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Abstract

Linear time-invariant state space models (SSM) are a classical model from engineering and statistics,
that have recently been shown to be very promising in machine learning through the Structured State
Space sequence model (S4). A core component of S4 involves initializing the SSM state matrix to a
particular matrix called a HiPPO matrix, which was empirically important for S4’s ability to handle
long sequences. However, the specific matrix that S4 uses was actually derived in previous work for
a particular time-varying dynamical system, and the use of this matrix as a time-invariant SSM had
no known mathematical interpretation. Consequently, the theoretical mechanism by which S4 models
long-range dependencies actually remains unexplained. We derive a more general and intuitive formulation
of the HiPPO framework, which provides a simple mathematical interpretation of S4 as a decomposition
onto exponentially-warped Legendre polynomials, explaining its ability to capture long dependencies.
Our generalization introduces a theoretically rich class of SSMs that also lets us derive more intuitive S4
variants for other bases such as the Fourier basis, and explains other aspects of training S4, such as how
to initialize the important timescale parameter. These insights improve S4’s performance to 86% on the
Long Range Arena benchmark, with 96% on the most difficult Path-X task.

1 Introduction

The Structured State Space model (S4) is a recent deep learning model based on continuous-time dynamical
systems that has shown promise on a wide variety of sequence modeling tasks [7]. It is defined as a particular
linear time-invariant (LTI) state space model (SSM), which give it multiple properties [6]: as an SSM, S4
can be simulated as a discrete-time recurrence for efficiency in online or autoregressive settings, and as
a LTI model, S4 can be converted into a convolution for parallelizability and computational efficiency at
training time. These properties give S4 remarkable computational efficiency and performance, especially
when modeling continuous signal data and long sequences.

Despite its potential, several aspects of the S4 model remain poorly understood. Most notably, Gu et al.
[7] claim that the long range abilities of S4 arise from instantiating it with a particular “HiPPO matrix”
[5]. However, this matrix was actually derived in prior work for a different (time-varying) setting, and the
use of this matrix in S4 (a time-invariant SSM) did not have a mathematical interpretation. Consequently,
the mechanism by which S4 truly models long-range dependencies is actually not known. Beyond this
initialization, several other aspects of parameterizing and training S4 remain poorly understood. For example,
S4 involves an important timescale parameter ∆, and suggests a method for parameterizing and initializing
this parameter, but does not discuss its meaning or provide a justification.

∗Equal contribution.
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This work aims to provide a comprehensive theoretical exposition of several aspects of S4. The major
contribution of this work is a cleaner, more intuitive, and much more general formulation of the HiPPO
framework. This result directly generalizes all previous known results in this line of work [5, 6, 7, 16]. As
immediate consequences of this framework:

• We prove a theoretical interpretation of S4’s state matrix A, explaining S4’s ability to capture long-range
dependencies via decomposing the input with respect to an infinitely long, exponentially-decaying measure
(Fig. 3 (Left)).

• We derive new HiPPO matrices and corresponding S4 variants that generalize other nice basis functions.
For example, our new method S4-FouT produces truncated Fourier basis functions. This method thus
automatically captures sliding Fourier transforms (e.g. the STFT and spectrograms), which are ubiquitous
as a hand-crafted signal processing tool, and can also represent any local convolution, thus generalizing
conventional CNNs (Fig. 3 (Middle)).

• We provide an intuitive explanation of the timescale ∆, which has a precise interpretation as controlling
the length of dependencies that the model captures. Our framework makes it transparent how to initialize
∆ for a given task, as well as how to initialize the other parameters (in particular, the last SSM parameter
C) to make a deep SSM variance-preserving and stable.

Empirically, we validate our theory on synthetic function reconstruction and memorization tasks, showing
that empirical performance of state space models in several settings is predicted by the theory. For example,
our new S4-FouT method, which can provably encode a spike function as its convolution kernel, performs best
on a continuous memorization task compared to other SSMs and other models, when ∆ is initialized correctly.
Finally, we show that the original S4 method is still best on very long range dependencies, achieving a new
state of the art of 86% average on Long Range Arena, with 96% on the most difficult Path-X task that even
the other SSM variants struggle with.

2 Framework

We present our improved framework for state space models and online reconstruction of signals. Section 2.1 dis-
cusses background on SSMs, including their connection to convolutions for time-invariant systems. Section 2.2
defines new subclasses of SSMs with special properties that can be used for online function reconstruction,
simplifying and generalizing the original HiPPO framework. An extended background and related work
section can be found in Appendix A.

2.1 State Space Models: A Continuous-time Latent State Model

The state space model (SSM) is defined by the simpleifferential equation (1) and (2). It maps a 1-D input
signal u(t) to an N -D latent state x(t) ∈ RN before projecting to a 1-D output signal y(t).

x′(t) = A(t)x(t) +B(t)u(t) (1)

y(t) = C(t)x(t) +D(t)u(t) (2)

K(t) = CetAB

y(t) = (K ∗ u)(t)
(3)

For the remainder of this paper, we will assume D = 0 and omit it for simplicity, unless explicitly mentioned.

SSMs can in general have dynamics that change over time, i.e. the matrices A,B,C,D are a function of t in
(1) and (2). However, when they are constant the system is linear time invariant (LTI), and is equivalent
to a convolutional system (3). The function K(t) is called the impulse response which can also be defined as
the output of the system when the input u(t) = δ(t) is the impulse or Dirac delta function. We will call these
time-invariant state space models (TSSM). These are particularly important because the equivalence
to a convolution makes TSSMs parallelizable and very fast to compute, which is critical for S4’s efficiency.

Our treatment of SSMs will consider the (A,B) parameters separately from C. We will refer to an SSM
as either the tuple (A,B,C) (referring to (3)) or (A,B) (referring to Definition 1) when the context is
unambiguous. We also drop the T in TSSM when the context is clearly time-invariant.
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Definition 1. Given a TSSM (A,B), etAB is a vector of N functions which we call the SSM basis. The

individual basis functions are denoted Kn(t) = e⊤n e
tAB, which satisfy xn(t) = (u ∗Kn)(t) =

∫︁ t

−∞Kn(t −
s)u(s) ds. Here en is the one-hot basis vector.

This definition is motivated by noting that the SSM convolutional kernel is a linear combination of the SSM
basis controlled by the vector of coefficients C, K(t) =

∑︁N−1
n=0 CnKn(t). We note that Definition 1 has not

appeared in prior works on deep SSMs, but is a new perspective taken by this work for understanding and
visualizing these models.

Discrete SSM with Timescales. To be applied on a discrete input sequence (u0, u1, . . . ) instead of
continuous function u(t), (1) must be discretized by a step size ∆ that represents the resolution of the
input. Conceptually, the inputs uk can be viewed as sampling an implicit underlying continuous signal
u(t), where uk = u(k∆). Analogous to the fact that the SSM has equivalent forms either as an dynamical
system (1) or a continuous convolution (3), the discrete-time SSM can be computed either as a recurrence
or a discrete convolution. The mechanics to compute the discrete-time SSM has been discussed in previous
works [6, 7]. For our purposes, we only require the following fact: for standard discretization methods used
in prior work, discretizing the state space (A,B) at a step size ∆ is exactly equivalent to discretizing the
state space (∆A,∆B) at a step size 1. This allows thinking of ∆ simply as modulating the SSM parameters
(A,B) instead of representing a step size.

A poorly understood question from prior work is how to interpret and choose this ∆ parameter, especially
when the input uk does not actually arise from uniformly sampling an underlying continuous signal. S4
specifies to log-uniformly initialize ∆ in the range (∆min,∆max) = (0.001, 0.1), but does not provide a
concrete justification. In Section 3.3 we show a simpler interpretation of ∆ directly in terms of the length of
dependencies in a discrete input sequence.

2.2 HiPPO: High-order Polynomial Projection Operators

S4 is defined as a TSSM where (A,B) is initialized with a particular formula (4). This was called the HiPPO
matrix in [7], but is actually just one of several such special matrices derived in [5]. To disambiguate other
variants of S4, we refer to the full S4 method using this HiPPO SSM as S4-LegS. Other cases considered in
this work include LegT from prior work (5) and FouT that we introduce in this work (6).

(HiPPO-LegS)

Ank = −(2n+ 1)
1
2 (2k + 1)

1
2 ·

⎧⎪⎨⎪⎩
1 n > k
n+1
2n+1

n = k

0 n < k

Bn = (2n+ 1)
1
2

(4)

(HiPPO-LegT)

Ank = −(2n+ 1)
1
2 (2k + 1)

1
2 ·

{︄
1 k ≤ n

(−1)n−k k ≥ n

Bn = (2n+ 1)
1
2

(5)

(HiPPO-FouT)

Ank =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2 n = k = 0

−2
√
2 n = 0, k odd

−2
√
2 k = 0, n odd

−4 n, k odd

2πk n− k = 1, k odd

−2πn k − n = 1, n odd

0 otherwise

Bn =

⎧⎪⎨⎪⎩
2 n = 0

2
√
2 n odd

0 otherwise

(6)

These matrices were originally motivated by the question of “online memorization” of an input signal. In the
following, we present an improved version of the HiPPO framework that addresses this problem.

The key idea is that for a suitably chosen SSM basis A,B, then at any time t, the current state x(t) can be
used to approximately reconstruct the entire input u up to time t (Fig. 1). In particular, suppose that the
basis functions satisfy Definition 2.

Definition 2. We call an SSM (A(t),B(t)) an orthogonal SSM (OSSM) for the basis pn(t, s) and
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Figure 1: (Prior HiPPO methods) Given an input function u(t) (black), HiPPO compresses it online into a state
vector x(t) ∈ R

N via equation (1). Specific cases of HiPPO matrices A,B are derived so that at every time t, the
history of u up to time t can be reconstructed linearly from x(t) (red), according to a measure (green). (Left) The
HiPPO-LegT method orthogonalizes onto the Legendre polynomials against a time-invariant uniform measure, i.e.
sliding windows. (Right) The original HiPPO-LegS method is not time-invariant system. When used as a time-varying
ODE x′ = 1

t
Ax+ 1

t
Bu, x(t) represents the projection of the entire history of u onto the Legendre polynomials. It

was previously unknown how to interpret the time-invariant version of this ODE using the same (A,B) matrices.

measure ω(t, s) ≥ 0 if the functions Kn(t, s) = pn(t, s)ω(t, s) satisfy, at all times t,

xn(t) =

∫︂ t

−∞
Kn(t, s)u(s) ds

∫︂ t

−∞
pn(t, s)pm(t, s)ω(t, s) ds = δn,m. (7)

In the case of a time-invariant OSSM (TOSSM), Kn(t, s) =: Kn(t− s) (depends only on t− s), giving
us Definition 1 with measure ω(t− s) := ω(t, s) and basis pn(t− s) := pn(t, s).

To be more specific about terminology, pn and ωn are called the basis and measure for orthogonal SSMs
(Definition 2), whileKn are called the SSM basis kernels which applies more generally to all SSMs (Definition 1).
The distinction will be made clear from context, notation, and the word “kernel” referring to Kn.

For OSSMs, (p, ω) and K are uniquely determined by each other, so we can refer to an OSSM by either. One
direction is obvious: (p, ω) determine K via Kn(t, s) = pn(t, s)ω(t, s).

Proposition 1. If a set of kernel functions satisfies Kn(t, s) = pn(t, s)ω(t, s) where the functions pn are
complete and orthogonal w.r.t. ω (equation (7) right), p and ω are unique.

Equation (7) is equivalent to saying that for every fixed t, ⟨pn, pm⟩ω = δn,m, or that pn are an orthonormal

basis with respect to measure ω. More formally, defining p
(t)
n (s) = pn(t, s) and ω(t) similarly, then p

(t)
n

are orthonormal in the Hilbert space with inner product ⟨p, q⟩ =
∫︁
p(s)q(s)ω(t)(s) ds). By equation (7),

xn(t) =
∫︁ t

−∞ u(s)Kn(t, s) ds = ⟨u, p(t)n ⟩ω(t) where p
(t)
n (s) = pn(t, s). Thus at all times t, the state vector x(t)

is simply the projections of u |≤t onto a orthonormal basis, so that the history of u can be reconstructed from
x(t). HiPPO called this the online function approximation problem [5].

Proposition 2. Consider an OSSM that satisfies (7) and fix a time t. Furthermore suppose that in the limit

N →∞, the p
(t)
n are a complete basis on the support of ω(t). Then u(s) =

∑︁∞
n=0 xn(t)pn(t, s) for all s ≤ t.

The main barrier to using Proposition 2 for function reconstruction is that SSMs are in general not OSSMs.
For example, even though we will show that (4) is an TOSSM, and that unitary conjugation of a TOSSM is
a TOSSM (Section 3.3), its diagonal matrix of eigenvalues is not a TOSSM. This both shows the existence of
an SSM that is not an OSSM, and also implies that general conjugation does not preserve TOSSMs.

Proposition 3. There is no TOSSM with the diagonal state matrix A = diag{−1,−2, . . . }.

HiPPO can thus be viewed as a framework for deriving specific SSMs that do satisfy (7). The original HiPPO
methods and its generalizations [5, 6] primarily focused on the case when the pn are orthogonal polynomials,
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Figure 2: (HiPPO-LegT.) (Left) First 4 basis functions Kn(t) for state size N = 1024 (Proposition 4). (Right)
Choosing a particular C produces a spike kernel or “delay network” (Theorem 9).

and specifically looked for solutions to (7), which turn out to be SSMs. We have rephrased the HiPPO
definition in Definition 2 to start directly from SSMs and hence is more general. (See Appendix A.1 for an
overview of the original HiPPO setup.) We discuss the two most important cases previously introduced.

HiPPO-LegT. (5) is a TOSSM that approximates the truncated Legendre polynomials (Fig. 2).

