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Abstract

Large neural networks excel in many domains, but
they are expensive to train and fine-tune. A pop-
ular approach to reduce their compute/memory
requirements is to replace dense weight matri-
ces with structured ones (e.g., sparse, low-rank,
Fourier transform). These methods have not seen
widespread adoption (1) in end-to-end training due
to unfavorable efficiency–quality tradeoffs, and
(2) in dense-to-sparse fine-tuning due to lack of
tractable algorithms to approximate a given dense
weight matrix. To address these issues, we propose
a class of matrices (Monarch) that is hardware-
efficient (they are parameterized as products of two
block-diagonal matrices for better hardware uti-
lization) and expressive (they can represent many
commonly used transforms). Surprisingly, the
problem of approximating a dense weight matrix
with a Monarch matrix, though nonconvex, has an
analytical optimal solution. These properties of
Monarch matrices unlock new ways to train and
fine-tune sparse and dense models. We empiri-
cally validate that Monarch can achieve favorable
accuracy–efficiency tradeoffs in several end-to-
end sparse training applications: speeding up ViT
and GPT-2 training on ImageNet classification and
Wikitext-103 language modeling by 2×with com-
parable model quality, and reducing the error on
PDE solving and MRI reconstruction tasks by 40%.
In sparse-to-dense training, with a simple tech-
nique called “reverse sparsification,” Monarch ma-
trices serve as a useful intermediate representation
to speed up GPT-2 pretraining on OpenWebText
by 2×without quality drop. The same technique
brings 23% faster BERT pretraining than even the
very optimized implementation from Nvidia that
set the MLPerf 1.1 record. In dense-to-sparse fine-
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tuning, as a proof-of-concept, our Monarch approx-
imation algorithm speeds up BERT fine-tuning on
GLUE by 1.7×with comparable accuracy.

1 Introduction
Large neural networks excel in many domains, but their
training and fine-tuning demand extensive computation
and memory (Kaplan et al., 2020). A natural approach to
mitigate this cost is to replace dense weight matrices with
structured ones, such as sparse & low-rank matrices and
the Fourier transform. However, structured matrices (which
can be viewed as a general form of sparsity) have not yet
seen wide adoption to date, due to two main challenges.
(1) In the end-to-end (E2E) training setting, they have
shown unfavorable efficiency–quality tradeoffs. Model
efficiency refers how efficient these structured matrices
are on modern hardware (e.g., GPUs). Model quality
(performance on tasks) is determined by how expressive
they are (e.g., can they represent commonly used transforms
such as convolution or Fourier/cosine transforms that encode
domain-specific knowledge). Existing structured matrices
are either not hardware-efficient, or not expressive enough.
(2) In the setting of dense-to-sparse (D2S) fine-tuning of
pretrained models, a long-standing problem for most classes
of structured matrices is the lack of tractable algorithms to
approximate dense pretrained weight matrices (Pan, 2012).

Sparse matrices have seen advances in training deep learning
models (e.g., pruning (Han et al., 2015a), lottery tickets (Fran-
kle & Carbin, 2018)), but most work on (entrywise) sparsi-
fication focuses on reducing training or inference FLOPs,
which do not necessarily map to E2E training time on mod-
ern hardware (e.g., GPUs). In fact, most sparse training
methods slow down training in wall-clock time (Gale et al.,
2019; Hooker, 2020). Moreover, sparse matrices are not able
to represent commonly used transforms such as convolution
and the Fourier transform. Another class of structured ma-
trices, such as Fourier, sine/cosine, Chebyshev, are used in
specialized domains such as PDE solving (Trefethen, 2000)
and medical imaging (Hsieh, 2003). However, they are dif-
ficult to use in E2E training since only specific instances of
these structured matrices have fast GPU implementations
(e.g., FFT). Moreover, their applications requires domain ex-
pertise to hand-pick the right transforms. Generalizations of



Figure 1. Monarch matrices unlock several ways to train sparse and
dense models: end-to-end training a sparse (Monarch) model can
be 2x faster than dense training thanks to its hardware efficiency;
sparse-to-dense “reverse sparsification” can speed up training of
large models such as GPT-2; and our dense-to-sparse Monarch
projection algorithm can transfer knowledge from pretrained dense
model to Monarch model and speed up BERT fine-tuning.

these transforms (e.g., Toeplitz-like (Sindhwani et al., 2015),
orthogonal polynomial transforms (Driscoll et al., 1997), low-
displacement rank (Kailath et al., 1979), quasi-separable (Ei-
delman & Gohberg, 1999)), though learnable, often lack effi-
cient implementation on GPUs (Thomas et al., 2018) for E2E
training as well. In addition, they have no known tractable
algorithm to approximate a given dense matrix (Pan, 2012),
making them difficult to use in D2S fine-tuning.

E2E training. The technical challenge in addressing the
efficiency–quality tradeoff of structured matrices is to find
a parameterization that is both efficient on block-oriented
hardware (e.g., GPUs) and expressive (e.g., can represent
many commonly used transforms). We propose a class of
matrices called Monarch,1 parameterized as products of two
block-diagonal matrices (up to permutation), to address this
challenge. This parameterization leverages optimized batch-
matrix-multiply (BMM) routines on GPUs, yielding up to 2×
speedup compared to dense matrix multiply (Section 5.1.1).
We show that the class of Monarch matrices contains the class
of butterfly matrices (Parker, 1995; Dao et al., 2019), which
can represent any low-depth arithmetic circuits in near opti-
mal runtime and parameter size (Dao et al., 2020). Monarch
matrices inherit this expressiveness and thus can represent
many fast transforms (e.g., Fourier, sine/cosine/Chebyshev
transforms, convolution) (Proposition 3.2).

Sparse-to-dense (S2D) training, aka “reverse sparsifi-
cation”. The hardware-efficiency and expressiveness of
Monarch matrices unlock a new way to train dense models:
training with Monarch weight matrices for most of the time
and then transitioning to dense weight matrices (Fig. 3).
This technique can be used in cases where sparse training
faces representation or optimization difficulties (Evci et al.,

1They are named after the monarch butterfly.

2019) or a dense model is necessary. One such application
is language modeling on large datasets, where a massive
number of parameters are required (Kaplan et al., 2020) to
memorize the textual patterns (Geva et al., 2020). Monarch
matrices can serve as a fast intermediate representation to
speed up the training process of the dense model.

D2S fine-tuning. While transitioning from sparse to dense
matrices is easy, the reverse direction is challenging. The
main technical difficulty is the projection problem: finding a
matrix in a class of structured matrices that is the closest to a
given dense matrix. Only a few specific classes of structured
matrices have a tractable projection solution, such as entry-
wise sparse matrices (magnitude pruning (Tewarson, 1973)),
low-rank matrices (the Eckart-Young theorem (Eckart &
Young, 1936)), and orthogonal matrices (the orthogonal Pro-
crustes problem (Schönemann, 1966)). For more expressive
classes of structured matrices, projection remains a long-
standing problem (Pan, 2012). For example, De Sa et al.
(2018) show that all structured matrices (in the form of arith-
metic circuits) can be written as products of sparse matri-
ces, which can be represented as products of butterfly matri-
ces (Dao et al., 2020). There have been numerous heuristics
proposed to project on the set of butterfly matrices or products
of sparse matrices, based on iterative first-order optimiza-
tion (Le Magoarou & Gribonval, 2016; Dao et al., 2019;
Khalitov et al., 2021) or alternating minimization (Lin et al.,
2021). However, they lack theoretical guarantees. In contrast,
we derive a projection algorithm for our Monarch parame-
terization and prove that it finds the optimal solution (Theo-
rem 1). We also derive an algorithm to factorize matrices that
are products of Monarch matrices (Section 3.4). These new
algorithms allows us to easily finetune a pretrained model
into a model with Monarch weight matrices (Section 5.3).

We validate our approach empirically in these three settings,
showing that our Monarch matrix parameterization achieves
a favorable efficiency–accuracy tradeoff compared to base-
lines on a wide range of domains: text, images, PDEs, MRI.

• In the E2E sparse training setting (Section 5.1), our
Monarch matrices model trains 2× faster than dense
models while achieving the same accuracy / perplexity on
benchmark tasks (ViT on ImageNet classification, GPT-2
on Wikitext-103 language modeling). On scientific and
medical tasks relying on hand-crafted fast transforms
(PDE solving, MRI reconstruction), Monarch reduces the
error by up to 40% at the same training speed compared
to domain-specific Fourier-based methods.

• In the S2D training setting (Section 5.2), our “reverse
sparsification” process with Monarch matrices speeds
up GPT-2 pretraining on the large OpenWebText dataset
by 2× compared to an optimized implementation from
NVIDIA (Shoeybi et al., 2019), with comparable upstream
and downstream (text classification) quality. When applied
to BERT pretraining, our method is 23% faster than the



implementation from Nvidia that set the MLPerf (Mattson
et al., 2020) 1.1 record.

• In the D2S fine-tuning setting (Section 5.3), we show a
proof of concept that our Monarch projection algorithm
speeds up BERT fine-tuning. We project a pretrained BERT
model to a Monarch matrix model and fine-tune on GLUE,
with 2× fewer parameters, 1.7× faster fine-tuning speed,
and similar average GLUE accuracy as the dense model.2

2 Related Work and Background
2.1 Related Work

Sparse Training. Sparse training is an active research topic.
There has been inspiring work along the line of compressing
models such as neural network pruning and lottery tick-
ets (Han et al., 2015a;b; Frankle & Carbin, 2018). Pruning
methods usually eliminate neurons and connections through
iterative retraining (Han et al., 2015a;b; Sanh et al., 2020) or
at runtime (Lin et al., 2017; Dong et al., 2017). Although both
Monarch and pruning methods aim to produce sparse models,
we differ in our emphasis on overall efficiency, whereas prun-
ing mostly focuses on inference efficiency and disregards the
cost of finding the smaller model. Lottery tickets (Frankle
& Carbin, 2018; Frankle et al., 2019; 2020) are a set of small
sub-networks derived from a larger dense network, which
outperforms their parent networks in convergence speed and
potentially in generalization. Monarch can be roughly seen
as a class of manually constructed lottery tickets.

Structured Matrices. Structured matrices are those
with subquadratic (o(n2) for dimension n × n) number
of parameters and runtime. Examples include sparse
and low-rank matrices, and fast transforms (Fourier,
Chebyshev, sine/cosine, orthogonal polynomials). They
are commonly used to replace the dense weight matrices
of deep learning models, thus reducing the number of
parameters and training/inference FLOPs. Large classes
of structured matrices (e.g., Toeplitz-like (Sindhwani et al.,
2015), low-displacement rank (Kailath et al., 1979), quasi-
separable (Eidelman & Gohberg, 1999)) have been shown
to be able to represent many commonly used fast transforms.
For example, De Sa et al. (2018) show that a simple divide-
and-conquer scheme leads to a fast algorithm for a large
class of structured matrices. Our work builds on butterfly
matrices (Parker, 1995; Dao et al., 2019), which have been
shown to be expressive but remain hardware-inefficient.
Pixelated butterfly (Chen et al., 2022) has attempted to make
butterfly matrices more hardware-friendly, but at the cost
of reduced expressiveness. Furthermore, it is not known if
one can directly decompose a dense pretrained model to a
model with butterfly weight matrices without retraining.

2Monarch code is available at https://github.com/
HazyResearch/fly

2.2 Butterfly Matrices

Our work builds on recent work on butterfly matrices. Dao
et al. (2019) introduced the notion of a butterfly matrix
as a certain product of permuted block-diagonal matrices,
inspired by the Cooley-Tukey fast Fourier transform
algorithm (Cooley & Tukey, 1965). They encode the
divide-and-conquer structure of many fast multiplication
algorithms. Dao et al. (2020) showed that all structured
matrices can be written as products of such butterfly matrices,
and this representation has optimal memory and runtime
complexity up to polylogarithmic factors. We now review
these definitions (following (Dao et al., 2020)).

A butterfly factor of size k (where k is even) is a matrix

of the form
[︃
D1 D2

D3 D4

]︃
where each Di is a k

2×
k
2 diagonal

matrix. We call this class of matrices BF (k,k).

A butterfly factor matrix of size n and block size k is a
block diagonal matrix of n

k butterfly factors of size k:
diag

(︁
B1,B2,...,Bn

k

)︁
,

where Bi∈BF (k,k). We call this class of matrices BF (n,k).

Finally, a butterfly matrix of size n=2s is a matrix M that
can be expressed as a product of butterfly factor matrices:

M=BnBn/2...B2,

where each Bi ∈ BF (n,i). We denote the set of size-n
butterfly matrices by B(n). Equivalently, M can be written
in the following form:

M=Bn

[︃
M1 0
0 M2

]︃
,

where Bn∈BF (n,n) and M1,M2∈B(
n
2 ).

Dao et al. (2020) further introduce the kaleidoscope matrix
hierarchy: the class BB∗(n) is the set of matrices of the form
M1M

∗
2 for M1,M2∈B(n), and the class (BB∗(n))we is the

set of all matrices of the form
(︃

w∏︁
i=1

Mi

)︃
[1:n,1:n] where

each Mi ∈BB∗(e·n). (A∗ denotes the conjugate transpose
of A.) When the size n is clear from context, we will omit
the superscript (n) (i.e., just write B,BB∗, etc.). As shown
by Theorem 1 of Dao et al. (2020), the kaleidoscope hierar-
chy can represent any structured matrix with nearly-optimal
parameters and runtime: if M is an n×n matrix such that
multiplying any vector v by M can be represented as a lin-
ear arithmetic circuit with depth d and s total gates, then
M∈(BB∗(n))

O(d)
O(s/n).

