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Abstract

Task-oriented dialogue research has mainly fo-
cused on a few popular languages like English
and Chinese, due to the high dataset creation
cost for a new language. To reduce the cost,
we apply manual editing to automatically trans-
lated data. We create a new multilingual bench-
mark, X-RiSAWOZ, by translating the Chinese
RiSAWOZ to 4 languages: English, French,
Hindi, Korean; and a code-mixed English-
Hindi language. X-RiSAWOZ has more than
18,000 human-verified dialogue utterances for
each language, and unlike most multilingual
prior work, is an end-to-end dataset for build-
ing fully-functioning agents.

The many difficulties we encountered in creat-
ing X-RiSAWOZ led us to develop a toolset
to accelerate the post-editing of a new lan-
guage dataset after translation. This toolset im-
proves machine translation with a hybrid entity
alignment technique that combines neural with
dictionary-based methods, along with many au-
tomated and semi-automated validation checks.

We establish strong baselines for X-RiSAWOZ
by training dialogue agents in the zero- and
few-shot settings where limited gold data is
available in the target language. Our results
suggest that our translation and post-editing
methodology and toolset can be used to create
new high-quality multilingual dialogue agents
cost-effectively. Our dataset, code, and toolkit
are released open-source.'

1 Introduction

In recent years, tremendous effort has been put
into the research and development of task-oriented
dialogue agents; yet, it has been mainly focused
on only a handful of popular languages, hindering
the adoption of dialogue technology around the
globe. Collecting dialogue data from scratch for a
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new language is ideal but prohibitively expensive
and time-consuming, leading to the current lack of
reliable multilingual dialogue benchmarks.

In recent years, several non-English task-
oriented dialogue (ToD) datasets have been created.
These datasets are either collected from scratch
(Quan et al., 2020; Zhu et al., 2020a), synthesized
using a state machine with manually written tem-
plates, and paraphrased for fluency by crowdwork-
ers (Lin et al., 2021), or manually translated from
another language (Li et al., 2021b). All of these
approaches are labor-intensive, costly, and time-
consuming; such investment is unlikely to be made
for less widely spoken languages.

This motivates the development of zero and few-
shot techniques that can produce a usable agent in
a new language with no or only a few gold training
dialogues in the target language. Concurrent with
this work, Ding et al. (2022); Zuo et al. (2021);
Hung et al. (2022b) adopt a translation and man-
ual post-editing process where data is translated
with neural machine translation models first, and
then post-edited by crowdworkers. This approach
has shown promise on MultiWwOZ; however, re-
ported zero- and few-shot accuracies show a big
degradation in performance compared to full-shot
accuracy in the source language. Besides, the per-
formance of the agent in the original language was
not good to begin with, in part due to misanno-
tations in the dataset (Eric et al., 2019a). Lastly,
these datasets either focus only on the subtask of
Dialogue State Tracking (DST) (Ding et al., 2022)
or auxiliary tasks such as Response Retrieval (Hung
et al., 2022b), or are too small (Zuo et al., 2021) to
train end-to-end dialogue agents that require policy,
interactions with databases, and response genera-
tion components.

Our overall goal is to make task-oriented dia-
logue research in major languages available to low-
resource languages. The key is to produce high-
quality few-shot training, validation, and test set
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Dataset
Few-shot Validation Test
# Domains 12 12 12
# Dialogues 100 600 600
# Utterances 1,318 8,116 9,286
# Slots 140 148 148
# Values 658 2,358 3,571

Table 1: Statistics for the few-shot, validation, and test.

with as little manual effort as possible to enable
zero-shot or few-shot training. We describe below
our contributions towards this goal.

1.1 Data Translation Techniques and Toolset

Machine translation followed by human post-
editing has been used as a method for extending
monolingual NLP datasets to new languages (Yang
et al., 2019; Ziemski et al., 2016; Giannakopou-
los et al., 2011; Conneau et al., 2018). How-
ever, we discovered human post-editing to be the
main pain point in creating new dialogue datasets.
The process is costly, requiring a lot of back-and-
forth among developers, translators, and annotators.
Even after several rounds, the results are still not
adequate. To alleviate this, we devised a scalable
methodology and an associated toolkit that auto-
mates parts of this process, and aids translators
and annotators to iteratively check their work them-
selves without developer supervision. This allows
fast and accurate creation of a new dialogue dataset
annotated with slot values for a new language.

We show that the entity-aware translation tech-
nique proposed by Moradshahi et al. (2023) is also
applicable to other end-to-end dialogue datasets.
We combine this technique with a dictionary-based
alignment where multiple translations are gener-
ated for each entity individually (i.e. without con-
text), using the same translation model used to
translate the sentence. Then, the translated sen-
tence is scanned to match any of the translation can-
didates, resulting in an improvement in the agent’s
performance.

Furthermore, we automatically check each step
of data translation to ensure annotation consistency
between dialogue utterances and API calls to the
database. We are releasing this toolkit open-source
for reproducibility as well as a resource for others.

1.2 X-RiSAWOZ Dataset

We created X-RiSAWOQOZ, a multi-domain, large-
scale, and high-quality task-oriented dialogue
benchmark, produced by translating the Chinese
RiSAWOZ data to four diverse languages: English,
French, Hindi, and Korean; and one code-mixed

English-Hindi language. X-RiSAWOZ is an im-

provement over previous works in several aspects:

* End-to-End: Contains translations for all parts
of dialogue including user and agent utterances,
dialogue state, agent dialogue acts, and database
results.

* Larger: RiSAWOZ is larger than MultiWOZ and
covers a total of 11,200 dialogues with 151,982
turns. It also covers 12 domains compared to 7.
In addition to translating validation and test data,
we also sample 100 dialogue examples from the
training set and translate them using the same
process to use as few-shot training data. This
way, X-RiSAWOZ can be used to experiment
with few-shot techniques as well as zero-shot.

* Higher Quality: We choose RiISAWOZ as it ex-
hibits the lowest misannotation rate among pop-
ular dialogue benchmarks as shown by Morad-
shahi et al. (2021). The data translation method-
ology described above reduces the mismatch be-
tween entities in the sentence and annotations,
meaning that our translation process does not
introduce new misannotations.

e Cheaper: First, the methodology and toolset
reduce the amount of post-editing effort needed.
Second, instead of using commercial translation
systems such as Google Translate, we rely on
open-source multilingual translation models such
as MBART (Liu et al., 2020) for the translation
of training data. This reduces the translation
cost by at least 100x which could otherwise be a
prohibiting factor when building datasets for new
languages.

1.3 Experimental Results

We establish strong baseline results for our new
X-RiSAWOZ dataset. In the full-shot setting, our
model produces a new SOTA on the original Chi-
nese dataset. With few-shot training, across lan-
guages, our model achieves between 60.7-84.6%
accuracy for Dialogue State Tracking (DST), 38.0-
70.5% accuracy for Dialogue Act (DA), and 28.5-
46.4% for BLEU score when evaluated using gold
data as the conversational context. Cumulatively
over a conversation, our model achieves 17.2%,
11.9%, 11.3%, 10.6%, and 2.3% on Dialogue Suc-
cess Rate (DSR), respectively. The remaining gap
between zero or few-shot results on new languages
and the full-shot results on Chinese creates oppor-
tunities for research and finding new techniques to
further improve the dialogue agent performance.