Definition 3. Let I(t) be the indicator function for the unit interval [0, 1]. Let Ln(t) be the Legendre
polynomials rescaled to be orthonormal on [0, 1], i.e.,

∫︁
Ln(t)Lm(t)I(t) dt = δn,m.

Proposition 4. As N →∞, the SSM with (A,B) in (5) is a TOSSM with

ω(t) = I(t) Kn(t) = Ln(t)I(t).

This particular system was the precursor to HiPPO and has also been variously called the Legendre Delay
Network (LDN) or Legendre Memory Unit (LMU) [16, 17]. The original motivation of this system was not
through the online function approximation formulation of HiPPO, but through finding an optimal SSM
approximation to the delay network that has impulse response K(t) = δ(t− 1) representing a time-lagged
output by 1 time unit(Fig. 2).. We state and provide an alternate proof of this result in ??, Theorem 9.

HiPPO-LegS. Unlike the HiPPO-LegT case, which is an LTI system (1) (i.e. TOSSM), the HiPPO-
LegS matrix (4) was meant to be used in a time-varying system x′(t) = 1

tAx(t) +
1
tBu(t) [5]. In contrast

to HiPPO-LegT, which reconstructs onto the truncated Legendre polynomials in sliding windows [t− 1, t],
HiPPO-LegS reconstructs onto Legendre polynomials on “scaled” windows [0, t]; since the window changes
across time, the system is not time-invariant (Fig. 1). Specifically, we have:

Theorem 5. The SSM ( 1tA,
1
tB) for (A,B) in (4) is an OSSM with

ω(t, s) =
1

t
· I(s/t) pn(t, s) = Ln(s/t).

However, the S4 model applies the exact same formula (4) inside the time-invariant SSM (1), i.e. dropped
the 1

t term, which had no mathematical interpretation (see Appendix A.1 for more details). In other words,
while ( 1tA,

1
tB) is an OSSM, it was not known whether the TSSM (A,B) is a TOSSM. Given that the

performance of SSM models is very sensitive to these matrices A [7, 9], it remained a mystery why this works.
In Section 3 we will prove that (4) actually does correspond to a TOSSM.
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Figure 3: (Left : LegS) We prove that the particular A matrix chosen in S4 produces Legendre polynomials under
an exponential re-scaling, resulting in smooth basis functions with a closed form formula. (Middle, Right : FouT)
We derive a new SSM that produces approximations to the truncated Fourier basis, perhaps the most intuitive
and ubiquitous set of basis functions. This method generalizes sliding Fourier Transforms and local convolutions (i.e.
CNNs), and can also encode spike functions to solve classic memorization tasks.

LSSL. While HiPPO originally showed just the above two cases involving Legendre polynomials (and an-
other case called LagT for Laguerre polynomials, which will not be a focus of this work), follow-up work
showed that there exist OSSMs corresponding to all families of orthogonal polynomials {pn(t)}. Our more
general framework will also subsume these results.

Naming convention. We use HiPPO-[SSM] to refer to a fixed OSSM (A,B) suitable for online function
approximation, where [SSM] is a suffix (e.g. LegS, LegT) that abbreviates the corresponding basis functions
(e.g. scaled Legendre, truncated Legendre). S4-[SSM] refers to the corresponding trainable layer (A,B,C)
with randomly initialized C, trained with S4’s representation and computational algorithm [7].

Other SSMs. Several variants of S4 have been introduced, including several simpler diagonal SSMs (DSS [9],
S4D [8], S5 [14]). Notably, these methods are all based on approximations of HiPPO-LegS, and our new
theory explains why they perform well [8]. However, they are not OSSMs, and in Section 4 we show several
settings where the full S4 variants based on OSSMs outperform these variants.

3 Generalized HiPPO: General Orthogonal Basis Projections

In Section 3.1, we prove that the LTI HiPPO-LegS is actually a TOSSM and show closed formulas for its
basis functions. In Section 3.2, we include more specific results on finite-window SSMs, including introducing
a new method HiPPO-FouT based on truncated Fourier functions, and proving previously established
conjectures. Section 3.3 shows more general properties of TOSSMs, which establish guidelines for interpreting
and initializing SSM parameters such as the timescale ∆.

Our main, fully general, result is Theorem 12 in Appendix C.2, which describes a very general way to derive
OSSMs for various SSM basis functions Kn(t, s). This result can be instantiated in many ways to generalize
all previous results in this line of work.

3.1 Explanation of S4-LegS

We showcase the generality of Theorem 12 by stating the following special case containing a sub-class of time
varying OSSMs (which are themselves rich enough to explain both S4-LegS and HiPPO-LegS):

Corollary 3.1. Define σ(t, s) = exp(a(s)− a(t)) for any differentiable function a. The SSM (a′(t)A, a′(t)B)
is an OSSM with

ω(t, s) = I(σ(t, s))a′(s)σ(t, s) pn(t, s) = Ln(σ(t, s)).
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We show the matrices (A,B) in (4) are deeply related to the Legendre polynomials Ln defined in Defini-
tion 3. In particular, as more specific corollaries of Corollary 3.1, we recover both the original time-varying
interpretation of the matrix in (4), as well as the instantiation of LegS as a time-invariant system. If we set
a′(t) = 1

t , then we recover the scale-invariant HiPPO-LegS OSSM in Theorem 5:

Corollary 3.2 (Scale-Invariant HiPPO-LegS, Theorem 5). The SSM ( 1tA,
1
tB) is a TOSSM for basis

functions Kn(t) =
s
tLn(

s
t ) and measure ω = 1

t I[0, 1] where A and B are defined as in (4).

And if we set a′(t) = 1, this shows a new result for the time-invariant HiPPO-LegS TOSSM:

Corollary 3.3 (Time-Invariant HiPPO-LegS). The SSM (A,B) is a TOSSM with

ω(t) = e−t pn(t) = Ln(e
−t).

This explains why removing the 1
t factor from HiPPO-LegS still works: it is orthogonalizing onto the Legendre

polynomials with an exponential “warping” or change of basis on the time axis (Fig. 3,(Left)).

3.2 Finite Window Time-Invariant Orthogonal SSMs

For the remainder of this section, we restrict to the time-invariant SSM setting (3). A second important
instantiation of Theorem 12 covers cases with a discontinuity in the SSM basis functions Kn(t), which re-
quires infinite-dimensional SSMs to represent. The most important type of discontinuity occurs when Kn(t)
is supported on a finite window, so that these TSSMs represent sliding window transforms.

We first derive a new sliding window transform based on the widely used Fourier basis (Section 3.2.1).

We also prove results relating finite window methods to delay networks (Section 3.2.2)

3.2.1 S4-FouT

Using the more general framework (Theorem 12) that does not necessarily require polynomials as basis func-
tions, we derive a TOSSM that projects onto truncated Fourier functions.

Theorem 6. As N → ∞, the SSM for (6) is a TOSSM with ω(t) = I(t), and {pn}n≥1 are the truncated
Fourier basis functions orthonormal on [0, 1], ordered in the form {pn}n≥0 = (1, c0(t), s0(t), . . .), where
sm(t) =

√
2 sin (2πmt) and cm(t) =

√
2 cos (2πmt) for m = 0, . . . , N/2.

This SSM corresponds to Fourier series decompositions, a ubiquitous tool in signal processing, but represented
as a state space model. The basis is visualized in Fig. 3 (middle) for state size N = 1024.

A benefit of using these well-behaved basis functions is that we can leverage classic results from Fourier
analysis. For example, it is clear that taking linear combinations of the truncated Fourier basis can represent
any function on [0, 1], and thus S4-FouT can represent any local convolution (i.e. the layers of modern
convolutional neural networks).

Theorem 7. Let K(t) be a differentiable kernel on [0, 1], and let K̂(t) be its representation by the FouT

system (Theorem 6) with state size N. If K is L−Lipschitz, then for ϵ > 0, N ≥
(︁

L
πϵ

)︁2
+ 2, we have

∥K(t)− K̂(t)∥ ≤ ϵ. If K has k−derivatives bounded by L, then we can take N ≥
(︁

L
πkϵ

)︁ 2
2k−1 + 2.

3.2.2 Approximating Delay Networks

An interesting property of these finite window TSSMs is that they can approximate delay functions. This
is defined as a system with impulse response K(t) = δ(t− 1): then y(t) = (K ∗ u)(t) = u(t− 1), which means
the SSM outputs a time-lagged version of the input. This capability is intuitively linked to HiPPO, since
in order to do this, the system must be remembering the entire window u([t− 1, t]) at all times t, in other
words perform an approximate function reconstruction. Any HiPPO method involving finite windows should
have this capability, in particular, the finite window methods LegT and FouT.
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Theorem 8. For the FouT system A and B, let C be (twice) the vector of evaluations of the basis functions
Cn = 2 · pn(1) and let D = 1. For the LegT system A and B, let C be the vector of evaluations of the basis

functions Cn = pn(1) = (1 + 2n)
1
2 (−1)n and let D = 0.

Then the SSM kernel K(t) = CetAB +Dδ(t) limits to K(t)→ δ(t− 1) as N →∞.

Theorem 8 is visualized in Figs. 2 and 3 (right). Further, the result for LegT can be characterized even
more tightly for finite N . In fact, this was the original motivation for the LDN/LMU [16, 17], which worked
backward from the transfer function of the desired delay function impulse response K(t) = δ(t − 1), and
noticed that the SSM for Padé approximations to this were linked to Legendre polynomials. This was not
fully proven, and we state it here and provide a full proof in Appendix C.4.

Theorem 9. For A,B,C,D in the LegT system described in Theorem 8, the transfer function L{K(t)}(s)
is the [N − 1/N ] Padé approximant to e−s = L{δ(t− 1)}(s).

We remark that although LegT (LMU) is designed to be an “optimal” approximation to the delay function
via Padé approximants, it actually produces a weaker spike function than FouT (Fig. 2 vs. Fig. 3) and em-
pirically performs slightly worse on synthetic tasks testing this ability (Section 4.3). This may be because
Padé approximation in the Laplace domain does not necessarily translate to localization in the time domain.

The above result provides theoretical justification for why S4-FouT excels at dense memorization tasks (see
Section 4).

3.3 Properties of Time-invariant Orthogonal SSMs: Timescales and Normaliza-
tion

We describe several general properties of TOSSMs, which let us answer the following questions:

• How should all parameters (A,B,C) be initialized for an SSM layer to be properly normalized?

• What does ∆ intuitively represent, and how should it be set in an SSM model?

So far, this had been done in an ad-hoc way. It turns out that for TOSSMs, these two questions are closely
related and have intuitive interpretations.

Closure properties. First, several basic transformations preserve the structure of TOSSMs. Consider a
TOSSM (A,B) with basis functions pn(t) and measure ω(t). Then, for any scalar c and unitary matrix V , the
following are also TOSSMs with the corresponding basis functions and measure (Appendix C.5, Proposition 13):

Transformation Matrices Interpretation Basis Measure

Scalar Scaling (cA, cB) Timescale change p(ct) ω(ct)c
Identity Shift (A+ cI,B) Exponential tilting p(t)e−ct ω(t)e2ct

Unitary Transformation (V AV ∗,V B) Identity V p(t) ω(t)

Normalization. A standard aspect of training deep learning models, in general, concerns the scale or
variance of activations. This has been the subject of much research on training deep learning models, touching
on deep learning theory for the dynamics of training such as the exploding/vanishing gradient problem [11], and
a large number of normalization methods to ensure properly normalized methods, from the simple Xavier/He
initializations [4, 10] to BatchNorm and LayerNorm [1, 12] to many modern variants and analyses of these [3].

The following proposition follows because for a TOSSM, x(t) can be interpreted as projecting onto orthonormal
functions in a Hilbert space (Proposition 2).

Proposition 10 (Normalization of TOSSM). Consider an (infinite-dimensional) TOSSM. For any input

u(t), ∥x(t)∥22 = ∥u∥2ω =
∫︁ t

−∞ u(s)2ω(t− s) dt.
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Corollary 3.4. For a TOSSM with a probability measure (i.e.
∫︁
ω(t) = 1) and any constant input u(t) = c,

the state has norm ∥x(t)∥2 = c2 and the output y(t) has mean 0, variance c2 if the entries of C are mean 0
and variance 1.

Note that the probability measure requirement can be satisfied by simply rescaling B. Corollary 3.4 says the
TOSSM preserves the variance of inputs, the critical condition for a properly normalized deep learning layer.
Note that the initialization of C is different than a standard Linear layer in deep neural networks, which
usually rescale by factor depending on its dimensionality such as N− 1

2 [4].

Timescales. As discussed in Section 2, converting from continuous to discrete time involves a parameter ∆
that represents the step size of the discretization. This is an unintuitive quantity when working directly with
discrete data, especially if it is not sampled from an underlying continuous process.

We observe the following fact: for all standard discretization methods (e.g. Euler, backward Euler, generalized
bilinear transform, zero-order hold [6]), the discretized system depends on (A,B), and ∆ only through
their products (∆A,∆B). This implies that the SSM (A,B) discretized at step size ∆ is computationally
equivalent to the SSM (∆A,∆B) discretized at step size 1.

Therefore, ∆ can be viewed just as a scalar scaling of the base SSM instead of changing the rate of the input.
In the context of TOSSMs, this just stretches the underlying basis and measure (Appendix C.5, calar Scaling).
More broadly, scaling a general SSM simply changes its timescale or rate of evolution.

Proposition 11. The ODE y′ = cAy + cBu evolves at a rate c times as fast as the SSM x′ = Ax+Bu, in
the sense that the former maps u(ct) ↦→ x(ct) if the latter maps u(t) ↦→ x(t).

