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Abstract

Humans tame the complexity of mathematical reasoning by developing hierar-
chies of abstractions. With proper abstractions, solutions to hard problems can
be expressed concisely, thus making them more likely to be found. In this pa-
per, we propose Learning Mathematical Abstractions (LEMMA): an algorithm
that implements this idea for reinforcement learning agents in mathematical do-
mains. LEMMA augments Expert Iteration with an abstraction step, where solu-
tions found so far are revisited and rewritten in terms of new higher-level actions,
which then become available to solve new problems. We evaluate LEMMA on two
mathematical reasoning tasks—equation solving and fraction simplification—in a
step-by-step fashion. In these two domains, LEMMA improves the ability of an
existing agent, both solving more problems and generalizing more effectively to
harder problems than those seen during training.

1 Introduction

Mathematical reasoning has been a key ability behind many achievements of human intelligence. By
formalizing ideas and working with symbolic representations (e.g., number systems and geometry),
we can ultimately develop technology and make predictions that would have been utterly impossible
from perception and intuition alone (e.g., sending robots to space). As a result, AI systems capable
of performing complex symbolic reasoning could amplify this impact by helping advance research
as well as education.

Reasoning problems can be posed as searching for a sequence of steps arriving at a solution, such
as a complete mathematical proof. Systematic search for sequences of steps can dramatically ben-
efit from learning: patterns from previous problems can help guide future searches towards more
promising sequences. This idea of combining search and learning has been widely applied, with
notable domains including neural theorem proving [3, 5, 6, 11, 16], program synthesis [2, 4, 15] and
game playing [1, 13].

Learning improves search, but only up to a point. The space of sequences of steps still grows
exponentially as solution length increases. In addition to using intuition from past problems, humans
keep search manageable by developing mathematical abstractions: useful higher-level actions that
capture reusable reasoning patterns, allowing increasingly complex problems to be solvable within
a small number of steps. Indeed, with the right level of abstraction, even non-trivial statements
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(e.g., that x19 − x5 + 3 = 0 has a solution) can have short solutions (e.g., “all polynomials have
a root by the fundamental theorem of algebra”). Similarly, “simple” problems (e.g., synthesizing
a program to sort a list) can become arbitrarily hard depending on the action space (e.g., in an
Assembly language). Therefore, agents that aim to solve increasingly complex problems should
also benefit from learning abstractions. Ultimately, problem difficulty is not an absolute measure: it
always depends on the available actions.

The idea of learning abstractions as a way to bootstrap towards harder problems has been suc-
cessfully leveraged in program synthesis. Notably, DreamCoder [4] has demonstrated this idea by
learning a library of functions from its own solutions so far—programs that solved earlier program
synthesis tasks. Equipped with those new functions, new tasks come to reach, as their solutions can
now be expressed by short programs. We take that inspiration to propose Learning Mathematical
Abstractions (LEMMA): a method that combines learning to search with abstraction learning for
mathematical reasoning. LEMMA naturally applies to methods similar in style to Expert Iteration
(ExIt) [1], where agents alternate between solving mathematical problems and training a model to
guide future searches. After a large enough batch of problems has been solved, LEMMA mines
useful abstractions from its solutions and adds them to the agent’s action space. In experiments in
two domains from the Common Core mathematical environments—equation solving and fraction
simplification—we observe that LEMMA improves the success rate of the base learning method and
allows it to generalize better to harder problems in a zero-shot fashion.

2 Related Work

Our work proposes to augment methods that alternate between learning and search to solve mathe-
matical reasoning problems. Several methods of this flavor have been introduced recently, such as
Expert Iteration [1] and AlphaZero [13] for game playing, HTPS [6] and GPT-f [11] for neural theo-
rem proving, and ConPoLe [10] for mathematical problems from the Common Core environments.

Solving symbolic mathematical problems have been a challenge since early Computer Algebra Sys-
tems [7], and they have gained significant attention in the Reinforcement Learning (RL) community
in recent years. In particular, ConPoLe has been shown to learn how to solve problems in the ed-
ucational mathematical domains of the Common Core environments [10], without having access to
human solutions. The Common Core environments are a simplified setting compared to industrial
theorem proving languages, like Lean [8] or Isabelle/HOL [9]. A range of significant work has been
developed in RL agents to find proofs in these languages [11, 6, 3], typically using a language model
fine-tuned on human proofs as the action generator.