2 Related Work

2.1 Multilingual Dialogue Datasets

MultiWOZ (Budzianowski et al., 2018; Ramadan
et al., 2018; Eric et al., 2019b), CrossWOZ (Zhu
et al., 2020a), and RiSAWOZ (Quan et al., 2020)
are three monolingual Wizard-Of-Oz multi-domain
dialogue datasets for travel dialogue agents. For the
9th Dialog System Technology Challenge (DSTC-
9) (Gunasekara et al., 2020), MultiWOZ was trans-
lated to Chinese and CrossWOZ was translated
to English using Google Translate. A portion of
their evaluation and test sets were post-edited by
humans, while the training set remained entirely
machine translated. Moradshahi et al. (2021) trans-
lated RiSAWOZ to English and German using
open-source machine translation models with align-
ment. However, the validation and test data were
not verified by humans, resulting in potentially
over-estimating the accuracy of agents. Several
works (Ding et al., 2022; Zuo et al., 2021; Hung
et al., 2022a) continued translation of MultiWwOZ to
other languages. For example, Global WOZ trans-
lates to several languages, with human translators
post-editing machine-translated dialogue templates,
and filling them with newly collected local entities.
However, these works address only one or two sub-
tasks of a full dialogue, and therefore training an
end-to-end agent is not possible with them.

Different from these translation-based ap-
proaches, Lin et al. (2021) introduced BiToD, the
first bilingual dataset for end-to-end ToD model-
ing. BiToD uses a dialogue simulator to generate
dialogues in English and Chinese, and asks crowd-
workers to paraphrase them for naturalness. This
simulation-based approach eliminates the need for
translation but requires hand-engineered templates
and savvy developers with knowledge of the target
language and dialogue systems. Besides, paraphras-
ing the entire dataset is costly.

2.2 Cross-Lingual Approaches for ToD

With the advent of pre-trained language models,
contextual embeddings obtained from pre-trained
multilingual language models (Devlin et al., 2018;
Xue et al., 2021; Liu et al., 2020) have been used
to enable cross-lingual transfer in many natural
language tasks, including task-oriented dialogue
agents. Unfortunately, most of this work has only
focused on the DST subtask, which is a limitation
we aim to rectify with this paper.

To further improve the cross-linguality of these

embeddings, Tang et al. (2020) and Moghe et al.
(2021) proposed fine-tuning multilingual BERT on
a synthetic code-switching dataset. Glavas et al.
(2020) performed language adaptation by using in-
termediate masked language modeling in the target
languages and improving zero-shot cross-lingual
transfer for hate speech detection task.

Using machine translation for multilingual di-
alogue tasks has also been studied. Uhrig et al.
(2021) used machine translation during inference
to translate to English for semantic parsing. Instead,
Sherborne et al. (2020) use machine translation to
generate semantic parsing data to train a semantic
parser in the target language which leads to better
results. Moradshahi et al. (2023); Nicosia et al.
(2021) proposed using alignment to improve the
quality of translated data by ensuring entities are
translated faithfully.

3 The End-to-End ToD Task

In end-to-end task-oriented dialogues, a user

speaks freely with an agent over several turns to ac-

complish their goal according to their intents (e.g.,

"book a hotel with at least 5 stars"). In each turn,

the agent must access its database if necessary to

find the requested information (e.g., find a hotel
that meets user constraints), decide on an action

(e.g., present the information to the user or ask

for additional information), and finally respond to

the user in natural language based on the action it
chooses. Following (Moradshahi et al., 2023), we
decompose a dialogue agent into four subtasks:

1. Dialogue State Tracking (DST): Generate the
new belief state, for the current turn based on the
previous belief state, the last two agent dialogue
acts, and the current user utterance.

2. API Call Detection (ACD): Determine if an API
call is necessary to query the database.

3. Dialogue Act Generation (DAG): Generate the
agent dialogue act based on the current belief
state, the last two agent dialogue acts, the user
utterance, and the result from the API call.

4. Response Generation (RG): Convert the agent
dialogue act to produce the new agent utterance.

4 The Common Dialogue Interface

Over the years, various ToD datasets have been
introduced (Budzianowski et al., 2018; Byrne et al.,
2019; Zhu et al., 2020b; Quan et al., 2020; Lin
et al., 2021), each with its own representation, mak-
ing it difficult for researchers to experiment with



different datasets. To facilitate experimentation,
we have developed Common Dialogue, a standard
interface for ToD tasks. This interface defines a
unified format for datasets, their annotations, on-
tologies, and API interfaces. We show that the most
widely-used recent dialogue datasets (such as Mul-
tiWoZ, RiSAWOZ, and BiToD) can be converted
to this representation with a simple script. The stan-
dardization lets all different datasets be processed
with the same software and models, significantly
reducing the implementation time and cost.

Previously, other libraries such as ParlAI (Miller
et al., 2017), ConvLab (Zhu et al., 2020c, 2022),
and Nemo (Kuchaiev et al., 2019) were introduced
so researchers can work with different dialogue
datasets and interact with the trained models. How-
ever, these libraries are limited. They either do not
provide a standard abstraction, making it difficult
to add new datasets, or a modular interface that can
connect with other code bases, requiring new mod-
els to be implemented in their repository before
they can be used. Additionally, the training code
needs to be modified to support a new dataset or
language for an existing dataset.

5 Dataset Creation

In this section, we describe the process used to
extend RiSAWOZ to the new languages. The orig-
inal RiSAWOZ dataset is in Chinese. We manu-
ally translate the validation data (600 dialogues),
test data (600 dialogues), and 1% of the train-
ing dataset (100 dialogues), which we refer to as
few-shot, from Chinese to English. For other lan-
guages, we use English as the source language,
since bilingual speakers of English and the target
language are more accessible than Chinese and the
target language. Since the English data is manu-
ally translated, this approach avoids double transla-
tionese (Vanmassenhove et al., 2021) and ensures
the best data quality. We machine-translate the En-
glish data and manually post-edit the translation
for fluency and correctness. Besides the few-shot
data, we also machine-translate all of the Chinese
training data into each of the languages (including
English) and train with them; we refer to training
with just this data set as zero-shot, since no human
labor is used during dataset creation.

In the following, we discuss the steps and meth-
ods for preparing data for translation, including
building alignment between entities and perform-
ing iterative quality checks. We also describe how

to create the target language ontology, which serves
as a database for API calling and provides a map-
ping between source and target language entities.

5.1 Translation and Alignment for Few-Shot,
Validation, and Test Data

5.1.1 From Chinese to English

Figure 1 shows the process used to translate the
Chinese dataset to English. First, human profes-
sional translators manually translate the Chinese
dialogue utterances and ontology in the validation,
test, and few-shot training data sets to English. We
provide the translators with an annotation tool (Fig-
ure 2) to navigate through data examples, perform
translation, and highlight entity spans in the trans-
lated sentence. The tool helps verify the consis-
tency of slot value translations between user/agent
utterances and their annotations after translation.

For each utterance in a dialogue, our tool auto-
matically identifies the values in dialogue states and
user/agent actions. Slots are canonicalized before
calling the database, meaning that their values must
lexically match those in the ontology. Since slot
values appearing in the utterances may differ from
the canonicalized version, we ask translators to
manually identify and mark the non-canonicalized
form of slot values and their word spans in the
utterances.

The tool automatically checks the number of
highlighted spans to prevent missing entity transla-
tions. After checking, the annotation tool outputs
the English dialogue texts and a correspondence
(i.e. alignment) between source and target language
slot values.