The most intuitive example of this is for a finite window TOSSM such as LegT or FouT. Discretizing this
system with step size ∆ is equivalent to considering the system (∆A,∆B) with step size 1, which produces
basis functions supported exactly on [0, 1

∆ ]. The interpretation of the timescale ∆ lends to simple discrete-
time corollaries of the previous continuous-time results. For example, LegT and FouT represent sliding
windows of 1/∆ elements in discrete time.

Corollary 3.5. By Theorem 8, as N →∞, the discrete convolutional kernel K → e⌈∆−1⌉, i.e. the discrete

delay network with lag 1
∆ .

Corollary 3.6. For HiPPO-FouT matrices (A,B), by Theorem 6, as N →∞, the discrete convolutional
kernel K (over the choice of C) can represent any local convolution of length ⌊∆−1⌋.

This discussion motivates the following definition. Properly normalized TOSSMs (A,B) will model depen-
dencies of expected length 1, and ∆ modulates it to model dependencies of length 1

∆ , allowing fine-grained
control of the context size of a TOSSM.

Definition 4 (Timescale of TOSSM). Define E[ω] =
∫︁ ∞
0

tω(t) dt∫︁ ∞
0

ω(t) dt
to be the timescale of a TOSSM having

measure ω(t). A TOSSM is timescale normalized if it has timescale 1.

By this definition, HiPPO-LegS is timescale normalized. This motivates S4’s initialization of ∆ log-uniformly
in (0.001, 0.1), covering a geometric range of sensible timescales (expected length 10 to 1000). In Section 4
we show that the timescale can be chosen more precisely when lengths of dependencies are known.

We finally remark that HiPPO-LegT and -FouT were derived with measures I[0, 1]. However, to properly
normalize them by Definition 4, we choose to halve the matrices to make them orthogonal w.r.t. ω = 1

2I[0, 2].
The S4-FouT and S4-LegT methods in our experiments use these halved versions.

3.4 Discussion

Table 1 summarizes the results for TOSSMs presented in this section, including both original HiPPO methods
defined in Gu et al. [5] as well as our new methods.
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Table 1: Summary of time-invariant orthogonal SSMs. Original HiPPO results (Bottom) and new results (Top).

Method SSM Matrices SSM kernels etAB Orthogonal basis pn(t) Measure ω(t) Timescale

LegS equation Eq. (4) Ln(e
−t)e−t Ln(e

−t) e−t 1
FouT equation Eq. (6) (cos, sin)(2πnt)I[0, 1] (cos, sin)(2πnt) I[0, 1] 1/2

LegT equation Eq. (5) Ln(t)I[0, 1] Ln(t) I[0, 1] 1/2

LagT see [5] Lag(t)e−t/2 Lag(t)e−t/2
I[0,∞) ∞

HiPPO-LagT We note that the original HiPPO paper also included another method called LagT based on
Laguerre polynomials. Because Laguerre polynomials are orthogonal with respect to e−t, this system was
supposed to represent an exponentially decaying measure. However, this method was somewhat anomalous;
it generally performed a little worse than the others, and it was also empirically found to need different
hyperparameters. For example, Gu et al. [5] found that on the permuted MNIST dataset, setting ∆ to around
1

784 for most HiPPO methods was indeed optimal, as the theory predicts. However, HiPPO-LagT performed
better when set much higher, up to ∆ = 1.0. It turns out that this method changes the basis in a way such
that it is not orthogonal with respect to an exponentially decaying measure, but rather the constant measure
I[0,∞), and has a timescale of ∞; this explains why the hyperparameters for ∆ need to be much higher.

In summary, we do not recommend using the original HiPPO-LagT, which despite the original motivation
does not represent orthogonalizing against an exponentially decaying measure. Instead, HiPPO-LegS (as a
time-invariant SSM) actually represents an exponentially decaying measure.

Timescales For a timescale normalized orthogonal SSM (i.e.
∫︁∞
0
ω(t) = 1 and

∫︁∞
0
tω(t) = 1):

• 1
∆ exactly represents the range of dependencies it captures. For example, S4-FouT can represent any
finite convolution kernel of length 2

∆ (so the expected length of a random kernel is 1
∆ ).

• A random vector C with independent mean 0, variance 1 entries is a variance-preserving SSM, i.e.
produces outputs matching the variance of the input.

LSSL and General Polynomials The Linear State Space Layer [6] succeeded HiPPO by incorporating it
into a full deep SSM model, and also generalized the HiPPO theory to show that all orthogonal polynomials can
be defined as the SSM kernels for some (A,B). Our framework is even stronger and immediately produces the
main result of LSSL as a corollary (Appendix), and can also work for non-polynomial methods (e.g. FouT).

These results show that all orthogonal polynomial bases, including truncated and scaled variants, have
corresponding OSSMs with polynomial kernels. If we define this special case as polynomial OSSMs (POSSMs),
we have therefore deduced that all of the original HiPPOs are POSSMs.

4 Experiments

We study the empirical tradeoffs of our proposed S4 variants. We compare several S4 variants based on the
TOSSMs introduced in this work, as well as to simpler diagonal SSMs called S4D that are not orthogonal
SSMs [8]. Corresponding to our main contributions, we hypothesize that

• S4-LegS excels at sparse memorization tasks because it represents very smooth convolution kernels that
memorize the input against an infinitely-long measure (Corollary 3.3, Fig. 3). Conversely, it is less
appropriate at short-range tasks with dense information because it smooths out the signal.

• S4-FouT excels at dense memorization tasks because it can represent spike functions that pick out past
elements at particular ranges (Section 3.2.2). However, it is less appropriate at very long range tasks
because it represents a finite (local) window.
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Table 2: (Long Range Arena) Accuracy (std.) on full suite of LRA tasks. Hyperparameters in Appendix B. ✗

denotes failure to learn better than random guessing, following convention from Gu et al. [7], Tay et al. [15].

Model ListOps Text Retrieval Image Pathfinder Path-X Avg

S4-LegS 59.60 (0.07) 86.82 (0.13) 90.90 (0.15) 88.65 (0.23) 94.20 (0.25) 96.35 (-) 86.09
S4-FouT 57.88 (1.90) 86.34 (0.31) 89.66 (0.88) 89.07 (0.19) 94.46 (0.24) ✗ 77.90
S4-LegS/FouT 60.45 (0.75) 86.78 (0.26) 90.30 (0.28) 89.00 (0.26) 94.44 (0.08) ✗ 78.50

S4 (original) 58.35 76.02 87.09 87.26 86.05 88.10 80.48
Transformer 36.37 64.27 57.46 42.44 71.40 ✗ 53.66

• ∆ can be initialized precisely based on known time dependencies in a given task to improve performance.

4.1 Long Range Arena

The Long Range Arena (LRA) benchmark is a suite of sequence classification tasks designed to stress test
sequence models on modeling long sequences. We improve S4’s previous state of the art by another 6 points
(Table 2). Validating our hypothesis, S4-LegS is extremely strong at the hardest long-range task (Path-X)
involving sparse dependencies of length 16384, which FouT cannot solve because it is a finite window method.

Compared to the original S4 model, the S4-LegS method in Table 2 is the same model but differs by improving
some sensible hyperparameters; the main differences are (i) using a bidirectional instead of autoregressive
model, since the tasks do not require causality (ii) adopting a more standard cosine learning rate scheduler
rather than decaying on validation plateau, and (iii) increasing weight decay regularization.

On top of these general changes, the primary source of improvements on Path-X performance arises from
applying the theory of timescales in Section 3.3. Fig. 4 illustrates the importance of setting ∆ correctly.
Instead of the standard initialization of (∆min,∆max) = (0.001, 0.1), these results were obtained by lowering
the initialization of ∆ by a factor of 10 in accordance with known length of dependencies in the Path-X task.

Figure 4: (Validation curves on Path-X.) (Left) Setting ∆min too small can solve the task, but is inconsistent.
(Right) A good setting of ∆min can consistently solve the task. Note that the timescale of each feature is up to

1
∆min

= 104, which is on the order of (but not exceeding) the length of the task L = 16384. Empirically, performance is
best when spreading out the range of ∆ with a larger ∆max that covers a wider range of timescales and can potentially
learn features at different resolutions, which are combined by a multi-layer deep neural network. We also show a
diagonal variant of S4-LegS called S4D-Inv introduced in [8] which approximates S4-LegS, but is still worse.
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Figure 5: (New HiPPO methods) Function reconstruction predicted by our general theory. An input signal of
length 10000 is processed sequentially, maintaining a state vector of size only x(t) ∈ R

64, which is then used to
approximately reconstruct the entire history of the input. (Left) HiPPO-LegS (as an LTI system) orthogonalizes on
the Legendre polynomials warped by an exponential change of basis, smoothening them out. This basis is orthogonal
with respect to an exponentially decaying measure. Matching the intuition, the reconstruction is very accurate for the
recent past and degrades further out, but still maintains information about the full history of the input, endowing it
with long-range modeling capacity. This is the same as S4. (Right) HiPPO-FouT orthogonalizes on the truncated
Fourier basis, similar to the original HiPPO-LegT or LMU.

(Δ min, Δ max) (Δ min, Δ max)
(1e-3, 2e-3) (2e-3, 2e-3) (1e-3, 1e-1) (2e-3, 1e-1)

S4-LegS -6.2581 -6.6328 -3.5505 -3.3017

S4-LegT -7.4987 -8.1056 -2.9729 -2.6557

S4-FouT -7.4889 -8.3296 -3.0062 -2.6976

S4-(LegS/FouT) -7.4992 -8.3162 -3.4784 -3.2628

S4D-LegS -6.1528 -6.184 -3.8773 -3.6317

S4D-Inv -5.9362 -6.0986 -4.1402 -3.7912

S4D-Lin -7.1233 -6.6483 -3.973 -3.5991
S4D-(Inv/Lin) -6.839 -6.705 -4.325 -3.8389

Figure 6: Log-MSE after training on the Reconstruction Task. (Left) When the timescales ∆ are set appropriately for
this task, the methods that theoretically reconstruct against a uniform measure (LegT and FouT) are much better
than alternatives, achieving MSE more orders of magnitude lower than other SSM initializations. (Right) Interestingly,
when the timescales ∆ are not set correctly, these methods (LegT and FouT) actually perform worst and the diagonal
methods introduced in [8] perform best.

4.2 Theory: Function Reconstruction, Timescales, Normalization

Fig. 5 confirms the HiPPO theory of online function reconstruction (Proposition 2) for the proposed TOSSMs
LegS and FouT. We additionally construct a synthetic Reconstruction Task (for a uniform measure) to test
if S4 variants can learn to reconstruct. The input is a white noise sequence u ∈ R4000. We use a single layer
linear S4 model with state size N = 256 and H = 256 hidden units. Models are required to use their output at
the last time step, a vector y4000 ∈ R256, to reconstruct the last 1000 elements of the input with a linear probe.
Concretely, the loss function is to minimize ∥u3000:4000−W y4000∥22, where W ∈ R1000×256 is a learned matrix.

Fig. 6 shows that S4-LegT and S4-FouT, the methods that theoretically reconstruct against a uniform
measure, are far better than other methods. A natural question is whether other SSMs that do not satisfy the
HiPPO theory can still perform well. To test this, we include diagonal variants of S4 (S4D) proposed in [8],
which are simpler SSM methods that are not OSSMs but were shown to generally perform well empirically.
However, they do not learn the right function on this task. We also include a method S4-(LegS/FouT)
which combines both LegS and FouT measures by simply initializing half of the SSM kernels to each. Despite
having fewer S4-FouT kernels, this still performs as well as the pure S4-FouT initialization.
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Table 3: Ablation of the initialization standard deviation of C for S4-LegS on classification datasets.

Init std. σ of C 0.01 0.1 1.0 10.0 100.0

Sequential CIFAR 85.91 (0.41) 86.33 (0.01) 86.49 (0.51) 84.40 (0.16) 82.05 (0.61)
Speech Commands 90.27 (0.31) 90.00 (0.11) 90.67 (0.19) 90.30 (0.36) 89.98 (0.51)

Finally, we validate the theory of normalization in Section 3.3, which predicts that for a properly normalized
TOSSM, the projection parameter C should be initialized with unit variance, in contrast to standard
initializations for deep neural networks which normalize by a factor related to the size of N (in this case
N = 64). Table 3 shows classification results on datasets Sequential CIFAR (sCIFAR) and Speech Commands
(SC), using models of size at most 150K parameters. This replicates the setup of the “ablation models” of [8,
Section 5]. Results show that using standard deviation 1.0 for C is slightly better than alternatives, although
the difference is usually minor.

4.3 Memorization: the Delay (continuous copying) Task

Next, we study how the synthetic reconstruction ability transfers to other tasks. The Delay Task requires
models to learn a sequence-to-sequence map whose output is the input lagged by a fixed time period (Fig. 7a).
For recurrent models, this task can be interpreted as requiring models to maintain a memory buffer that
continually remembers the latest elements it sees. This capability was the original motivation for the Legendre
Memory Unit, the predecessor to HiPPO-LegT, which was explicitly designed to solve this task because it
can encode a spike kernel (Fig. 2). In Fig. 7b, we see that our new S4-FouT actually outperforms S4-LegT,
which both outperform all other methods when the timescale ∆ is set correctly. We note that this task with
a lag of just 1000 time steps is too hard for baselines such as an LSTM and Transformer, which empirically
did not learn better than random guessing (RMSE 0.43).

5 How to Train Your HiPPO

5.1 Summary

• SSMs represent convolution kernels that are linear combinations (parameterized by C) of basis functions
(parameterized by A and B).

• HiPPO is a general mathematical framework for producing matricesA andB corresponding to prescribed
families of well-behaved basis functions. We derive HiPPO matrices corresponding to exponentially-
scaled Legendre families (LegS) and the truncated Fourier functions (FouT).