3 Monarch: Definition & Algorithms
In Section 3.1, we introduce Monarch matrices, and describe
how they relate to butterfly matrices. In Section 3.2 we
show that the class of Monarch matrices is at least as
expressive as the class of butterfly matrices, while admitting
a practically efficient representation. In particular, many fast

https://github.com/HazyResearch/fly
https://github.com/HazyResearch/fly


Figure 2. Monarch matrices are parametrized as products of two
block-diagonal matrices up to permutation, allowing efficient
multiplication algorithm that leverages batch matrix multiply.

transforms (e.g., Fourier, convolution) can be represented as
a Monarch matrix or as the product of two or four Monarch
matrices (Proposition 3.2). In Section 3.3, we show how
to project onto the set of Monarch matrices. This allows
us to tractably approximate a given matrix (e.g., a dense
pretrained weight matrix) with a Monarch matrix, unlocking
new applications (cf. Section 5). In Section 3.4, we show
how to recover the individual factors of the larger class of
products of two Monarch matrices.

3.1 Monarch Parametrization for Square Matrices

Inspired by the 4-step FFT algorithm (Bailey, 1990), we pro-
pose the class of Monarch matrices, each parametrized as the
product of two block-diagonal matrices up to permutation:

Definition 3.1. Let n=m2. An n×n Monarch matrix has
the form:

M=PLP⊤R,
where L and R are block-diagonal matrices, each with m
blocks of size m×m, and P is the permutation that maps
[x1,...,xn] to [x1,x1+m,...,x1+(m−1)m,x2,x2+m,...,
x2+(m−1)m,...,xm,x2m,...,xn].

We call this the Monarch parametrization. We denote the
class of all matrices that can be written in this form asM(n)

(dropping the superscript when clear from context). Fig. 2
illustrates this parametrization.

We now provide more intuition for this parametrization
and connect it to butterfly matrices. For ease of exposition,
suppose B∈B(n) where n is a power of 4. Then let L′ be
obtained by multiplying together the first log2n

2 butterfly
factor matrices in the butterfly factorization of B, and R by
multiplying together the last log2n

2 butterfly factor matrices.
(We detail this more rigorously in Theorem 4.)

The matrix R is block-diagonal with m=
√
n dense blocks,

each block of size m×m: R=diag(R1,...,Rm).

The matrix L′ is composed of m×m blocks of size m×m,
where each block is a diagonal matrix:

L′=

⎡⎢⎣D11 ... D1m

...
. . .

...
Dm1 ... Dmm

⎤⎥⎦.

The matrix L′ can also be written as block-diagonal with the
same structure as R after permuting the rows and columns.
Specifically, let P be the permutation of Definition 3.1. We
can interpret P as follows: it reshapes the vector x of size
n as a matrix of size m×m, transposes the matrix, then
converts back into a vector of size n. Note that P = P⊤.
Then we can write

L=PL′P⊤, where L=diag(L1,...,Lm).
Hence, up to permuting rows and columns, L′ is also a block-
diagonal matrix of m dense blocks, each of size m×m.

Thus we can write B=PLP⊤R, where L, R, and P are
as in Definition 3.1. So, B∈B(n) implies that B∈M(n).

Products of Monarch Matrices. Another important class of
matrices (due to their expressiveness, cf. Proposition 3.2) is
the classMM∗: matrices that can be written as M1M

∗
2 for

some M1,M2∈M. Further, (MM∗)2 denotes the class of
matrices that can be written M1M2 for M1,M2∈MM∗.

Extension to Rectangular Matrices. In practice, we also
want a way to parametrize rectangular weight matrices, and
to increase the number of parameters of Monarch matrices
to fit different applications (analogous to the rank parameter
in low-rank matrices and the number of nonzeros in sparse
matrices). We make the simple choice to increase the
block size of the block-diagonal matrices in the Monarch
parametrization, and to allow rectangular blocks. More
details are in Appendix C.

3.2 Expressiveness and Efficiency

We remark on the expressiveness of Monarch matrices and
their products (ability to represent many structured trans-
forms), and on their computational and memory efficiency.

3.2.1 EXPRESSIVENESS

As described in Section 3.1, any matrix B ∈ B(n) can be
written in the Monarch butterfly representation, by simply
condensing the log2n total factors into two matrices. Thus,
the Monarch butterfly representation is strictly more general
than the original butterfly representation (as there also exist
matrices inM(n) but not B(n)). In other words, for a given
size n,M⊃B; similarlyMM∗⊃BB∗. In particular, Dao
et al. (2020) showed that the following matrix classes are
contained in BB∗, which implies they are inMM∗ as well:
Proposition 3.2. The matrix class MM∗ can represent
convolution, Hadamard transform, Toeplitz matrices (Gray,
2006), and AFDF matrices (Moczulski et al., 2016). The
matrix class (MM∗)2 can represent the Fourier transform,
discrete sine and cosine transforms (DST/DCT), the
(HD)3 (Yu et al., 2016) class, Fastfood (Le et al., 2013), and
ACDC matrices (Moczulski et al., 2016).

3.2.2 EFFICIENCY

Parameters. A Monarch matrix M=PLP⊤R is described
by 2n

√
n parameters: L,R both have

√
n dense blocks of



size
√
n×
√
n, for a total parameter count of n

√
n each. The

permutation P is fixed, and thus doesn’t add any parameters.

Speed. To multiply by M, we need to multiply by a block
diagonal matrix R, permute, multiply by a block diagonal
matrix L, and finally permute. All four of these steps can
be implemented efficiently. The total number of FLOPs is
O(n
√
n), which is more the O(nlogn) for a butterfly matrix.

However, since we can leverage efficient block-diagonal
multiplication (e.g., batch matrix multiply), Monarch
multiplication is easy to implement and is fast in practice
(2x faster than dense multiply, cf. Section 5).

3.3 Projection on the SetM of Monarch Matrices

Given our class of structured matrices, a natural question
is the projection problem: finding a Monarch matrix that
is the closest to a given dense matrix. We show that this
problem has an analytical optimal solution, and show how to
compute it efficiently. This allows us to project dense models
to Monarch models, enabling D2S fine-tuning (Section 5.3).

We formalize the problem: for a given matrix A, find
argmin
M∈M

∥A−M∥2F . (1)

Even though this problem is nonconvex (as M is
parametrized as the product of two matrices), in Theorem 1
we show that there exists an analytical solution (full proof
in Appendix D). This is analogous to the Eckart-Young the-
orem that establishes that optimal low-rank approximation
is obtained from the SVD (Eckart & Young, 1936).
Theorem 1. Given an n × n matrix A, there is an
O(n5/2)-time algorithm that optimally solves the projection
problem (1), and returns the Monarch factors L and R.

We now derive this algorithm (Algorithm 1) by examining
the structure of a Monarch matrix M.

We first rewrite the steps of Monarch matrix-vector
multiplication (i.e., computing Mx). The main idea is to
view the input x, which is a vector of size n=m2, as a 2D
tensor of size m×m. Then the two matrices L and R in
the Monarch parametrization M=PLP⊤R correspond to
batched matrix multiply along one dimension of x, followed
by batched matrix multiply along the other dimension of x.
Thus we view x as a 2D tensor of size m×m, and each of
L and R as a 3D tensor of size m×m×m.

Steps to multiply x by a Monarch matrix M=PLP⊤R:

1. Multiply R by x: ykj=
∑︁

iRkjixki, to obtain an output
y that is a 2D tensor of size m×m.

2. Multiply PLP⊤ by y: zℓj =
∑︁

kLjℓkykj , to obtain an
output that is a 2D tensor of size m×m.

3. Reshape z back into a vector of size n, and return this.

We can thus write the output z as zℓj=
∑︁

k,iLjℓkRkjixki.
Since M=PLP⊤R, we can write:

Mℓjki=LjℓkRkji. (2)

Note that here we view M as a 4D tensor of size
m×m×m×m.

When viewed as a 4D tensor, the structure of the matrix M
becomes apparent, and the solution to the projection problem
is easy to see. Let’s examine Eq. (2): Mℓjki=LjℓkRkji. We
see that this reshaped tensor version of M is simply m ·m
batches of rank-1 matrices: we batch over the dimensions k
and j, and each batch is simply a rank-1 matrix (pjk)(qjk)

⊤

for some length-m vectors pjk,qjk.

Therefore, the projection objective (Eq. (1)) can be broken
up into the sum of m·m independent terms, each term corre-
sponding to a block of A of size m×m. As the structure of a
Monarch matrix forces each block to have rank 1 as described
above, the solution to the projection problem becomes appar-
ent: given a matrix A, reshape it to a 4D tensor of size m×
m×m×m, and take the rank-1 approximation of each batch
with the SVD, which (after reshaping) yields the factors L,R
of the desired matrix M∈M. (Note that if A∈M itself,
this algorithm recovers the factors such that A=PLP⊤R.)

Algorithm 1 Projection on the set of Monarch matrices
Require: Matrix A∈Rn×n, with n=m2.

Reshape A into a 4D tensor ˜︁A of size m×m×m×m,
where ˜︁Aℓjki=A(ℓ−1)m+j,(k−1)m+i for ℓ,j,k,i=1,...,m.
for 1≤j,k≤m do

Let ˜︂Mjk= ˜︁A:,j,k,: of size m×m.
Compute the best rank-1 approximation of ˜︂Mjk as
ujkv

⊤
jk with the SVD of ˜︁A.

end for
Let ˜︁R be the m×m×m tensor where ˜︁Rkji=(vjk)i.
Let ˜︁L be the m×m×m tensor where ˜︁Ljℓk=(ujk)ℓ.
Return ˜︁L, ˜︁R as block-diagonal matrices L,R (where the
bth block of L,R are ˜︁Lb,:,:, ˜︁Rb,:,: respectively)

3.4 Factorization ofMM∗ Matrices

In the previous section, we saw how to project onto the set
M. As Theorem 3.2 shows, the broader classMM∗ also
encompasses many important linear transforms. In this
section, we present an algorithm to compute the Monarch
factorization of a given matrix M ∈ MM∗, under mild
assumptions. This allows us to store and apply M efficiently.

Specifically, observe that if M ∈ MM∗, we can write
M = (PLP⊤R)(R′∗PL′∗P⊤) = (PL1P

⊤)R(PL2P
⊤)

for block-diagonal L1, L2,R and the permutation P of
Definition 3.1. Then, we can compute L1,L2,R in such a
factorization under Assumption 3.3, as stated in Theorem 2.
(Note that the factorization is not unique.)

Assumption 3.3. Assume that (1) M∈MM∗ is invertible
and (2) M can be written as (PL1P

⊤)R(PL2P
⊤) where

the blocks of R have no zero entries.



Figure 3. With the “reverse sparsification” process, Monarch
matrices can speed up GPT-2 training by 2x.

Theorem 2. Given an n×n matrix M∈MM∗ satisfying
Assumption 3.3, there is an O(n5/2)-time algorithm to find
its Monarch factors L1,R,L2.

To understand how to do this, define M̃=P⊤MP
and observe that M̃=L1(PRP⊤)L2=⎛⎜⎝A1

A2

. . .
Am

⎞⎟⎠
⎛⎜⎝ D11 D12 ... D1m

D21 D22 ... D2m

. . .
. . .

. . .
. . .

Dm1 Dm2 ... Dmm

⎞⎟⎠
⎛⎜⎝C1

C2

. . .
Cm

⎞⎟⎠
where m =

√
n, the Ai’s and Cj’s denote the m × m

diagonal blocks of L1,L2 respectively, and each Dij is an
m×m diagonal matrix. If we write ˜︂M as a block matrix
with m×m blocks each of size m×m, then we see that the
block ˜︂Mij is equal to AiDijCj . Notice that M is invertible
only if all the Ai’s and Cj’s are (since if any one of these
is singular, then L1 or L2 is singular).

Thus, our goal is to find matrices Â1,...,Âm,Ĉ1,...,Ĉm and
diagonal matrices D̂11,...,D̂mm such that ˜︂Mij=ÂiD̂ijĈj

for all i,j; this represents a valid Monarch factorization ofM.

To provide intuition for how to do this, let’s analyze a simple
case in which all the Dij’s are the identity matrix. Then
we have the set of equations AiCj =˜︂Mij . Again assume
the Ai’s and Cj’s are invertible, so each ˜︂Mij is as well.
Suppose we set Ĉ1 = I (identity matrix). Then we can
immediately read off Âi = ˜︂Mi1 for all i. We can then set
Ĉj = Â

−1

1
˜︂M1j for all j. Let’s now check that this strategy

gives a valid factorization, i.e., that ˜︂Mij = ÂiĈj for all
i, j. We have ÂiĈj = ˜︂Mi1

˜︂M−1
11

˜︂M1j . Recalling that in
the “true” factorization we have ˜︂Mij =AiCj , this equals
(AiC1)(A1C1)

−1(A1Cj)=AiCj , as desired.