5.1.2 From English to Other Languages

Automatic Translation. For validation, test, and
few-shot data, we use commercial translation mod-
els since (1) translation is done only once, (2) data
size is smaller so it is affordable, and (3) higher
data quality reduces post-editing effort.

Manual Post Editing. We hire bilingual speak-
ers of English and the target language to post-edit
the translations for fluency and correctness. We
instruct them to update the alignment if they mod-
ify the translated entities. We provide several tools
that automatically check their work and help them
during the process. We describe the details in Sec-
tion 5.4.2.
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Figure 1: The translation and annotation process of X-RiSAWOZ from Chinese to English. There are 4 major steps:
(1) Translate utterances and provide entity alignments between source and target sentences using the Ul tool. (2)
Create the value mapping using entity alignments. (3) Create slot and domain mappings by manually translating
them from Chinese. (4) Translate slot values in the annotations and ontology using the value mapping.

5.2 Zero-Shot Training Data Translation &
Alignment

To create the zero-shot training datasets for the
target languages (including English), we use open-
source machine translation models to translate the
Chinese data to the target language. We pick open-
source models since (1) their results are repro-
ducible, (2) open-source models provide access
to model weights necessary for hybrid alignment
(described below), (2) they allow tuning text gener-
ation hyperparameters such as temperature (Ficler
and Goldberg, 2017) or beam size (Freitag and Al-
Onaizan, 2017) and (3) they cost less, thus allowing
effective scaling to more languages.

Hybrid Alignment for NMT. Previous
work (Moradshahi et al., 2021; Li et al., 2021a)
proposed using alignment for tracking the position
of entities during translation to ensure they can be
replaced with the desired translation both in the
utterance and the belief state. For this purpose,
the encoder-decoder cross-attention weights of
the neural machine translation model were used
in a method called neural alignment. Although
neural alignment often works well, it can produce
incorrect spans as it is a probabilistic approach
and has particularly low recall on long multi-token
entities.

Ideally, if there exists a dictionary that provides

a mapping between each source entity and all pos-
sible translations in the target language, we can
directly scan the translated sentence to see if there
is a match. We call such an approach dictionary
alignment. Unfortunately, there is no such dictio-
nary. We propose to build such a dictionary for
each sentence on-the-fly. To do so, we first extract
the entities from the sentence, then translate each
individually and use nucleus sampling (Holtzman
et al., 2019) with different temperature values to
generate K translation candidates. This way, we
build a mapping between each entity and possible
translations which serves as the dictionary for dic-
tionary alignment. Finally, we combine the two
methods in a hybrid approach: We try to use dic-
tionary alignment first, and if there is no matching
translation in the output, we fall back to neural
alignment.

5.3 Creating English-Hindi Code-Mixed
Zero-Shot Training Data

For generating English-Hindi code-mixed train set,
we implemented a pipeline combining GCM (Rizvi
et al., 2021), and alignment based word substi-
tution. An overview of the pipeline is shown in
Fig. 3. GCM automatically generates code-mixed
text given parallel data in two languages, based on
two linguistic theories of code-mixing, the Equiv-
alence Constraint theory (Poplack, 1980) and the



Matrix Language theory (Scotton, 1993).

We take the Chinese training set as source and
translate user and agent utterances to English (en)
and Hindi (hi). The translated sentences are fed
as input to GCM, which produces code-mix utter-
ances. For sentences where GCM fails to generate
any candidate, we rely on word-alignment-based
word substitution to generate a code-mixed utter-
ance. Alignments are generated using cosine sim-
ilarities between sub-word representations from
mBERT in a parallel sentence pair (Dou and Neu-
big, 2021).

5.4 Translation of Annotations

The next step is to translate the slot values in the be-
lief state, user and agent acts, and database search
results in the source language to the target lan-
guage. Since the translations of the same slot value
may vary according to the context (e.g., “s&” cor-
responds to is, does, has or other words indicating
affirmative), we create a one-to-many mapping be-
tween source language slot values and correspond-
ing translations based on the slot value alignments
obtained above. We ask human translators to select
the most appropriate expression from all candidate
translations as the canonicalized translation. We
follow two basic principles in this process:

Part-of-Speech (POS) Consistency. The trans-
lator should pick, for each slot, values with the
same POS tags where possible. For example, for
the “production country/region” slot in the TV se-
ries domain, we will use the unified noun form (i.e.,
“America”/“India”) instead of mixing the noun and
adjective form (i.e., “American”/“India”).

Value Consistency. The translator should use
the same translation across domains and slots. For
example, the Chinese word “H%%” when used as a
“price-range” can be translated into “moderate” or
“medium”. We consistently map “H%%” to “moder-
ate” for all “price-range” slots across all domains.

5.4.1 Creating Ontology and Databases

We found that ontology construction should be
done in tandem with dataset translation. In prior
work, using a predefined ontology limited fluency
and diversity of the translations (Zuo et al., 2021),
and replacing entities in sentences after transla-
tion without careful attention to parts of speech
or context resulted in grammatically incorrect sen-
tences (Moradshahi et al., 2020; Ding et al., 2022).
Each value in the source database is automatically
mapped to its canonicalized translation. Note that

since not all slot values are seen in the training
dataset, translators are asked to provide canonical-
ized translations for those values.

The original RISAWOZ dataset only provides
final search results from databases instead of in-
termediate API calls. We hence also restore the
API calls through the dialogue state, database, and
search results for complete database interactions.
This improves the extensibility of the dataset and
helps to generalize RiSAWOZ to other languages
and domains in the future.

5.4.2 Annotation Checker

Manual errors are inevitable, especially for transla-
tors who are unfamiliar with the process. We have
developed an annotation checker to automatically
flag and correct errors where possible:

Entity Checking. Our annotation checker en-
sures that changes made in the English translation
of entities are propagated to the downstream trans-
lation for other target languages. It compares the
revised annotations with current annotations and
deleted incorrect or redundant slots. Additionally,
it locates missing entities or entities that need re-
annotation to help annotators quickly synchronize
the latest changes.

API Checking. Some datasets such as Ri-
SAWOQZ, include the ground truth database search
results. For these datasets, we can check the con-
sistency of the API by comparing the results of
the API call with the provided ground truth. Our
checker resolves observed discrepancies by auto-
matically deleting redundant slots and values in
constraints and adding the differences to the slot
value mappings. It also shows the precise locations
of changes for annotators to review.

6 Experiment

The goal of our experiments is to create an agent
in a target language, given full training data in the
source (Chinese) language, and a varying amount
of training data in the target language. We also
assume we have access to a machine translation
model from Chinese to the target language. We per-
form our experiments on different target languages
in X-RiSAWOZ. Table 1 shows statistics of differ-
ent data splits used in the experiments, which is the
same across all target languages.

6.1 Setting

Full-Shot (mono-lingual). This setting is only
possible for Chinese since we do not have full train-



ing data for target languages. In the full-shot ex-
periments, all of the original Chinese training data
is used for training. Note that this setting is not
a cross-lingual experiment per se, but a point of
comparison for other settings.

Zero-Shot (cross-lingual). In our zero-shot ex-
periments, no manually created target language
data is available for training. Instead, we automati-
cally create training data by machine translation of
the source language as described in Section 5.1.2.
Additionally, we perform two ablations on our auto-
matic training data translation approach: (1) Only
using neural alignment (— Dictionary Align) (2)
No alignment of any type (— Neural Align).