– HiPPO-LegS corresponds to the original S4 method and produces a very smooth, long-range family
of kernels (Fig. 3) that is still the best method for long-range dependencies among all S4 variants

– HiPPO-FouT is a finite window method that subsumes local convolutions (e.g. generalizing vanilla
CNNs, Corollary 3.6) and captures important transforms such as the sliding DFT or STFT

• Independently of a notion of discretization, the timescale ∆ has a simple interpretation as controlling the
length of dependencies or “width” of the SSM kernels. Most intuitively, for a finite window method such as
FouT, the kernels have length exactly 1

∆ , and generalize standard local convolutions used in deep learning.

5.2 Discussion

This work improves the HiPPO framework, generalizing it to any set of orthonormal basis functions as
projection operators. This leads to a clarification of the mechanisms underlying the original S4 model, new
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(a) (Delay Task) Models perform a mapping from R
4000 → R

4000 where the target output is lagged by 1000 steps, with error
measured by RMSE. The input is a white noise signal bandlimited to 1000Hz. We use single layer SSMs with state size N = 1024.

(Δ min, Δ max) Frozen (A, B) Trainable (A, B)

(5e-4, 5e-4) 0.2891 0.2832 (Δ min, Δ max) = (1e-3, 1e-1) (Δ min, Δ max) = (2e-3, 2e-3)
(1e-3, 1e-3) 0.1471 0.1414 Frozen (A, B) Trainable (A, B) Frozen (A, B) Trainable (A, B)

(2e-3, 2e-3) 0.0584 0.0078 S4-LegS 0.3072 0.0379 0.2369 0.0130

(4e-3, 4e-3) 0.4227 0.1262 S4-LegT 0.2599 0.1204 0.0226 0.0129
(8e-3, 8e-3) 0.4330 0.2928 S4-FouT 0.2151 0.1474 0.0304 0.0078

(5e-4, 1e-1) 0.2048 0.1537 S4-LegS+FouT 0.1804 0.0309 0.0250 0.0080

(1e-3, 1e-1) 0.2017 0.1474 S4D-LegS 0.1378 0.0337 0.0466 0.0140

(2e-3, 1e-1) 0.3234 0.2262 S4D-Inv 0.1489 0.0243 0.0605 0.0186

(4e-3, 1e-1) 0.4313 0.3417 S4D-Lin 0.1876 0.1653 0.0421 0.0144
(8e-3, 1e-1) 0.4330 0.4026

(b) (RMSE) (Left) Setting ∆ appropriately makes a large difference. For FouT (A,B), which encode finite window basis
functions (Fig. 3), the model can see a history of length up to 2

∆
. For example, setting ∆ too large means the model cannot see

1000 steps in the past, and performs at chance. Performance is best at the theoretically optimal value of ∆ = 2 · 10−3 which can
encode a spike kernel at distance exactly 1000 steps (Corollary 3.5). (Right) When ∆ is set optimally, the proposed S4-FouT
method is the best SSM as the theory predicts. When ∆ is not set optimally, other methods perform better, including the simple
diagonal methods proposed in [8].

Figure 7: (Delay Task.) A synthetic memorization task: definition (Fig. 7a) and results (Fig. 7b).

variants for different basis functions, and principled explanations of other components such as the timescale
and initialization.

The theoretical insights provided by this work have been used to improve and extend SSMs in several directions.
We showed that S4 produces exponentially-decaying kernels according to precise formulas (Corollary C.6),
and Li et al. [13] designed alternative exponentially-decaying CNN kernels inspired by this property. Another
line of work on diagonal approximations to S4 all use insights from our theory to simplify and improve S4.
DSS [9] introduced a particular diagonal approximation which was empirically effective, and S4D [8] proved
that it produced the same kernels asymptotically as S4 (Corollary C.6). S4D contains more experiments
comparing various SSMs, including these diagonal SSMs as well as the S4 variants introduced here (S4-LegS
and S4-FouT), and can be seen as a companion paper to this work. Finally, S5 extended this to multi-
input multi-output (MIMO) SSMs and showed that our recommendations for initialization of C and ∆
are important even in the MIMO setting. We believe that the insights in this work will be useful both to
understand the original S4 model, and produce better and simpler state space models.
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of diagonal state space models. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

[9] Ankit Gupta. Diagonal state spaces are as effective as structured state spaces. In Advances in Neural
Information Processing Systems (NeurIPS), 2022.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification, 2015.

[11] Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen netzen. Diploma, Technische Universität
München, 91(1), 1991.

[12] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International conference on machine learning, pages 448–456. PMLR, 2015.

[13] Yuhong Li, Tianle Cai, Yi Zhang, Deming Chen, and Debadeepta Dey. What makes convolutional
models great on long sequence modeling? arXiv preprint arXiv:2210.09298, 2022.

[14] Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified state space layers for
sequence modeling. arXiv preprint arXiv:2208.04933, 2022.

[15] Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao, Liu
Yang, Sebastian Ruder, and Donald Metzler. Long range arena : A benchmark for efficient transformers.
In International Conference on Learning Representations, 2021. URL https://openreview.net/forum?

id=qVyeW-grC2k.
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A Related Work

We discuss in more detail the differences between this work and the previous results in this line of work.

A.1 HiPPO OSSMs with Orthogonal Polynomial Kernels

HiPPO is an online function reconstruction framework theoretically motivated and described in [5] and
expanded on in [6]. By projecting sequence data onto polynomial bases, a function’s history can be represented
in a latent space.

Every measure µ (with some mild restrictions) in the finite1 interval2 [−1, 1] induces a unique sequences of
orthogonal polynomials (OPs) p0(x), p1, . . . satisfying deg(pi) = i and

⟨pi, pj⟩µ =

∫︂ 1

−1

pi(x)pj(x) dµ(x) = δij for all i, j, (8)

where δij = 1 if i = j and 0 otherwise.

This sequence forms an OP family. For a function u, HiPPO gives a compressed representation the history of
u in the interval [t− θ(t), t] in the N coefficients given by (0 ≤ n < N):

xn(t) =

∫︂ t

t−θ(t)

u(t)pn(t, s)µ(t, s) ds. (9)

where pn(t, s) and µ(t, s) are transformations of the OP family onto the interval [0, t]. Specifically, one can

choose pn(t, s) = pn

(︂
2(s−t)
θ(t) + 1

)︂
and µ(t, s) = µ

(︂
2(s−t)
θ(t) + 1

)︂
. Note that Eq. (9) and Eq. (8) correspond

exactly to Eq. (7).

When θ(t) = θ for a fixed θ, this corresponds to the ‘truncated’ window from [5] while the case of θ(t) = t
considers the entire [0, t] is the ‘scaled’ window case from [5].

[5] only considered the above for the case of µ(x) = 1 for which the corresponding OP family is the Legendre
polynomials. For θ(t) = θ and θ(t) = t we get the LegT and LegS respectively in [5].

From the viewpoint of Definition 2, it is easy to see that choosing an OP family pi(x) and its measure µ
defines an OSSM (A(t),B(t)). However, both [5] and [6] start from Eq. (9) and show that by differentiating
Eq. (9) wrt t one can derive the corresponding SSM:

x′(t) = A(t)x(t) +B(t)u(t).

Specifically, for the case of µ(x) = 1 (i.e. Legendre) the above simplifies to:

1. For θ(t) = θ (i.e. LegT) one gets

x′(t) =
1

θ
·Ax(t) + 1

θ
·Bu(t), (10)

where A and B are as in Eq. (5).

2. For θ(t) = t (i.e. LegS) one gets

x′(t) =
1

t
·Ax(t) + 1

t
·Bu(t), (11)

where A and B are as in Eq. (4).
1The results on orthogonal polynomials also work for the infinite interval [0,∞) via the Laguerre polynomials but we ignore

this case for simplicity but point out that [5] handles this case.
2In this work we presented everything for the finite interval [0, 1] but since [−1, 1] is more standard in the orthogonal

polynomials and what was used in [5] we stick with [−1, 1] in this section. It is easy to move from one to another by an
appropriate linear scaling of the argument.
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A.2 The mystery of S4

The S4 paper [8], used a weird ‘mixture’ of LegS and LegT. Specifically, in its experiments, it used the ODE
in Eq. (10) but instead of using A and B are as in Eq. (5) it used A and B as in Eq. (4). However, LegS
A and B from Eq. (4) had been derived for θ(t) = t instead of θ(t) = θ. In other words, there was NO
mathematical justification for the ODE used in S4. One of our main results is to provide a solid
mathematical justification for the ODE used in S4 (see Section 3.1).

A.3 Why OP kernels?

A crucial insight of the HiPPO framework is that the coefficients x(t) is sufficient to recover u. This enables
online predictions for end-to-end models. The intuition for this is basically that OPs form a complete basis
for functions over [−1, 1]. Specifically, given a C1−smooth function u : [−1, 1]→ R which is seen online, we
wish to maintain a compressed representation of its history u(s)≤t = u(s)s≤t at every time t.

For any infinite dimensional polynomial basis p0, p1, . . . , we get the polynomial expansion of u:

u(t) =

∞∑︂
n=0

xn(t)pn(t).

The truncated approximation of u(t) at time t = N is:

û(t) =

N−1∑︂
n=0

xn(t)pn(t). (12)

If pi is an OP family, then our approximation û(t) is guaranteed to be optimal. That is, as N → ∞, û(t)
becomes a perfect reconstruction of u (i.e. the error with respect to the measure µ goes to 0 as N →∞).
Further, given the measure µ(x) it is known that the OP family corresponding to µ gives the best possible
approximation among all degree N − 1 polynomial approximations.

The main insight of HiPPO [5] was to extend the framework above from the interval [−1, 1] to [0, t] such that
the approximation of Eq. (12) can be updated efficiently as t increases.

In Appendix C.2, we expand the HiPPO framework to any set of differentiable orthogonal functions with
respect to a given measure, and generalize the concepts behind LegS using the time-warping function σ. We
use this to derive a general form for time-varying OSSMs, and give a mathematical interpretation of the
LegS’s state matrix.

A.4 HiPPO vs LSSL

As discussed above, HiPPO can be thought of as a framework for deriving state space models corresponding to
specific polynomial bases. The original paper [5] did not explicitly draw the connection to state space models,
and also developed systems only for a few particular cases which were called LegS (a time-varying system
involving Legendre polynomials), LegT (a time-invariant system with the truncated Legendre polynomials),
and LagT (involving Laguerre polynomials).

A follow-up paper on Linear State Space Layers (LSSL) [6] generalized these results to all orthogonal
polynomial families, and also generalized the flexibility of the time-varying component. They produced
SSMs x′(t) = A(t)x(t) +B(t)u(t) where at all times t, x(t) can be viewed as the projection of the history of
u(s) |s≤t onto orthogonal polynomials pn rescaled onto the interval [t − θ(t), t], where θ(t) is an arbitrary
factor. (Indeed this is the form we outlined above.) This generalized all 3 cases of the original HiPPO paper.
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A.5 Legendre Memory Unit (Legendre Delay Network)

The HiPPO-LegT matrix (5) was first introduced as the LMU [16, 17]. The original motivation was to
produce a state space model that approximates the Delay Network, which can be defined as the LTI system
that transforms u(t) into u(t− 1), i.e. lags the input by 1 time unit. This can also be defined as the system
with impulse response K(t) = δ(t− 1), i.e. it convolves by the convolutional kernel with a δ spike at time 1.

The connection between the Delay Network and Legendre polynomials was made in two steps. First,
the transfer function of the ideal system is L[δ(t − 1)](s) = e−s and must be approximated by a proper
rational function to be represented as an SSM. Taking Padé approximants of this function yields “optimal”
approximations by rational functions, which can then be distilled into a SSM (A,B,C) whose transfer
function C(sI −A)−1B matches it. Second, the SSM basis etAB for this system can be computed and found
to match Legendre polynomials. However, despite making this connection and writing out formulas for this
SSM, [17] did not provide a complete proof of either of these two connections.

The preceding two steps that motivated the LDN can be informally written as the chain of transformations (i)
transfer function e−s → (ii) SSM (A,B,C) → (iii) Legendre polynomials etAB. The HiPPO framework in a
sense proceeded in the opposite direction. [5] started by defining the system that convolves with truncated
Legendre polynomials, and with a particular differentiation technique showed that it could be written as a
particular SSM which they called HiPPO-LegT. This SSM turned out to be the same (up to a minor change
in scaling) as the original (A,B) defined by the LMU, thus proving the second of the two steps relating this
particular SSM to the Legendre polynomials.

In this work, we show the final piece in this reverse chain of equivalences. In particular, we start from
the LegT SSM (A,B,C) and directly prove that its transfer function produces Padé approximants of the
exponential. Our proof introduces new techniques in an inductive argument that can be applied to HiPPO
SSMs beyond the LegT case, and relates them to continued fraction expansions of the exponential.

We comment on a minor difference between the parameterization of HiPPO-LegT and the LMU. The LMU is
originally defined as

x′(t) =
1

θ
Ax(t) +

1

θ
Bu(t)

where θ is a hyperparameter that controls the length of the window. However, we point out that such constant
scaling of the SSM is also controlled by the step size ∆ as discussed in Section 3.3. Therefore θ is redundant
with ∆, so the LegT matrices defined in [5] and in this work do not have a concept of θ. Additionally, in this
work we redefine the LegT matrices (A,B) to be scaled by a factor of 2 to make them properly timescale
normalized, using the theory developed in Section 3.3.

A.6 Our framework

Compared to these works, our framework (Definition 2) simplifies and generalizes the concepts directly in
terms of (time-varying) state space models. We define a more natural concept of orthogonal SSM, derive
very general instantiations of it (Section 3.1), and flesh out its properties (Section 3.3). Our general result
subsumes all prior cases including all cases of the LSSL as a direct corollary. Some concrete advantages include:

• It allows more flexible transformations of polynomial bases, such as including a change-of-basis inside
the polynomials. The previously expained case of LegS is an instance of this, which has basis functions
L(e−t) with an exponential change of basis, instead of vanilla polynomials.

