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Abstract

As in traditional machine learning models, models trained with federated learning may
exhibit disparate performance across demographic groups. Model holders must identify
these disparities to mitigate undue harm to the groups. However, measuring a model’s
performance in a group requires access to information about group membership which,
for privacy reasons, often has limited availability. We propose novel locally differentially
private mechanisms to measure differences in performance across groups while protecting
the privacy of group membership. To analyze the effectiveness of the mechanisms, we
bound their error in estimating a disparity when optimized for a given privacy budget.
Our results show that the error rapidly decreases for realistic numbers of participating
clients, demonstrating that, contrary to what prior work suggested, protecting privacy is
not necessarily in conflict with identifying performance disparities of federated models.
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1. Introduction

Cross-device federated learning (DFL) has become a popular way to distribute the training of
machine learning (ML) models across multiple devices. Currently, there are several large-scale
deployments of DFL in the industry, such as Android GBoard’s next-word prediction (Hard
et al., 2018; Yang et al., 2018), and Siri’s speaker identification (Granqvist et al., 2020). A
key motivation for these deployments is the aspiration of training powerful models while
ensuring privacy and data minimization.

In parallel, ML models have been shown to exhibit disparate performance across groups,
often falling short for people from marginalized groups, in the domains of vision, natural
language processing, and healthcare (Buolamwini and Gebru, 2018; Sap et al., 2019; Celi
et al., 2022; Mehrabi et al., 2021); and, more recently, these performance disparities have
also been observed in DFL (Yuan et al., 2020; Xu et al., 2021a,b).

Performance disparities may be harmful beyond merely the individual’s experience of
worse quality of service (Crawford, 2017). A greater false positive rate of Alexa’s wake-word
detection on a group may lead to over-surveillance of that group, as a false activation may
record unrelated speech and send it to the cloud for further processing (Vitaladevuni, 2020).
In DFL applications to the security domain (Hosseini et al., 2020), a performance disparity
may lead to a lower security level for certain groups. Overall, DFL has enormous traction in
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industry and academia and, if it were to become a de-facto data minimization or privacy
standard for much of ML, as current trends suggest, an unknown performance disparity
dependent on a demographic group could have tremendous negative consequences in many
application domains.

The challenge in detecting and mitigating disparate performance of a DFL model is that
access to information about the attributes related to group membership is often limited
or noisy (Veale and Binns, 2017; Bogen et al., 2020). Regulations, such as the GDPR in
the EU, mandate that protected attributes, such as gender or race, be collected only under
appropriate privacy protections and explicit informed consent. In addition, without adequate
privacy protection, volunteers who are members of stigmatized groups are more likely to
provide a false group membership, which can add noise to the collected attributes.

We reconcile the seemingly incompatible goals of ensuring group membership privacy
and mitigating performance disparity via local differential privacy (LDP). We propose novel
LDP mechanisms that allow us to measure performance disparities while protecting the
privacy of the attributes that define group membership. To compare the mechanisms over a
range of privacy levels, number of clients, and group sizes, we characterize the measurement
error they induce as a function of the privacy budget, and find budget allocations that
minimize the error under a privacy constraint.

Our theoretical analysis shows that the mechanisms ensure strong privacy guarantees
while the measurement error is relatively low for typical numbers of clients in a DFL setting.
With our tools, the aggregator of the models, or even a regulatory agency could identify
cases of performance disparity in applications where such disparity is undesirable or harmful
for some of the groups.

2. Background

Differential Privacy (DP) We argue that the local model of DP is better suited for
cross-device federated learning (DFL), as it is unclear who would play the role of a central
curator in the existing deployments of DFL and the large-scale of these deployments can
attenuate the privacy-induced error of an LDP mechanism.

Definition 1 (ϵ-Local Differential Privacy (ϵ-LDP)) A randomized mechanism M :
D → R satisfies ϵ-LDP where ϵ > 0 if, and only if, for any pair of inputs v, v′ ∈ D and for
all y ∈ R

Pr[M(v) = y]

Pr[M(v′) = y]
≤ eϵ,

where the probabilities are taken over the randomness ofM.