The idea of learning abstractions has been successfully explored in program synthesis, with recent
notable examples including DreamCoder [4] and LAPS [15]. In these settings, abstractions are
functions induced from synthesized programs and added to a library that is available for future
problems. We note the similarity between such functions and what is known in theorem-proving
languages as tactics: procedures that perform common operations on proof objects. This analogy,
which is made precise by the Curry-Howard correspondence [14], is a central motivation behind our
work. While the abstractions we induce are rather simple compared to tactics in general theorem
proving languages, we hope that our work will inspire the investigation of tactic induction in more
complex settings, which would be a significant step towards developing autonomous agents for
mathematical reasoning.

3 Method

Consider the example of a formal solution to an equation in Figure 1. Here, the underlying formal
system allows one to apply low-level properties of equations and of operations on real numbers, such
as that 0 is the identity element of addition (add0), and that equality is preserved if we subtract equal
terms from both sides (sub). These axioms can be combined to solve arbitrary linear equations, but
even simple-looking equations might require dozens of steps [10]. Looking at the solution, one can
identify intuitive high-level operations that are being performed, such as “moving the +1 to the other
side” (blue segment), which itself involves first subtracting 1 from both sides, then “simplifying the
left-hand side” (green segment).
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Figure 1: Example of an axiomatic formal solution to a simple linear equation. We would like to
automatically discover abstractions, or high-level actions, such as “simplify an expression” or “move
a term to the other side”, which can be expressed in terms of the base axioms.

LEMMA will attempt to synthesize these latent high-level actions by finding similarities in solutions
it has found so far. Since mathematical actions typically take parameters, exactly identical actions
are rather rare. Instead, we leverage a projection function πA over actions which will keep some
information about the action, but discard details so that LEMMA finds matches. We propose two
action projection functions in LEMMA. The first function, which we call SeqAbs, only keeps the
axiom name, ignoring its arguments. In this case, an abstraction simply corresponds to a sequence
of axioms that are to be applied. We also consider a more specific projection function that takes
the (relative) position of the arguments in the original expression into account. This projection
allows us to capture an abstraction such as “evaluate the left child of a binary operation and then the
operation itself”, instead of simply “evaluate twice” which SeqAbs can represent. This more specific
abstraction could lead from the equation x+(1+2) = (3+4)+5 directly into x+(1+2) = 12. The
abstraction “evaluate twice” can also produce this successor, but any of the two “evaluate” actions
might apply to (1+2), leading to a larger number of successors in general. We call the method with
parameterized abstractions RelAbs, since it uses sequences of axioms as well as a relative indexing
of where they are applied to.

Discovering abstractions Consider a data set D of sequences of πA-projected actions from an
action space A, corresponding to solutions found so far. The set of all contiguous subsequences of
actions from D form a set L of candidate abstractions. From those, we select a subset L ⊆ L by
optimizing the Bayesian criterion: P (L | D) ∝ P (D | L)P (L), where P (L) is a uniform prior over
candidate abstractions extracted from D.2

To assign a meaningful probabilistic interpretation to P (D | L), imagine a random agent that takes
actions chosen uniformly from A ∪ L, the set of available actions generated by both axioms A and
abstractions L. We take P (D | L) to be the probability that this agent would generate exactly the
sequences observed in D. This yields the following negative log-likelihood objective:

min
L⊆L

JD(L) ≡ − logP (D | L) =
∑

a∈A∪L

fD/L(a) log |A ∪ L|,

where fD/L(a) denotes the frequency of action a within D/L. Here, D/L refers to D after abstrac-
tion with L where all subsequences of actions in D corresponding to an abstraction in L have been
replaced by that abstraction. Thus, our objective is to find abstractions that make it most likely to
generate the observed solutions when acting randomly using primitive actions and abstract actions
from L. We solve this minimization problem approximately with a greedy algorithm. Starting with
L = ∅, we greedily pick the abstraction a in L that decreases the objective the most and rewrite D
with this new abstraction; repeat until the objective can no longer be decreased (Algorithm 1).