• It can be applied to non-polynomial bases, such as the truncated Fourier basis FouT.

• It does not require considering multiple cases depending on where the basis functions are supported.
Instead, we handle this by considering discontinuities in the basis functions.
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Table 4: The values of the best hyperparameters found for LRA. LR is learning rate and WD is weight decay. BN and
LN refer to Batch Normalization and Layer Normalization.

Depth Features H Norm Pre-norm Dropout LR Batch Size Epochs WD (∆min,∆max)

ListOps 8 128 BN False 0 0.01 50 40 0.05 (0.001, 0.1)
Text 6 256 BN True 0 0.01 16 32 0.05 (0.001, 0.1)
Retrieval 6 256 BN True 0 0.01 64 20 0.05 (0.001, 0.1)
Image 6 512 LN False 0.1 0.01 50 200 0.05 (0.001, 0.1)
Pathfinder 6 256 BN True 0 0.004 64 200 0.03 (0.001, 0.1)
Path-X 6 256 BN True 0 0.0005 32 50 0.05 (0.0001, 0.01)

A.7 Application in deep learning systems

While the preceding discussion covers theoretical interpretations of SSMs, S4 [7] (and its predecessor LSSL [6])
are the application of these SSMs to deep learning. In comparison to prior works such as the LMU and HiPPO
which require a pre-determined system (A,B) and incorporate them naively into an RNN, LSSL and S4 use a
full state space model (A,B,C) as a completely trainable deep learning layer. Doing this required resolving
computational problems with the SSM, which was the main focus of S4. Specifically, the results in HiPPO [5]
and LSSL [6] only guaranteed theoretical efficiency: in particular, they showed how the various computations
can be done with near-linear number of arithmetic operations and does not specifically guaranteee any sort of
numerical stability—the main theoretical contribution of S4 [7] was to give a numerically stable algorithm.

In this work, we make a distinction between HiPPO, which is the theoretical derivation and interpretation of
particular SSMs (A,B), and S4, which is the incorporation of those SSMs as a trainable deep learning layer
with a particular algorithm.

B Experiment Details and Additional Experiments

B.1 Delay (Continuous Copying) Task

The Delay Task consists of input-output pairs where the input is a white noise signal of length 4000 bandlimited
to 1000 Hz. The output is the same signal shifted by 1000 steps (Fig. 7a). We use single layer linear SSMs
with H = 4 hidden units and state size N = 1024. Models are trained with the Adam optimizer with learning
rate 0.001 for 20 epochs.

B.2 Long Range Arena

The settings for LRA use the same hyperparameters in [8]. A more detailed protocol can be found in [8]. To
be self-contained, we recreate the same table of parameters in Table 4.

C Proof Details

We furnish the missing proofs from Section 2 in Appendix C.1. We will describe our general framework and
results in Appendix C.2, and prove the results in Sections 3.1 to 3.3 in Appendices C.3 to C.5 respectively.

C.1 Proofs from Background

This corresponds to results from Section 2.

Proof of Proposition 1. Suppose for the sake of contradiction that there is a second basis and measure qn, µ
such that qn is complete and orthogonal w.r.t. µ, and Kn = qnµ. By completeness, there are coefficients cℓ,k
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such that

pℓ =
∑︂
k

cℓ,kqk.

Then ∫︂
pℓqjµ =

∫︂ ∑︂
k

cℓ,kqkqjµ =
∑︂
k

cℓ,kδkj = cℓ,j .

But qjµ = Kj = pjω, so ∫︂
pℓqjµ =

∫︂
pℓpjω = δℓj .

So cℓ,j = δℓ,j which implies that pℓ = qℓ for all ℓ, as desired.

Proof of Proposition 3. The SSM kernels are Kn(t) = e−t(n+1)Bn. Assume Bn ̸= 0 so that the kernels are
not degenerate.

Suppose for the sake of contradiction that this was a TOSSM with measure ω(t). Then we must have∫︂
Kn(s)Km(s)ω(t)−1 ds = δn,m

Plugging in n = 1,m = 1 and n = 0,m = 2 gives

1 =

∫︂
e−2tB1e

−2tB1ω(t)
−1 ds = B1B1

∫︂
e−4tω(t)−1 ds

0 =

∫︂
e−1tB0e

−3tB2ω(t)
−1 ds = B0B2

∫︂
e−4tω(t)−1 ds

This is clearly a contradiction.

C.2 General theory

Consider a measure supported on [0, 1] with density ω(t)I(t), where I(t) is the indicator function for membership
in the interval [0, 1]. Let the measure be equipped with a set of orthonormal basis functions p0, . . . , pN−1, i.e.∫︂

pj(s)pk(s)ω(s)I(s) ds = δjk, (13)

where the integrals in this paper are over the range [−∞,∞], unless stated otherwise.

This is sufficient to derive an OSSM based on the HiPPO technique. The generalized HiPPO framework
demonstrates how to build (T)OSSMs utilizing time warping to shape the time interval and tilting to construct
new sets of orthogonal basis functions.

Given an general interval [ℓ, r], we will use the notation I[ℓ, r] to denote the indicator function for the interval
[ℓ, r]– we will drop the interval if ℓ = 0, r = 1.

We will need the notion of a “time warping” function σ as follows:

Definition 5. A time warping function is defined as

σ(t, s) : (−∞, t]→ [0, 1]

such that σ(t, t) = 1.
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We will be using a special case of time-warping function, which we say has a discontinuity at t0 for some
t0 ∈ (−∞, t]:

σ(t, s) = I[t0, t]σ(t, s), (14)

such that

∂

∂t

(︃
∂

∂s
σs(t, s)

)︃
= c(t)

∂

∂s
σ(t, s). (15)

We allow for t0 = −∞, in which case we think of the interval [t0, t] as (−∞, t].

Before proceeding, let us clarify our notation. We will use σt and σs to denote the partial derivatives ∂
∂tσ(t, s)

and ∂
∂sσ(t, s) respectively. We will drop the parameters (t, s) and use f instead of f(t, s) when it is clear

from context to reduce notational clutter. Further, we will extend this notation to function composition,
i.e. write g ◦ f(t, s)) as g(f) and function product, i.e. use fgh instead of f(t, s)g(t, s)g(t, s). Finally, we’ll
shorten fgh ◦ ϕ(t, s) as fgh(ϕ).
We also define the tilting χ and show that regardless of warping, we can construct a new orthogonal basis
(note that the result holds for warping functions as in (14) and not just those as in (15)).

Lemma C.1. For the set of orthonormal functions {pn}N−1
n=0 orthogonal over measure ωI, the set of basis

functions
qtk(σ(t, s)) = χ(t, s)pk(σ(t, s))

are orthogonal over the measure

µ(t, s) = ω(σ(t, s))I[t0, t](s)σs(t, s)χ(t, s)−2

for time-warping function σ satisfying (14) and any χ(t, s) that is non-zero in its support.

Proof. Consider the following sequence of equalities:∫︂
pj(σ)pk(σ)ω(σ)I[t0, t]σsds =

∫︂ t

t0

pj(σ)pk(σ)ω(σ)σsds

=

∫︂ σ(t,t)

σ(t,t0)

pj(y)pk(y)ω(y)dy

=

∫︂ σ(t,t)

σ(t,t0)

pj(y)pk(y)ω(y)dy

=

∫︂ 1

0

pj(y)pk(y)ω(y)dy

=

∫︂
pj(y)pk(y)ω(y)I(y)dy

= δjk.

In the above, the second equality follows from the substitution y ← σ(t, s) and hence dy = σsds and the final
equality follows from (13). Then since χ(t, s) is always non-zero, we have∫︂

(χpj(σ))(χpk(σ))ω(σ)I[t0, t]σsχ−2 ds = δjk,

as desired.

Without loss of generality, we can split χ into a product

χ(t, s) =
1

ψ(σ(t, s))ϕ(t, s)
(16)

of one part that depends on σ and another arbitrary component.
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Time Warped HiPPO. Since we have an orthonormal basis and measure, we can try to derive the
(T)OSSM. For a given input signal u(t), the HiPPO coefficients are defined as the projections.

xn(t) = ⟨u, χpn⟩µ

=

∫︂
u(s) · χ · (pnω)(σ)I[t0, t]σsχ−2 ds

defined as inner product of u(t) with the tilted basis functions χpn with respect to the measure µ as defined
in Lemma C.1. For additional convenience, we use the decomposition χ = ψ−1ϕ−1 from (16) to get:

xn(t) =

∫︂
u(s) · (pnωψ)(σ)I[t0, t]σsϕds. (17)

The HiPPO technique is to differentiate through this integral in a way such that it can be related back to xn(t)
and other xk(t). We require for every n, we require that there are a set of coefficients {γnk}N−1

k=0 such that

σt(pnωψ)
′(σ) =

N−1∑︂
k=0

γnk(pnωψ)(σ) (18)

and for tilting component ϕ

d

dt
ϕ(t, s) = d(t)ϕ(t, s). (19)

Theorem 12. Consider a set of basis functions pn orthogonal over ω, time warping σ(t, s) as in (14), (15),
and tilting χ as in (16) and (19) with the functions σ, pn, ω, ψ obeying (18). If dt0

dt ̸= 0, further assume that
for some vector A′, we have as N →∞,

u(t0) = c

N−1∑︂
k=0

A′
k · xk(t) + du(t). (20)

Then (A0 + (c(t) + d(t))I − cD (A′)
⊤
,B − dD) is an OSSM for basis functions χpn(σ) with measure

ωI[t0, t]σsχ−2 where
A0

nk = γnk

with γnk as in (18),

Dn = (pnωψ)(σ(t, t0))(σsϕ)(t, t0) ·
dt0
dt
,

and
Bn = (pnωψ)(1)(σsϕ)(t, t).

Proof. Applying the Leibniz rule to (17), we get

x′n(t) = x(0)n (t) + x(1)n (t) + x(2)n (t) + x(3)n (t),

where

x(0)n (t) =

∫︂
u(s) · σt(pnωψ)′(σ)I[t0, t]σsϕds

x(1)n (t) =

∫︂
u(s) · (pnωψ)(σ)I[t0, t]

[︃
∂

∂t
(σsϕ)

]︃
ds
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and the x
(2)
n (t) + x

(3)
n (t) terms capture the term we get when differentiating I[t0, t].

Let us consider each term separately. The first term

x(0)n (t) =

∫︂
u(s) · σt(pnωψ)′(σ)I[t0, t]σsϕds (21)

corresponds to the differentiation of the basis functions and measure. In order to relate this to {xk(t)}, it
suffices that σt(pnωψ)

′(σ) satisfies (18) which implies that when we vectorize this, we get x(0)(t) = A0 · x(t).
For additional warping and tilting terms, we consider

x(1)n (t) =

∫︂
u(s) · (pnωψ)(σ)I[t0, t]

[︃
∂

∂t
(σsϕ)

]︃
ds.

To reduce this term to xn(t), recall from (15) that

∂t(σs) = c(t)σs.

Then the above and (19) imply

∂t(σsϕ) = c(t)(σsϕ) + d(t)(σsϕ)

where c(t), d(t) are defined as in (15) and (19).

We will end up with x
(1)
n (t) = (c(t) + d(t))xn(t). This leads to the the vectorized form x(1)(t) = (c(t) +

d(t))Ix(t).

We now need to handle

x(2)n (t) + x(3)n (t) =

∫︂
u(s) · (pnωψ)(σ)

[︃
∂

∂t
I[t0, t]

]︃
(σsϕ) ds. (22)

For the above note that
I[t0, t](s) = H(s− t0)−H(s− t),

where H(x) is the “heaviside step function.” It is know that H ′(x) = δ(x), which implies

∂

∂t
I[t0, t] = δ(s− t)− dt0

dt
δ(s− t0).

Using the above in RHS of (22), we separate out x
(2)
n (t) and x

(3)
n (t) as follows. First, define

x(2)n (t) =

∫︂
u(s) · (pnωψ)(σ)δ(s− t)σsϕds

= u(t) · (pnωψ)(σ(t, t))(σsϕ)(t, t)
= u(t) · (pnωψ)(1)(σsϕ)(t, t).

In the last equality, we have used the fact that σ(t, t) = σ(t, 1) = 1 by definition. It follows that in vectorized
form we have x(2)(t) = Bu(t).

Finally, define

x(3)n (t) = −
∫︂
u(s) · (pnωψ)(σ)δ(s− t0)

dt0
dt
σsϕds

= −u(t0) · (pnωψ)(σ(t, t0))(σsϕ)(t, t0) ·
dt0
dt
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If dt0
dt = 0, then we have D = 0 and hence we have x(3)(t) = 0 = −cD (A′)

⊤
x(t)− dDu(t)

If dt0
dt ̸= 0, then as N →∞, from (20), the above comes out to

x(3)n (t) = −

(︄
c

N−1∑︂
k=0

A′
k · xk(t) + du(t)

)︄
· (pnωψ)(σ(t, t0))(σsϕ)(t, t0) ·

dt0
dt

It follows that in vectorized form we have x(3)(t) = −cD (A′)
⊤
x(t) − dDu(t). The result follows after

combining the terms.

We see that the behavior of is the model is dictated by t0. In particular, in this paper, we will consider two
special cases.

Corollary C.2 (t0 independent of t). The SSM ((A+ c(t) + d(t)I),B) satisfying conditions of Theorem 12
with t0 independent of t, is an OSSM for basis functions χpn(σ) with measure ωI[t0, t]σsχ−2 where A = γnk
as in (18) and Bn = (pnωψ)(1)(σsϕ)(t, t).

Proof. Follows from Theorem 12. Since t0 is independent of t, then dt0
dt = 0, and D = 0.