One of the simplest LDP mechanisms is Randomized Response (RR). For a binary
protected attribute, RR returns the true value with probability a and returns the opposite
value otherwise. Generalized RR (GRR) extends RR to a non-binary protected attribute by
uniformly distributing the probability of giving a different value (Wang et al., 2017).
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Definition 2 (The GRR mechanism) For x ∈ {0, . . . , d}, d ≥ 1, and a ∈ [12 , 1], the
GRR mechanism,MGRR, is defined by

Pr[MGRR(x; d, a) = y] :=

{

a if y = x
1−a
d−1 if y ̸= x

Federated Learning (FL) FL allows many clients, each with its own dataset, to train a
model on the union of all datasets, without any dataset having to leave its client’s device.
The training is distributed over the clients, who train local models on their datasets. The
clients then share the local models’ parameters with a central aggregator, who averages them
to obtain the parameters of the global model.

There are different types of FL depending on who the clients are. We focus on cross-device
FL (DFL), where clients run on different devices (e.g., smartphones) and the training data
usually belongs to the same user. We focus on DFL as it is becoming increasingly popular
in the Big Tech industry (Yang et al., 2018; Granqvist et al., 2020).

3. Problem Statement

Motivated by the harms of disparate performance of the global model in DFL, the notion of
unfairness that we consider in the DFL setting is the disparate performance across groups
of clients with the groups defined by a demographic attribute, such as sex or race.

Formally, an attribute is a set A = {0, . . . , d}, with d ≥ 1, that induces a partition of
the clients, P = {G0, . . . , Gd}. We consider K clients and denote (gk, vk) the values of the
attribute (gk ∈ A) and the performance of the model for client k. The client obtains vk
by evaluating the global model on a fraction of their data. The choice of an appropriate
performance metric depends on various factors, such as the learning task and the potential
harms in a particular application.

Definition 3 (Group mean performance) The mean performance of a group G ∈ P
is mG := 1

n

∑n
i=1 vi, where n = |G|.

To quantify the difference in performance between any two groups, we measure the
absolute difference between the mean performances of the global model on the groups.

Definition 4 (Performance gap) The performance gap between any two A,B ∈ P is
defined by ∆m := |mA −mB|.

This notion of (un)fairness is in contrast with traditional fairness definitions that measure
model performance on individual predictions. Previous definitions are suitable for scenarios
where data points represent people and each single prediction concerns an individual (e.g.,
credit score prediction). However, these definitions are not suited for the notion of (un)fairness
that we consider. In the typical DFL setting, the global model is distributed to the clients
for use on their own data and they are not necessarily the subjects of the predictions. Our
concern is that the disparate performance of the global model across groups of users can
lead to a disparate impact; the performance gap captures this disparity across groups.
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Adversary model. We assume that the entity performing the measurements of the
performance gap is the FL aggregator, but our mechanisms could also be used by an
external entity, such as a regulatory agency or a public interest auditor. As in popular DFL
deployments (McMahan and Ramage, 2017), we assume that the aggregator uses Secure
Aggregation (Bonawitz et al., 2017). Therefore, the aggregator cannot infer any information
from the FL updates about the users’ protected attributes.

Both the group and the model performance value are privacy-sensitive information (the
group—because it corresponds to an attribute such as race; the performance—because of the
potential correlation with the group). Thus, the clients must apply an LDP mechanism,M,
on their group-value tuples before sending them to the aggregator. We denote the perturbed
tuples (g′k, v

′
k) :=M(gk, vk). From a privacy perspective, we assume that the aggregator

follows the protocol as intended but may try to learn gk or vk from (g′k, v
′
k).

In this work, we investigate the question: how can the aggregator measure the performance
gap while protecting the privacy of the clients’ (gk, vk) tuples with an LDP mechanism?
To address this question, we design novel LDP mechanisms and study the tradeoffs they
impose in terms of their privacy guarantees and the error they induce in a measurement.
We hypothesize that the number of clients of current DFL deployments is sufficient to allow
for low-error and high-privacy measurements with our mechanisms.

4. Measuring the Performance Gap

Since the performance gap is the absolute difference of two group mean performances, we
first tackle the problem of private group mean estimation and then show that the privacy
guarantees hold when combining them into a performance gap estimation.

A major distinction between group mean estimation and population mean estimation
in the literature (Brown et al., 2021; Asi et al., 2022) is that, in estimating a group mean
performance, the performance may be correlated with the group—especially, if there is a gap.
In that case, the adversary would learn group information from observing the performance.

A successful mechanism must protect both group and performance values. A näıve
approach is to protect both independently, but that would destroy the necessary information
to measure the gap. Thus, our mechanisms are designed to preserve the overall aggregate
correlation between the group and the performance values, while preventing inference of the
group that an individual client belongs to from the perturbed tuples.

