, and
OOD detection is also the first step in open-world learning (OWL), CL and OWL are unified to form
the self-motivated open-world continual learning [5] for learning or Al autonomy. That is, the Al
agent can continually discover new tasks (OOD detection) and incrementally learn the tasks (CL)
(see [76]) all on its own with no involvement of human engineers [5]. Further afield, this work is also
related to curiosity-driven self-supervised learning [77] in reinforcement learning and 3D navigation.

Limitation and future work. The proposed theory provides a principled guidance on what needs
to be done in order to achieve good CIL results, but it gives no guidance on how to do it. Although
two example techniques are presented and evaluated, they are empirical. There are many options
to define WP and TP (or OOD). An idea in [40] may be helpful in this regard. [40] argues that a
continual learner should learn holistic feature representations of the input data, meaning to learn as
many features as possible from the input data. The rationale is that if the system can learn all possible
features from each task, then a future task does not have to learn those shared/intersecting features
by modifying the parameters, which will result in less CF and also better ICS. A full representation
of the IND data also improves OOD detection because the OOD score of a data point is basically
the distance between the data point and the IND distribution. Only capturing a subset of features
(e.g., by cross entropy) will result in poor OOD detection [78] because those missing features may be
necessary to separate IND and some OOD data. In our future work, we will study how to optimize
WP and TP/OOD and find the necessary conditions for them to do well.

5 Conclusion

This paper proposed a theoretical study on how to solve the highly challenging continual learning (CL)
problem. class incremental learning (CIL) (the other popular CL setting is fask incremental learning
(TIL)). The theoretical result provides a principled guidance for designing better CIL algorithms. The
paper first decomposed the CIL prediction into within-task prediction (WP) and task-id prediction
(TP). WP is basically TIL. The paper further theoretically demonstrated that TP is correlated with
out-of-distribution (OOD) detection. It then proved that a good performance of the two is both
necessary and sufficient for good CIL performances. Based on the theoretical result, several new CIL
methods were designed. They outperform strong baselines in CIL and also in TIL by a large margin.
Finally, we also discussed the implications for existing CL techniques and open-world learning.

Acknowledgments

The work of Gyuhak Kim, Zixuan Ke and Bing Liu was supported in part by a research contract from
KDDI, two NSF grants (IIS-1910424 and IIS-1838770), and a DARPA contract HR001120C0023.

10

References

[1] Zhiyuan Chen and Bing Liu. Lifelong machine learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 12(3):1-207, 2018.

[2] Gido M van de Ven and Andreas S Tolias. Three scenarios for continual learning. arXiv preprint
arXiv:1904.07734, 2019.

[3] Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. In ICML, 2018.

[4] Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad Raste-
gari, Jason Yosinski, and Ali Farhadi. Supermasks in superposition. In H. Larochelle, M. Ran-
zato, R. Hadsell, M. F. Balcan, and H. Lin, editors, NeurlPS, 2020.

[5] Bing Liu, Eric Robertson, Scott Grigsby, and Sahisnu Mazumder. Self-initiated open world
learning for autonomous ai agents. Proceedings of AAAI Symposium on Designing Artificial
Intelligence for Open Worlds, 2021.

[6] Jihoon Tack, Sangwoo Mo, Jongheon Jeong, and Jinwoo Shin. Csi: Novelty detection via
contrastive learning on distributionally shifted instances. In NeurIPS, 2020.

[7] Shiyu Liang, Yixuan Li, and R. Srikant. Enhancing the reliability of out-of-distribution image
detection in neural networks. In /CLR, 2018.

[8] Sepideh Esmaeilpour, Bing Liu, Eric Robertson, and Lei Shu. Zero-shot out-of-distribution
detection based on the pretrained model clip. In Proceedings of the AAAI conference on artificial
intelligence, 2022.

[9] Mengyu Wang, Yijia Shao, Haowei Lin, Wenpeng Hu, and Bing Liu. Cmg: A class-mixed
generation approach to out-of-distribution detection. Proceedings of ECML/PKDD-2022, 2022.

[10] Anastasia Pentina and Christoph Lampert. A pac-bayesian bound for lifelong learning. In
International Conference on Machine Learning, pages 991-999. PMLR, 2014.