In the general case, we must deal with the diagonal Dij

matrices as well. We will no longer be able to freely set
Ĉ1 = I. However, once we find a proper choice of Ĉ1, we
can use it to find all the Âi’s and Ĉj’s. We can find such

Figure 4. With Algorithm 1 for our Monarch parameterization, we
can convert a pretrained model into a model with Monarch weight
matrices and speed up downstream fine-tuning.

a Ĉ1 via the idea of simultaneous diagonalization; for
space reasons, we defer a full description of our algorithm
(Algorithm 2), and its analysis, to Appendix D.

4 Using Monarch Matrices in Model Training
We can use our class of Monarch matrices to parameterize
weight matrices of deep learning models in several settings.

• In the E2E sparse training setting, we replace the
dense weight matrices of a baseline model with Monarch
matrices with the same dimension, initialize them
randomly, and train as usual. Most of our baseline models
are Transformers, and we replace the projection matrices
in the attention blocks, along with the weights of the
feed-forward network (FFN) blocks, with Monarch
matrices. The Monarch parameterization is differentiable,
and we rely on autodifferentiation to train with first-order
methods such as Adam (Kingma & Ba, 2015).

• In the S2D training setting, we first replace the dense
weight matrices of a baseline model with Monarch
matrices, then train the sparse model for about 90% of the
usual number of iterations. We then convert the Monarch
matrices to dense matrices (by simply multiplying the
factors L and R along with permutations), and continue
training for the remaining 10% of the iterations. Compared
to dense end-to-end training, we train for the same number
of iterations, but the first 90% of the iterations are faster
due to the hardware efficiency of Monarch matrices.

• In the D2S fine-tuning setting, we start with a dense
pretrained model (e.g., BERT), and project the dense
weight matrices (e.g., in the attention blocks and FFN
blocks) on the set of Monarch matrices using the algorithm
in Section 3.3. We then fine-tune the resulting model on
downstream tasks (e.g., GLUE), using first-order methods.

We typically set the number of blocks in the block-diagonal
matrices to be between 2 and 4 based on the parameter
budgets (25% – 50% of the dense model).

5 Experiments
We validate our approach empirically, showing that our
Monarch matrix parametrization achieves a favorable
efficiency–accuracy tradeoff compared to baselines on a
wide range of domains (text, images, PDEs, MRI), in three



settings (E2E training, S2D training, and D2S fine-tuning):

• In Section 5.1.1, on image classification and language mod-
eling benchmarks, such as ViT / MLP Mixer on ImageNet
and GPT-2 on Wikitext-103, Monarch is 2× faster to train
than dense models, while achieving the same accuracy / per-
plexity. In Section 5.1.2, in scientific and medical domains
where special transforms (Fourier) are common, Monarch
outperforms Fourier transform based methods on PDE solv-
ing, with up to 40% lower error, and on MRI reconstruction
attains up to 15% higher pSNR and 3.8% higher SSIM.

• In Section 5.1.2, we show that on the large OpenWebText
dataset, reverse sparsification (training with Monarch
weight matrices for most of the time, then transitioning to
dense weight matrices) speeds up the pretraining of GPT-2
models by 2× compared to the dense model, with no loss
in upstream or downstream quality. Moreover, reverse
sparsification speeds up BERT pretraining by 23% even
compared to the implementation from Nvidia that set the
MLPerf (Mattson et al., 2020) 1.1 record.

• In Section 5.3, as a proof of concept, we demonstrate
that our Monarch approximation algorithm can improve
fine-tuning efficiency for pretrained models. We show that
compressing BERT to a Monarch matrix model performs
comparably to a finetuned dense model on GLUE, with
2× fewer parameters and 1.7× faster finetuning speed.

5.1 End-to-End Training

5.1.1 BENCHMARK TASKS: IMAGE
CLASSIFICATION, LANGUAGE MODELING

We show that replacing dense matrices with Monarch matri-
ces in ViT, MLP-Mixer, and GPT-2 can speed up training by
up to 2×without sacrificing model quality in Tables 1 and 2.

Setup. We use the popular vision benchmark, Ima-
geNet (Deng et al., 2009). We choose recent popular Vision
Transformer (Dosovitskiy et al., 2020), and MLP-Mixer (Tol-
stikhin et al., 2021) as representative base dense models.
For language modeling, we evaluate GPT-2 (Radford et al.,
2019) on WikiText-103 (Merity et al., 2016).

Table 1. The performance of Monarch matrices and ViT / MLP-
Mixer on ImageNet, including the number of parameters and
FLOPs. We measure the Top-1 accuracy and the training time
speedup compared to the corresponding dense model.

Model ImageNet acc. Speedup Params FLOPs
Mixer-S/16 74.0 - 18.5M 3.8G

Monarch-Mixer-S/16 73.7 1.7× 7.0M 1.5G
Mixer-B/16 77.7 - 59.9M 12.6G

Monarch-Mixer-B/16 77.8 1.9× 20.9M 5.0G
ViT-S/16 79.4 - 48.8M 9.9G

Monarch-ViT-S/16 79.1 1.9× 19.6M 3.9G
ViT-B/16 78.5 - 86.6M 17.6G

Monarch-ViT-B/16 78.9 2.0× 33.0M 5.9G

Table 2. Performance of Monarch matrices and GPT-2-
Small/Medium on WikiText-103, including the # of parameters and
FLOPs. Monarch achieves similar perplexity (ppl) but 2.0× faster.

Model PPL Speedup Params FLOPs
GPT-2-Small 20.6 - 124M 106G

Monarch-GPT-2-Small 20.7 1.8× 72M 51G
GPT-2-Medium 20.9 - 355M 361G

Monarch-GPT-2-Medium 20.3 2.0× 165M 166G

5.1.2 PDE SOLVING
AND MULTI-COIL MRI RECONSTRUCTION

Many scientific or medical imaging tasks rely on specialized
transforms such as the Fourier transform. We show
that replacing the fixed Fourier transform with the more
expressive Monarch matrices yields higher model quality
(lower reconstruction error) with comparable model speed.

Solving PDEs with Monarch Neural Operators. We
follow the experimental setting in FNO (Li et al., 2020)
and apply a Monarch–based neural operator to the task
of solving the Navier–Stokes PDE. Compared to baseline
U-Nets (Ronneberger et al., 2015), TF-Nets (Wang et al.,
2020b), ResNets (He et al., 2016) and FNOs (Li et al.,
2020), neural operators based on Monarch improve solution
accuracy across spatial resolutions by up to 40% (Table 3).

Non-periodic boundary conditions. Traditional spectral
methods based on Fourier transform work best with periodic
boundary conditions and forcing terms. However, PDEs
of practical interest often exhibit non–periodic or even
unknown boundary conditions. Monarch operators are not
constrained to the Fourier transform and can thus still learn
the solution operator with excellent accuracy.

Table 3. Benchmarks on Navier-Stokes (fixing resolution 64 × 64
for both training and testing). Decreasing the viscosity coefficient
ν makes the dynamics more chaotic.

Model v=10−3 v=10−4 v=10−5

U-Net 0.025 0.205 0.198
TF-Net 0.023 0.225 0.227
ResNet 0.070 0.287 0.275
FNO 0.017 0.178 0.155

Monarch-NO 0.010 0.145 0.136

Accelerated MRI Reconstruction. We characterize the util-
ity of Monarch-based FFT operations for accelerated MRI
reconstruction, a task which requires methods with both struc-
tured Fourier operators and dealiasing properties to recover
high quality images. On the clinically-acquired 3D MRI
SKM-TEA dataset (Desai et al., 2021c), Monarch-SENSE
(mSENSE) enhances image quality by over 1.5dB pSNR and
2.5% SSIM compared to zero-filled SENSE and up to 4.4dB
and 3.8% SSIM compared to U-Net baselines in data-limited
settings. Setup details are available in Appendix E.5.

Expressive FFT. By definition, standard IFFT in zero-
filled SENSE cannot dealias the signal, resulting in artifacts



in the reconstructed image. mSENSE replaces the inverse
FFT (IFFT) operation in standard SENSE with learnable
Monarch matrices. Thus, mSENSE preserves the structure of
the Fourier transform while learning to reweight frequencies
to suppress aliasing artifacts. Across multiple accelerations,
mSENSE achieved up to +1.5dB and 2.5% improvement in
peak signal-to-noise ratio (pSNR) and structural similarity
(SSIM), respectively (Table 4).

Data Efficiency. While CNNs have shown promise for
MRI reconstruction tasks, training these networks requires
extensive amounts of labeled data to avoid overfitting. How-
ever, large data corpora are difficult to acquire in practice.
mSENSE can be trained efficiently with limited supervised
examples. In few shot settings, mSENSE can outperform
U-Net by +4.4dB (≈15%) and 3.8% SSIM (Table 5).

Table 4. Mean ± standard error of the mean of conventional
and Monarch-SENSE (mSENSE) on dual-echo (E1,E2) MRI
reconstruction at multiple acceleration factors (Acc.).

pSNR (dB) (↑) SSIM (↑)
Acc. Model E1 E2 E1 E2

2
SENSE 32.8±0.2 35.4±0.2 0.871±0.003 0.865±0.003

mSENSE 34.3±0.2 36.6±0.2 0.886±0.002 0.882±0.003

3
SENSE 30.9±0.2 33.5±0.2 0.819±0.004 0.795±0.004

mSENSE 32.3±0.2 34.6±0.2 0.843±0.003 0.820±0.004

4
SENSE 30.1±0.2 32.8±0.2 0.789±0.004 0.753±0.005

mSENSE 31.2±0.2 33.5±0.2 0.812±0.003 0.767±0.005

Table 5. Impact of number of training examples (N ) on dual-echo
MRI reconstruction at 2x acceleration.

pSNR (dB) (↑) SSIM (↑)
N Model E1 E2 E1 E2

N/A SENSE 32.8±0.2 35.4±0.2 0.871±0.003 0.865±0.003

1
U-Net 29.4±0.2 34.4±0.3 0.848±0.004 0.857±0.004

mSENSE 33.8±0.2 36.0±0.2 0.886±0.003 0.867±0.003

2
U-Net 29.9±0.3 35.1±0.3 0.858±0.003 0.871±0.003

mSENSE 34.0±0.2 36.4±0.2 0.883±0.002 0.877±0.003

3
U-Net 31.0±0.3 35.2±0.3 0.866±0.003 0.867±0.004

mSENSE 33.9±0.2 36.5±0.2 0.882±0.002 0.878±0.003

5
U-Net 31.4±0.3 35.6±0.2 0.877±0.002 0.870±0.003

mSENSE 33.9±0.2 36.5±0.2 0.881±0.002 0.877±0.003

5.2 Sparse-to-Dense Training (reverse sparsification)

GPT-2 pretraining. On the large OpenWebtext
dataset (Gokaslan et al., 2019), we train a GPT-2 model with
Monarch weight matrices for 90% of the training iterations,
then relax the constraint on the weight matrices and train them
as dense matrices for the remaining 10% of the iterations. We
call this technique “reverse sparsification.” Previous sparse
training techniques often don’t speed up training, whereas our
hardware-efficient Monarch matrices do. Therefore we can
use them as an intermediate step to pretrain a large language
model (GPT-2) in 2× less time. We also evaluate its down-
stream quality on zero-shot generation from (Gao et al., 2021)
and classification tasks from (Zhao et al., 2021), achieving
comparable performance to the dense counterparts (Table 6).

Table 6. The performance (accuracy) of GPT-2-medium trained
with Monarch reverse sparsification and with conventional dense
training on text classification benchmarks.

Model OpenWebText (ppl) Speedup Classification (avg acc)
GPT-2m 18.0 - 38.9

Monarch-GPT-2m 18.0 2× 38.8

In Fig. 5, we show the training time of the dense GPT-2
model, along with the Monarch GPT-2 model. After training
the Monarch model for 90% of the time, in the last 10% of
the training steps, by transitioning to dense weight matrices,
the model is able to reach the same performance of another
model that was trained with dense weight matrices from
scratch. By training with Monarch matrices for 90% of the
time, we reduce the total training time by 2×.

BERT pretraining. On the Wikipedia + BookCorpus
datasets (Zhu et al., 2015), we train a BERT-large model with
Monarch weight matrices for 70% of the time and transition
to dense weight matrices for the remaining 30% of the
time, which yields the same pretraining loss as conventional
dense training. In Table 7, we compare the total training
time to several baseline implementations: the widely-used
implementation from HuggingFace (Wolf et al., 2020), the
more optimized implementation from Megatron (Shoeybi
et al., 2019), and the most optimized implementation we
know of from Nvidia that was used to set MLPerf 1.1 training
speed record. Our method is 3.5x faster than HuggingFace
and 23% faster than Nvidia’s MLPerf 1.1 implementation3.
Experiment details are in Appendix E.4.

Table 7. The total training time of BERT-large trained with Monarch
reverse sparsification and with conventional dense training on 8
A100-40GB GPUs (DGX A100). Training consists of two phases,
phase 1 with sequence length 128 and phase 2 with sequence length
512. Monarch training is 3.5x faster than HuggingFace and 23%
faster than Nvidia’s MLPerf 1.1 implementation.

Implementation Training time (h)
HuggingFace 84.5

MegaTron 52.5
Nvidia MLPerf 1.1 30.2

Nvidia MLPerf 1.1 + DeepSpeed 29.3
Monarch (ours) 23.8

5.3 Dense-to-Sparse Fine-tuning

We show that our Monarch approximation algorithm allows
us to efficiently use pretrained models, such as speeding up
BERT finetuning on GLUE.