Few-Shot (cross-lingual). In the few-shot set-
ting, we start from a zero-shot model (with its
various ablations) and further fine-tune it on the
few-shot dataset in the target language. So the
model is trained on both machine translated data
and few-shot manually created dataset. In this set-
ting, we also perform an ablation where we only
train on the few-shot training data and no machine
translated data (Few-shot Only).

6.2 Models

In all our experiments, we use the m2m100 (Fan
et al., 2020) model for Korean and mBART (Liu
et al., 2020) for all other languages. We found
mBART to be especially effective in zero-shot set-
tings as the language of its outputs can be con-
trolled by providing a language-specific token at
the beginning of decoding. Additionally, its denois-
ing pre-training objective improves its robustness
to the remaining translation noise. In each setting,
all four dialogue subtasks are done with a single
model, where we specify the task by prepending a
special token to the input.

Since the dataset for target languages is intro-
duced in this paper, there is only prior work on
the Chinese dataset. In Section 7.3, we com-
pare our results to the best previously reported re-
sult on RISAWOZ from Moradshabhi et al. (2021)
that achieved SOTA on the DST subtask using an
mBART model, and from Quan et al. (2020) for
other subtasks which use DAMD (Zhang et al.,
2020), a Seq2Seq RNN end-to-end dialogue model.
We use seven widely-used automatic metrics to
compare different models. Please see Section A.2
for details of each metric.

7 Results and Discussion

We first evaluate the models for each turn, assuming
that all previous subtasks and steps are correct. We
then evaluate the end-to-end accuracy for the whole
conversation.

7.1 Turn by Turn Evaluation

To understand how each component performs inde-
pendently, our first experiment uses the gold data
of all the previous turns and subtasks as input in our
evaluation (Table 2). In this scenario, errors do not
propagate from one subtask to the next in each turn.
Ours refers to our main approach, which combines
all techniques. Each ablation incrementally takes
away one of the techniques.

In the zero-shot setting, results vary across added
languages, where the agent achieves between 34.6-
84.2% on DST, 42.8-67.3% on DA, and 10.2-29.9%
on BLEU score. Fine-tuning on the few-shot data
improves all metrics for all languages, with the
agent achieving between 60.7-84.6% on DST, 38.0-
70.5% on DA, and 28.5-46.4% on BLEU score.
The improvement in DST is particularly prominent
for Hindi, Korean, and English-Hindi, where the
quality of machine translation may not be as good.
Nonetheless, adding automatically translated data
to training greatly improves the accuracy for these
languages over the “few-shot only” result.

7.2 Error Analysis

To better understand the inference limitations of our
trained agents, we manually inspected the model
predictions by randomly selecting 100 validation
turns for each domain where the prediction was
incorrect. The following are the most common
error patterns we observed across all languages:
Implicit Entities: In X-RiSAWOZ dialogues,
some entities are not mentioned explicitly in the
user’s utterance and need to be inferred. These enti-
ties include the corresponding price range for a lux-
ury diner, a speaker’s desired attraction for a date
with their partner, and hotel rating. These errors are
partly due to the limited common-sense capability
of the pre-trained language model used (Zhou et al.,
2020) and partly due to the training data encourag-
ing the model to copy entities verbatim from the
input instead of making logical reasoning. This
category accounts for 27% of errors observed.
Multiple Correct Dialogue Acts: In X-RiSAWOZ,
the agent often provides an answer as soon as it
receives the API call results. However, in some



Language | Setting [ DST Acc. 1 [ DA Acc. 1 [ BLEU 1

Full-Shot

Chinese | Ours ‘ 96.43 ‘ 91.74 ‘ 51.99
Zero-Shot

Ours 84.23 67.27 27.14

English — Dictionary Align 83.42 66.51 22.67

— Neural Align 82.33 67.79 13.24

Ours 70.75 59.27 29.88

French — Dictionary Align 68.22 56.32 25.43

— Neural Align 64.53 53.33 18.12

Ours 52.09 56.06 2742

Hindi — Dictionary Align 50.12 54.34 23.43

— Neural Align 48.11 53.21 18.32

Ours 34.55 49.56 10.17

Korean — Dictionary Align 31.47 50.17 9.87

— Neural Align 29.87 49.51 4.59

English-Hindi | Ours 49.95 42.78 11.31
Few-Shot

Chinese Few-shot Only 82.75 77.33 38.87

Ours 84.62 69.44 46.37

English — Dictionary Align 83.37 69.74 46.16

— Neural Align 82.01 70.45 45.43

Few-shot Only 74.52 58.97 45.53

Ours 73.12 61.11 42.21

French — Dictionary Align 71.12 60.21 40.12

— Neural Align 69.68 57.12 38.14

Few-shot Only 67.55 50.96 44.717

Ours 75.16 59.02 38.38

Hindi — Dictionary Align 75.32 57.66 37.54

— Neural Align 73.21 54.32 34.32

Few-shot Only 55.77 49.88 38.18

Ours 71.17 53.52 34.93

Korean — Dictionary Align 69.57 52.37 34.75

— Neural Align 69.91 52.00 33.80

Few-shot Only 60.65 41.47 32.76

. . .. | Ours 60.67 37.97 26.77

English-Hindi | o 0ot Only 56.53 36.50 2854

Table 2: Results on the validation set of X-RiSAWOZ, obtained by feeding the gold input for each subtask in each
turn. The best result in each section is in bold. 1 indicates higher number shows better performance.

cases, the agent asks follow-up questions (e.g.,
“how many seats do you want for the car?”’) to
narrow down the search results. Since the dataset
is constructed via human interactions and not simu-
lation, there are no well-defined policies governing
the agent’s behavior. Thus, there are examples
where multiple dialogue acts can be correct given
the input and API constraints. Since during evalu-
ation we can only check the model output against
the one response provided as gold, another per-
fectly fine response can be deemed as incorrect.
We discovered that 38% of errors are of this nature.

Incorrect Entities: In DST and DA subtasks, the
accuracy is highly dependent on identifying the
correct entities in the input. However, there are
cases where the model (1) predicts a wrong entity,
(2) predicts part of the entity, (3) predicts the entity
along with prepositions, articles, etc. (4) omits
the entity, or (5) fully hallucinates an entity. We
found (1) and (2) to be the most common patterns.
(3) can be addressed by a simple pre-processing
or text lemmatization. (4) happens with complex
sentences with many entities where the model often
mispredicts the slot names as well as slot values.

(5) is usually caused by data mis-annotations or
errors in data processing, where a slot is missing
from the input and the model generates the most
probable value for it. The remaining 35% of errors
fall under this category.

For each language, we also performed a similar
analysis to understand if there are language-specific
attributes that affect the accuracy and quality of the
translated datasets. The result of these analyses is
included in the appendix (A.4-A.7).

7.3 Full Conversation Evaluation

The main results of our experiments are reported
in Table 3. Following Lin et al. (2021), the evalua-
tion for these experiments is performed end-to-end
meaning for each turn, the model output from the
previous subtask is used as input for the next sub-
task. This reflects a real-world scenario where an
agent is conversing with the user interactively.
Overall, in the full-shot setting, when training
on the Chinese dataset, we improve the state of
the art in Joint Goal Accuracy (JGA) by 1.33%,
Task Success Rate (TSR) by 5.04%, Dialogue Suc-
cess Rate (DSR) by 5.35%, and BLEU by 6.82%.