Applying abstractions Carrying out the axiomatic actions described by an abstraction in the envi-
ronment is performed by a simple depth first search where next states are limited by the specification
of the abstraction. For SeqAbs, the next states are obtained by applying the next axiom in all pos-
sible ways on the current state. For RelAbs, we only include the subset of these actions that are
applied to the correct position in the expression tree relative to the previous action.

Bootstrapping learning with abstractions The full learning procedure consists of alternating
episodes of reinforcement learning with a few rounds of abstraction (Algorithm 2). During each
round of learning, we store inD successful action sequences taken by the agent during search. After

2One could use other priors, for example by positing that shorter abstractions are more likely.
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Figure 2: Success rate of agents on held-out problems on the four domains we test on, with standard
errors across 3 random seeds. Vertical lines separate the 4 rounds of reinforcement learning.

learning, we apply LEMMA on D to obtain abstractions L and the abstracted data set D/L. During
the next round of learning, we augment the agent’s action space to include these new abstractions. In
addition, before continuing reinforcement learning, we perform a brief session of imitation learning
using D/L as the expert, so that the agent quickly learns to use the new available actions.

4 Experiments

We evaluate LEMMA on the two hardest tasks from the Common Core environments [10]:
equations and fractions. Each of these environments defines a distribution over starting states
(linear equations or expressions with fractions, respectively) and an action generator that applies a
set of axioms to a state, listing all available axiom applications along with the successor states they
lead to. We use ConPoLe [10] as our base learning method, which has been shown to perform well
in these domains. Details about the environments, including axioms, are given in [10].

In addition, we created harder versions of each of these two domains. For equations, we took the set
of equations used in Rafferty et al. [12] as templates, which are longer than the original templates
used in the Common Core environments. For fractions, we increase the number of primes in the
environment (4 to 5) as well as the maximum number of prime factors used when sampling constants
(4 to 6). We denote these environments as equations-hard and fractions-hard, respectively.
For each environment, we train vanilla ConPoLe with and without LEMMA for 107 steps. We use 4
rounds of abstraction learning, which happen every 2.5 × 106 steps. Every 105 steps, we evaluate
all agents on a fixed set of 200 held-out problems, on which we report their success rates.

Figure 2 shows our main result: the success rate of all agents during the course of training. In
all domains, agents obtained highest success rates with abstractions. SeqAbs performs best on
equations-hard, while in all other domains, RelAbs achieves the best success rate. Abstractions
improve results in all cases, though the best projection function might depend on the domain.3

LEMMA successfully learned interpretable abstractions, examples of which are given in Appendix B.

Finally, to evaluate generalization, we took the best agents trained on equations and evaluated them
on equations-hard. We found the gap between their performances under this distribution shift:
the success rate of vanilla ConPoLe dropped from 92% to 45.5%, whereas ConPoLe + RelAbs

went from 99.5% to 60% on the harder evaluation set without further training. This result suggests
that abstractions can help an agent better generalize to longer solutions.

3This dependence is subtle: a coarser projection function makes abstractions easier to learn (since matches
between common subsequences occur after fewer solutions), but at the same time make the action space in
general larger (since they are more widely applicable).
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5 Conclusion

We presented LEMMA, a method for augmenting mathematical reasoning agents with learned high-
level actions, a symbolic analog to temporal abstractions in general reinforcement learning. Our
method improved the success rate of an agent in two mathematical reasoning tasks, and was able to
recover intuitive abstractions without additional supervision. We believe these insights are applica-
ble to more expressive theorem proving languages. As we have argued, which problems are within
reach of a solver heavily depends on what actions are available. Therefore, synthesizing actions of
increasing abstraction may be a crucial step towards automated mathematical reasoning.
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A Algorithms

Algorithm 1 The LEMMA abstraction algorithm

Input: Axioms A, data set D of example solutions, abstraction type abs type
Output: Library L of learned abstractions, abstracted solutions Dabs = D/L
L← ∅
Dabs ← D
L ← get candidate abstractions(D, abs type)
repeat

aopt ← argmaxa∈L SDabs
(a) ⊲ SDabs

(a) := JDabs
(L)− JDabs

(L ∪ {a})
sopt ← SDabs

(aopt)
if SDabs

(aopt) ≥ 0 then
L← L ∪ {aopt}
Dabs ← Dabs/{aopt}

end if
until sopt < 0
return L,Dabs

Algorithm 2 Reinforcement learning with LEMMA

Input:
• Environment E(A) with axioms A

• Abstraction type abs type

• Number of learning rounds k
Output: Learned policy parameters θ∗, library Lall of all learned abstractions