Corollary C.3 (t0 = t−θ). The SSM (A0+(c(t)+d(t))I−cDA′,B−dD) satisfying conditions of Theorem
12 with t0 = t− θ for a fixed θ, is an OSSM with basis functions χpn(σ) with measure ωI[t0, t]σsχ−2 where
A0

nk = γnk as in (18), Dn = (pnωψ)(σ(t, t− θ))(σsϕ)(t, t− θ), and Bn = (pnωψ)(1)(σsϕ(t, t).

Proof. This follows directly from Theorem 12 by setting t0 = t− θ.

C.3 LegS (and LSSL?)

C.3.1 Explanation of S4-LegS

Consider the case when

σ = ω−1,

i.e. the measure is completely “tilted” away, and let

∂

∂t
σ(t, s) = a(t)σ(t, s) + b(t). (23)

Let’s consider the special case of (23) where b(t) = 0. This is most generally satisfied by

σ(t, s) = exp(a(t) + z(s)).

Note that the condition σ(t, t) = 1 forces z = −a. Hence, we have

σ(t, s) = exp(a(s)− a(t)). (24)

We now consider the following special case of Corollary C.2:
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Corollary C.4. Let η ≥ 0. The SSM (−a′(t)(A+ (η + 1)I), a′(t)B), where t0 is independent of t, is an
OSSM for basis functions and measure

ω(σ)

ση
pn(σ) ω(t, s) = I(σ)

a′(s)σ2η+1

ω(σ)

where σ satisfies (24),

ϕ(t, s) = exp(ηa(s)− ηa(t)) = ση, (25)

A = αnk such that

yp′n(y) =

n−1∑︂
k=0

αnkpk(y) (26)

and

Bn = pn(1).

Proof. Given a orthonormal basis p0, p1, . . . , pN−1 with respect to a measure ω. Note that time-warping
function σ satisfying (24) implies that σs = a′(s)σ.

We fix tilting χ(t, s) = ω(σ)
ση , which in turn follows by setting

ψ = ω−1.

We show shortly that we satisfy the pre-conditions of Corollary C.2, which implies (with our choice of χ and

σ) that we have an OSSM with basis functions pn(t, s) =
ω(σ)
ση pn(σ) and measure

ω(t, s) = ω(σ(t, s))I[t0, t]σs(t, s)χ(t, s)−2

= I[t0, t]
a′(s)σ2η+1

ω(σ)

To complete the proof, we show that out choice of parameters above satisfies the conditions of Corollary C.2 (by
showing they satisfy the conditions of Theorem 12). We verify that σ and ϕ satisfy (15) and (19), noting that

∂t(σs) = −a′(t)σs,

and

∂t(ϕ) = −ηa′(t)ϕ.

This implies that setting c(t) = −a′(t) and d(t) = −ηa′(t) is enough to satisfy (15) and (19).

Further, note that (24) and the fact that ψ = ω−1 imply that

σt(pnωψ)
′(σ) = −a′(t)σp′n(σ).

It follows that (18) is satisfied as long as
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σp′n(σ) =

n−1∑︂
k=0

αnkpk(σ)

for some set of coefficients {αnk}N−1
k=0 , which is exactly (26). This implies the γnk in Corollary C.2 satisfy.

γnk = −a′(t)αnk.

Let A be the matrix such that Ank = −αnk and then note that −a′(t)(A + (η + 1)I) is exactly the first
parameter of the SSM in Corollary C.2. Similarly, recall in Corollary C.2

Bn = pn(1)(σsϕ)(t, t)

= pn(1)a
′(t),

where the final equality follows since in our case, σs(t, t) = a′(t) exp(a(t)−a(t)) = a′(t). Overloading notation
and letting Bn = pn(1), all conditions of Corollary C.2 hold, from which the claimed result follows.

We are particularly interested in the following two special cases of Corollary C.4.

Corollary C.5. The SSM (− 1
t (A + I), 1tB) is a OSSM for basis functions pn(

s
t )ω(

s
t ) with measure

1
t I[t0, t]

(︁
s
t

)︁
· ω( st ) where A = αnk as in (26) and Bn = pn(1).

Proof. Letting a′(t) = 1
t implies that a(t) = ln t. Then we can observe that is a case of Corollary C.4 with

time warping

σ(t, s) = exp(− ln t+ ln s)

= exp(ln(s/t))

=
s

t
.

We set η = 0 in Corollary C.4, which in turn sets ϕ = σ0 = 1. This gives the tilting

χ = ϕ−1ψ−1

= ω.

Then by Corollary C.4, it follows that that we can use σ and χ to build an OSSM with basis functions

ω(σ)

ση
pn(σ) = ω(

s

t
) · pn(

s

t
)

with measure

I(σ)
a′(s)σ2η+1

ω(σ)
=

1

t
I(σ)

σ

ω(σ)
.

Then the result follows.
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Corollary C.6. The SSM (−(A + I),B) is a OSSM for basis functions pn(e
s−t)ω(es−t) with measure

ω = I[t0, t](es−t) es−t

ω(es−t) where A = αnk as in (26) and Bn = pn(1).

Proof. This is a case of Corollary C.4 where a′(t) = 1, σ = exp(s − t), and we pick η = 0, implying that
ϕ = σ0 = 1. It follows that

χ = ϕ−1ψ−1

= ω.

Utilizing Corollary C.4, we can use σ and χ to build an OSSM with basis functions

ω(σ)

ση
pn(σ) = ω(exp(s− t)) · pn(exp(s− t))

with measure

I(σ)
a′(s)σ2η+1

ω(σ)
= I(σ)

exp(s− t)
ω(exp(s− t))

.

This gives us our final result.

Next we instantiate Corollary C.4 to prove Corollary 3.1. (Even though strictly not needed, we instantiate
Corollary C.6 and Corollary C.5 to prove Theorem 5 and Corollary 3.3.) To that end, we will need the
following result:

Lemma C.7. Let the Legendre polynomials orthonormal over the interval [0, 1] be denoted as Ln. Then

yL′
n(y) = nLn(y) +

√
2n+ 1

(︄
n−1∑︂
k=0

√
2k + 1Lk(y)

)︄
, (27)

L′
n(y) = 2

√
2n+ 1

⎛⎝ ∑︂
0≤k≤n−1,n−k is odd

√
2k + 1Lk(y)

⎞⎠ , (28)

and

Ln(0) = (2n+ 1)
1
2 (−1)n and Ln(1) = (2n+ 1)

1
2 . (29)

Proof. The Legendre polynomials satisfy the following orthogonality condition over [−1, 1]:∫︂ 1

−1

Pm(z)Pn(z) dz =
2

2n+ 1
δmn.

Let us denote the normalized Legendre polynomials orthogonal over [−1, 1] as λnPn(z) where λn =
√︂

2n+1
2 .

To orthogonalize them over [0, 1], let y = 1+z
2 . It follows that z = 2y − 1, dz = 2 dy. Note that we then have

∫︂ 1

−1

Pm(z)Pn(z) dz =

∫︂ 1

0

2Pm(2y − 1)Pn(2y − 1) dy.
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This implies that

∫︂ 1

−1

2n+ 1

2
· 2Pm(2y − 1)Pn(2y − 1) dy = δmn.

Then if we let

Ln(y) =
√
2λnPn(2y − 1) =

√
2n+ 1Pn(2y − 1), (30)

then we have an a set of functions over [0, 1] such that

∫︂ 1

0

Lm(y)Ln(y) dy = δmn.

From [2, (2.8), (2.9)], note that Pn(−1) = (−1)n and Pn(1) = 1. This implies that

Ln(0) =
√
2n+ 1Pn(−1), Ln(1) =

√
2n+ 1Pn(1).

Finally note that (30) implies:

L′
n(y) = 2

√
2n+ 1P ′

n(2y − 1)

= 2
√
2n+ 1P ′

n(z).

From [5, 7], we get

P ′
n(z) =

∑︂
0≤k≤n−1,n−k is odd

(2k + 1)Pk(z).

Using (30) on the above, we get (28).

We now consider

yL′
n(y) = 2y

√
2n+ 1P ′

n(z)

= (1 + z)
√
2n+ 1P ′

n(z).

From [5, 8], we get

(z + 1)P ′
n(z) = nPn(z) +

n−1∑︂
k=0

(2k + 1)Pk(z).

Then the above becomes

yL′
n(y) =

√
2n+ 1

(︄
nPn(z) +

n−1∑︂
k=0

(2k + 1)Pk(z)

)︄
.
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(30) implies that Pn(z) =
Ln(y)√
2n+1

, thus

yL′
n(y) = nLn(z) +

√
2n+ 1

(︄
n−1∑︂
k=0

√
2k + 1Lk(z)

)︄
.

We now re-state and prove Corollary 3.1:

Corollary C.8 (Corollary 3.1, restated). Let Ln be the Legendre polynomials orthonormal over the interval
[0, 1]. Define σ(t, s) = exp(a(s)− a(t)). The SSM (a′(t)A, a′(t)B) is an OSSM with

ω(t, s) = I(σ(t, s))a′(s)σ(t, s) pn(t, s) = Ln(σ(t, s)),

where A and B are defined as in (4).

Proof. We consider our basis functions, the Legendre polynomials, which are orthogonal with respect to unit
measure. This allows us to invoke Corollary C.4 with ω = 1. Further, here we have t0 = −∞ and η = 0. Now
we have an SSM: (︁

−a′(t)(A0 + I), a′(t)B
)︁

where A0
nk = αnk as in (26) and Bn = Ln(1).

From (29) observe that Bn = (2n+ 1)
1
2 . From (27), we have

αnk =

⎧⎪⎨⎪⎩
(2n+ 1)

1
2 (2k + 1)

1
2 k < n

n k = n

0 otherwise

.

We write that A = −(A0 + I). Indeed,

−(A0 + I)nk = −

⎧⎪⎨⎪⎩
(2n+ 1)

1
2 (2k + 1)

1
2 if k < n

n+ 1 if k = n

0 if k > n

.

Thus the A and B match those in (4), which completes our claim.

We now re-state and prove Theorem 5:

Corollary C.9 (Theorem 5, restated). Let Ln be the Legendre polynomials orthonormal over the interval
[0, 1]. Then the SSM ( 1tA,

1
tB) is a OSSM for basis functions Ln(

s
t ) and measure 1

t I[t0, t] where A and B
are defined as in (4).

Proof. We consider our basis functions, the Legendre polynomials, which are orthogonal with respect to unit
measure. This allows us to invoke Corollary C.5 with ω = 1. Now we have

x′(t) =
1

t

[︁
−(A0 + I)x(t) +Bu(t)

]︁
where A0

nk = αnk as in (26) and Bn = Ln(1).

From (29) observe that Bn = (2n+ 1)
1
2 . From (27), we have

αnk =

⎧⎪⎨⎪⎩
(2n+ 1)

1
2 (2k + 1)

1
2 k < n

n k = n

0 otherwise

.
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We write that A = −(A0 + I). Indeed,

−(A0 + I)nk = −

⎧⎪⎨⎪⎩
(2n+ 1)

1
2 (2k + 1)

1
2 if k < n

n+ 1 if k = n

0 if k > n

,

which completes our claim.

We now restate and prove Corollary 3.3.

Corollary C.10 (Corollary 3.3, restated). Let Ln be the Legendre polynomials orthonormal over the interval
[0, 1]. Then the SSM (A,B) is a TOSSM for basis functions Ln(e

−t) with measure ω = I[t0, t]e−t where
A,B are defined as in (4).

Proof. We consider our basis functions, the Legendre polynomials, which are orthogonal with respect to unit
measure, warping function σ = exp(s− t), and with tilting χ = ω. We note that σ = exp(s− t) satisfies (24)
with, a′(t) = 1. This allows us to invoke Corollary C.5.

Then x′(t) = (A+I)x(t)+Bu(t) orthogonalizes against the basis functions Ln(e
s−t) with measure I[−∞, t]es−t

where A = αnk as in 26. Note that the SSM basis functions Kn(t, s) = Kn(s− t), hence we get the claimed
SSM form utilizing the same argument for A,B as in the proof of Corollary C.9

This explains why removing the 1
t factor from HiPPO-LegS still works: it is orthogonalizing onto the Legendre

polynomials with an exponential “warping”.

C.4 Finite Windows

C.4.1 LegT Derivation

Corollary C.11. Let Ln be the Legendre polynomials orthonormal over the interval [0, 1] and let σ = 1− t−s
θ

for a constant θ. Then the SSM
(︁
1
θA,

1
θB
)︁
is a OSSM for basis functions Ln(σ) with measure 1

θ I[t0, t](σ)
where A,B are defined as in (5).

Proof. Out plan is to apply Corollary C.3, for which we must show that the basis functions Ln(t, s), time
warping σ(t, s), and tilting χ(t, s) = ψ−1ϕ−1(t, s) satisfy (18), (15), and (19), respectively. We first set some
parameters– note that because ω = 1 and set ψ = ϕ = 1.

The above implies that we have

σt(Lnωψ)
′(σ) = −1

θ
L′
n(σ).

The above along with (28), we see that the Legendre polynomials satisfy (18) with

γnk =
1

θ
·

{︄
−2 · (2n+ 1)

1
2 (2k + 1)

1
2 k < n and n− k is odd

0 otherwise
. (31)

We also note that σs =
1
θ .

It follows that

d

dt
σs = 0,
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satisfying (15) trivially by setting c(t) = 0. Similarly, since ϕ = 1 (19) is also satisfied trivially by setting
d(t) = 0. Finally we note that the Ln forms a complete basis over [0, 1], hence as N →∞, we have

u(t− θ) =
N−1∑︂
k=0

xk(t)Ln(σ(t, t− θ)) =
N−1∑︂
k=0

xk(t)Ln(0).