3Our result is not an official MLPerf submission. We train BERT
for both phase 1 (sequence length 128) and phase 2 (sequence
length 512) according to the standard BERT training recipe(Devlin
et al., 2018), while MLPerf only measures training time for phase 2.



Figure 5. Time required (in A100 GPU hours) to reach the same
perplexity (18.0) for GPT-2-small on OpenWebText. With “reverse
sparsification”, Monarch can speed up GPT-2 training by 2×.

BERT finetuning. We take the BERT pretrained weights,
approximate them with Monarch matrices, and finetune
the resulting model on the 9 GLUE tasks. The results in
Table 8 shows that we obtain a Monarch finetuned model
with similar quality to the dense BERT model, but with 1.7×
faster finetuning speed. This serves as a proof of concept, and
we expect further speedup if additional model compression
techniques are applied (e.g., quantization, kernel fusion).

Table 8. The performance of Monarch matrices in finetuning BERT
on GLUE.

Model GLUE (avg) Speedup Params FLOPs
BERT-base 78.6 - 109M 11.2G

Monarch-BERT-base 78.3 1.5× 55M 6.2G
BERT-large 80.4 - 335M 39.5G

Monarch-BERT-large 79.6 1.7× 144M 14.6G

6 Conclusion
We propose Monarch, a novel matrix parameterization that
inherits the expressiveness of butterfly matrices and thus
can represent many fast transforms. Our parameterization
leverages optimized batch matrix multiply routines on
GPUs, yielding up to 2× speedup compared to dense matrix
multiply. We derive an efficient algorithm for projecting an
arbitrary dense matrix on the set of Monarch factors. Our
algorithm allows us to easily fine-tune a pretrained model
into a model with Monarch weight matrices. As a result,
Monarch matrices unlock new ways for faster end-to-end
training, sparse-to-dense training, and dense-to-sparse
fine-tuning of large neural networks. By making structured
matrices practical, our work is a first step towards unlocking
tremendous performance improvements in applying sparse
models to wide-ranging ML applications (including science
and medicine). We anticipate this work can inspire more
future work on advancing machine learning models for inter-
disciplinary research with limited computational resources.
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A Extended Related Work
In this section, we extend the related works referenced in the main paper and discuss them in detail.

Sparse Training. Our work is loosely related to neural network pruning. By iteratively eliminating neurons and connections,
pruning has seen great success in compressing complex models. Han et al. (2015a;b) put forth two naive but effective algorithms
to compress models up to 49x and maintain comparable accuracy. Li et al. (2016) employ filter pruning to reduce the cost of
running convolution models up to 38%, Lin et al. (2017) prunes the network at runtime, hence retaining the flexibility of the full
model. Dong et al. (2017) prunes the network locally in a layer by layer manner. Sanh et al. (2020) prunes with deterministic first-
order information, which is more adaptive to pretrained model weights. Lagunas et al. (2021) prunes transformers models with
block sparsity pattern during fine-tuning, which leads to real hardware speed up while maintaining the accuracy. Zhu & Gupta
(2017) finds large pruned sparse network consistently outperform the small dense networks with the same compute and memory
footprints. Although both our and all the pruning methods are aiming to produce sparse models, we differ in our emphasis on the
overall efficiency, whereas pruning mostly focuses on inference efficiency and disregards the cost in finding the smaller model.

There has been more recent work on sparse methods that focuses on speeding up training and not just inference, such as
SNFS (Dettmers & Zettlemoyer, 2019), RigL (Dettmers & Zettlemoyer, 2019), Top-KAST (Jayakumar et al., 2021). These
methods often focus on FLOP counts, which may not correlate well with wall-clock time on modern hardware (e.g., GPUs).
Block-sparsity is another approach that exploits the block-oriented nature of GPUs (Gray et al., 2017; Child et al., 2019;
Guo et al., 2020). Sparse models have also been found useful to improve the training process of dense models. For example,
sparsity can be used to regularize dense models to improve accuracy (Han et al., 2016), or to alternate between sparse and
dense training to ease deployment (Peste et al., 2021). Our sparse-to-dense reverse sparsification instead focuses on speeding
up dense training, where the sparse model is used for efficiency and not regularization.

In addition, models proposed in our work can be roughly seen as a class of manually constructed lottery tickets. Lottery tickets
Frankle & Carbin (2018) are a set of small sub-networks derived from a larger dense network, which outperforms their parent
networks in convergence speed and potentially in generalization. A huge number of studies are carried out to analyze these
tickets both empirically and theoretically: Morcos et al. (2019) proposed to use one generalized lottery tickets for all vision
benchmarks and got comparable results with the specialized lottery tickets; Frankle et al. (2019) improves the stability of
the lottery tickets by iterative pruning; Frankle et al. (2020) found that subnetworks reach full accuracy only if they are stable
against SGD noise during training; Orseau et al. (2020) provides a logarithmic upper bound for the number of parameters
it takes for the optimal sub-networks to exist; Pensia et al. (2020) suggests a way to construct the lottery ticket by solving
the subset sum problem and it’s a proof by construction for the strong lottery ticket hypothesis. Furthermore, follow-up works
(Liu & Zenke, 2020; Wang et al., 2020a; Tanaka et al., 2020) show that we can find tickets without any training labels.

Structured matrices and butterfly matrices. Structured matrices are those with asymptotically fast matrix-vector
multiplication algorithm (o(n2) time complexity) and few parameters (o(n2) space complexity). Common examples include
sparse & low-rank matrices, and fast transforms such as Fourier transform, Chebyshev transform, Legendre transform,
and more generally orthogonal polynomial transforms. These transforms have been widely used in data preprocessing
(e.g., DFT in speech processing (Jurafsky & Martin, 2014)) and kernel approximation (Le et al., 2013; Yu et al., 2016).
Many generalizations of these transforms have been used in machine learning to replace dense weight matrices (Sindhwani
et al., 2015; Thomas et al., 2018; Gu et al., 2020). De Sa et al. (2018) shows that any structured matrix (in the form of
arithmetic circuits) can be written as product of sparse matrices, and Dao et al. (2020) shows that products of butterfly
matrices can represent these structured matrices almost optimally in terms of runtime and memory. The class of butterfly
matrices (Parker, 1995) have also been used in kernel models (Munkhoeva et al., 2018; Choromanski et al., 2019) and deep
learning models (Vahid et al., 2020; Lin et al., 2021; Ailon et al., 2021).

Neural Operators for PDEs. Deep learning has found application in the domain of differential equations and scientific
computing (Rackauckas et al., 2020), with methods developed for prediction and control problems (Kidger et al., 2020;
Massaroli et al., 2021), as well as acceleration of numerical schemes (Poli et al., 2020; Jolicoeur-Martineau et al., 2021).
Specific to the partial differential equations (PDEs) are approaches designed to learn solution operators (Raissi et al., 2019;
Fan et al., 2020; Li et al., 2020), and hybridized solvers (Kochkov et al., 2021), evaluated primarily on classical fluid dynamics.

The promise of these approaches is to offer, at the cost of an initial training procedure, accurate yet faster solutions than an
appropriate numerical method tuned for a specific problem, which can then be leveraged for real-time forecasting or within
larger feedback loops. Nonetheless, optimal design of neural operators remains an open problem, with most relying on fast
Fourier transforms (FFT) or standard dense neural architectures. Instead, neural operators based on Monarch are capable of



approximating all fast transforms, thus allowing automated optimization towards a suitable transform on a given PDE problem.

MRI. Accelerated multi-coil MRI is an essential mechanism for reducing long scan times and making certain scan types
feasible. In multi-coil MRI, data is acquired in the spatial Fourier domain (a.k.a k-space) across multiple coils (sensors).
To reduce scan time, this data is sampled below the required rate for recovering the underlying signal (i.e. Nyquist rate),
which results in signal aliasing (see Appendix E.5). In these settings, direct application of the inverse fast Fourier transform
(FFT) cannot suppress aliasing artifacts.

Classical MRI reconstruction approaches supplement the FFT by leveraging shared information across multiple coils and
strong analytical priors to regularize image recovery objectives. SENSE-based methods jointly dealias images across multiple
coils and reweight the final image based on the spatial sensitivity profile of each coil (Pruessmann et al., 1999). Compressed
sensing promotes image sparsity in transformation domains (e.g. Fourier, wavelet) while enforcing data consistency between
the Fourier transform of the reconstructed image and the observed measurements (Lustig et al., 2007). Low-rank methods
enforce low rank structure across slowly-varying dimensions or local patches in the data (Ong & Lustig, 2016; Ravishankar
et al., 2017; Haldar, 2013). Additionally, GRAPPA-based techniques optimize kernels to directly interpolate missing k-space
samples to promote smoothness in the Fourier domain (Griswold et al., 2002). Despite their efficacy, these methods have
long reconstruction times, require explicit analytical priors, and require careful hyperparameter fine-tuning.

CNNs have shown promise as a fast-at-inference, learnable alternative to classical MRI reconstruction methods (Knoll et al.,
2020). In supervised learning, fully convolutional networks (e.g. U-Net (Ronneberger et al., 2015) or unrolled networks
(Sandino et al., 2020; Hammernik et al., 2018)) learn a mapping between paired zero-filled and fully-sampled, ground truth
images. However, supervised methods require a large fully-sampled (labeled) data corpus and are sensitive to distribution
drifts due to patient, hardware, and sequence heterogeneity (Darestani et al., 2021). To reduce dependence on labeled data,
unsupervised methods have used generative adversarial networks (Cole et al., 2020; Mardani et al., 2018), self-supervised
learning (Yaman et al., 2020), dictionary learning (Lahiri et al., 2021), and untrained networks (Darestani & Heckel, 2021).
Despite their label efficiency, these techniques still underperform supervised methods and are also sensitive to distribution shift.
Recently, a family of semi-supervised reconstruction methods demonstrated label efficiency and robustness to physics-driven
perturbations, such as changes in signal-to-noise ratio or patient motion (Desai et al., 2021b;a). However, these methods
require large amounts of unlabeled data, which can be difficult to curate in few-shot settings. Thus, despite their success
in controlled environments, prospective clinical deployment of these models has been stifled (Chaudhari et al., 2020).

In our work, we propose a model with a single FFT-initialized factorized Monarch matrix. Such a matrix can provide the
benefits of both a simple linearized transformation like FFT and a learnable mechanism to remove aliasing artifacts resulting
from the undersampled k-space. The smaller learnable parameter set may reduce overfitting in data-limited settings while
preserving the transformation structure of Fourier matrices. Thus, our approach can be interpreted as a hybrid between
analytically-constrained classical methods and data-dependent CNNs.

B Notation Review
Throughout this paper, we use lowercase to denote scalars (e.g., k), lowercase boldface to denote vectors (e.g., v), and
uppercase boldface to denote matrices (e.g., A).

I denotes the identity matrix. We use A⊤ to denote the transpose of a matrix and A∗ to denote the conjugate transpose of
a matrix. All results in this paper apply to matrices over the either the reals R or the complex numbers C; when the field
under consideration can be either one of these, we denote it by F.

We use 1-indexing throughout this paper except where explicitly stated.

C General Monarch Matrix Parametrization
In Section C.1, we define a parametrization for square Monarch matrices of different “block sizes” (i.e., not necessarily

√
n),

and prove some basic properties about them. In Section C.2, we further extend this to define rectangular Monarch matrices,
and prove some basic properties about them.

Note: In this section, we use 0-indexing rather than 1-indexing, for notational convenience.



C.1 General square matrices

C.1.1 PARAMETRIZATION

In this section, we define a more general Monarch parametrization for square matrices, allowing for different “block sizes.” Like
Definition 3.1, the parametrization involves the product of a permuted block-diagonal matrix with another block-diagonal ma-
trix; the difference is that we now allow the matricesL andR to have diagonal blocks of different sizes. Thus, the permutations
applied to L (to turn it into a block matrix where each block matrix is diagonal) will correspondingly also be different.

First, in Definition C.1, we define notation for a class of block-diagonal matrices.
Definition C.1 (Class BD(b,n)). Let b∈ (1,n) be an integer that divides n. For 0≤ i< n

b , let Ri ∈Fb×b be a b×b “block”
matrix. Then define the matrix R with block size b as follows:

R=diag
(︁
R0,...,Rn

b −1

)︁
. (3)

(Note that the number of possible nonzero values in R is n
b ·b

2=nb.) We denote the class of all matrices R expressible in
this form by BD(b,n). Note that this class is closed under (conjugate) transposition and contains the identity matrix.

Next, in Definition C.2, we define notation for a class of block matrices whose blocks are diagonal.
Definition C.2 (ClassDB(b,n)). Let b∈(1,n) be an integer that divides n. For 0≤ i,j<b, let Di,j ∈Fb×b be a b×b diagonal
matrix. Then let L be an n×n matrix with the following form:

L=

⎡⎢⎣ D0,0 ... D0,nb −1

...
. . .

...
Dn

b −1,0 ... Dn
b −1,nb −1

⎤⎥⎦ (4)

(Note that the number of possible nonzero values in L is
(︁
n
b

)︁2 ·b= n2

b .) We denote the class of all matrices L expressible
in this form byDB(b,n). Note that this class is closed under (conjugate) transposition and contains the identity matrix. As we
show in Appendix C.1.2, L can be written as a block-diagonal matrix with b blocks of size n

b ×
n
b (i.e., a matrix in BD(n

b ,n)),
multiplied on the left and right with appropriate permutation matrices. We denote the class of all matrices L expressible
in this form by DB(b,n). Note that this class is closed under (conjugate) transposition. As we show in Appendix C.1.2, L
can be written as a block-diagonal matrix with b blocks of size n

b ×
n
b (i.e., a matrix in BD(n

b ,n)), multiplied on the left and
right with appropriate permutation matrices.