[11] Ryo Karakida and Shotaro Akaho. Learning curves for continual learning in neural networks:
Self-knowledge transfer and forgetting. In International Conference on Learning Representa-
tions, 2022.

[12] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of
sciences, 114(13):3521-3526, 2017.

[13] Zhizhong Li and Derek Hoiem. Learning Without Forgetting. In ECCV, pages 614—629.
Springer, 2016.

[14] Heechul Jung, Jeongwoo Ju, Minju Jung, and Junmo Kim. Less-forgetting learning in deep
neural networks. arXiv preprint arXiv:1607.00122, 2016.

[15] Raffaello Camoriano, Giulia Pasquale, Carlo Ciliberto, Lorenzo Natale, Lorenzo Rosasco, and
Giorgio Metta. Incremental robot learning of new objects with fixed update time. In /CRA,
2017.

[16] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic
intelligence. In ICML, pages 3987-3995, 2017.

[17] Hippolyt Ritter, Aleksandar Botev, and David Barber. Online structured laplace approximations
for overcoming catastrophic forgetting. In NeurIPS, 2018.

[18] Jonathan Schwarz, Jelena Luketina, Wojciech M Czarnecki, Agnieszka Grabska-Barwinska,
Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework
for continual learning. arXiv preprint arXiv:1805.06370, 2018.

[19] Ju Xu and Zhanxing Zhu. Reinforced continual learning. In NeurIPS, 2018.

11

[20] Francisco M Castro, Manuel J Marin-Jiménez, Nicolds Guil, Cordelia Schmid, and Karteek
Alahari. End-to-end incremental learning. In ECCV, pages 233-248, 2018.

[21] Wenpeng Hu, Zhou Lin, Bing Liu, Chongyang Tao, Zhengwei Tao, Jinwen Ma, Dongyan Zhao,
and Rui Yan. Overcoming catastrophic forgetting for continual learning via model adaptation.
In ICLR, 2019.

[22] Prithviraj Dhar, Rajat Vikram Singh, Kuan-Chuan Peng, Ziyan Wu, and Rama Chellappa.
Learning without memorizing. In CVPR, 2019.

[23] Kibok Lee, Kimin Lee, Jinwoo Shin, and Honglak Lee. Overcoming catastrophic forgetting
with unlabeled data in the wild. In CVPR, 2019.

[24] Hongjoon Ahn, Sungmin Cha, Donggyu Lee, and Taesup Moon. Uncertainty-based continual
learning with adaptive regularization. In NeurIPS, 2019.

[25] Yu Liu, Sarah Parisot, Gregory Slabaugh, Xu Jia, Ales Leonardis, and Tinne Tuytelaars. More
classifiers, less forgetting: A generic multi-classifier paradigm for incremental learning. In
ECCYV, pages 699-716. Springer International Publishing, 2020.

[26] Fei Zhu, Xu-Yao Zhang, Chuang Wang, Fei Yin, and Cheng-Lin Liu. Prototype augmentation
and self-supervision for incremental learning. In CVPR, 2021.

[27] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv
preprint arXiv:1606.04671, 2016.

[28] David Lopez-Paz and Marc’ Aurelio Ranzato. Gradient Episodic Memory for Continual Learn-
ing. In NeurlPS, pages 6470-6479, 2017.

[29] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, and Christoph H Lampert. iCaRL: Incremental
classifier and representation learning. In CVPR, pages 5533-5542, 2017.

[30] Arslan Chaudhry, Marc’ Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. In ICLR, 2019.

[31] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified
classifier incrementally via rebalancing. In CVPR, pages 831-839, 2019.

[32] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu.
Large scale incremental learning. In CVPR, 2019.

[33] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P. Lillicrap, and Greg Wayne. Experi-
ence replay for continual learning. In NeurIPS, 2019.

[34] Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
experience for general continual learning: a strong, simple baseline. In NeurIPS, 2020.

[35] Jathushan Rajasegaran, Munawar Hayat, Salman Khan, Fahad Shahbaz Khan, Ling Shao, and
Ming-Hsuan Yang. An adaptive random path selection approach for incremental learning, 2020.