All our mechanisms useMGRR to perturb the group values. The intuition for perturbing
the group with GRR is that it provides plausible deniability for group membership. As
a result, clients have less incentives to lie, as they can always claim that the mechanism
assigned them to a different group.

We present two mechanisms that differ by how they perturb the performance values:

TheMR mechanism. After perturbing the group (line 1 in Algorithm 1),MR discretizes
the value with Harmony’s discretization (Nguyên et al., 2016) (lines 3–5) and then applies
GRR on the discretized value (line 6). The Harmony discretization allows for unbiased
estimates of the expected value from the discretized values. The mechanism sets to zero the
performance value of the clients who flip their group (line 2). This is to ensure that they do
not contribute to the other group’s mean performance value (Gu et al., 2020).
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Algorithm 1: Pseudocode of the privacy mechanism: MR.

Input: The client’s group g ∈ {0, 1} and performance value v ∈ [−1, 1]. The privacy
budgets ϵ1, ϵ2 ∈ [0,+∞).

Output: The perturbed tuple (g′, v′), g′ ∈ {0, 1} and v′ ∈ {−1, 1}.

1 g′ ←MGRR(g; d,
eϵ1

eϵ1+d−1) // Perturb the group.

2 if g ̸= g′ then
3 v ← 0 // The performance distribution of the other group is unknown.

4 end

5 Draw B ∼ Bernoulli(1+v
2 )

6 v′ ← 2 ∗MGRR(B; 2, eϵ2
1+eϵ2

)− 1 // Perturb the value and transform.

7 return (g′, v′)

The ML mechanism. ML is identical to MR except that instead of applying GRR
to perturb the values, it uses the Laplace mechanism. The scale of the noise may vary
depending on whether the client’s group has been perturbed. Clients whose group flipped
do not require as much noise to hide in the value distribution of the other group, as those
values are also perturbed with Laplace noise. Thus,ML exposes a parameter k, 0 < k ≤ 2,
that allows to fine-tune the scale of the Laplace distribution of the noise for the clients whose
group was perturbed. In addition, the value of the clients that switch to another group is
set to zero, such that, like inMR, they do not contribute to that group’s mean value.

Because the mechanisms are the composition of the GRR and the Laplace mechanisms,
they have two privacy budget parameters: ϵ1 and ϵ2, the privacy budget to protect the group
and the performance values, respectively.

One of our main results is that the mechanisms achieve ϵ-LDP for an overall privacy
budget ϵ.

Theorem 5 MR is ϵ-LDP with ϵ = max{ϵ1, ϵ2}.

Proof See Appendix A.1.

Theorem 6 The mechanismML is ϵ-LDP with

ϵ = max

{

ϵ2, ln(
2

k
) +

ϵ2
2
− ϵ1, ln(

k

2
) +

ϵ2
k

+ ϵ1

}

(1)

Proof See Appendix A.2.

These bounds are tighter than the ones obtained with the basic theorem on sequential
composition of DP mechanisms (McSherry, 2009). The tightness of the LDP bound is
important to provide an uppper bound for the privacy of the mechanism, when comparing it
with other mechanisms, as well as quantifying the privacy vs. utility tradeoff.
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5. Performance Evaluation

To measure the privacy-induced error, we follow the LDP literature by treating the measure-
ment as an estimator of mG under the randomness of the mechanisms. A key metric of the
quality of an estimator is its Mean Squared Error (MSE), as it captures the error due to
both the estimator’s variance and its bias. By showing that our estimators are unbiased,
we can compare their MSEs by simply comparing their variance. Further, knowing the
estimators’ variance allows us to probabilistically bound the distance of a performance gap
measurement to its true value as a function of the number of clients, which is informative to
assess the feasibility of our mechanisms in a DFL setting.

The estimators that the operator should use to estimate mG from the perturbed group-
performance tuples are as follows.

Definition 7 (Estimators of mG) We define the following estimators for the mechanisms:

m̃L
G :=

1

an

n′
∑

j=1

v′j , and m̃R
G :=

1

a(2b− 1)n

n′
∑

j=1

v′j ,

where a = eϵ1
eϵ1+d−1 and b = eϵ2

1+eϵ2
, n = |G|, and n′ is the number of clients in group G after

the mechanism’s perturbation.

We have proven that the estimators are unbiased, and have obtained closed-form expres-
sions of their variance (see Appendix A.4), hence their MSE.

Proposition 8 The estimators of the mechanisms are unbiased: E[m̂L
G] = E[m̂R

G] = mG.