Using these two definitions, we define the class of Monarch matrices with a given block size.
Definition C.3 (ClassM(b,n)). Let b∈ (1,n) be an integer that divides n. A Monarch matrix of size n×n and “block size
b” is a matrix of the form:

M=LR (5)
where L∈DB(b,n) and R∈BD(b,n).

We denote the class of all matrices M expressible in this form byM(b,n). Observe that when b=
√
n, this is exactly the matrix

classM(n) in Definition 3.1. (In other words,M(n) is shorthand forM(
√
n,n).) Note that a matrix inM(b,n) is represented

by n2

b +nb parameters.

We remark thatM(b,n)⊃B(n) for all block sizes b∈(1,n) that divide n.

Based on Definition C.19, we define the classesMM∗(b,n) andM∗M(b,n)::
Definition C.4 (ClassMM∗(b,n),M∗M(b,n)). Let b∈ (1,n) be an integer that divides n and suppose M1,M2∈M(b,n).
We defineMM∗(b,n) to be the the class of all matrices M expressible in the form M=M1M

∗
2.

We defineM∗M(b,n) to be the the class of all matrices M expressible in the form M=M∗
1M2.

Observe that when b=
√
n,MM∗(b,n) is exactly the matrix classMM∗(n) defined in Section 3. Note that a matrix in

MM∗(b,n) orM∗M(b,n). is represented by 2n2

b +2nb parameters.

Finally, we define the following “Monarch hierarchy” based on the kaleidoscope hierarchy of (Dao et al., 2020):
Definition C.5 (Class (MM∗(b,n))we ). Let b∈(1,n) be an integer that divides n. We define the matrix class (MM∗(b,n))we
as the set of all matrices M that can be expressed as

M=

⎛⎝ w∏︂
i=1

Mi

⎞⎠[1 :n,1:n] (6)



where each Mi∈MM∗(b,e·n).

Note that a matrix in (MM∗(b,n))we is represented by 2w e2n2

b +2wenb parameters.

C.1.2 PROPERTIES

Here we show some properties of the matrix classes defined above. We first show some basic equivalent ways to define these
classes. We then show (Theorem 3) that the matrices in DB(b,n) are permuted block-diagonal matrices; specifically, that
they can be converted to matrices in BD(n

b ,n) by applying the appropriate permutation. Finally, we state an expressivity
result for the general “Monarch hierarchy” which follows from Theorem 1 of (Dao et al., 2020).

First, we define a class of permutations. Let 1≤b≤n be integers such that b divides n. We will need to express each index
0≤ i<n in “block form.” More specifically:

Definition C.6. Let i≥0, b≥1 be integers. Then define
i0= i mod b,

and

i1=

⌊︃
i

b

⌋︃
.

We use the notation i≡(i1,i0)b to denote the representation above. In particular, if i≡(i1,i0)b, then we have
i= i1 ·b+i0

Using this notation, we define the following class of permutations:

Definition C.7. Let b∈ [1,n] be an integer that divides n. Let i≡(i1,i0)b. Define

σ(b,n)(i)= i0 ·
n

b
+i1. (7)

That is, σ(b,n)(i)≡(i0,i1)n
b

. Let P(b,n) denote the n×n permutation matrix defined by the permutation σ(b,n).

Intuitively, P(b,n) can be interpreted as reshaping a length-n vector into an b× n
b matrix in row-major order, transposing

the result, and then flattening this back into a vector (again in row-major order).

Now, we restate the formulation in Definition C.1 equivalently as:

Proposition C.8. A matrix R satisfies Equation (3) (i.e., R∈BD(b,n)) if and only if the following holds for any 0≤ i,j<n.
Let i≡(i1,i0)b and j≡(j1,j0)b. Then

1. if i1 ̸=j1, then R[i,j]=0.

2. Else (i.e., when i1=j1), then R[i,j]=Ri1 [i0,j0].

We restate the formulation in Definition C.2 equivalently as:

Proposition C.9. A matrix L satisfies Equation (4) (i.e., L∈DB(b,n)) if and only if the following holds for any 0≤ i,j <n.
Let i≡(i1,i0)b and j≡(j1,j0)b. Then

1. if i0 ̸=j0, then L[i,j]=0.

2. Else, (i.e., when i0=j0), then L[i,j]=Di1,j1 [i0,i0].

We will argue the following:

Theorem 3. Let 1≤ b≤n such that b divides n. Recall that P(b,n) is the permutation matrix defined by the permutation
σ(b,n). Let L be a matrix inDB(b,n). Then we have

R′=P(b,n) ·L·P⊤
(b,n),

where R′∈BD(n
b ,n).

Proof. We first note that multiplying an n×n matrix on the right (and left resp.) by P⊤
(b,n) =P(n

b ,n)
(and P(b,n) resp.)

permutes the columns (and rows resp.) of the matrix according to σ(b,n).4 This implies that for any 0≤ i,j<n:
R′[σ(b,n)(i),σ(b,n)(j)]=L[i,j]. (8)

4This uses the fact that
(︁
σ(b,n)

)︁−1
=σ(n

b
,n) (which means P(n

b
,n)=P⊤

(b,n) since the inverse of a permutation matrix is its transpose).



To complete the proof, we will argue that R′ satisfies the two conditions in Proposition C.8.

Towards this end, let 0 ≤ i,j < n be arbitrary indices and further, define i = (i1,i0)b and j = (j1,j0)b. Then note that
σ(b,n)(i)=(i0,i1)n

b
and σ(b,n)(j)=(j0,j1)n

b
.

By Proposition C.9, we have that if i0 ̸= j0, then L[i,j]=0. Note that i0 ̸= j0 satisfies the pre-condition for base size n
b for

indices (σ(b,n)(i),σ(b,n)(j)) in item 1 in Proposition C.8. Then by Eq. (8), we have that R′[σ(b,n)(i),σ(b,n)(j)]=0, which
satisfies item 1 in Proposition C.8.

Now consider the case that i0 = j0; then by item 2 in Proposition C.9, we have that L[i, j] = Di1,j1 [i0, i0]. Note that
i0= j0 satisfies the pre-condition for base size n

b for indices (σ(b,n)(i),σ(b,n)(j)) in item 2 in Proposition C.8 if we define
R′

i0
∈Fn

b ×
n
b as follows:

R′
i0 [i1,j1]=Di1,j1 [i0,i0].

Note that the above implies that
R′=diag

(︁
R′

0,...,R
′
b−1

)︁
,

where R′
· is as defined in the above paragraph. This means R′∈BD(n

b ,n), since each block R′
i0

is a matrix of size n
b ×

n
b .

We now briefly note some alternate ways to express matrices inMM∗(b,n).

Proposition C.10. For any M ∈ MM∗(b,n), we can write M = (P⊤
(b,n)L1P(b,n))R(P⊤

(b,n)L2P(b,n)), where
L1,L2∈BD(n

b ,n) and R∈BD(b,n).

Proof. By definition (see Definition C.1 and Definition C.2), if M ∈MM∗(b,n), we can write M= (L′
1R1)(L

′
2R2)

∗ =
L′
1(R

∗
1R2)L

′∗
2 , where L′

1,L
′
2∈DB(b,n),R1,R2∈BD(b,n).

Notice that since R∗
1,R2 are both block-diagonal with the same structure (i.e., both have blocks of size b×b), their product

R is also in BD(b,n). Also, by Theorem 3 we can write L1=P(b,n)L
′
1P

⊤
(b,n), L2=P(b,n)L

′
2P

⊤
(b,n), where L1,L2 are both

in BD(n
b ,n) (i.e., block diagonal with blocks of size n

b ×
n
b ).

Thus, we can write M=(P⊤
(b,n)L1P(b,n))R(P⊤

(b,n)L2P(b,n)), where L1,L2∈BD(n
b ,n) and R∈BD(b,n).

We use the above to show a simple relationship betweenMM∗(b,n) andM∗M(b,n).

Proposition C.11. If M ∈ MM∗(b,n), then P(b,n)MP⊤
(b,n) ∈ M

∗M(n
b ,n). Conversely, if M ∈ M∗M(b,n), then

P⊤
(b,n)MP(b,n)∈M∗M(n

b ,n).

Proof. Suppose M ∈MM∗(b,n). By Proposition C.10 we can write M = (P⊤
(b,n)L1P(b,n))R(P⊤

(b,n)L2P(b,n)), where
L1,L2∈BD(n

b ,n) and R∈BD(b,n). Thus P(b,n)MP⊤
(b,n)=L1(P(b,n)RP⊤

(b,n))L2.

Letting L′
1 = L1, L

′
2 = L∗

2,R
′
1 = P(b,n)RP⊤

(b,n), and R′
2 = I, we have L′

1, L
′
2 ∈ BD(n

b ,n), R′
1,R

′
2 ∈ DB(

n
b ,n),

and L1(P(b,n)RP⊤
(b,n))L2 = L′

1R
′
1R

′∗
2 L

′∗
2 = (L′

1R
′
1)(L

′
2R

′
2)

∗ = M′
1M

′∗
2 , where M′

1 = L′
1R

′
1,M

′
2 = L′

2R
′
2, so

M′
1,M

′
2∈M∗M(n

b ,n).

Now instead suppose M∈M∗M(b,n). So M=M∗
1M2 =R∗

1L
∗
1L2R2 for some R1,R2 ∈BD(b,n) and L1,L2 ∈DB(b,n).

Thus by Theorem 3 (and the fact that BD(b,n) is closed under conjugate transposition) we can write R∗
1=P⊤

(n
b ,n)

R′
1P(n

b ,n)
=

P(b,n)R
′
1P

⊤
(b,n) for some R′

1∈DB(
n
b ,n), and similarly, can write R2=P(b,n)R

′
2P

⊤
(b,n) for some R′

2∈DB(
n
b ,n).

So P⊤
(b,n)MP(b,n) = R′

1(P(b,n))
⊤L∗

1)(L2P(b,n)))R
′
2 = R′

1(P
⊤
(b,n)L

∗
1P(b,n))(P

⊤
(b,n)L2P(b,n))R

′
2 = (R′

1L
′
1)(L

′
2R

′
2),

where L′
1=P⊤

(b,n)L
∗
1P(b,n), L′

2=P⊤
(b,n)L2P(b,n) are in BD(n

b ,n) by Theorem 3. Thus letting M′
1=R′

1L
′
1, M′

2=R∗
2L

′∗
2 ,

we have M=M′
1M

′∗
2 with M′

1,M
′
2∈M∗(n

b ,n).

We now show that the classM(b,n) strictly contains the class B(n) of n×n butterfly matrices (as defined in Dao et al. (2020)).
We first show two elementary “helper” results.

Proposition C.12. If b,c∈(1,n) are such that b divides c and c divides n, then BD(b,n)⊆BD(c,n).



Proof. Suppose R ∈ BD(b,n). Then by Proposition C.8, R[i,j] = 0 whenever
⌊︁
i
b

⌋︁
̸=

⌊︁
j
b

⌋︁
. Thus, whenever

⌊︁
i
c

⌋︁
̸=

⌊︁
j
c

⌋︁
,

R[i,j]=0, since
⌊︁
i
c

⌋︁
̸=
⌊︁
j
c

⌋︁
implies

⌊︁
i
b

⌋︁
̸=
⌊︁
j
b

⌋︁
by the assumption that b divides c. Applying Proposition C.8 again, this means

R∈BD(c,n) as well.

Proposition C.13. If b,c∈(1,n) are such that b divides c and c divides n, thenDB(c,n)⊆DB(b,n).

Proof. Suppose L ∈ DB(c,n). Then by Proposition C.9, L[i, j] = 0 whenever (i mod c) ̸= (j mod c). Thus, whenever
(i mod b) ̸=(j mod b), L[i,j]=0, since (i mod b) ̸=(j mod b) implies (i mod c) ̸=(j mod c) by the assumption that b divides
c. Applying Proposition C.9 again, this means L∈DB(b,n) as well.

Theorem 4. Let n≥4 be a power of 2. The class of matrices B(n) is a subset of the classM(b,n), for all b∈(1,n) that divide
n. When n≥512 it is a strict subset.

Proof. Recall from Section 2.2 that if B∈B(n), it has a butterfly factorization B=BnBn/2...B2, where each Bi∈BF (n,i).

Consider multiplying together the factors BbBb/2 ...B2 (where b∈ (1,n) divides n). Since Bi ∈BF (n,i), by definition it
is block diagonal with diagonal blocks of size i×i; in other words, Bi∈BD(i,n). Thus, each of the matrices Bb,Bb/2,...,B2

is in BD(b,n) (by Proposition C.12), i.e. block-diagonal with block size b×b. This means their product BbBb/2...B2 is also
block diagonal with block size b×b, i.e., it is in BD(b,n).