[36] Yaoyao Liu, Bernt Schiele, and Qianru Sun. Adaptive aggregation networks for class-
incremental learning. In CVPR, 2021.

[37] Hyuntak Cha, Jacho Lee, and Jinwoo Shin. Co2l: Contrastive continual learning. In ICCV,
2021.

[38] Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynamically expandable representation for
class incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3014-3023, 2021.

[39] Liyuan Wang, Xingxing Zhang, Kuo Yang, Longhui Yu, Chongxuan Li, Lanqing Hong, Shifeng

Zhang, Zhenguo Li, Yi Zhong, and Jun Zhu. Memory replay with data compression for continual
learning. Proceedings of International Conference on Learning Representations (ICLR), 2022.

12

[40] Yiduo Guo, Bing Liu, and Dongyan Zhao. Online continual learning through mutual information
maximization. In International Conference on Machine Learning, pages 8109-8126. PMLR,
2022.

[41] Alexander Gepperth and Cem Karaoguz. A bio-inspired incremental learning architecture for
applied perceptual problems. Cognitive Computation, 8(5):924-934, 2016.

[42] Nitin Kamra, Umang Gupta, and Yan Liu. Deep Generative Dual Memory Network for
Continual Learning. arXiv preprint arXiv:1710.10368, 2017.

[43] Hanul Shin, Jung Kwon Lee, Jachong Kim, and Jiwon Kim. Continual learning with deep
generative replay. In NIPS, pages 2994-3003, 2017.

[44] Chenshen Wu, Luis Herranz, Xialei Liu, Joost van de Weijer, Bogdan Raducanu, et al. Memory
replay gans: Learning to generate new categories without forgetting. In NeurIPS, 2018.

[45] Ari Seff, Alex Beatson, Daniel Suo, and Han Liu. Continual learning in generative adversarial
nets. arXiv preprint arXiv:1705.08395, 2017.

[46] Ronald Kemker and Christopher Kanan. FearNet: Brain-Inspired Model for Incremental
Learning. In ICLR, 2018.

[47] Mohammad Rostami, Soheil Kolouri, and Praveen K. Pilly. Complementary learning for
overcoming catastrophic forgetting using experience replay. In IJCAI, 2019.

[48] Oleksiy Ostapenko, Mihai Puscas, Tassilo Klein, Patrick Jahnichen, and Moin Nabi. Learning
to remember: A synaptic plasticity driven framework for continual learning. In CVPR, pages
11321-11329, 2019.

[49] Guanxiong Zeng, Yang Chen, Bo Cui, and Shan Yu. Continuous learning of context-dependent
processing in neural networks. Nature Machine Intelligence, 2019.

[50] Yiduo Guo, Wenpeng Hu, Dongyan Zhao, and Bing Liu. Adaptive orthogonal projection for
batch and online continual learning. In Proceedings of AAAI-2022, 2022.

[51] Arslan Chaudhry, Naeemullah Khan, Puneet K. Dokania, and Philip H. S. Torr. Continual
learning in low-rank orthogonal subspaces, 2020.

[52] Zixuan Ke, Bing Liu, and Xingchang Huang. Continual learning of a mixed sequence of similar
and dissimilar tasks. In NeurIPS, 2020.

[53] Arun Mallya and Svetlana Lazebnik. PackNet: Adding Multiple Tasks to a Single Network by
Iterative Pruning. arXiv preprint arXiv:1711.05769, 2017.

[54] Ching-Yi Hung, Cheng-Hao Tu, Cheng-En Wu, Chien-Hung Chen, Yi-Ming Chan, and Chu-
Song Chen. Compacting, picking and growing for unforgetting continual learning. In NeurIPS,
volume 32, 2019.

[55] Johannes von Oswald, Christian Henning, Jodo Sacramento, and Benjamin F Grewe. Continual
learning with hypernetworks. /CLR, 2020.

[56] Jaehong Yoon, Saechoon Kim, Eunho Yang, and Sung Ju Hwang. Scalable and order-robust
continual learning with additive parameter decomposition. In /CLR, 2020.

[57] Pravendra Singh, Vinay Kumar Verma, Pratik Mazumder, Lawrence Carin, and Piyush Rai.
Calibrating cnns for lifelong learning. NeurIPS, 2020.