θ ← init parameters()
for i← 1 to k do

if i > 1 then ⊲ Imitation learning with abstracted solutions
θ ← LearnFromImitation(E(A),Dabs, θ)

end if
D, B ← ∅
for episode← 1 to N do ⊲ ExIt-style reinforcement learning, e.g., ConPole

problem← E(A).sample problem()
solution, visited states← beam search(E(A), problem, θ)
D.add(solution)
B.add(visited states)
θ ← BatchGD(B, θ)

end for
if i < k then ⊲ Abstraction with LEMMA

Li,Dabs ← LEMMA(A,D, abs type)
A ← A∪ Li

end if
end for
return θ∗ = θ, Lall =

⋃k−1

i=1 Li

B Examples of learned abstractions

Here, we present example abstractions that LEMMA discovered during the last round of abstraction
in main experiment on the equations-hard and fractions domains, with projection function
RelAbs.

Abstractions will be written in the format

a1, a2, . . . , ak : (p1, q2), (p2, q3), . . . , (pk−1, qk)

where the ai’s are axioms, and each pair (pi, qi+1) specifies the relative position of application
between ai and ai+1. Suppose we represent the absolute position of application of ai with a string
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Pi ∈ {L,R}
∗ (L = left child, R = right child) representing the node in the equation’s expression

tree to which ai is applied. (For example, the root node is the empty string ε, and the left child of the
right child of the root node is RL.) Then pi, qi+1 are obtained by removing the maximal common
prefix from Pi and Pi+1. For high-level abstractions, each ai can be an abstraction itself, written
inside curly braces. In this case, the relative position (pi, qi+1) between ai and ai+1 is understood
as the relative position between the last axiom in ai and the first axiom in ai+1.

equations-hard: In this domain, LEMMA discovered 15 abstractions after 3 rounds of abstraction.
Here, we discuss 3 of the abstractions that have remarkably high interpretability.

1. A1 = {sub, eval, comm : (ε,R), (R,LL)}, {assoc, eval, add0 : (ε,R), (R, ε)} : (L, ε)

A1 reduces any equation of the form (b + ax) = c to ax = [c − b] in one step, which is
what we usually mean when we say “subtract b from both sides.”4 This reduces the search
depth by 5 for the class of equations reducible to (b+ax) = c, hence facilitating the agent’s
search for their solutions.

The first 3 axioms of A1 constitute a subabstraction that subtracts b from both sides of
the equation and puts b and −b next to each other on the left-hand side. This transforms
(b+ ax) = c into ((ax+ b)− b) = [c− b]. The final 3 axioms constitute a subabstraction
that simplifies an expression (A + B) − B to A. Thus, it simplifies the left-hand side
((ax+ b)− b) to ax.

An example instance of the abstraction seen during training solves (3 + x) = −4 with a
single application of A1. To see how the individual axioms of the abstraction operate on
this example, we present below the solution expanded into its individual axioms.

(3 + x) = (−4)

((3 + x)− 3) = ((−4)− 3) (by applying sub with parameter 3 to node ε)

((3 + x)− 3) = (−7) (by applying eval to node R)

((x+ 3)− 3) = (−7) (by applying comm to node LL)

(x+ (3− 3)) = (−7) (by applying assoc to node L)

(x+ 0) = (−7) (by applying eval to node LR)

x = (−7) (by applying add0 to node L)

2. A2 = {add, eval, comm, assoc, comm : (ε,R), (R,L), (ε, ε), (ε, L)},
{assoc, eval, add0 : (ε,R), (R, ε)} : (L, ε)

This abstraction simplifies any equation of the form (ax − b) = c to ax = [c + b] in one
step, which expresses what we usually mean when we say “add b to both sides.” Thus, for
the class of equations reducible to this form, A2 reduces the search depth by 7, significantly
facilitating search for their solutions.