Now, note that sinceBi∈BF (n,i), by definition it is a block matrix with blocks of size i/2×i/2, where each block is a diagonal
matrix (note that some of these blocks are zero, except for the case of Bn). In other words, Bi ∈DB(i/2,n). Thus, for all
i∈{n,n/2,...,2b}, Bi∈DB((2b)/2,n)=DB(b,n) (by Proposition C.13). So, their product BnBn/2...B2b is inDB(b,n) as well,
as by Theorem 3 we can write BnBn/2 ...B2b = P⊤

(b,n)(P(b,n)BnP
⊤
(b,n))(P(b,n)Bn/2P

⊤
(b,n))...(P(b,n)B2bP

⊤
(b,n))P(b,n)

and each of the P(b,n)BiP
⊤
(b,n)’s in the preceding expression is in BD(n

b ,n).

Thus, if we let L=BnBn/2...B2b and R=BbBb/2...B2, we have B=LR and L∈DB(b,n), R∈BD(b,n), which means
that B∈M(b,n) (Definition C.19).

To show that the inclusion is strict, notice that any M ∈ M(b,n) is the product of L and R, where R ∈ BD(b,n) and
P⊤

(b,n)LP(b,n)∈BD(n
b ,n) (by Theorem 3). Notice that the identity matrix is contained in both BD(b,n) andDB(b,n). Suppose

first that b≤
√
n. Then even if we set R to the identity, M has at least n2

b ≥n3/2 free parameters (the entries in the blocks
of the block-diagonal matrix P⊤

(b,n)LP(b,n) can be arbitrary, and there are b such blocks each of size n
b ). Similarly, in the

case b>
√
n, we can set L to the identity, and M has at least nb≥n3/2 free parameters (the entries of the block-diagonal

matrix R can be arbitrary, and there are nb total of these). Thus, at least n3/2 parameters are required to uniquely describe
any matrix inM(b,n). However, a butterfly matrix in B(n) has only 2nlog2n parameters. For n>256, 2nlog2n<n3/2. (Note
that this analysis is not tight: a more careful analysis can show the inclusion is strict even for smaller values of n.)

We end this section with a theorem on the expressivity of the “monarch hierarchy” (products of monarch matrices), which
follows from Theorem 1 of (Dao et al., 2020).

Theorem 5 (Monarch hierarchy expressivity). Let M be an n×n matrix such that matrix-vector multiplication of M and
an arbitrary vector v (i.e., computation of Mv) can be represented as a linear arithmetic circuit with depth d and s total
gates. Let b∈(1,n) be a power of 2 that divides n. Then, M∈(MM∗(b,n))

O(d)
O(s/n).

Proof. Theorem 1 of Dao et al. (2020) says that if n is a power of 2 and A is an n×n matrix such that multiplying any vector
v by A can be represented as a linear arithmetic circuit with depth≤ d and≤ s total gates, then A∈ (BB∗(n))

O(d)
O(s/n) (this

is the “kaleidoscope representation” of A).

Recall from Theorem 4 that for any b ∈ (1, n) that is a power of 2 and divides n, M(b,n) ⊃ B(n); thus, this implies
MM∗(b,e·n)⊃BB∗(e·n), and in turn (MM∗(b,n))we ⊃(BB∗(n))we .

As A∈(BB∗(n))
O(d)
O(s/n), we thus have A∈(MM∗(b,n))

O(d)
O(s/n).



As per (Dao et al., 2020), the class of kaleidoscope matrices (BB∗(n))
O(d)
O(s/n) has O(ds log s) parameters and runtime,

compared to the O(s) parameters and runtime of the circuit. Note that at worst, s is O(n2).

Define f(n,s) to be the largest power of 2 that is ≤ min
{︁

n
2 ,
√
s
}︁

. Note that f(n,s) = O(
√
s), and since s = O(n2),

f(n,s)=Ω(
√
s), so f(n,s)=Θ(

√
s). We thus have A∈ (MM∗(f(n,s),n))

O(d)
O(s/n). The class (MM∗(f(n,s),n))

O(d)
O(s/n) has

O(d s2

f(n,s)+dsf(n,s))=O(ds3/2) parameters. Thus, the monarch representation of A is suboptimal by at most an O(d
√
s)

factor compared to the O(dlogs) of kaleidoscope.

C.2 General rectangular matrices

In this section, we extend the Monarch parametrization to apply to rectangular matrices, and prove some basic properties
of the relevant matrix classes. (Note that our subsequent theoretical results (Appendix D) do not depend on this section, as
they focus on the square parametrization.)

For the rest of the section, we will assume that n1,n2,n3,b1,b2,b3≥1 are integers such that:

• bi divides ni for all 1≤ i≤3, and

• n1

b1
= n2

b2
.

We begin with the definition of the following class of rectangular block-diagonal matrices:

Definition C.14. For 0≤ i< n
b1

, let Ri∈Fb2×b1 be a b2×b1 matrix. Then define the matrix R∈Fn2×n1 as follows:

R=diag
(︂
R0,...,Rn1

b1
−1

)︂
. (9)

We say that R has block size b2×b1. Recall that we have assumed n1

b1
= n2

b2
, so Eq. (9) is well-defined. (Note that the number

of possible nonzero values in R is n1

b1
·b1×b2 = n1b2.) We denote the class of all matrices R expressible in this form by

BD(b2×b1,n2×n1). Note that this class is only defined when n1

b1
= n2

n2
.

We restate the above definition equivalently as:

Proposition C.15. R∈Fn2×n1 is in BD(b2×b1,n2×n1) (with n1

b1
= n2

n2
) if and only if the following holds for any 0≤ i<n2

and 0≤j<n1. Let i≡(i1,i0)b2 and j≡(j1,j0)b1 (recalling this notation from Definition C.6. Then

1. if i1 ̸=j1, then R[i,j]=0.

2. Else (i.e., when i1=j1), then R[i,j]=Ri1 [i0,j0].

Before we define the rectangular L, we first need to define the notion of a ‘wrapped diagonal’ matrix:

Definition C.16. A wrapped diagonal matrixS∈Fb3×b2 is defined as follows. First assume b2≤b3. Then for any0≤ i<b3 and
0≤j<b2, we have the following. If i mod b2 ̸=j, then S[i,j]=0. (If b2>b3, then instead apply the previous definition to S⊤.)

We now define the following class of block matrices with each block a wrapped diagonal matrix.

Definition C.17. Let L∈Fn3×n2 have the form:

L=

⎡⎢⎢⎣
S0,0 ... S0,

n2
b2

−1

...
. . .

...
Sn3

b3
−1,0 ... Sn3

b3
−1,

n2
b2

−1

⎤⎥⎥⎦, (10)

where each S·,· is a wrapped diagonal matrix in Fb3×b2 .

We say that L has block size b3× b2. (Note that the number of possible nonzero values in L is
(︂

n2

b2
· n3

b3

)︂
max(b2,b3) =

n2·n3

min(b2,b3)
.) We denote the class of all matrices L expressible in this form byDB(b3×b2,n3×n2).

We restate the above definition equivalently as:

Proposition C.18. L∈Fn3×n2 is inDB(b3×b2,n3×n2) if and only if the following holds for any 0≤ i<n3 and 0≤ j <n2.
Let i≡(i1,i0)b3 and j≡(j1,j0)b2 . Assuming b2≤b3, we have:



1. if i0 mod b2 ̸=j0, then L[i,j]=0.

2. Else, (i.e., when i0 mod b2=j0), then L[i,j]=Si1,j1 [i0,j0].

If b2>b3, then in the above, the condition “i0 mod b2 ̸=j0” gets replaced by “j0 mod b2 ̸= i0.”

Using the above definitions, we now define the class of rectangular Monarch matrices.

Definition C.19 (Rectangular Monarch Matrix). Let M∈Fn3×n1 be a matrix of the form:
M=LR (11)

where L∈DB(b3×b2,n3×n2) and R∈BD(b2×b1,n2×n1).

(As mentioned before, we assume bi divides ni for i=1,2,3 and that n1/b1=n2/b2.) We denote the class of all matrices M
expressible in this form byM((b1,b2,b3),(n1,n2,n3)). Observe that when b1=b2=b3=b and n1=n2=n3=n, this is exactly
the matrix classM(b,n) in Definition C.19.

We are now ready to prove our main result in this section, which essentially follows from the observation that if we permute the
rows and columns of L such that the row/column block size in L becomes the number of row/columns blocks in the permuted
matrix (and vice-versa) then the permuted matrix has the form of R.

Theorem 6. Let 1≤b,n2,n3 be such that b divides n2 and n3. Suppose L∈Fn3×n2 ∈DB(b×b,n3×n2). Then if we define
R′=P(b,n3) ·L·P

⊤
(b,n2)

,

we have that R′∈BD(
n3
b3

×n2
b2

,n3×n2).

Proof. We recall that multiplying anm×nmatrix on the right (and left resp.) byP⊤
(b,n)=P(n

b ,n)
(andP(b,m) resp.) permutes

the columns (and rows resp.) of the matrix according to σ(b,n) (and σ(b,m)) respectively.5 This implies that for any 0≤ i,j<n:
R′[σ(b,n3)(i),σ(b,n2)(j)]=L[i,j]. (12)

Recall that in the notation of Definition C.17 we have b2= b3= b, so we are in the b2≤ b3 case. To complete the proof, we
will argue that R′ satisfies the two conditions in Proposition C.15.6

Towards this end, let 0 ≤ i,j < n be arbitrary indices and further, define i = (i1,i0)b and j = (j1,j0)b. Then note that
σ(b,n3)(i)=(i0,i1)n3

b
and σ(b,n2)(j)=(j0,j1)n2

b
.

By Proposition C.18, we have that if i0 mod b ̸= j0, then L[i,j] = 0. Note that since i0,j0 < b by definition, the condition
i0 mod b ̸= j0 is equivalent to saying i0 ̸= j0. Note that i0 ̸= j0 satisfies the pre-condition for base size n3

b ×
n2

b for indices
(σ(b,n3)(i),σ(b,n2)(j)) in item 1 in Proposition C.15. Then by Eq. (12), we have that R′[σ(b,n3)(i),σ(b,n2)(j)] = 0, which
satisfies item 1 in Proposition C.15.

Now consider the case that i0= j mod b, which by the observation in the above paragraph is the same as i0= j0. Then by
item 2 in Proposition C.18, we have that L[i,j] = Si1,j1 [i0,j0]. Note that i0 = j0 satisfies the pre-condition for base size
n3

b ×
n2

b for indices (σ(b,n3)(i),σ(b,n2)(j)) in item 2 in Proposition C.15 if we define R′
i0
∈F

n3
b ×n2

b as follows:
R′

i0 [i1,j1]=Si1,j1 [i0,j0].

Note that the above implies that
R′=diag

(︁
R′

0,...,R
′
b−1

)︁
,

where R′
· is as defined in the above paragraph. This means R′∈BD(

n3
b ×n2

b ,n3×n2), since R′ has size n3×n2 and each block
R′

i0
is a matrix of size n3

b ×
n2

b .

D Theory
D.1 Expressiveness ofM

Proof of Proposition 3.2. As Dao et al. (2020, Appendix J) show, the matrix class BB∗ can represent convolution, Hadamard
transform, Toeplitz matrices, and AFDF. Since the Monarch classMM∗ contains the butterfly class BB∗ (which follows
from Theorem 4), it follows thatMM∗ can also represent those transforms / matrices.

5This uses the fact that
(︁
σ(b,n)

)︁−1
=σ(n

b
,n).

6Note that we also need that the ratios of the row/column length to the row/column block sizes are the same; i.e., in our case we need
that n3

n3/b3
= n2

n2/b2
, which is true because b2=b3=b.



Note that the Hadamard transform is actually in B (Dao et al., 2020), so it is inM as well.

Dao et al. (2020, Appendix J) also show that the matrix class (BB∗)2 can represent the Fourier, discrete sine/cosine transforms,
the (HD)3 class, Fastfood, and ACDC matrices. By the same argument, as the Monarch class (MM∗)2 contains the butterfly
class (BB∗)2, (MM∗)2 can thus also represent these transforms / matrices.

D.2 Projection ontoM

In Algorithm 1, we provide pseudocode for the algorithm outlined in Section 3.3. We now prove Theorem 1. Note that the
rectangular matrix case generalizes naturally from the square matrix case, by replacing square blocks with rectangular blocks.

Proof of Theorem 1. As shown in Section 3.3, after reshaping the Monarch matrix M as a 4D tensor Mℓjki and writing the
two block-diagonal matrices L and R as 3D tensors Ljℓk and Rkji, we obtain:

Mℓjki=LjℓkRkji, for ℓ,j,k,i=1,...,m.
We can similarly reshape the given matrix A into a 4D tensor Aℓjki with size m×m×m×m.

Since the squared Frobenius norm objective ∥A−M∥2F (Eq. (1)) only depends on the entries of A and M and not their shape,
we can rewrite the objective after reshaping:

∥A−M∥2F =
∑︂
ℓjki

(Aℓjki−Mℓjki)
2

=
∑︂
ℓjki

(Aℓjki−LjℓkRkji)
2

=
∑︂
jk

∑︂
ℓi

(Aℓjki−LjℓkRkji)
2
.

We see that the objective decomposes into m×m independent terms (indexed by j and k). For each value of j and k, the
objective is exactly the rank-1 approximation objective for the corresponding slice A:,j,k,:.

Let ujkv
⊤
jk be the best rank-1 approximation of A:,j,k,: (which we can compute using the SVD, by the Eckart–Young

theorem (Eckart & Young, 1936) for Frobenius norm). Let R be the 3D tensor of size m×m×m where Rkji=(vjk)i, and
let L be the 3D tensor of size m×m×m where Ljℓk =(ujk)ℓ. Then each of the terms in the objective is minimized, and
thus the overall objective is minimized.