[58] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In CVPR, 2020.

[59] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In ICML, 2020.

[60] Saikiran Bulusu, Bhavya Kailkhura, Bo Li, Pramod K Varshney, and Dawn Song. Anomalous
instance detection in deep learning: A survey. arXiv preprint arXiv:2003.06979, 2020.

13

[61] Chuanxing Geng, Sheng-jun Huang, and Songcan Chen. Recent advances in open set recogni-
tion: A survey. IEEE transactions on pattern analysis and machine intelligence, 2020.

[62] Jathushan Rajasegaran, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Mubarak
Shah. itaml: An incremental task-agnostic meta-learning approach. In CVPR, 2020.

[63] Davide Abati, Jakub Tomczak, Tijmen Blankevoort, Simone Calderara, Rita Cucchiara, and
Ehteshami Bejnordi. Conditional channel gated networks for task-aware continual learning. In
CVPR, pages 3931-3940, 2020.

[64] Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. Expert gate: Lifelong learning
with a network of experts. In CVPR, 2017.

[65] Christian Henning, Maria Cervera, Francesco D’ Angelo, Johannes Von Oswald, Regina Traber,
Benjamin Ehret, Seijin Kobayashi, Benjamin F Grewe, and Jodo Sacramento. Posterior meta-
replay for continual learning. NeurIPS, 34, 2021.

[66] Sebastian Lee, Sebastian Goldt, and Andrew Saxe. Continual learning in the teacher-student
setup: Impact of task similarity. In International Conference on Machine Learning, pages
6109-6119. PMLR, 2021.

[67] Mehdi Abbana Bennani, Thang Doan, and Masashi Sugiyama. Generalisation guarantees for
continual learning with orthogonal gradient descent. Lifelong Learning Workshop at the ICML,
2020.

[68] Jihwan Bang, Heesu Kim, YoungJoon Yoo, Jung-Woo Ha, and Jonghyun Choi. Rainbow
memory: Continual learning with a memory of diverse samples. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 8218-8227, 2021.

[69] Yaoyao Liu, Yuting Su, An-An Liu, Bernt Schiele, and Qianru Sun. Mnemonics training:
Multi-class incremental learning without forgetting. In CVPR, 2020.

[70] Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution
detection. Advances in Neural Information Processing Systems, 2020.

[71] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for
detecting out-of-distribution samples and adversarial attacks. Advances in neural information
processing systems, 31, 2018.

[72] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. arXiv preprint
arXiv:2004.11362, 2020.

[73] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In NIPS, 2012.

[74] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

[75] IanJ Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversar-
ial examples. ICLR, 2015.

[76] Gyuhak Kim, Zixuan Ke, and Bing Liu. A multi-head model for continual learning via out-of-
distribution replay. arXiv preprint arXiv:2208.09734, 2022.

[77] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pages 2778—
2787. PMLR, 2017.

[78] Wenpeng Hu, Mengyu Wang, Qi Qin, Jinwen Ma, and Bing Liu. Hrn: A holistic approach
to one class learning. Advances in Neural Information Processing Systems, 33:19111-19124,
2020.

14

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

* Did you include the license to the code and datasets? [Yes] See Section ??.

* Did you include the license to the code and datasets? The code and the data are
proprietary.

* Did you include the license to the code and datasets? [IN/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Sec. 4.5
(c) Did you discuss any potential negative societal impacts of your work? [Yes] In
Appendix
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Sec. 3.1.
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix.
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Sec. 4.2 and Appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUgs, internal cluster, or cloud provider)? [Yes] See Appendix
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets?
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A |

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

15

	Introduction
	Related Work
	CIL by Within-Task Prediction and Task-ID Prediction
	CIL Problem Decomposition
	CIL Improves as WP and/or TP Improve
	Task Prediction (TP) to OOD Detection
	Necessary Conditions for Improving CIL

	New CIL Techniques and Experiments
	Datasets, CL Baselines and OOD Detection Methods
	Training Details and Evaluation Metrics
	Better OOD Detection Produces Better CIL Performance
	Full Comparison of HAT+CSI and Sup+CSI with Baselines
	Implications for Existing CL Methods, Open-World Learning and Future Research

	Conclusion