Language | Setting | JGAT | TSRT | DSRT | APIt | DAAT [ BLEUT | SERJ|
Full-Shot

Chinese Ours 78.23 53.67 45.67 72.70 73.68 34.72 26.41

SOTA 76.90 48.63 40.32 - — 27.90 30.32
Zero-Shot

Ours 43.64 22.46 16.00 44.95 40.81 14.12 47.08

English — Dictionary Align 38.70 19.22 13.50 39.84 37.35 11.34 49.64

— Neural Align 38.96 9.50 5.67 40.95 41.96 8.21 59.90

Ours 24.04 12.58 7.17 34.20 38.32 10.88 58.45

French — Dictionary Align 20.32 5.43 4.18 28.51 35.78 9.72 60.25

— Neural Align 19.43 3.23 2.11 24.64 28.36 6.81 68.89

Ours 20.32 10.11 4.32 32.32 34.23 9.13 60.43

Hindi — Dictionary Align 18.31 5.15 3.98 30.12 32.31 8.11 65.43

— Neural Align 17.32 3.12 3.10 28.51 28.13 7.00 67.25

Ours 21.41 10.75 5.00 32.08 36.57 7.27 64.33

Korean — Dictionary Align 19.53 9.46 4.83 27.75 36.33 7.55 35.84

— Neural Align 17.77 8.77 3.67 27.19 25.45 7.12 38.98

English-Hindi | Ours 9.22 4.81 2.03 10.43 26.47 5.41 63.26
Few-Shot

Chinese Few-shot Only 37.69 28.04 21.00 40.73 42.30 13.89 45.44

Ours 4891 23.13 17.17 50.06 42.45 26.33 44.93

English — Dictionary Align 48.40 22.79 16.67 50.03 42.26 25.29 45.01

) — Neural Align 46.31 22.68 16.50 47.61 42.54 25.78 4478

Few-shot Only 29.87 16.09 10.50 32.30 30.45 20.00 52.79

Ours 30.85 17.17 11.83 39.97 45.03 20.92 46.26

French — Dictionary Align 28.51 16.11 9.54 38.11 43.41 19.91 48.35

— Neural Align 26.45 15.54 9.13 35.74 42.15 16.99 49.26

Few-shot Only 19.43 3.23 2.11 24.64 28.36 6.81 68.89

Ours 25.62 15.67 11.31 37.54 41.32 18.51 44.26

Hindi — Dictionary Align 23.12 15.11 10.32 35.14 39.51 16.34 46.76

— Neural Align 21.12 13.22 8.61 34.11 34.12 15.33 48.97

Few-shot Only 18.48 8.16 4.50 19.09 23.41 13.15 62.24

Ours 26.24 14.32 10.60 3542 38.42 20.32 43.21

Korean — Dictionary Align 24.13 12.53 8.45 23.42 33.34 19.32 47.32

— Neural Align 23.54 10.23 7.54 22.31 30.42 18.34 50.33

Few-shot Only 20.66 9.16 5.17 19.39 23.56 17.81 54.57

English-Hindi Ours 21.80 4.13 1.83 22.64 21.69 5.29 66.31

Few-shot Only 16.07 3.69 2.33 15.65 16.97 3.93 69.61

Table 3: End-to-end results and ablations on the test set of X-RiSAWOZ. The best result in each section is in bold. |
indicates lower number shows better performance and vice versa.

The improvements are due to the improved and
succinct dialogue representation we have created
(Section 4), and contextual representations of trans-
former models.

In the zero-shot setting, results vary across lan-
guages, where the English, French, Hindi, Korean,
and English-Hindi agents achieve 35%, 16%, 9%,
11%, and 4% of the DSR score of the full-shot Chi-
nese agent, respectively. In the few-shot setting,
the ratio improves to 38%, 26%, 25%, 23%, and
5%. The smallest and biggest improvements are
on the English and Hindi dataset respectively. This
suggests that the impact of few-shot data is greater
when the quality of the pretraining data is lower,
which is related to the quality of the translation
model between Chinese and the target language.

The Response Generation subtask receives the
largest improvement in performance when pro-
vided with human supervision in the few-shot data,
with a BLEU score improvement of over 10%. This
suggests that while translation with alignment is
effective for understanding user input, it is not as
effective for generating output text. This is partly

due to the agent model used, mBART, which is
trained with a denoising objective and is thus able
to handle noisy input text better.

8 Conclusion

This paper presents a solution for balancing the
trade-offs between standard machine translation
and human post-editing. By standardizing and es-
tablishing best practices for “translation with man-
ual post-editing”, and releasing associated toolKkits,
post-editing can be made faster, more efficient, and
cost-effective. We use our methodology to create
X-RiSAWOZ, a new end-to-end, high-quality, and
large multi-domain multilingual dialogue dataset,
covering 5 diverse languages and 1 code-mixed
language. We also provide strong baselines for
zero/few-shot creation of dialogue agents via cross-
lingual transfer. In the few-shot setting, our agents
achieve between 60.7-84.6% on DST, 38.0-70.5%
on DA, and 28.5-46.4% on RG subtasks across dif-
ferent languages. Overall, our work paves the way
for more efficient and cost-effective development
of multilingual task-oriented dialogue systems.



9 Limitations

We would have liked to evaluate the generalization
of our cross-lingual approach on more languages.
For instance, we partially rely on machine trans-
lation models for Chinese-to-English translation.
Available translation models for other language
pairs, especially from/to low-resource languages
have much lower quality, and it would be desirable
to measure the effect of that in our experiments.

The ontology used for new languages is derived
by translating the Chinese ontology. As a result,
the entities are not localized. Creating local on-
tology requires manual effort as one would need
to identify websites or databases for scraping or
collecting the entities. Once the local entities are
collected, we can automatically replace translated
entities with local ones to localize the dataset.

Another limitation is the lack of human evalu-
ation for agent responses. BLEU score does not
correlate well with human judgment (Sulem et al.,
2018), and SER only accounts for the factuality of
the response but not grammar or fluency. In future
work, we wish to address this by conducting human
evaluations in addition to automatic metrics.

10 Ethical Considerations

We do not foresee any harmful or malicious misuse
of the technology developed in this work. The data
used to train models is about seeking information
about domains like restaurants, hotels and tourist
attractions, does not contain any offensive content,
and is not unfair or biased against any demographic.
This work does focus on widely-spoken languages,
but we think the cross-lingual approach we pro-
posed can improve future dialogue language tech-
nologies for a wider range of languages.

We fine-tune multiple medium-sized (several
hundred million parameters) neural networks for
our experiments. We took several measures to
avoid wasted computation, like performing one
run instead of averaging multiple runs (since the
numerical difference between different models is
large enough to draw meaningful conclusions), and
improving batching and representation that im-
proved training speed, and reduced needed GPU
time. Please refer to Appendix A.1 for more de-
tails about the amount of computation used in this

paper.
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A Appendix

A.1 Implementation details

Our code is implemented in PyTorch (Paszke et al.,
2019) using GenieNLP (Campagna et al., 2019)
2 library for training and evaluation. We use our
newly written library (described in Section 4) for
data preprocessing and evaluation which will be
released upon publication. We use pre-trained mod-
els available through HuggingFace’s Transformers
library (Wolf et al., 2019). We use m2m100-418M
model for Korean and mbart-large-50 for other lan-
guages as the neural model for our agent. Both
models use a standard Seq2Seq architecture with a
bidirectional encoder and left-to-right autoregres-
sive decoder. mBART uses sentence-piece (Kudo
and Richardson, 2018) for tokenization, and is pre-
trained on text reconstruction task in 50 languages.