We see that the algorithm requires m ·m SVD’s, each of size m×m. Each SVD takes O(m3) time (Trefethen, 2000), so
the overall time complexity is O(m5)=O(n5/2).

D.3 Monarch Factorizations for Matrices inMM∗

In this section, we describe the algorithm for factorizing matrices inMM∗ previously outlined in Section 3.4 (Algorithm 2).
Again, Algorithm 2 handles the general case where the block sizes of L and R can be different. We then prove Theorem 7,
which has Theorem 2 as an immediate corollary.

Our goal is thus to compute the matrices L1,R,L2 in the factorization of M. In order to compute this factorization, we require
the following assumption on M:

Assumption D.1. Assume that (1) M ∈ MM∗(b,n) is invertible and (2) M can be written as
(P⊤

(b,n)L1P(b,n))R(P⊤
(b,n)L2P(b,n)), where L1, L2 ∈ BD(n

b ,n),R ∈ BD(b,n), and R has no nonzero entries in its
diagonal blocks. (Note that by Proposition C.10, we can write any M∈MM∗(b,n) as (P⊤

(b,n)L1P(b,n))R(P⊤
(b,n)L2P(b,n));

thus, (2) is merely the assumption that R has no zero entries in its blocks.)

This is analogous to Assumption 3.3, except applicable to the more general block size b. We now present Algorithm 2 to
find factors L1,R,L2 of matrices satisfying Assumption D.1.

First, observe that if we define ˜︂M = P(b,n)MP⊤
(b,n), we have ˜︂M = L1(P(b,n)RP⊤

(b,n))L2. By Theorem 3, the matrix
P(b,n)RP⊤

(b,n) is inDB(n
b ,n), i.e., is a block matrix with blocks of size n

b ×
n
b where each block is a diagonal matrix. Thus,

we can write:



⎛⎜⎜⎜⎜⎝
˜︂M11

˜︂M12 ... ˜︂M1b˜︂M21
˜︂M22 ... ˜︂M2b

. . . . . . . . . . . .˜︂Mb1
˜︂Mb2 ... ˜︂Mbb

⎞⎟⎟⎟⎟⎠=

⎛⎜⎜⎜⎝
A1

A2

. . .
Ab

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

D11 D12 ... D1b

D21 D22 ... D2b

. . . . . . . . . . . .
Db1 Db2 ... Dbb

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

C1

C2

. . .
Cb

⎞⎟⎟⎟⎠,

where A1,...,Ab are n
b ×

n
b matrices that are the diagonal blocks of L1; C1,...,Cb are n

b ×
n
b matrices that are the diagonal

blocks of L2; D11,...,D1b,D21,...,D2b,...,Db1,...,Dbb are n
b ×

n
b diagonal matrices that are the blocks of P(b,n)RP⊤

(b,n);

and ˜︂M11,...,˜︂M1b,˜︂M21,...,˜︂M2b,...,˜︂Mb1,...,˜︂Mbb are n
b ×

n
b matrices that are the blocks of ˜︂M=P(b,n)MP⊤

(b,n).

Thus, we have the set of matrix equations AiDijCj =˜︂Mij , for 1≤ i,j≤ b. Notice that the assumption that the R has no
nonzero entries in its blocks (Assumption D.1) is equivalent to assuming that none of the diagonal entries of any matrix Dij is
equal to zero. Also, the assumption that M is invertible implies that L1,L2 are invertible (since the product of square singular
matrices is singular), which in turn implies that each block matrix Ai and each block matrix Cj is invertible (since a square
block-diagonal matrix where one of the blocks is singular is itself singular). Taken together, this means that each matrix˜︂Mij is invertible, since ˜︂Mij=AiDijCj and each of the matrices on the RHS of the equation is invertible.

Observe that given a solution to the set of equations AiDijCj =˜︂Mij , if we rescale and permute the matrices Ai,Dij ,Cj

appropriately, the result is still a solution to the equations. Specifically, let P be any permutation matrix and {Si}bi=1,{S′
j}bj=1

be any invertible diagonal matrices (i.e., diagonal matrices without any zeros on the diagonal). Define D′
ij=SiP

⊤DijPS′
j

for all i,j. Notice that P⊤DijP=P−1DijP is diagonal because Dij is diagonal. Thus, D′
ij is diagonal (and invertible)

since the product of diagonal matrices is diagonal. Define A′
i=AiPS−1

i and C′
j=P⊤S′−1

j Cj for all i,j. Thus, we have that˜︂Mij =AiDijCj =(AiPS−1
i )D′

ij(P
⊤S′−1

j Cj)=A′
iD

′
ijC

′
j for all i,j: in other words, we can scale the Ai’s on the right

by any invertible diagonal matrix, the Cj’s on the left by any invertible diagonal matrix, and apply a matching permutation
to the rows of the Cj’s and the columns of the Ai’s, and apply matching transformations to the Dij’s and the result will
still be a valid factorization. This implies that as long as we recover a “correct” Ĉ1 up to a permutation and scaling of its
rows, we can set the D̂i1’s and D̂1j’s to the identity matrix, and then compute the remaining Âi’s and Ĉj’s via the equations

Âi=˜︂Mi1Ĉ
−1

1 and Ĉj=Â
−1

1
˜︂M1j .

To understand how we can compute such a matrix Ĉ1, define F(i,j)=˜︂M−1
i1

˜︂Mij
˜︂M−1

1j
˜︂M11 and observe that

F(i,j)=˜︂M−1
i1

˜︂Mij
˜︂M−1

1j
˜︂M11

=(C−1
1 D−1

i1 A−1
i )(AiDijCj)(C

−1
j D−1

1j A
−1
1 )(A1D11C1)

=C−1
1 (D−1

i1 DijD
−1
1j D11)C1

for all 1 ≤ i,j ≤ b. Note that D−1
i1 DijD

−1
1j D11 is a diagonal matrix; thus, C1F(i,j)C

−1
1 is diagonal for all i,j, i.e., C1

simultaneously diagonalizes all the matricesF(i,j). (Note: In this paper, we say that a matrixQ “simultaneously diagonalizes”
a set of matrices G1,...,Gk if QGiQ

−1 is a diagonal matrix for all 1≤ i≤k. Note that sometimes the opposite convention
[i.e., Q−1GiQ must be diagonal] is used in the literature; we adopt the former for notational convenience.) Indeed, if any
matrix simultaneously diagonalizes all these matrices, then it leads to a valid factorization, which we show in the proof of
Theorem 7. Therefore, we compute some matrix that simultaneously diagonalizes all these matrices, and set Ĉ1 to that matrix.

These ideas form the basis of Algorithm 2, which is presented formally below. Algorithm 2 uses simultaneous diagonalization
as a subroutine; we discuss how to solve simultaneous diagonalization problems below.



Algorithm 2MM∗ Factorization

Require: Block size b; matrix M∈MM∗(b,n) satisfying Assumption D.1
0: Define ˜︂Mij (of size n

b ×
n
b ) as the i,j block of P(b,n)MP⊤

(b,n)

1: for 1≤ i,j≤b do
1: Compute F(i,j) :=˜︂M−1

i1
˜︂Mij

˜︂M−1
1j

˜︂M11

2: end for
2: Ĉ1← SIMULTANEOUS DIAG

(︂
{F(i,j)}b,bi,j=1,1

)︂
3: for 1≤ i≤b do
3: Âi←˜︂Mi1Ĉ

−1

1

4: end for
5: for 2≤j≤b do
5: Ĉj←Â

−1

1
˜︂M1j

6: end for
7: for 1≤ i,j≤b do
7: D̂ij←Â

−1

i
˜︂MijĈ

−1

j

8: end for

Theorem 7. Given an n×n matrix M ∈MM∗(b,n) satisfying Assumption 3.3, Algorithm 2 finds its Monarch factors
L1,R,L2 in time O

(︂
n3

b

)︂
.

Notice that by setting b=
√
n, we immediately recover Theorem 2. Note also that by Proposition C.11, Theorem 7 implies

that given an M∈M∗M(n
b ,n), we can find its Monarch factorization in time O(n

3

b ) as well (e.g., simply permute it to a
matrix inMM∗(b,n) and then run Algorithm 2). We now prove Theorem 7.

Proof. We first show that the factorization returned by Algorithm 2 is valid, which reduces to showing that (1) ˜︂Mij=ÂiD̂ijĈj

and (2) D̂ij is diagonal, for all 1≤ i,j≤b as argued above.

As argued above, since ˜︂M satisfies Assumption D.1, then there exists a matrix (C1) that simultaneously diagonalizes all
the F(i,j)’s. Thus, we can always compute some matrix that simultaneously diagonalizes these matrices (i.e., line 2 of
Algorithm 2 will always return a valid solution); we discuss how to actually do this below. By definition of simultaneous
diagonalization, this matrix (which we set Ĉ1 to) is invertible.

So, Âi = ˜︂Mi1Ĉ
−1

1 is invertible for all i. Thus Ĉj = Â
−1

1
˜︂M1j is invertible for all j as well. (Note that the equation

Ĉj = Â
−1

1
˜︂M1j holds by construction of Ĉj for j≥2, and by construction of Â1 when j=1.) As D̂ij = Â

−1

i
˜︂MijĈ

−1

j by
definition, we thus have that ˜︂Mij=ÂiD̂ijĈj for all i,j.

It remains to show that D̂ij is diagonal.

D̂ij=Â
−1

i
˜︂MijĈ

−1

j

=(˜︂Mi1Ĉ
−1

1 )−1˜︂Mij(Â
−1

1
˜︂M1j)

−1

=Ĉ1
˜︂M−1

i1
˜︂Mij

˜︂M−1
1j Â1

=Ĉ1(˜︂M−1
i1

˜︂Mij
˜︂M−1

1j
˜︂M11)Ĉ

−1

1

=Ĉ1F(i,j)Ĉ
−1

1

But Ĉ1F(i,j)Ĉ
−1

1 is diagonal for all i,j by definition of Ĉ1 as a matrix that simultaneously diagonalizes the F(i,j)’s.

As for L1, R, L2, recall that we can simply set L1 = diag(Â1, ... , Âb), L2 = diag(Ĉ1, ... , Ĉb), and

R = P⊤
(b,n)

⎛⎜⎜⎜⎝
D̂11 D̂12 ... D̂1b

D̂21 D̂22 ... D̂2b

. . . . . . . . . . . .
D̂b1 D̂b2 ... D̂bb

⎞⎟⎟⎟⎠ P(b,n), and we have M = (P⊤
(b,n)L1P(b,n))R(P⊤

(b,n)L2P(b,n)) with



L1,L2∈BD(n
b ,n) and R∈BD(b,n) as argued above. This completes the proof of correctness.

Now, we analyze the runtime. There are b2 matrices F(i,j) to compute, and computing each one takes O(n
3

b3 ) time. Once
we’ve found Ĉ1, there are b matrices Âi to compute, each one taking O(n

3

b3 ) time, and b− 1 matrices Ĉj (for j ≥ 2) to
compute, each one taking O(n

3

b3 ) time, and then b2 matrices D̂ij to compute, each taking O(n
3

b3 ) time. (Note that we can
compute each of these faster using fast matrix multiplication / inversion; however, it turns out not to matter as the simultaneous
diagonalization is the bottleneck.)

Finally, we analyze the simultaneous diagonalization runtime. Simultaneous diagonalization of a set of matrices {G1,...,Gk}
is equivalent to finding a mutual eigenbasis for the matrices, since if Di is a diagonal matrix and QGiQ

−1=Di, then the
jth column of Q is an eigenvector of Gi with eigenvalue equal to the jth entry of Di.

A simple algorithm for simultaneous diagonalizing a set of matrices, assuming that they are in fact simultaneously
diagonalizable (which implies that each matrix is individually diagonalizable), is as follows (e.g. see (Conrad; Bunse-Gerstner
et al., 1993)): first, set i = 1 and diagonalize the first matrix Gi = G1 (i.e., find an eigenbasis), and set Q to be the
diagonalizing matrix (i.e., the matrix of eigenvectors). So, QG1Q

−1 is diagonal. By the assumption that the matrices are
in fact simultaneously diagonalizable, QGjQ

−1 will be permuted block diagonal for all j ̸= i as well: the size of each block
corresponds to the multiplicity of the corresponding eigenvalue of G1. (Note that if G1’s has unique eigenvalues, then the
eigenbasis is unique (up to permutation and nonzero scaling), and thus in this case G1 uniquely determines the simultaneously
diagonalizing matrix, up to arbitrary permutation and nonzero scaling of the rows. In other words, the block size will be
1 in this case, meaning that QGjQ

−1 will be diagonal for all j, and we are done.)

So now, we repeat the following for all i up to k. Increment i and compute QGiQ
−1. If it is already diagonal, move on.

Otherwise, first permute Q←PQP⊤ so that it is block diagonal (observe that this maintains the property that QGjQ
−1

is diagonal for all j < i, since PDP⊤ is diagonal for any permutation P and diagonal matrix D). Then for each block
of size > 1, compute a matrix that diagonalizes that block; denoting the number of blocks (including size-1 blocks) by b,
let Q′

1,...,Q
′
b denote the corresponding diagonalizing transformations, or the scalar 1 when the block is of size 1. Finally

set Q′← diag(Q′
1,...,Q

′
b) and Q←Q′−1QQ′. By construction, QGiQ

−1 will now be diagonal; also, QGjQ
−1 is still

diagonal for all j < i, because any linear combination of a set of eigenvectors of a diagonalizable matrix corresponding to
a repeated eigenvalue λ is itself an eigenvector of that matrix with eigenvalue λ.