Proof See Appendix A.3

Theorem 9 shows that the MSE of ∆m̃∗ is the sum of the MSEs of the group mean value
estimates.

Theorem 9 ∆m̃∗ is an unbiased estimator of ∆m for two groups G, Ḡ ∈ P with MSE:

MSE [∆m̃∗] = MSE[m̃∗
G] +MSE[m̃∗

Ḡ
].

Proof See Appendix A.5.

The intuition behind Theorem 9 is that even though m̃∗
G and m̃∗

Ḡ
are not independent,

the errors are uncorrelated, and thus they add up. Therefore, we can obtain a closed-form
expression of the MSE of ∆m by adding the closed-form expressions of the group MSEs.

MSE for a fixed privacy budget As shown by Theorem 5 and Theorem 6, the privacy
budgets ϵ1 and ϵ2 have a different impact on the LDP bound of the mechanism. To draw a
fair comparison between the mechanisms, we need to find the parameters that minimize the
error on utility for a fixed overall privacy budget ϵ. With the closed-form expression of the
MSE of ∆m̃∗, we can compare the estimators for specific values of ϵ1 and ϵ2. It is unclear a
priori how to divide a fixed privacy budget into the mechanism’s group and performance
components to maximize utility. Our approach is to find an allocation that minimizes the
MSE of the estimators, for the total privacy budget of the mechanism (ϵ).

For MR, the optimal allocation is ϵ1 = ϵ2 = ϵ; for ML with k = 2, it is ϵ2 = ϵ, and
ϵ1 =

ϵ
2 . In Appendix B, we find the optimal allocation forML with k as a parameter.
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Table 1: Minimum privacy budget (ϵ) required to bound the error by α, given K clients,
with 0.99 probability. Highlighted are the ϵ’s that are considered reasonable.

MR opt. ML opt.

K α = 10−1 α = 10−2 α = 10−3 α = 10−1 α = 10−2 α = 10−3

105 1.86 - - 2.56 17.89 178.89
106 0.63 - - 0.71 6.32 56.57
107 0.23 1.86 - 0.21 2.56 17.89
108 0.08 0.63 - 0.07 0.71 6.32
109 0.02 0.23 1.86 0.02 0.21 2.56

Table 1 shows the minimum privacy budget required to ensure that the error is at most
α for various values of α and numbers of clients, with probability 0.99. If the operator can
afford a higher privacy budget, the bound would still hold but if their privacy budget is
lower, the mechanism does not guarantee the bounds.

Due toMR’s discretization step, the maximum estimator variance (attained when all
the performance values are zero) tends to a constant (inversely proportional to group size).
Thus, there is no budget that allows to achieve α for those cells marked with “-”.

These results show that the required budgets to achieve an error of less than one
percentage point and less of one tenth of a percentage point are reasonable for K ≥ 107 and
K ≥ 109 clients, respectively. Even though these may look like large numbers of clients,
current DFL deployments have this many, and even more, clients. For example, in 2018
Apple reported a total of half a billion active Siri clients (Apple press team, 2018) and, in
the same year, Gboard surpassed 1 billion installs (Google Play Store, 2018).

We have also evaluated these bounds on a real-world dataset of performances of a
simulated FL deployment (Appendix D). Our results show that the bounds not only hold
but that they are overly conservative: in practice, the operators of the mechanisms would
be able to ensure the same privacy level by spending less privacy budget. The Chebyshev
bounds are known to be loose because they do not make assumptions about the underlying
distributions; we leave finding tighter bounds for future work.

6. Related Work

In the ML literature, Veale and Binns (2017) first noted the legal, institutional, and com-
mercial deterrents against collecting demographic data. To address the lack of demographic
data, they envisioned privacy-preserving protocols that rely on a third-party to detect and
mitigate discrimination.

Researchers materialized these protocols with DP and Secure Multi-Party Computation
(SMPC) (Jagielski et al., 2019; Kilbertus et al., 2018; Alao et al., 2021). Jagielski et al.
(2019) proposed DP versions of existing post- and in-processing techniques to train classifiers
that satisfy the Equalized Odds constraint. In contrast, our work defines the notion of
performance gap as it is more suitable for the DFL setting. In addition, as most of related
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work, their focus is on mitigating the disparity assuming that it has occurred, while we focus
on the measurement of the disparity rather than its mitigation.

In contrast to SMPC, our mechanisms have low computational and bandwidth costs, and
are robust to client dropouts. Moreover, SMPC and DP provide different privacy guarantees;
in particular, SMPC does not limit the information about individual group membership that
the aggregator can infer from the measurements.