In each setting, all four dialogue subtasks are
done with a single model, where we specify the
task by prepending a special token to the input.
We found mBART to be especially effective in
zero-shot settings as the language of its outputs
can be controlled by providing a language-specific
token at the beginning of decoding. Additionally,
its denoising pre-training objective improves its
robustness to the remaining translation noise.

For translation, we use the publicly available
mbart-large-50-many-to-many-mmt (~611M pa-
rameters) and m2mli00-418M (~1.2B parameters)
models which can directly translate text from any
of the 50 supported languages.

We use greedy decoding and train our models
using teacher-forcing and token-level cross-entropy
loss. We use Adam (Kingma and Ba, 2014) as our
optimizer with a start learning rate of 2 x 10> and
linear scheduling. These hyperparameters were
chosen based on a limited hyperparameter search
on the validation set. For the numbers reported in
the paper, due to cost, we performed only a single
run for each experiment.

Our models were trained on virtual machines
with a single NVIDIA V100 (16GB memory) GPU
on the Azure platform. For a fair comparison, all
models were trained for the same number of it-
erations of 200K in the full-shot setting. In the
few-shot setting, we fine-tuned the model for 10K

Zhttps://github.com/stanford-oval/genienlp
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steps on the few-shot data. Sentences are batched
based on their input and approximate output token
count for better GPU utilization. We set the total
number of tokens per batch to 720. Training and
evaluating each model takes about 15 GPU hours
on average.

At inference time, we use the predicted belief
state as input to subsequent turns instead of ground
truth. However, to avoid the conversation from di-
verging from its original direction, similar to Lin
et al. (2021), we use ground-truth agent acts as in-
put for the next turn. We made sure the settings
are equivalent for a fair comparison. Additionally,
we noted that in many examples the prediction is
similar to the gold truth except for small differ-
ences such as in case (e.g., “district” vs “District”),
or extra punctuation in the predicted output. To
address this, during evaluation, we apply entity nor-
malization by using canonical mapping and string
pattern matching to map entities to their canonical-
ized form.

A.2 Evaluation Metrics

Following Moradshahi et al. (2023), we use the fol-
lowing metrics to compare different models. Scores
are averaged over all turns unless specified other-
wise.

e Joint Goal Accuracy (JGA) (Budzianowski
et al., 2018): The standard metric for evaluat-
ing DST. JGA for a dialogue turn is 1 if all slot-
relation-value triplets in the generated belief state
match the gold annotation, and is O otherwise.

¢ Task Success Rate (TSR) (Lin et al., 2021): A
task, defined as a pair of domain and intent, is
completed successfully if the agent correctly pro-
vides all the user-requested information and sat-
isfies the user’s initial goal for that task. TSR is
reported as an average over all tasks.

* Dialogue Success Rate (DSR) (Lin et al., 2021):
DSR is 1 for a dialogue if all user requests are
completed successfully, and 0 otherwise. DSR is
reported as an average over all dialogues. We use
this as the main metric to compare models, since
the agent needs to complete all dialogue subtasks
correctly to obtain a full score on DSR.

* API: For a dialogue turn, is 1 if the model cor-
rectly predicts to make an API call, and all the
constraints provided for the call match the gold.
It is O otherwise.

* Dialogue Act Accuracy (DAA): For a dialogue
turn, is 1 if the model correctly predicts all the di-

alogue acts including entities, and is O otherwise.

* BLEU (Papineni et al., 2002): Measures the nat-
ural language response fluency based on n-gram
matching with the human-written gold response.
BLUE is calculated at the corpus level.

¢ Slot Error Rate (SER) (Wen et al., 2015): It
complements BLEU as it measures the factual
correctness of natural language responses. For
each turn, it is 1 if the response contains all enti-
ties present in the gold response, and is O other-
wise.

A.3 Human Post-Editing

Bilingual speakers of the source and output lan-
guage were recruited as human translators and post-
editors by each team. A user interface (see Fig. 2)
was provided for them to perform translation and
alignment tasks. The translators were instructed
to ensure that the resulting translations were both
accurate and fluent. Compensation for their work
was provided at the standard rate in their respective
countries.

A.4 Error Analysis: French

For the French language, we focused on the Re-
sponse Generation subtask. We selected 300 of the
prediction examples marked as false as not match-
ing exactly the reference. In this set 42.8% of the
predictions are completely wrong. Polite forms are
particularly problematic. As an example, we can
cite the case of the expression “Tout le plaisir est
pour moi, au revoir. (It’s my pleasure, goodbye.)”
which has four different wrong predictions “Pas
de courtoisie, au revoir. (No courtesy, goodbye.)”,
“Pas de gentillesse, au revoir. (No kindness, good-
bye.)’, “Je suis heureux de vous servir, au revoir.
(I am pleased to serve you, goodbye.)” and “Pas
de bonheur, adieu! (No happiness, goodbye)”. The
root cause most likely stems from the literal trans-
lation of Chinese idioms used in polite expressions
(N2 X)) to French in the zero-shot training data.
However, most of the polite expressions should be
easy enough to correct.

We noted that 7.4% of the predictions are just
slightly off semantically. For example (“Je recom-
mande ['université de Xi’an Jiaotong-Liverpool. (I
recommend Xi’an Jiaotong-Liverpool University.)”
vs. “luniversité de Xi’an Jiaotong-Liverpool de
Liverpool est tres bien. (Xi’an Jiaotong-Liverpool
University from Liverpool is very good.)” with
the wrong insertion of “de Liverpool (from Liver-
pool)”.



On the other hand, 15.4% of the predictions are
semantically correct, but with minor errors (syn-
tactic errors, repetitions, etc.). For instance, the
meaning of the sentence “Il y aura une brise sans
direction continue samedi prochain. (There will be
a continuous directionless breeze next Saturday.)”
is the same than the one of the sequence of words

“Le vent une brise sans direction continue vent doit

étre doux. (The wind a breeze without continuous
wind direction must be gentle.)” but this sequence
of words is syntactically wrong. The date refer-
ence is also missing but it was not mandatory for
the correctness of the dialogue. Finally, 34.4% of
the supposedly wrong generated responses are in
fact correct but just expressed differently, like in
“Elle a une note de 4,3. (It has a rating of 4.3.”)
vs. “La note de ce lieu est de 4,3. (The rating for
this location is 4.3.)”. We think that this kind of
difference could be handled by a computation of
sentence embedding distance.

As we focused on the Response Generation com-
ponent, we did not carry out a large-scale quali-
tative analysis of the Slot-Relation subtask but a
quick look at the data seems to indicate that some
given slots are often missing from the generated
part, like "the_most_suitable_people". For some
other slots like “metro_station”, some values seem
to be missing from normalization data like “peut”
which should be equivalent to “pouvoir” and “true”.
This latter error will be quite simple to correct.

A.5 Error Analysis: Hindi

We sample 10% of the errors from each domain
from the Hindi validation dataset and analyze these
examples manually. The following are the error
patterns we observe:

Response Generation. As discussed in Section
A.7, there are multiple ways to generate a sentence
while matching the semantic content of the gold
truth. While such RGs should ideally be marked as
correct, their BLEU scores are low. Such instances
amount to over 65% of all RG errors. In addition
to such kind of errors, we observe that approxi-
mately 18% of all the RG error samples are largely
accurate but they lack fluency. Here is one such
instance where the model is trying to say bye to the
user: “ajib hai, alvida!”, which translates to “That’s
strange, bye!”. In this example, the model conveys
the right message but not in the most polite way.
Such instances become more common when the
model has to fill the “general” slot, used mainly in

greetings. This is possibly because the model finds
it more difficult to generate open-ended text than
content-guided text.

