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ABSTRACT: Fragility analysis aims to compute the probabilities of a system exceeding certain 
damage conditions given different levels of hazard intensity. Fragility analysis is therefore a key 
process of performance-based earthquake engineering, with a number of approaches developed 
and widely recognized, including Incremental Dynamic Analysis (IDA), Multiple Stripe 
Analysis (MSA), and cloud analysis. Additionally, extended fragility analysis has recently been 
shown to possess important attributes of mathematical consistency and extensibility. This work 
provides a critical review of the different fragility methods by explaining the underlying 
probabilistic models and assumptions, as well as their connections to the extended fragility 
method. It is proven that IDA-based fragility curves provide an upper bound of the actual 
fragility, and cloud analysis manifests suboptimality issues arising from its underlying
assumptions. MSA is identified to be a probit-linked Bernoulli regression model, similar to the 
one proposed by Shinozuka and coworkers. The latter, in turn, is shown to be a limiting subcase 
of the generalized linear model framework introduced within the extended fragility analysis.
The paper first presents a simple case of one intensity measure and two damage condition states,
and the discussion is subsequently extended to more general cases of multiple intensity 
measures and damage states. The discussed attributes are demonstrated in several numerical 
applications. Overall, this work aims to provide new insights on fragility methods, enabling 
efficient, accurate, and consistent estimations of structural performance, as well as promoting
new research directions in earthquake engineering and other related fields.

KEYWORDS: Fragility analysis, extended fragility analysis, incremental dynamic analysis, 
multiple stripe analysis, cloud analysis, generalized linear models

1 INTRODUCTION
Fragility analysis aims to assess the probability of a 
system exceeding various damage states (DS) for a 
range of intensity measures (IM). It therefore has a 
central position in performance-based evaluation of 
structural systems subjected to hazards. A number of 
systematic fragility analysis methods have been 
proposed over the years (Baker 2015, Bakalis & 
Vamvatsikos 2018), including the recently developed 
extended fragility framework (Andriotis & 
Papakonstantinou, 2018), which can consistently 
handle multivariate IM and multiple DS of any 
dimensions. In Andriotis & Papakonstantinou (2018),
it is proven that under broad probabilistic assumptions 

the softmax function describes a consistent 
mathematical form for fragility functions, and 
these functions should not be generally described 
by cumulative distribution functions over the 
intensity measures space, as many approaches 
currently suggest in the literature. In addition, 
extended fragility functions completely resolve, 
under no assumptions and limitations, the issue of 
crossings of fragility functions, which is a major 
mathematical inconsistency. In this paper, a 
critical review of available methodologies for 
fragility analysis is presented, and their theoretical 
attributes and connections to the class of extended 
fragility functions are explained. A unified 
viewpoint is therefore provided, based on derived 
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analytical results and formal proofs. Particularly, it is 
proven that Incremental Dynamic Analysis (IDA)
(Vamvatsikos & Cornell 2002, 2004) represents a 
theoretical upper bound of the actual structural 
fragility, and that the cloud method only provides 
suboptimal fragility curves due to its inherent 
assumptions related to the utilized objective function.
The Multiple Stripe Analysis (MSA) is studied as a 
subcase of the probit-linked Bernoulli model
introduced by Shinozuka et al. (2000), which in turn 
is shown to be a limited subcategory of the extended 
fragility analysis framework. All relevant aspects, 
assumptions, eligibility, and relationships between 
methods are also provided for various settings, 
starting from the simplest case of one IM and two DS
to general cases with multidimensional IM and 
multiple DS. In particular, the crossing issue between 
fragility curves of different threshold levels is
discussed, and the fragility (hyper-)surface function 
for multidimensional IM is rigorously formulated by 
introducing generalized linear model theory. 

2 FRAGILITY ANALYSIS

2.1 Review on fragility analysis
Fragility analysis is defined as the probability of 
system damage given the intensity of a hazard. 
Consider a single intensity measure parameter IM, 
and a binary damage state variable DS. The fragility 
function is represented as:

P( 1|( ) )fp DS IMi im m= = = (1)

where im denotes IM of interest, and DS takes values 
1 or 0, depending on whether the damage is observed 
or not. Often, the DS is represented in terms of a 
critical response metric of the system, called the 
engineering demand parameter (EDP). In such cases,
Eq. (1) can be rewritten as:

P( | )( )f op m Ei DP edp IM im= = (2)

where edpo is a performance threshold value related 
to the analyzed system. Throughout the paper, we 
will consider a deterministic edpo, but it is noted that 
the findings can be equally extended to cases with 
random thresholds.

2.2 Lognormal-linked Bernoulli (Shinozuka et al.)
A number of fragility methods including Shinozuka 
et al. (2000, 2003) have modeled the event of a 
system damage as a Bernoulli trial, represented as:

   1 0( | ( () ) 1 ( ))II I z
f f

z Ip DS z im p im p im= =
= −= (3)

where z is a binary variable that represents DS, and 
II{•} is an indicator function. The probability of 
system damage is defined by a link function 
pf(im), or the fragility function as the definition 
suggests. Particularly, Shinozuka et al. introduced 
a lognormal cumulative density function (CDF) as
the link function:

) l( n
f

imp im 



 
   
 

−
= (4)

Given data pairs of {im, z}, the parameters of Eq. 
(4) can be determined by maximum likelihood 
estimation (MLE) using the following likelihood 
function:

   1 0

1
(1 )n n

fn f

N
II z II z

n
n

L p p= =

=

−= (5)

where pfn=pf(imn) and N is the number of data 
points. Hereafter, this method is referred to as 
Shinozuka et al.