Another difference between our work and the prior works is the involvement of the model
holder towards the goal of identifying disparities. Depending on how DFL is implemented,
our approach may allow the clients and the mechanism operator to measure the performance
gap without the aggregator’s collaboration.

Prior work on LDP mechanisms to protect sensitive attributes is too extensive to be
covered in detail. Recent work has made progress on designing mechanisms for private mean
estimation on the theoretical (Nguyên et al., 2016; Asi et al., 2022) and practical fronts (Gu
et al., 2020; Ye et al., 2019). However, this literature does not consider the perturbation of
performance values for a performance gap measurement, and therefore, is focused on slightly
different privacy vs. utility tradeoffs than we are.

7. Discussion and Conclusion

With FL gaining traction in industry and academia, there is a growing concern that models
trained with it will exhibit disparate performance across demographic groups, leading to
harms ranging from a mere inconvenience to disparate impact, such as increased surveillance
and lower online security for some of the groups. We propose considering the performance
gap between demographic groups as a notion of (un)fairness in the DFL setting, and argue
that the ability to measure it is crucial towards addressing such harms. However, especially
under the privacy aspirations of federated learning, lack of demographic data hinders the
applicability of existing techniques to measure performance disparities in DFL models. This
poses an obstacle to mitigating the harms; as Roy Austin (2021), Facebook’s VP of Civil
Rights, puts it: “we can’t address what we can’t measure.”

To address the legal, societal, and individual concerns related to the privacy of de-
mographic data, we propose locally differentially private mechanisms that estimate the
performance gap while protecting the privacy of the group membership and potentially
correlated data such as model performance. Our theoretical and experimental results show
that the mechanisms ensure strong privacy guarantees while performing relatively precise
performance gap measurements when relying on realistic numbers of clients in the DFL
setting and reasonable privacy parameters. Our insight is that the large scale of existing DFL
deployments offers a unique opportunity to measure and expose the potential disparities
while guaranteeing strong privacy to the participants.
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Appendix A. Proofs

A.1. Proof of Theorem 5

Proof
We denote a = eϵ1

eϵ1+d−1 and b = eϵ2
1+eϵ2

. Let x0 = (g0, v0) and x1 = (g1, v1) be two
different inputs and y = (g′, v′) be an output of the mechanism. From the mechanism’s
definition, we have that for an arbitrary input x = (g, v),

Pr[y | x] =







a(1+(2b−1)v′v)
2 if g′ = g

1−a
2(d−1) if g′ ̸= g

We prove it for d = 2 as that is what we use in most of our evaluation, and leave the
case d > 2 for future work.

Since v ∈ [−1, 1] and v′ ∈ {−1, 1}, an upper bound of Pr[y | x] when g′ = g is

Pr[y | x] ≤ ab (2)

and a lower bound is
Pr[y | x] ≥ a(1− b) (3)

Now, we bound Pr[y | x0]/Pr[y | x1], where x0 and x1 differ in either group or value.
If they have the same group but may (or may not) differ in value, we consider two cases:
g′ = g and g′ ̸= g (where g = g0 = g1).

Case 1: g′ = g. Using the upper and lower bounds, we obtain:

Pr[y | x0]

Pr[y | x1]
≤

ab

a(1− b)
= eϵ2 (4)

Case 2: g′ ̸= g. Using the probability of Pr[y | x1] when g′ ̸= g:

Pr[y | x0]

Pr[y | x1]
= 1 ≤ eϵ2 , as ϵ2 ∈ [0,+∞) (5)

This shows that if the inputs have the same group, the differential privacy guarantee
boils down to the guarantee of the value-perturbing GRR mechanism.

If x0 and x1 differ in group, we again break down the analysis into two cases: g′ = g0 ̸= g1
and g′ = g1 ̸= g0.