Erroneous Slot-Relation Values. In some cases,
the model predicts the right slot-relation values, but
they are deemed incorrect because it predicts the
synonym of the gold truth. This amounts to 28% of
all the erroneous slot-relation value examples. In
addition to such instances, we observe that some
slot-relation values are marked as incorrect because
of minor differences between the gold truth and
the model prediction. These include extra spaces,
punctuations, stop words, and the usage of syn-
onyms. Such kind of errors amount to 17.8% of the
sampled erroneous slot relation values. Lastly, our
analysis reveals that there seems to be an increased
amount of confusion between the following pairs
of slots: “inform”, “request” and “date”, “time”.

A.6 Error Analysis: Korean

The Korean language poses some unique chal-
lenges. In Korean, a word can be made up of
multiple characters, and an eo-jeol is formed by
one or more words to convey a coherent meaning.
Spaces are used to delimit an eo-jeol. For instance,
postpositions, or jo-sa in Korean, are connected to a
noun to form an eo-jeol to indicate its grammatical
relation to other words in a sentence.

Consider “#]+= AFH o] ZHA ] 87, a sentence
containing 3 eo-jeol and 9 characters that means
“I will go to Xiamen”. “AF™ ©f|” is an eo-jeol
meaning “to Xiamen”, where “AFH” is “Xiamen’
and “o]]” (which is a jo-sa) means “to”. Because the
two words are connected into a single eo-jeol, the
annotation is more prone to mistakes. Furthermore,
extracting an entity in an eo-jeol is more difficult.
This leads to more “incorrect entities” problems in
the results for Korean.

’

Furthermore, Korean possesses distinctive aux-
iliary verbs/adjectives known as bo-jo yong-eon.
These bo-jo yong-eon can be connected to the main
verbs/adjectives either within a single combined eo-
jeol or across multiple eo-jeols, leading to similar
challenges in entity annotation. For example, both
“AFE3 2 and “ZFE3} 7F=" means “to
go with friends”. Here, both “-&” (the character
at the bottom of “Z") and “+=" are bo-jo yong-
eon meaning “to go”. A single English auxiliary
verb can map to a wide variety of bo-jo yong-eon
depending on the context.

We modified the annotation tool so that it works



at the character level instead of word level. To iden-
tify number entities, we use heuristics to extract
the jo-sa from eo-jeol composed of a number and
a jo-sa. Despite this, our analysis suggests that
the eo-jeol and bo-jo yong-eon issues account for
approximately 5% of the errors encountered.

Another issue that we ran into is how negative
questions are answered differently in Korean. For
example, when asked “isn’t it hot?”, “yes” means
“it is hot” in English, but “it is not hot” in Korean.
This discrepancy caused issues during the anno-
tation process. At times, translators mistakenly
mapped “yes” in English to mean “no” in Korean
for negative questions, or they transformed them
into positive inquiries, which we discovered later
on. The former case of mapping “yes” to “no”
resulted in inconsistency in entity mapping, espe-
cially when both positive and negative questions
are present in the dataset for the domain and slots.
To address this, we manually corrected the anno-
tation results to ensure consistent entity mappings,
which resolved the majority of the errors.

A.7 Error Analysis: English-Hindi
Code-mixed

To understand the errors of English-Hindi (en-hi)
code-mix set, we also sampled 10% of the erro-
neous examples for each domain from the en-hi
validation set. In addition to the error categories
noticed for English (Section 7.2), we observe the
following patterns:

Response Generation (45%). Model predic-
tion for Response Generation step is low on BLEU
score because there can be multiple ways of code-
mixing a sentence. The response could be monolin-
gual, or can be code-mixed to various degrees, or
different spans within a sentence could be switched,
and such errors account to 19% of the total errors.
For example, the gold truth is “yah 179 minutes tak
chalta hai” and the model output is “movie ki dura-
tion 179 minutes Aai”3. For around 20% samples,
the generated responses are incoherent, malformed
sentences or unnatural code-mixed sentences. We
also observed that the generated sentences are low
on fluency, while matching the semantic content of
the gold truth, accounting for 6% of total errors. It
is our conjecture that the erroneous code-mixed text
generation can be ascribed to mBART’s restricted
ability to generate code-mixed sentences.

*In the examples, Hindi tokens (in italic) are written in
romanized format for ease of reading. In the datasets, Hindi
tokens are in Devanagri script.

Erroneous slot-relation-value (35%). In some
cases the model predicts additional slot-relation-
values, in addition to the correct slot-relation-
values (10% of the erroneous samples). For ex-
ample, gold truth is “(weather) date equal_to next
Tuesday” and the predicted output is “(weather)
city equal_to Suzhou, date equal_to next Tuesday”.
It is likely that the model is copying additional
slot-relation-value tuples that are available in the
knowledge part of the input. In 23% of the ana-
lyzed erroneous samples, the model output has the
wrong action, domain, slot, relation or slot values.
About 1% of the erroneous samples hallucinated
slot values.

Language and Script Difference (20%).
Across the DST, DA, and RG steps, the gold truth
differs from prediction in terms of the script or
the language or both. For instance, the slot value
could be in Hindi in the Devanagari script, whereas
the model prediction is in English or/and in the
Roman script. In some cases, although the values
match, differences in script/languages can cause
the automatic approach to identify them as an error.
For example, the gold truth “(train) date equal_to
‘next Sunday morning’ , seat_type equal_to ‘second
class ticket’  differs only slightly from the model
output “(train) date equal_to ‘next Sunday morn-
ing’, seat_type equal_to ‘second class’ . The mea-
sured error rate may not reflect the correct model
performance because some of these errors can be
reduced by accounting for the semantic match be-
tween the generated output and the gold truth.

A.8 Dialogue Example

In Table 4, we show two turns of an example in
the original dataset, and its translation to other lan-
guages.

A.9 Example of the Checking Process

Figure 4 shows an example of our checking process
described in Section 5 during the translation from
English to French.