The above defines A′ by setting A′
n = Ln(0) (as well as c = 1 and d = 0.) Now by Corollary C.3, we have an

SSM (︂
A0 −D (A′)

⊤
,B′

)︂
,

where Dn = 1
θLn(0), and by (27) A0

nk = γnk (as in (31)) and B′
n = 1

θLn(1).

From (29), we have Dn = 1
θ (2n+ 1)

1
2 (−1)n and Bn = 1

θ (2n+ 1)
1
2 .

Thus, we have

(︂
A0 −D (A′)

⊤
)︂
nk

=
1

θ
·

{︄
−(2n+ 1)

1
2 (2k + 1)

1
2

(︁
2 + (−1)n−k

)︁
k < n and n− k is odd

−(2n+ 1)
1
2 (2k + 1)

1
2 (−1)n−k otherwise

.

The proof is complete by noting that A0 −D (A′)
⊤
= 1

θA and B′ = 1
θB.

We note that Corollary C.11 implies Proposition 4. More specifically, Proposition 4 follows by setting θ = 1
in Corollary C.11 and noticing that the OSSM there is actually a TOSSM. (Technically we get basis function

Ln(1− t) for measure I(1− t) but this is OK since
∫︁ 1

0
Lk(1− t)Lj(1− t)dt =

∫︁ 1

0
Lk(t)Lj(t)dt.)

We first give a proof of Theorem 6. Then, we prove Theorem 7 as a function approximation result pertaining
to S4-FouT.

C.4.2 Explanation of S4-FouT

Proof of Theorem 6. We seek to derive A and B′ from (6) using Corollary C.3:

We use the time-warping function σ(t, s) = 1− (t− s), which implies that we have

σs(t, s) = 1, (32)

∂

∂t
σs(t, s) = 0 (33)

Thus, we can take

c(t) = 0 in
∂

∂t
σs(t, s) = c(t)σs(t, s). (34)

We then have χ(t, s) = 1 as we set

ψ(t, s) = ϕ(t, s) = 1, (35)

d

dt
ϕ(t, s) = 0. (36)

So, we can take

d(t) = 0 in
d

dt
ϕ(t, s) = d(t)ϕ(t, s). (37)
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We also have ω(σ) = 1, and we order our bases in the form pn = (1, c1(t), s1(t), c2(t), s2(t), . . .)
3, where the

basis functions have derivatives:

(1)′(σ) = 0;

(cn)
′(σ) = −2πnsn(σ);

(sn)
′(σ) = 2πncn(σ).

Consequently, we can define γnk as follows:

γnk =

⎧⎪⎨⎪⎩
2πn n− k = 1, k odd

−2πk k − n = 1, n odd

0 otherwise

. (38)

Further, the discontinuity is at t0 = t− θ, θ = 1 which implies that dt0
dt = 1. We now seek to use the stored

approximation to u at time t to compute u(t− 1).

First, denote the latent state x(t) with coefficients x = (x1(t), xc1(t), x
s
1(t), x

c
2(t), x

s
2(t), . . .) and define the

functions v(s) and w(s) such that we have

v(s) = u(2t− s− 1) and w(s) =
u(s) + v(s)

2
for s ∈ [t− 1, t].

Now, let û, v̂, and ŵ denote the reconstruction of u, v and w, where we have

û(t, s) = ⟨u(s), 1⟩+
∑︂
n

⟨u(s), sn(σ(t, s))⟩sn(σ(t, s)) +
∑︂
n

⟨u(s), cn(σ(t, s))⟩cn(σ(t, s)), (39)

v̂(t, s) = ⟨v(s), 1⟩+
∑︂
n

⟨v(s), sn(σ(t, s))⟩sn(σ(t, s)) +
∑︂
n

⟨v(s), cn(σ(t, s))⟩cn(σ(t, s)), (40)

ŵ(t, s) = ⟨w(s), 1⟩+
∑︂
n

⟨w(s), sn(σ(t, s))⟩sn(σ(t, s)) +
∑︂
n

⟨w(s), cn(σ(t, s))⟩cn(σ(t, s)). (41)

Then, we claim that

û(t, t) =
u(t) + v(t)

2
=
u(t) + u(t− 1)

2
. (42)

Towards that end, we examine the sine and cosine coefficients of u and v as follows:

⟨v, cn⟩ =
∫︂
v(s)cn(σ(t, s))I[t− 1, t]ds =

∫︂
u(2t− s− 1)cn(σ(t, s))I[t− 1, t]ds

=

∫︂
u(s′)cn(1− σ(t, s′))I[t− 1, t]ds′ (43)

=

∫︂
u(s′)cn(σ(t, s

′))I[t− 1, t]ds′ = ⟨u, cn⟩.

⟨v, sn⟩ =
∫︂
v(s)sn(σ(t, s))I[t− 1, t]ds =

∫︂
u(2t− s− 1)sn(σ(t, s))I[t− 1, t]ds

=

∫︂
u(s′)sn(1− σ(t, s′))I[t− 1, t]ds′ (44)

= −
∫︂
u(s′)sn(σ(t, s

′))I[t− 1, t]ds′ = −⟨u, sn⟩.

Here, for (43) and (44), we use the change of variables s′ ← 2t− s− 1, which gives us

σ(t, s) = 1− (t− s) = 1− (1 + t− s− 1) = 1− [1− (t− (2t− s− 1))] = 1− (1− (t− s′)) = 1− σ(t, s′).
3Note that this is 0-indexed.
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Then, we use the fact that cn(1− σ(t, s′)) = cn(σ(t, s
′)) but sn(1− σ(t, s′)) = −sn(σ(t, s′)). That is, both

u and v have the same cosine coefficients but negated sine coefficients of each other. But, we know that
both sn(σ(t, t − 1)) = sn(1 − (t − (t − 1))) = sn(0) = 0 and sn(σ(t, t)) = sn(1 − (t − t)) = sn(1) = 0, and
hence, the reconstruction of û at the endpoints σ(t, t − 1) = 0 and σ(t, t) = 1 depends only on the cosine
coefficients, whence we assert that the reconstruction û agrees with v̂ at both endpoints. Therefore, we have
û(t, t) = v̂(t, t) implying that ŵ(t, t) = û(t, t).

Note that w is continuous and periodic, for which the basis {1, cn, sn}n is complete, and hence, we know

that as N → ∞, ŵ → w. Thus, at s = t, we have û(t, t) = ŵ(t, t) = w(t) = u(t)+v(t)
2 = u(t)+u(t−1)

2 , which
completes the proof of the claim in (42).

Recall from (39) that we can express the stored approximation of u(t), given by û(t, s), as follows:

û(t, s) = ⟨u(s), 1⟩+
∑︂
n

⟨u(s), sn(σ(t, s))⟩sn(σ(t, s)) +
∑︂
n

⟨u(s), cn(σ(t, s))⟩cn(σ(t, s))

For the value at t, the approximation û(t, t) is then given by

û(t, t) = x1(t) +
∑︂
k

xck(t)ck(1) +
∑︂
k

xsk(t)sk(1) = x1(t) +
∑︂
k

√
2xck(t).

Due to (42), we know u(t− 1) = 2û(t, t)− u(t), which combined with the above yields:

u(t− 1) = 2x1(t) + 2
√
2
∑︂
k

xck(t)− u(t). (45)

Finally, with regards to Corollary C.3, for Theorem 12, (34) satisfies (15) and (37) satisfies (19) with (38)

satisfying (18) for A0. Moreover, from (45), we can take c = 1, d = −1, and A′
k :=

⎧⎪⎨⎪⎩
2 k = 0

2
√
2 k odd

0 otherwise

to

satisfy (20).

Invoking Corollary C.3 now yields the following OSSM:4

(A0 + (c(t) + d(t))I − cD (A′)
⊤
, B − dD),

where A0
nk = γnk with Dn and Bn specified as follows:

Dn =

⎧⎪⎨⎪⎩
1 n = 0√
2 n odd

0 otherwise

(46)

Bn =

⎧⎪⎨⎪⎩
1 n = 0√
2, n odd

0 otherwise

(47)

Here, the values are derived from the expressions of Corollary C.3:

Dn = (pnωψ)(σ(t, t− 1))(σsϕ)(t, t− 1) and Bn = (pnωψ)(1)(σsϕ)(t, t).

Recall that we have pn ∈ {1, cn, sn}, ω(t, s) = 1, and from (32) and (35), σs(t, s) = 1 with ψ(t, s) = ϕ(t, s) = 1.
Thus, (46) is due to 1(0)·1 = 1, sn(0)·1 = 0 but cn(0)·1 =

√
2. Similarly, (47) is because 1(0)·1 = 1, sn(1)·1 = 0

but again cn(1) · 1 =
√
2.

4Recall that, like the coefficients, the matrices are 0-indexed.
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Now, we have

[D (A′)
⊤
]nk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 n = k = 0

2
√
2 n = 0, k odd or k = 0, n odd

4 n, k odd

0 otherwise

[dD]n =

⎧⎪⎨⎪⎩
−1 n = 0

−
√
2 n odd

0 n otherwise

.

As c(t) = d(t) = 0, we define A← A0 − cD (A′)
⊤

and B ← B − dD, given by

Ank =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2 n = k = 0

−2
√
2 n = 0, k odd or k = 0, n odd

−4 n, k odd

2πn n− k = 1, k odd

−2πk k − n = 1, n odd

0 otherwise

Bn =

⎧⎪⎨⎪⎩
2 n = 0

2
√
2 n odd

0 otherwise

C.4.3 Function Approximation Error

Proof of Theorem 7. First, the state size being N dictates that there are ⌊N/2⌋ sn and cn basis functions
each. We fix time t and denote xcn and xsn to be the respective coefficients for sn and cn basis corresponding
to S4-Fou. Since {sn, cn}n≥0 forms an orthonormal basis, by Parseval’s identity, we have

∥K − K̂∥22 =

∞∑︂
n=⌊N/2⌋

xcn
2(t) + xsn

2(t). (48)

Thus, in order to bound the error, it suffices to bound the high-order coefficients by integration by parts as
follows:

xcn(t) = ⟨K, cn⟩ =
∫︂ 1

0

K(t)cn(t)dt

=

[︃
K(t)

1

2πn
sn(t)

]︃1
0

− 1

2πn

∫︂ 1

0

K ′(t)sn(t)dt

= − 1

2πn

∫︂ 1

0

K ′(t)sn(t)dt.

The quantity in the bracket vanishes as sn is periodic. Therefore

|xcn| ≤
⃓⃓⃓⃓

1

2πn

∫︂ 1

0

K ′(t)sn(t)dt

⃓⃓⃓⃓
≤ 1

2πn

∫︂ 1

0

|K ′(t)||sn(t)|dt ≤
L

2πn
,

where we use the fact that K is L−Lipshitz. For xsn, a similar argument holds and we get:

|xsn| ≤
⃓⃓⃓⃓
1

2π

∫︂ 1

0

K ′(t)cn(t)dt

⃓⃓⃓⃓
≤ 1

2π

∫︂ 1

0

|K ′(t)||cn(t)|dt ≤
L

2πn.

Due to (48), this then implies that

∥K − K̂∥22 =

∞∑︂
n=⌊N/2⌋

xcn
2(t) + xsn

2(t) =

∞∑︂
n=⌊N/2⌋

|xcn|2(t) + |xsn|2(t)

≤
∞∑︂

n=⌊N/2⌋

2L2

(2πn)2
=

2L2

(2π)2

∞∑︂
n=⌊N/2⌋

1

n2
=

2L2

(2π)2
1

⌊N/2⌋

≤ L2

π2(N − 2)
. (49)
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We use (49) to get the following estimate on ∥K − K̂∥ :

∥K − K̂∥2 ≤
L

π
√︁
(N − 2)

.

Thus, it suffices for N to satisfy the following inequality:

L

π
√︁
(N − 2)

≤ ϵ =⇒
√
N − 2 ≥ L

πϵ
=⇒ N ≥

(︃
L

πϵ

)︃2

+ 2.

We now use the same argument as above to the fact thatK has order-k bounded derivative. By iteration, we get:

|xsn| = |xcn| ≤
⃓⃓⃓⃓

1

(2πn)k

∫︂ 1

0

K(k)(t)sn(t)dt

⃓⃓⃓⃓
≤ 1

(2πn)k

∫︂ 1

0

|K(k)||sn(t)|dt ≤
L

(2πn)k
.

Again, due to (48), this then gives us the following estimate on the square error:

∥K − K̂∥22 =

∞∑︂
n=⌊N/2⌋

xcn
2(t) + xsn

2(t) =

∞∑︂
n=⌊N/2⌋

|xcn|2(t) + |xsn|2(t)

≤
∞∑︂

n=⌊N/2⌋

2L2

(2πn)2k
=

2L2

(2π)2k

∞∑︂
n=⌊N/2⌋

1

n2k
=

2L2

(2π)2k
1

(⌊N/2⌋)2k−1

≤ L2

π2k(N − 2)2k−1
. (50)

If K has order k−bounded derivatives, then we use (50) to get the following estimate on ∥K − K̂∥ :

∥K − K̂∥2 ≤
L

πk(N − 2)−k+1/2
.

Again, it suffices for N to satisfy the following inequality:

L

πk(N − 2)−k+1/2
≤ ϵ =⇒ (N − 2)k−1/2 ≥ L

πkϵ
=⇒ N ≥

(︃
L

πkϵ

)︃ 2
2k−1

+ 2.

C.4.4 Delay Network

Finally, we prove Theorem 9. Note that this is a stronger version of the LegT portion of Theorem 8, while
the FouT portion is a corollary of the proof of Theorem 6.