Case 1: g′ = g0 ≠ g1. Using the upper bound and taking e2 = 0 as the minimum value
for the denominator, we obtain:

Pr[y | x0]

Pr[y | x1]
≤

2ab

1− a
=

2eϵ2+ϵ1

1 + eϵ2
≤ eϵ1 (6)

Case 2: g′ = g1 ̸= g0. Using the lower bound and that 1 ≤ eϵ2 , we have:

Pr[y | x0]

Pr[y | x1]
≤

1− a

2a(1− b)
=

1 + eϵ2

2eϵ1
≤

2eϵ2

2eϵ1
= eϵ2−ϵ1 (7)

Combining the equations above, we conclude thatMR is ϵ-DP with ϵ = max{ϵ1, ϵ2, ϵ2−ϵ1} =
max{ϵ1, ϵ2} and, thus, the optimal budget allocation is ϵ1 = ϵ2 = ϵ.
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A.2. Proof of Theorem 6

Proof This proof is for k = 2. Let x0 = (g0, v0) and x1 = (g1, v1) be two different inputs
and y = (g′, v′) be an output of the mechanism. Because ML perturbs the values with
Laplacian noise, we have that for an arbitrary input x = (g, v),

Pr[y | x] =







eϵ1
eϵ1+d−1 fLap(0, 2

ϵ2
)(v

′ − v) if g′ = g

1
eϵ1+d−1 fLap(0, 2

ϵ2
)(v

′) if g′ ̸= g

This is because when the mechanism preserves the group, v′ = v+Y where Y ∼ Lap(0, 2
ϵ2
),

hence the probability of the new value is the probability of sampling v′− v from the Laplace
distribution with zero mean and scale of 2

ϵ2
. When the group is flipped, the mechanism sets

v to zero therefore in that case it is the probability of sampling v′ from Lap(0, 2
ϵ2
).

As in the proof of Theorem 5, we follow a case-based reasoning. If x0 and x1 have the
same group but differ in value, we consider two cases: g′ = g and g′ ̸= g.

Case 1: g′ = g.

Pr[y | x0]

Pr[y | x1]
=

fLap(0, 2

ϵ2
)(v

′ − v0)

fLap(0, 2

ϵ2
)(v

′ − v1)
= eϵ2(

|v′−v1|
2

−
|v′−v0|

2
) ≤ eϵ2 (8)

Case 2: g′ ̸= g.

Pr[y | x0]

Pr[y | x1]
=

fLap(0, 2

ϵ2
)(v

′)

fLap(0, 2

ϵ2
)(v

′)
= 1 (9)

If x0 and x1 differ in group, we again consider two cases: g′ = g0 ≠ g1 and g′ = g1 ̸= g0.

Case 1: g′ = g0 ̸= g1.

Pr[y | x0]

Pr[y | x1]
=

eϵ1
eϵ1+d−1fLap(0, 2

ϵ2
)(v

′ − v0)

1
eϵ1+d−1fLap(0, 2

ϵ2
)(v

′)
= eϵ1+ϵ2(

|v′|
2

−
|v′−v0|

2
) ≤ eϵ1+

ϵ2

2

The last inequality follows from |v′|
2 −

|v′−v0|
2 ≤ 1

2 .

Case 2: g′ = g1 ̸= g0.

Pr[y | x0]

Pr[y | x1]
= eϵ2(

|v′−v1|
2

−
|v′|
2

)−ϵ1 ≤ e
ϵ2

2
−ϵ1 (10)

The last inequality follows from the triangle inequality: |v′−v1|
2 − |v′|

2 ≤
|v1|
2 ≤

1
2 .

Finally, combining all the inequalities above, we obtain the ϵ in the bound of the
probability ratio

ϵ = max
{

ϵ2,
ϵ2
2
− ϵ1,

ϵ2
2

+ ϵ1

}

= max
{

ϵ2,
ϵ2
2

+ ϵ1

}

Thus, the optimal budget allocation for mechanismML with k = 2 is ϵ2 = ϵ and ϵ1 = ϵ
2 .
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A.3. Proof of Theorem 8

Proof We prove that m̂L
G is unbiased. The proof for the unbiasedness of m̂R

G is analogous.
We model the values in G after applyingML with the following mutually independent

random variables

Vi = Bi(vi + Yi), i = 1, . . . , n, (11)

V̄j = B̄j(0 + Ȳj) = B̄j Ȳj , j = 1, . . . , K − n (12)

where Vi and V̄j are the final, perturbed values in group G that originate from group G and
Ḡ, respectively. In our notation, the bar denotes that the random variable relates to group
Ḡ, the complement of G. The random variables Bi ∼ Bernoulli(a) and B̄j ∼ Bernoulli(1−a)
modelMRR, and Yi ∼ Lap(0, 2/ϵ2) and Ȳj ∼ Lap(0, k/ϵ2) modelMLap. Thus, the expected
value of the estimator is

E[m̂L
G] =

1

an





n
∑

i=1

E [Vi] +

K−n
∑

j=1

E[V̄j ]



 Linearity of E (13)

=
1

an

n
∑

i=1

E[Bi(vi + Yi)] E[V̄j ] = 0 (14)

=
1

an

n
∑

i=1

E[Bi](vi + E[Yi]) Mutual independence (15)

=
1

an

n
∑

i=1

E[Bi]vi E[Yi] = 0 (16)

=
a

an

n
∑

i=1

vi E[Bi] = a (17)

= mG (18)

We used that E[V̄j ] = 0 because E[Ȳj ] = 0 and that the random variables are mutually
independent.