Note that A2’s second subabstraction assoc, eval, add0 : (ε,R), (R, ε) is the same as the
second subabstraction of A1. This shows the utility of iteratively developing a hierarchy
of abstractions: higher-level abstractions in later rounds of abstraction can reuse low-level
abstractions learned during earlier rounds as subcomponents.

The first 5 axioms of A2 constitute the subabstraction that that adds b to both sides and
rearranges the left-hand side to swap the positions of b and −b, resulting in (ax+ b)− b =
[c−b]. This is done since the assoc axiom in the ConPoLe environment cannot be directly
applied to expressions of the form (A − B) + C. The second subabstraction, as already
described, fully simplifies the left-hand side to ax.

An example instance of the abstraction seen during training simplifies (8x − 9) = 5 to
8x = 14 with a single application of A2. We present below the expanded sequence of

4[c− b] refers to the constant that results from evaluating c− b.
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axiomatic steps to show how the individual axioms operate on this example.

(8x− 9) = 5

((8x− 9) + 9) = (5 + 9) (by applying add with parameter 9 to node ε)

((8x− 9) + 9) = 14 (by applying eval to node R)

(9 + (8x− 9)) = 14 (by applying comm to node L)

((9 + 8x)− 9) = 14 (by applying assoc to node L)

((8x+ 9)− 9) = 14 (by applying comm to node LL)

(8x+ (9− 9)) = 14 (by applying assoc to node L)

(8x+ 0) = 14 (by applying eval to node LR)

8x = 14 (by applying add0 to node L)

3. A3 = div, eval, comm, assoc, eval, mul1 : (ε,R), (R,LL), (L, ε), (ε,R), (R, ε)

This abstraction solves any equation of the form ax = b in one step, or, more generally,
simplifies an equation of the form aE = b to E = [b/a] in one step for any expression E.
Thus, A3 expresses our concept of “dividing both sides by a.”

In the example equation for A2, the agent now solves (8x − 9) = 5 in just two steps: the
first step simplifies it to 8x = 14 by applying A2, and the second step solves it to x = [7/4]
by applying A3. This is identical to how most humans would solve the equation.

As a specific example of how the individual axioms of A3 operate, we present below how
they convert 8x = 14 into x = [7/4].

8x = 14

(8x/8) = 14/8 (by applying div with parameter 8 to node ε)

(8x/8) = [7/4] (by applying eval to node R)

((x ∗ 8)/8) = [7/4] (by applying comm to node LL)

(x ∗ (8/8)) = [7/4] (by applying assoc to node L)

(x ∗ 1) = [7/4] (by applying eval to node LR)

x = [7/4] (by applying mul1 to node L)

fractions: In this domain, LEMMA discovered 15 abstractions after 3 rounds of abstraction learn-
ing. Here, we present an example solution the agent produced that contains 2 highly-interpretable
abstractions:

21− [21]/[7]

21− 3 (by applying A4 to nodes RL,R)

18 (by applying A5 to nodes ε, ε, ε, L, ε)

where

A4 = factorize, cancel : (L, ε)

A5 = mfrac, {mfrac, combine, eval, simpl1 : (ε, ε), (ε, L), (L, ε)} : (ε, ε)

The fractions has a small set of 8 axioms, which do not include direct evaluation of division
or evaluation of addition/subtraction of integers not in the numerator/denominator of a fraction.
Despite this restriction, LEMMA successfully learned abstractions corresponding to these actions:
A4 performs division [a]/[b] if the result is an integer, and A5 performs addition/subtraction of
integers a ± b. This demonstrates another potential application of abstraction learning: it reduces
the need for a “perfect” set of axioms that optimizes learning and search, since omitted axioms that
would be useful could be discovered as abstractions during abstraction learning.
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Again, to show the details of how the axioms of the abstraction play out, we expand the solution
above into its individual axiomatic actions:

21− [21]/[7]

21− [(3 ∗ 7)]/[7] (by applying factorize to node RL)

21− 3 (by applying cancel to node R)

[21]/[1]− 3 (by applying mfrac to node ε*)

[21]/[1]− [3]/[1] (by applying mfrac to node ε*)

[(21− 3)]/[1] (by applying combine to node ε)

[18]/[1] (by applying eval to node L)

18 (by applying simpl1 to node ε)

* The environment considers the position of application here to be the root node due to an artifact
of how mfrac is defined in the domain.
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