We start by working out some calculations concretely to provide an example. The SSM corresponding to
HiPPO-LegT is

A = P
1
2

⎡⎢⎢⎣
−1 1 −1 1
−1 −1 1 −1
−1 −1 −1 1
−1 −1 −1 −1

⎤⎥⎥⎦P
1
2

B = P
1
21

C = Z⊤P
1
2

P = diag{1 + 2n}
Z⊤ =

[︁
1 −1 1 −1

]︁
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The transfer function is

C(sI −A)−1B = Z(sP−1 −A)−11

(In the RHS and for the rest of this part, we will redefine A to be the ±1 matrix found above for convenience.)

Case N=1. We have A = −1,B = C = 1, and the transfer function is C(sI −A)−1B = 1
1+s .

Case N=2. The transfer function is

C(sI −A)−1B =
[︁
1 −1

]︁(︃
sP−1 −

[︃
−1 1
−1 −1

]︃)︃−1 [︃
1
1

]︃
=
[︁
1 −1

]︁ [︃s+ 1 −1
1 s

3 + 1

]︃−1 [︃
1
1

]︃
=

1
s2

3 + 4s
3 + 2

[︁
1 −1

]︁ [︃1 + s
3 1

−1 1 + s

]︃ [︃
1
1

]︃
=

2− 2s
3

s2

3 + 4s
3 + 2

=
1− s

3

1 + 2s
3 + s2

6

It can be verified that this is indeed [1/2]exp(−s).

A General Recursion. We will now sketch out a method to relate these transfer functions recursively.

We will redefine Z to be the vector that ENDS in +1.

The main idea is to write

An =

[︃
An−1 Zn−1

−1⊤
n−1 −1

]︃
(︁
sP−1

n −An

)︁−1
=

[︃
sP−1

n−1 −An−1 −Zn−1

1⊤
n−1 1 + s

2n+1

]︃−1

.

Now we can use the block matrix inversion formula.5 Ideally, this will produce a recurrence where the
desired transfer function Zn(sP

−1
n −An)

−11n will depend on Zn−1(sP
−1
n −An−1)

−11n−1. However, looking
at the block matrix inversion formula, it becomes clear that there are also dependencies on terms like
1⊤
n−1(sP

−1
n−1 −An−1)

−11n−1 and Zn−1(sP
−1
n−1 −An−1)

−1Z⊤
n−1.

The solution is to track all of these terms simultaneously.

We will compute the 4 transfer functions

Hn(s) :=

[︃
H1z

n (s) H11
n (s)

Hzz
n (s) Hz1

n (s)

]︃
:=

[︃
1⊤
n (sP

−1
n −An)

−1Zn 1⊤
n (sP

−1
n −An)

−11n

Z⊤
n (sP−1

n −An)
−1Zn Z⊤

n (sP−1
n −An)

−11n

]︃
=

[︃
1⊤
n

Z⊤
n

]︃
(sP−1

n −An)
−1
[︁
Zn 1n

]︁
5https://en.wikipedia.org/wiki/Block_matrix#/Block_matrix_inversion
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Lemma C.12. Instead of using the explicit block matrix inversion formula, it will be easier to work with the
following factorization used to derive it (block LDU decomposition6).[︃

A B
C D

]︃
=

[︃
I 0

CA−1 I

]︃ [︃
A 0
0 D − CA−1B

]︃ [︃
I A−1B
0 I

]︃
[︃
A B
C D

]︃−1

=

[︃
I −A−1B
0 I

]︃ [︃
A−1 0
0 (D − CA−1B)−1

]︃ [︃
I 0

−CA−1 I

]︃
Using Lemma C.12, we can factor the inverse as

(sP−1
n −An)

−1 =

[︃
In−1 (sP−1

n−1 −An−1)
−1Zn−1

1

]︃
[︄
(sP−1

n−1 −An−1)
−1 (︂

1 + s
2n+1 + (−1)n−1H1z

n−1(s)
)︂−1

]︄
[︃

In−1

−1⊤
n−1(sP

−1
n−1 −An−1)

−1 1

]︃
Now we compute [︃

1⊤
n

Z⊤
n

]︃ [︃
In−1 (sP−1

n−1 −An−1)
−1Zn−1

1

]︃
=

[︃
1⊤
n−1 1

−Z⊤
n−1 1

]︃ [︃
In−1 (sP−1

n−1 −An−1)
−1Zn−1

1

]︃
=

[︃
1⊤
n−1 1 +H1z

n−1(s)
−Z⊤

n−1 1−Hzz
n−1(s)

]︃
and [︃

In−1

−1⊤
n−1(sP

−1
n−1 −An−1)

−1 1

]︃ [︁
Zn 1n

]︁
=

[︃
In−1

−1⊤
n−1(sP

−1
n−1 −An−1)

−1 1

]︃ [︃
−Zn−1 1n−1

1 1

]︃
=

[︃
−Zn−1 1n−1

1 +H1z
n−1(s) 1−H11

n−1(s)

]︃
6https://en.wikipedia.org/wiki/Schur_complement#/Background
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Now we can derive the full recurrence for all these functions.

Hn(s) =

[︃
H1z

n (s) H11
n (s)

Hzz
n (s) Hz1

n (s)

]︃
=

[︃
1⊤
n

Z⊤
n

]︃
(sP−1

n −An)
−1
[︁
Zn 1n

]︁
=

[︃
1⊤
n

Z⊤
n

]︃ [︃
In−1 (sP−1

n−1 −An−1)
−1Zn−1

1

]︃
[︄
(sP−1

n−1 −An−1)
−1 (︂

1 + s
2n+1 + (−1)n−1H1z

n−1(s)
)︂−1

]︄
[︃

In−1

−1⊤
n−1(sP

−1
n−1 −An−1)

−1 1

]︃ [︁
Zn 1n

]︁
=

[︃
1⊤
n−1 1 +H1z

n−1(s)
−Z⊤

n−1 1−Hzz
n−1(s)

]︃
·

[︄
(sP−1

n−1 −An−1)
−1 (︂

1 + s
2n+1 +H1z

n−1(s)
)︂−1

]︄

·
[︃
−Zn−1 1n−1

1 +H1z
n−1(s) 1−H11

n−1(s)

]︃
=

[︃
1⊤
n−1

−Z⊤
n−1

]︃
(sP−1

n−1 −An−1)
−1
[︁
−Zn−1 1n−1

]︁
+

[︃
1 +H1z

n−1(s)
1−Hzz

n−1(s)

]︃(︃
1 +

s

2n+ 1
+H1z

n−1(s)

)︃−1 [︁
1 +H1z

n−1(s) 1−H11
n−1(s)

]︁
=

[︃
−H1z

n−1(s) H11
n−1(s)

Hzz
n−1(s) −Hz1

n−1(s)

]︃
+

[︃
1 +H1z

n−1(s)
1−Hzz

n−1(s)

]︃(︃
1 +

s

2n+ 1
+H1z

n−1(s)

)︃−1 [︁
1 +H1z

n−1(s) 1−H11
n−1(s)

]︁
Now we’ll define a few transformations which will simplfy the calculations. Define

G1z
n (s) =

1

2
(1 +H1z

n (s))

G11
n (s) = 1−H1z

n (s)

Gzz
n (s) = 1−H1z

n (s)

Gz1
n (s) = (−1)nHz1

n (s)

These satisfy the following recurrences:

G1z
n (s) = 1−G1z

n−1(s) +
G1z

n−1(s)G
1z
n−1(s)

G1z
n−1(s) +

s
2(2n+1)

G11
n (s) = G11

n−1(s)−
G11

n−1(s)G
1z
n−1(s)

G1z
n−1(s) +

s
2(2n+1)

Gzz
n (s) = Gzz

n−1(s)−
Gzz

n−1(s)G
1z
n−1(s)

G1z
n−1(s) +

s
2(2n+1)

Gz1
n (s) = Gz1

n−1(s)− (−1)n−1 G11
n−1(s)G

zz
n−1(s)

G1z
n−1(s) +

s
2(2n+1)
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We can analyze each term separately.

Case G1z
n (s).

This will be the most important term, as it determines the denominator of the expressions. Simplifying the
recurrence slightly gives

G1z
n (s) = 1−G1z

n−1(s) +
G1z

n−1(s)G
1z
n−1(s)

G1z
n−1(s) +

s
2(2n+1)

=
(G1z

n−1(s) +
s

2(2n+1) )−
s

2(2n+1) ·G
1z
n−1(s)

G1z
n−1(s) +

s
2(2n+1)

.

Now let G1z
n (s) =

P 1z
n (s)

Q1z
n (s) where P,Q are polynomials. Clearing the denominator Q yields

P 1z
n (s)

Q1z
n (s)

=
(P 1z

n−1(s) +
s

2(2n+1)Q
1z
n−1(s))− s

2(2n+1) · P
1z
n−1(s)

P 1z
n−1(s) +

s
2(2n+1) ·Q

1z
n−1(s)

.

This results in the recurrence

Q1z
n (s) = P 1z

n−1(s) +
s

2(2n+ 1)
·Q1z

n−1(s)

P 1z
n (s) = Q1z

n−1(s)−
s

2(2n+ 1)
· P 1z

n−1(s).

But this is exactly the fundamental recurrence formula for continuants of the continued fraction

es = 1 +
s

1−
1
2 s

1+
1
6
s

1−
1
6
s

1+
1
10

s

1−
1
10

s

1+

...

Therefore Q1z
n−1(s) are the denominators of the Pade approximants.

Note that by definition of P,Q,

G1z
n−1(s) +

s

2(2n+ 1)
=
P 1z
n−1(s) +

s
2(2n+1) ·Q

1z
n−1(s)

Q1z
n−1(s)

=
Q1z

n (s)

Q1z
n−1(s)

Going forward we will also suppress the superscript of Q, Qn−1(s) := Q1z
n−1(s), as it will be evident that all

terms have the same denominator Qn(s)

Case G11
n (s).

First note that G11
n (s) = Gzz

n (s) is straightforward from the fact that their recurrences are identical. The
recurrence is

G11
n (s) = G11

n−1(s)−
G11

n−1(s)G
1z
n−1(s)

G1z
n−1(s) +

s
2(2n+1)

=

s
2(2n+1) ·G

11
n−1(s)

G1z
n−1(s) +

s
2(2n+1)

=

s
2(2n+1) ·G

11
n−1(s)Qn−1(s)

P 1z
n−1(s) +

s
2(2n+1) ·Qn−1(s)

=

s
2(2n+1) ·G

11
n−1(s)Qn−1(s)

Qn(s)
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Therefore

G11
n (s)Qn(s) =

s

2(2n+ 1)
·G11

n−1(s)Qn−1(s) =

n∏︂
i=1

s

2(2i+ 1)

G11
n (s) =

∏︁n
i=1

s
2(2i+1)

Qn(s)

Case Gz1
n (s).

Define

Gz1
n (s) =

P z1
n (s)

Qn(s)

This term satisfies the formula

Gz1
n (s) = Gz1

n−1(s)− (−1)n−1 G11
n−1(s)G

zz
n−1(s)

G1z
n−1(s) +

s
2(2n+1)

=
P z1
n−1(s)

Qn−1(s)
− (−1)n−1

(︂∏︁n−1
i=0

s
2(2i+1)

)︂2
/Qn−1(s)

2

Qn(s)
Qn−1(s)

=
P z1
n−1(s)Qn(s)

Qn−1(s)Qn(s)
− (−1)n−1

(︂∏︁n−1
i=0

s
2(2i+1)

)︂2
Qn(s)Qn−1(s)

By definition of P z1,

P z1
n−1(s)Qn(s)− (−1)n−1

(︄
n−1∏︂
i=0

s

2(2i+ 1)

)︄2

= P z1
n (s)Qn−1(s)

But note that this is exactly satisfied by the Padé approximants, by the determinantal formula of continued
fractions. This shows that G1z

n−1(s) are the Padé approximants of e−s, as desired.

C.5 Normalization and Timescales

Proposition 13 (Closure properties of TOSSMs). Consider a TOSSM (A,B) for basis functions pn(t) and
measure ω(t). Then, the following are also TOSSMs with the corresponding basis functions and measure:

1. Constant scaling changes the timescale: (cA, cB) is a TOSSM with basis p(ct) and measure ω(ct)c.

2. Identity shift tilts by exponential: (A+ cI,B) is a TOSSM with basis p(t)e−ct and measure ω(t)e2ct.

3. Unitary change of basis preserves measure: (V AV ∗,V B) is a TOSSM with basis V p(t) and measure
ω(t).

Proof. We define p(t) to be the vector of basis functions for the OSSM (A,B),

p(t) =

⎡⎢⎣ p0(t)
...

pN−1(t)

⎤⎥⎦ .
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Recall that the SSM kernels are Kn(t) = pn(t)ω(t) so that p(t)ω(t) = etAB.

1. The SSM kernels are

et(cA)(cB) = ce(ct)A)B = cp(ct)ω(ct).

It remains to show that the pn(ct) are orthonormal with respect to measure cω(ct):∫︂
pj(ct)pk(ct)ω(ct)c = δjk

which follows immediately from the change of variables formula.

2. Using the commutativity of A and I, the SSM kernels are

et(A+cI)B = etAectIB = ectp(t)ω(t).

It remains to show that pn(t)e
−ct are orthonormal with respect to measure ω(t)e2ct:∫︂
pj(t)e

−ctpk(t)e
−ctω(t)e2ct =

∫︂
pj(t)pk(t)ω(t) = δjk.

3. The SSM basis is

etV AV ∗
V B = V etAB = V p(t)ω(t).

It remains to show that the basis functions V p(t) are orthonormal with respect to ω(t). Note that orthonor-
mality of a set of basis functions can be expressed as

∫︁
p(t)ω(t)p(t)⊤ = I, so that∫︂

(V p(t))ω(t)(V p(t))∗ = V

[︃∫︂
p(t)ω(t)p(t)⊤

]︃
V ∗

= I.
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