Thus, once we’ve processed all k of the Gi’s, Q is a matrix that simultaneously diagonalizes all of them. At each step i, we
compute diagonalizing transformations for square block matrices whose sizes s1,...,sk sum to n. As eigendecomposition (for
a fixed desired precision) takes O(n3) time for an n×n matrix, this means the total runtime of step i is O

(︂∑︁k
j=1s

3
i

)︂
≤O(n3).

Thus the total runtime of the entire simultaneous diagonalization procedure is O(kn3), where k is the number of matrices.
(Note that iterative methods for simultaneous diagonalization also exist (Bunse-Gerstner et al., 1993; Akema et al., 2020)
and could be used to speed up this step in practice.)

Applying this to our problem, we have b2 matrices to simultaneously diagonalize, each of size n
b ×

n
b . This leads to a total

runtime of O
(︁
b2 ·(nb )

3
)︁
=O

(︂
n3

b

)︂
for the entire simultaneous diagonalization procedure, and thus the runtime of Algorithm 2

is also O
(︂

n3

b

)︂
, as desired.

(Note: As can be seen from the above analysis, we don’t actually need M itself to be invertible—we simply need all its
blocks ˜︂Mij to be, so that all the Ai’s and Cj’s are, which is a weaker assumption that invertibility of M given that we already
assumed the Dij’s are invertible due to the nonzero assumption on the blocks of R.)

E Experiment Details
E.1 Model Configurations and Hyperparameters

We summarize the details required to replicate our experiments below.

E.1.1 IMAGE CLASSIFICATION

Baseline Model: For dense models, we use standard implementations of ViT (Dosovitskiy et al., 2020), MLP-
Mixertolstikhin2021mlp from the timm library and from the T2T-ViT codebase (Yuan et al., 2021).



The Monarch version of these models simply swap out the dense weight matrices in the attention blocks (projection matrices)
and in the FFN block (linear layers) with Monarch matrices. We set the number of blocks in the block-diagonal matrices
to 4. We also reduce the amount of regularization (stochastic depth) as our Monarch models are smaller than the dense models.

We adopt the hyperparameters (optimizer, learning rate, learning rate scheduler) from Yuan et al. (2021). Details are in Table 9.

We measure the wall-clock training time on V100 GPUs.

Table 9. Configuration of the ImageNet experiment
Model Optimizer Weight Decay Learning Rate Drop Path Warmup/Epoch

ViT-Small AdamW 0.05 0.001 0.1 5/300
Monarch-ViT-Small AdamW 0.05 0.001 0 5/300

ViT-Base AdamW 0.05 0.001 0.1 5/300
Monarch-ViT-Base AdamW 0.05 0.001 0 5/300

Mixer-Small AdamW 0.1 0.001 0.1 5/300
Monarch-Mixer-Small AdamW 0.1 0.001 0 5/300

Mixer-Base AdamW 0.1 0.001 0.1 5/300
Monarch-Mixer-Base AdamW 0.1 0.001 0 5/300

We follow the naming convention in the Vision Transformer paper and MLP-Mixer paper. In particular, ViT-S and ViT-B
refers to the small and base ViT models respectively, and 16 refers to the patch size of 16x16. The MLP-Mixer models follow
the same convention.

E.1.2 LANGUAGE MODELING

For dense models, we use standard implementations of GPT-2 (Radford et al., 2019) from Huggingface transformers
library and from Nvidia’s Megatron-LM repo. We follow the training recipe of the Megatron-LM repo.

The Monarch version of these models simply swap out the dense weight matrices in the attention blocks (projection matrices)
and in the FFN block (linear layers) with Monarch matrices. We set the number of blocks in the block-diagonal matrices
to 4. We also reduce the regularization strength (dropout) as our model is smaller.

We report the hyperparameters used in Table 10 and Table 11. We use an effective batch size of 512, and use gradient
accumulation to fit into available GPU memory.

We measure the wall-clock training time on V100 GPUs.

Table 10. Configuration of the WikiText-103 experiments
Model Optimizer Weight Decay Learning Rate Dropout Warmup/Epoch

GPT-2-small AdamW 0.1 6e-4 0.1 10/100
Monarch-GPT-2-small AdamW 0.1 6e-4 0.0 10/100

GPT-2-medium AdamW 0.1 1.5e-4 0.1 10/100
Monarch-GPT-2-medium AdamW 0.1 1.5e-4 0.0 10/100

Table 11. Configuration of the OpenWebText experiments
Model Optimizer Weight Decay Learning Rate Dropout Warmup/Total iterations

GPT-2-Small AdamW 0.1 6e-4 0.1 4k/400k
Monarch-GPT-2-Small AdamW 0.1 6e-4 0.0 4k/400k

GPT-2-Medium AdamW 0.1 1.5e-4 0.1 4k/400k
Monarch-GPT-2-Medium AdamW 0.1 1.5e-4 0.0 4k/400k



E.2 Details for PDE Solving

We adopt the experiment setting and data generation of Navier-Stokes Equation from FNO (Li et al., 2020). It considers
the 2-d Navier-Stokes equation for a viscous, incompressible fliud in vorticity form on the unit tortus:

∂tw(x,t)+u(x,t)·∇w(x,t)=v∆w(x,t)+f(x), x∈(0,1)2,t∈(0,T ] (13)

∇w(x,t)=0, x∈(0,1)2,t∈(0,T ] (14)

w(x,0)=w0(x), x∈(0,1)2 (15)
(16)

where u∈C([,T0]);Hper((0,1)
2;R2)) for any r>0 is the velocity field, w=∇×u is the vorticity, w0∈L2

per((0,1)
2;R) is

the initial vorticity, v∈R+ is the viscosity coefficient, and f ∈L2
per((0,1)

2;R) is the forcing function. T represents the time
interval since it is time-dependent equation. v represents the viscosity. N represents the number of training pairs or data.
Table 3 shows the results for viscosities v=1e−3,1e−4,1e−5, T =50,30,20 respectively and use N=1000.

E.3 Details for GPT-2 Downstream Tasks

We train Pixelfly-GPT2-small on a larger scale dataset, OpenWebText, and evaluate the downstream quality on zero-shot
generation and classification tasks from (Zhao et al., 2021), achieving comparable and even better performance to the dense
model. Specifically, the datasets contains five popular classification tasks: SST2, Trec, CB, Agnews, and Dbpedia. We also
adapated the calibrated metric from (Zhao et al., 2021) for evaluation. Results for each individual task are shown in Table 12.

Table 12. The performance (accuracy) of GPT-2-medium trained with Monarch reverse sparsification and with conventional dense training
on text classification benchmarks.

Model OpenWebText (ppl) Speedup Classification (avg acc)
GPT-2m 68.3 37.0 10.7 52.0 26.6

Monarch-GPT-2m 72 38.6 12.5 47.3 23.0

E.4 Details for BERT Pretraining

We follow the training procedure and hyperparameters of the reference implementation from Nvidia Deep Learning examples
(https://github.com/NVIDIA/DeepLearningExamples). In particular, we use the LAMB optimizer with
learning rate 4e-3. We use as large a minibatch size as possible that still fits in the GPU memory (A100-40GB), and use
gradient accumulation to reach an effective batch size of 64k sequences for phase 1 (maximum sequence length 128) and
32k for phase 2 (maximum sequence legnth 512). We train is mixed precision (fp16 and fp32).

We use all the optimizations that were in Nvidia’s BERT implementation in MLPerf 1.1:

1. Only compute the prediction scores (last layer) for masked tokens as the outputs of other tokens are not used to compute
the masked language modeling loss.

2. Remove padding tokens and only compute the attention for non-padding tokens.

3. Use a fused CUDA kernel (FMHA) that combines 4 steps into one kernel: computes QKT , take softmax, apply dropout,
multiply by V , where Q,K,V are the query, key, and value respectively.

4. Fuse matrix multiplication and adding bias into one CUDA kernel in the feed-forward network (FFN) layers. The
gradient of the bias is also fused with the matrix multiplication the backward pass.

5. Fuse matrix multiplication and adding bias into one CUDA kernel in the attention output projection.

6. Fuse dropout and adding residual in the residual connection at the end on the attention and FFN blocks.

We train with DeepSpeed (Rasley et al., 2020) ZeRO optimizer stage 1 to shard the optimizer states, thus reducing GPU
memory usage and allowing us to use larger batch sizes. For the Nvidia MLPerf implementation, we report the speed for
both Apex’s automatic mix-precision (AMP) level O2 (as in the original implementation), and DeepSpeed ZeRO optimizer.

E.5 Accelerated Multi-coil MRI Reconstruction

E.5.1 BACKGROUND

In multi-coil MRI, multiple receiver coils (i.e. sensors) acquire complex-valued measurements in the spatial frequency (a.k.a. k-
space) domain. These measurements are modulated by the spatially-varying sensitivity maps, which characterize the sensitivity

https://github.com/NVIDIA/DeepLearningExamples


of each coil to the imaging target. In accelerated MRI, scan times are reduced by decreasing the number of samples acquired
in k-space. Because the data is sampled below the Nyquist rate, reconstructing the underlying image is an ill-posed problem.

The forward problem for accelerated multi-coil MRI can be written as the matrix equation
y=ΩFSx+ϵ

where Ω is the binary undersampling mask that indexes acquired samples in k-space, y is the vectorized measured signal
in k-space, F is the discrete Fourier transform matrix, S is the receiver coil sensitivity maps, x is the ground-truth signal

in image-space, and ϵ is additive complex Gaussian noise. The acceleration factor is given by R=
∑︁|N|

i Ωi

|Ω| .

E.5.2 EXPERIMENTAL DETAILS

Dataset. We benchmark our method on the SKM-TEA Raw Data Track, which consists of dual-echo 3D MRI scans (Desai
et al., 2021c). Scans are accelerated using Poisson Disc undersampling masks distributed with the dataset. During training,
Poisson Disc masks are generated, cached, and applied to mask the k-space data to simulate accelerated scans.

Matrix Shape. Like all matrices, Monarch matrices have an explicit shape constraint, which is a limitation of these matrices
for MRI reconstruction tasks. Thus, the SKM-TEA dataset was filtered to include scans of shape 512×512×160, which
is the most frequently occuring scan shape. A total of 3 scans were dropped from the original 155 scans in the dataset. Our
method and all baselines were trained on this filtered dataset.

Table 13. Baseline configurations of the SKM-TEA MRI reconstruction experiments.
Model Params Optimizer Weight Decay Learning Rate Epoch
SENSE — — — — —
U-Net 7.8M Adam 1e-4 1e-3 20

mSENSE 57.5K Adam 1e-4 1e-3 20

Baselines. We compare our method to two baselines, SENSE and U-Net. Parameter count and hyperparameters are available
in Table 13.

• SENSE: SENSE performs a linear combination of the images acquired on each coil (Pruessmann et al., 1999). Here, the
inverse fsat Fourier transform (IFFT) is applied to the acquired k-space for each coil. The resulting images are combined
into a single complex image by weighting each coil image by corresponding coil sensitivity maps. In accelerated MRI,
the unsampled frequencies are zero-valued; thus, SENSE produces a zero-filled image. Note, SENSE does not require
any training.

• U-Net: U-Net is a popular fully convolutional neural network baseline for MRI reconstruction (Ronneberger et al., 2015).
We use the default implementation and hyperparameters used by Desai et al. (2021c) to benchmark the SKM-TEA dataset.
In this approach, the SENSE-reconstructed zero-filled image is mapped to SENSE-reconstructed ground truth images.

Monarch-SENSE (mSENSE): We propose a modification to the SENSE method, in which the (IFFT) is parameterized
by a factorized Monarch matrix. This matrix is initialized to the IFFT but, unlike SENSE, is learnable. While mSENSE
is trainable, it has 137x fewer trainable parameters than U-Net.

Metrics: We evaluate reconstruction performance using peak signal-to-noise ratio (pSNR) and structural similarity (SSIM)
on both echoes (echo1 - E1, echo2 - E2) separately. Both metrics were computed on the 3D volume of each echo.

Extended Results. We provide sample reconstructions of SENSE, mSENSE, and U-Net in data-limited settings for first
(Fig. 6) and second (Fig. 7) echoes. Both SENSE and U-Net reconstructed images have aliasing artifacts. Due to the random
Poisson Disc undersampling pattern, these artifacts are incoherent, causing them to manifest as blurring around fine structures
and edges. In contrast, mSENSE can recover these structures with higher fidelity. Even in the second echo, which has lower
signal-to-noise ratio (SNR) than the first echo, mSENSE does not overblur the image.



Figure 6. Sample reconstructions at 2x acceleration for the first echo in the SKM-TEA dataset using SENSE, Monarch-SENSE (mSENSE),
and U-Net. Both mSENSE and U-Net are trained with 1 training scan. SENSE is an untrained method.



Figure 7. Sample reconstructions at 2x acceleration for the second echo in the SKM-TEA dataset using SENSE, Monarch SENSE
(mSENSE), and U-Net. Both mSENSE and U-Net are trained with 1 training scan. SENSE is an untrained method.