A.4. Closed-form expressions of Variance

Using the probabilistic model defined in Appendix A.3, we can write the variance of the
estimator m̂L

G as

Var[m̂L
G] =

1

a2n2
Var





n
∑

i=1

(vi + Yi)Bi +
K−n
∑

j=1

ȲjB̄j



 .

Note that the noise terms have positive variance and therefore do not cancel out. We can
use the fact that the variables are mutually independent to write the variance of the sum as
the sum of variances. We will then obtain variances of products and will use the well-known
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formula for the variance of the product of two independent random variables. Rearranging
the terms gives the closed expression of the variance:

Var[m̂L
G] =

1

n

(

ν2e−ϵ1 +
(

1 + e−ϵ1
)

(

σ2
L +

K − n

n
σ̄2
Le

−ϵ1

))

(19)

where ν2 = 1
n

∑n
i=1 v

2
i , and σ2

L, σ̄
2
L are the variances of the Laplace noise distributions

(functions of ϵ2), for clients who do not swap and those who do, respectively. The lower and
upper bounds shown in Fig. 1 are taken using that 0 ≤ ν2 ≤ 1.

The closed-form expression of m̂R
G’s variance can be obtained similarly, and is

Var[m̂R
G] =

1

a(2b− 1)2n

(

1− a(2b− 1)2ν2 +
K − n

n

1− a

a

)

(20)

Recall that a and b are functions of the privacy budgets.

A.5. Proof outline for Theorem 9

First, we prove the unbiasedness of ∆m̂∗. Due to Theorem 8 and the linearity of expectation,
the expected value of ∆m̂∗ is ∆m. Assuming that G is the advantaged group and thus
m̂∗

G ≥ m̂∗
Ḡ
, we have that E[|m̂∗

G − m̂∗
Ḡ
|] = |mG −mḠ|.

To show that the variance of ∆m̂∗ is the sum of the variance of the mean group
value estimators, it suffices to show that Cov(m̂∗

G, m̂
∗
Ḡ
) = 0, which is true if, and only if,

E[m̂∗
Gm̂

∗
Ḡ
] = mGmḠ. Calculating the value of that expectation explicitly, we observe that

many of its terms have an independent Laplace r.v. as a factor and, consequently, these
terms are zero. Finally, we can apply Bienaymé’s identity to obtain the result of the theorem.

The proof forMR is similar, as the expected value of clients with the group perturbed
is zero.

Appendix B. Allocating the privacy budget for the ML mechanism

In Eq. (19), we see that the variance of the unbiased estimator forML is dominated by ϵ2.
Therefore, since ϵ1, ϵ2, and k must satisfy Eq. (1), we minimize the MSE by first setting
ϵ2 = ϵ and, then, finding the k that maximizes ϵ1 under the LDP constraint in Eq. (1).

If we take ϵ2 = ϵ in Eq. (1) of Theorem 6, we obtain bounds for ϵ1

ln(
2

k
)−

ϵ

2
≤ ϵ1 ≤ ln(

2

k
) +

ϵ

2
λ(k), (21)

where λ(k) = 2
(

1− 1
k

)

. Thus, this inequality holds iff 2
3 ≤ k.

To find the k that maximizes ϵ1, we consider two cases: 0 < ϵ < 2/3, and 2/3 ≤ ϵ.

If 2/3 ≤ ϵ, we write ϵ1 as the upper bound of ϵ in Eq. (21), a function of k, and find that
k = ϵ is a maximum for a constant ϵ. However, for 0 < k < 2/3, Eq. (21) does not hold and
hence k = ϵ would not satisfy ϵ-LDP. When 0 < ϵ < 2/3, we take k = 2/3, the minimum k
that satisfies ϵ-LDP, as that minimizes the scale of the Laplace noise. In that case, ϵ1 is
equal to the upper and lower bounds in Eq. (21).