Turn 1

DST

Input (EN)

DST: <state> null <endofstate> <history> USER: Hi, my friend is coming to Suzhou
to visit me, I want to take him to a commercial center in the mid-price range. Do
you have anything to recommend? <endofhistory>

Output (EN)

(attraction ) consumption " mid ", type " commercial center "

Input (ZH)

DST: <state> null <endofstate> <history> USER: 1} 1F T A ZLR TN T e, &
R AR — N TH B8 TP S L P OERE SR HEFE - <endofhistory>

Output (ZH)

(attraction ) consumption " FFEE " | type " Tk AL "

API

Input (EN)

API: <knowledge> null <endofknowledge> <state> ( attraction ) consumption "
mid ", type " commercial center " <endofstate> <history> USER: Hi, my friend
is coming to Suzhou to visit me, I want to take him to a commercial center in the
mid-price range. Do you have anything to recommend? <endofhistory>

Output (EN)

yes

Input (ZH)

API: <knowledge> null <endofknowledge> <state> ( attraction ) consumption "
& ", type " Pk ALy " <endofstate> <history> USER: PRI TR R BT K
I, BT M — N T R SRR L O SKHERF - <endofhistory>

Output (ZH)

yes

DA

Input (EN)

DA: <knowledge> ( attraction ) address " Guangian Street, Gusu District, Suzhou
City. ", area " Gusu District " , available_options " 4 " , consumption " moderate
", metro_station " true " , name " Guangian Street " , opening_hours " all day
", phone_number " N/A ", score " 4.3 ", the_most_suitable_people " friends "
, ticket_price " free " , type " commercial center " <endofknowledge> <state> (
attraction ) consumption " mid ", type " commercial center " <endofstate> <history>
USER: Hi, my friend is coming to Suzhou to visit me, I want to take him to a
commercial center in the mid-price range. Do you have anything to recommend?
<endothistory>

Output (EN)

(attraction ) recommend name " Guangian Street "

Input (ZH)

DA: <knowledge> ( attraction ) address " 73 M T W 75 X WL EG AT ", area "
JR[X ", available_options " 4 ", consumption " {74 " | metro_station " ;& ",
name " MH{H ", opening_hours " ©K ", phone_number " TG ", score " 4.3 ",
the_most_suitable_people " I Hi¥i7 ", ticket_price "#a%% ", type " FLHL "
<endofknowledge> <state> ( attraction ) consumption " HH&& " | type " FMLHL "
<endofstate> <history> USER: 1R/ IF, T A7 & 2Lk 77 M 4k 3 Te, 3o AR A7 14— MH
B A L& TR L AR OERE, SRR - <endofhistory>

Output (ZH)

(attraction ) recommend name " WLEj 7 "

RG

Input (EN)

RG: <actions> ( attraction ) recommend name " Guangian Street " <endofactions>
<history> USER: Hi, my friend is coming to Suzhou to visit me, I want to take him
to a commercial center in the mid-price range. Do you have anything to recommend?
<endothistory>

Output (EN)

You can go to Guangian Street.

Input (ZH)

API: <knowledge> null <endofknowledge> <state> ( attraction ) consumption " H
& ", type " FLAL " <endofstate> <history> USER: YRIF R B T 3R
I AR AR — -V B SRR L O E SR HERE - <endofhistory>

Output (ZH)

£ HTEIE -




Tuarn 2

DST

Input (EN)

DST: <state> ( attraction ) consumption " mid ", type " commercial center " <endof-
state> <history> AGENT_ACTS: ( attraction ) recommend name " Guangian Street
" USER: Oh yeah, why didn’t I think of that? When is it open? <endofhistory>

Output (EN)

" " "

( attraction ) consumption mid , hame Guangian Street s
the_most_suitable_people " friend " , type " commercial center "

Input (ZH)

DST: <state> ( attraction ) consumption " H55 ", type " T lLHL> " <endofstate>
<history> AGENT_ACTS: ( attraction ) recommend name " M. ] %7 " USER: %
WF BB AR SR YR, A 4 B A FFAF 2 <endofhistory>

Output (ZH)

(attraction ) consumption " & " name " MLEIHE ", type " FDLHL

API

Input (EN)

API: <knowledge> ( attraction ) address " 75 N T 4 75 X WL ", area "
731X ", available_options " 4 ", consumption " F%§ ", metro_station " & ",
name " WLH[# ", opening_hours " 4K ", phone_number " JC ", score " 4.3 "
, the_most_suitable_people " A& tHilF " , ticket_price " F#.2¢ ", type " B AL
> " <endofknowledge> <state> ( attraction ) consumption " H5§ " | name " ¥
BT ", type " B ALHL " <endofstate> <history> AGENT_ACTS: ( attraction )
recommend name " WL " USER: X HF, 3% /5 2 VAR AL RV, 1 4 B5F 18] FF B0 2
<endothistory>

Output (EN)

yes

Input (ZH)

API: <knowledge> null <endofknowledge> <state> ( attraction ) consumption " HH
& " type " FALAIL " <endofstate> <history> USER: {RUF, Bl i BATF M
BT B AR AR — D VE B S AR L O OERE SRR - <endofhistory>

Output (ZH)

yes

DA

Input (EN)

DA: <knowledge> ( attraction ) address " Guangian Street, Gusu District, Suzhou
City. ", area " Gusu District ", available_options " 1 ", consumption " moderate ",
features " You can try food from time-honored Suzhou brands, such as Songhelou
Restaurant, Huang Tianyuan, and visit Xuanmiao Temple, the place that gave the
street its name. " , metro_station " true ", name " Guangian Street " , opening_hours "
all day ", phone_number " N/A ", score " 4.3 ", the_most_suitable_people " friends
", ticket_price " free ", type " commercial center " <endofknowledge> <state> (
attraction ) consumption equal_to " mid ", name equal_to " Guangian Street " ,
the_most_suitable_people equal_to " friend " , type equal_to " commercial center "
<endofstate> <history> AGENT_ACTS: ( attraction ) recommend name equal_to
" Guangian Street " USER: Oh yeah, why didn’t I think of that? When is it open?
<endothistory>

Output (EN)

(attraction ) inform opening_hours " all day "

Input (ZH)

DA: <knowledge> ( attraction ) address " J3 MM T 45 75 X WA A5 ", area "
77X ", available_options " 4 ", consumption " H % " | metro_station " J& "
name " ML H{H ", opening_hours " 4K ", phone_number " JC ", score " 4.3 ",
the_most_suitable_people " Il & Hiilf ", ticket_price "#.%% ", type " T lLHO "
<endofknowledge> <state> ( attraction ) consumption " {155 ", type " FLHL "
<endofstate> <history> USER: /R¥F, T AR & ZER 77 R B B, FAE A i — VA
B P SR Mk HUOERE SR HEFF - <endofhistory>

Output (ZH)

(attraction ) inform opening_hours " &K "

RG

Input (EN)

RG: <actions> ( attraction ) inform opening_hours " all day " <endofactions> <his-
tory> USER: Oh yeah, why didn’t I think of that? When is it open? <endofhistory>

Output (EN)

It’s open all day.

Input (ZH)

RG: <actions> ( attraction ) inform opening_hours " 2K " <endofactions> <history>
USER: XTHF, BB 2 (5 REEE SRR, 1 4 B [B] FF U 2 <endofhistory>

Output (ZH)

ERIFIE -

Table 4: An example from X-RiSAWOZ validation set in Chinese and English. For brevity, only the first 2 turns are

shown.
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5805/ 8116 o
Good, I'm looking for an TV show that is Could you one for me?
Target
Add Source Entity Add Target Entity
=@ - [10,12] American - [5, 6]
Entity Alignment BEEH - [13.17]

suspenseful - [10, 11]
Clear

Save & Previous Reset Save & Next

Figure 2: A screenshot of the annotation tool used by translators to translate a sentence from Chinese to English and

mark the entity spans to create the slot value alignment. The entity spans show the position of words for English
and characters for Chinese.

(Rizvi et al, 2021) + Heuristics

\

\ | £ If GCM output == Null
“—— “—— — H
R @ ey Alignment based Word

Substitution

Belief States |

User Actions
System Actions d
DB Results

Figure 3: English-Hindi code-mixed train set is generated using a pipeline that combines GCM (Rizvi et al., 2021),

and word alignment to generate code-mixed utterances. Entities in Belief states, user and system actions are
substituted using dictionary alignment.
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Figure 4: The entity and API checking process of X-RiSAWOZ from English to French.
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