Thus, the maximum ϵ1 as a function of ϵ is
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Figure 4: The theoretical upper bound of the MSE of m̂R
G as derived from Theorem 9, and

its empirical MSE over different runs ofMR, for nG = nḠ = 10.

attribute on a real-world dataset. Our results show that the error of the mechanisms in
the synthetic data is orders of magnitude lower than the Chebyshev bounds obtained in
the previous section, indicating that an operator who uses the Chebyshev bounds might be
overly conservative in their privacy risk assessment.

Data Generation Our data generation model is based on the activity detection dataset
collected by Shinmoto Torres et al. (2016). The dataset comprises the sensor readings for
14 subjects who were instructed to perform a number of scripted daily activities in two
different rooms. The features include the sensor’s readings of time, accelerometer position,
and radio signal’s strength, frequency, and phase. The labels describe one of these activities:
sitting, lying down, or ambulating. We binarized the detection task by relabeling the data
to whether or not the subject was lying down.

We define “sex” as the protected attribute in the data. Although the sex of the subject
was annotated per each trial—25 male and 62 female—there is no mapping between trials
and subjects. Thus, we assume that each recorded session represents a different FL client,
with each client having an average of 864 samples. We stratify the data ensuring that all
clients have the same data distribution between training and test sets (70% of the samples
for training and 30% for testing).

We simulated the federated learning of a model by training a logistic regression model.
We assume that this is the global model trained with the data of all clients. Since the
performance of the model was nearly perfect, resulting in almost all the clients having a
zero false positive rate, we have dropped some of the accelerometer features to increase the
difficulty of the learning task. The global model’s hold-out average test accuracy for 10 runs
is 84.37%, with a false positive rate (FPR) of 10.69%, and a true positive rate (TPR) of
82.05% (all SD values are smaller than 1%). Then, we independently test the global model
on each client’s test set, resulting in two performance values for each client. We take the
TPR and the FPR as performance metrics: the mean TPRs are 89.01% and 71.77% and
the mean FPRs are 15.26% and 24.90% for males and females, respectively. We observe a
significant performance gap on both metrics: ∆TPR = 17.33% and ∆FPR = 9.63%.

Regression model implementation We implemented the evaluation of the logistic
regression model with Python 3.7.6 and sklearn 0.22.1.
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Table 2: Comparison of the Chebyshev bounds with the empirical mean error for 10 runs of
the mechanisms on the synthetic dataset with K = 107 clients. The first column is
the privacy budget, followed by the mean error (and standard deviation) of the
estimates on the data and the 0.99-probability Chebyshev’s bounds (α) for each
mechanism.

MR opt. ML opt.

ϵ |∆m̂
R −∆m| α |∆m̂

L −∆m| α

0.01 0.1241(±0.1410) 1.2586 0.0504(±0.0337) 1.0525
0.10 0.0082(±0.0059) 0.1206 0.0046(±0.0040) 0.1060
1.00 0.0008(±0.0006) 0.0094 0.0008(±0.0005) 0.0118

10.00 0.0001(±0.0000) 0.0032 0.0001(±0.0000) 0.0009

We use Elastic-Net loss (with a 0.99 L1 component) and SAGA as the algorithm to
minimize it. To balance the classes, we adjust class weights inversely proportional to
class frequency. To find these hyperparameters we do not optimize for best generalization
performance, as we are interested in inducing an disparate performance between the groups.

We evaluated the model selection by 10 runs of hold-out cross-validation (70–30% as the
random training–testing split). We fix the PRNG seed and release the source code included
in the supplementary material.

We published the data and the source code to reproduce these experiments (Juarez and
Korolova, 2022).

Error of the DP mechanism To generate synthetic data for the global model’s perfor-
mance on new clients, we model the marginal distribution of sex to have the same mean
and ν2 as the observations. For the purpose of evaluating the error of the mechanisms, the
exact distribution that we fit is not important, thus we draw samples with replacement from
the set of observations. This sampling methodology ensures that the relevant statistics are
preserved and we generate enough data to represent a realistic DFL deployment.

Table 2 compares the empirical error with the 0.99-probability bounds (α) obtained with
the procedure explained in the previous section, for a range of privacy budgets (ϵ). The
bounds are one order of magnitude larger than the actual error. This means that the budget
that the operator would need to allocate to satisfy a certain α for 107 clients is substantially
lower than the ones shown in Table 1. As a consequence, following the Chebyshev bounds
from the previous section would result in an overly conservative measurement with respect
to the privacy of the users, and operators with small privacy budgets could afford more
accurate measurements without an impact on user privacy.
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