2.3 Multiple stripe analysis (MSA)
MSA is performed at multiple discrete levels of 
intensity referred to as stripes (Jalayer and 
Cornell, 2009). Particularly, the MSA data are
designed to form horizontal stripes on the {im,
EDP} space, and the dataset in each stripe
represents different input hazard events under the 
same IM level. Considering only the samples in a 
stripe IM=im, the probability of observing k 
damaged cases out of total ns

(im) samples is
regarded to follow a binomial distribution:

( )
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f
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−
 
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=   
 

− (6)

For the relevant link function, MSA introduces 
again a lognormal CDF, as in Eq. (4). Similarly to 
the Shinozuka et al. method, the likelihood 
function is written as:

1
(1 )

IM
jjj

N
z n k

f f
j

j j
j

jL p p
n
k=

−
 
 

=  
  
 

− (7)

where pfj=pf(imj), nj=ns
(imj) and NIM is the number 

of stripes. Since binomial and Bernoulli trials are 
mathematically equivalent and both methods are 
using a lognormal CDF as the link function, MSA 



                               The 13th International Conference on Structural 
Safety and Reliability (ICOSSAR 2021), 

June 21-25, 2021, Shanghai, P.R. China
J. Li, Pol D. Spanos, J.B. Chen & Y.B. Peng (Eds)

                               

(Eq. 7) and Shinozuka et al. (Eq. 4) give identical
results, when both are applied at the stripe-based 
dataset. Thus, MSA can be considered a subcategory 
of Shinozuka et al., which is more general in terms of 
the flexibility the utilized data can have. An 
advantage of MSA, is that it can also estimate the 
fragility non-parametrically at each stripe, as a ratio 
of damage-related and total samples. However, this 
requires availability of ample data per stripe.

2.4 Cloud analysis
Cloud analysis in Jalayer et al. (2018), Miano et al.
(2017) and other works employs a power-law relation 
between IM and EDP to estimate the fragility. 
Particularly, cloud analysis first divides the 
simulation results to the collapsed (C) (for which 
EDP is considered infinite) and non-collapsed cases 
(NC) by introducing the logistic classification:

0 1 ln
1P( | )

1 imC im
e +

=
+

(8a)

P( | ) 1 P( | )NC im C im= − (8b)

and, then, a linear regression is performed in the log-
space of non-collapsed samples:

0 1[ln | , ] lnE EDP im NC im = + (9)

Under the power-law assumption, the probability 
exceeding the limit state, edpo,is estimated as:

P( | , )

[ln | ]
o

o

res

EDP edp im NC

edp E EDP im




 
 

  
 

−
=

(10)

where αres
2 is the sum of squared residuals. All the 

parameters in Eqs. (9) and (10) can be identified from 
a simple linear regression model with closed form 
expressions, whereas those of Eq. (8) require a 
separate MLE optimization that does not have 
analytical solution and is performed numerically. The 
two results are then combined to form a single 
fragility function, as:

( ) P( | , )P( | )
P( | )

f op im EDP edp im NC NC im
C im+

=
(11)

following the total probability theorem. Given the 
underlying and inherent limiting assumptions of Eqs. 
(9) and (10), the solution of the cloud analysis
introduces several sources of model bias, eventually 
compromising accuracy.

2.5 Incremental dynamic analysis (IDA)
IDA transforms the main question of fragility 
analysis from “will the system fail given an 
intensity level of hazard? (Eq. (2))” into “what is 
the intensity level distribution at the onset of
system failure?”, i.e.,:

P( | )( )f op IM im EDPim edp=  = (12)

Specifically, by identifying the probability 
distribution of the critical IM, which produces 
responses that meet the capacity of the system, the 
IDA reduces the statistical task to a simple 1-
dimension probability distribution fitting problem
(Vamvatsikos & Cornell 2002, 2004).

In general, acquiring the critical (or design) IM
is an inverse problem that requires numerical 
optimization. To avoid such iterations, IDA 
introduces the so-called IDA curve, which 
represents a trajectory of structural responses for a 
sequence of IM scaling factors and estimates the 
IM value at the response limit by interpolation.
For each ground motion, one IDA curve is 
generated in the space of IM and EDP, by scaling 
the ground motion intensity, and the point where
the curve meets the threshold EDP level, edp0, is 
considered as the critical IM. The collected
samples of critical IM are used to identify the 
corresponding empirical CDF leading to the 
definition of fragility curve in Eq. (12). A 
lognormal CDF is also often chosen as a 
parametric probability distribution to fit Eq. (12):

|
ln( |( ) )
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o
f IM edp o
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p m imim e pi F d 
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 
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= 


−


=  (13)

One advantage of IDA is that it does not require 
numerical iterations for this parametric estimation
in Eq. (13), since the parameters are simply the 
sample mean and standard deviation of the critical 
IM in the log-transformed space.

However, IDA curves can often exhibit
negative slopes, leading to multiple threshold 
crossing points. When an IDA curve presents
multiple threshold crossing points, the failure IM 
is defined as the lower one. This assumption leads
to an overestimation of the fragility. In more 
detail, consider an IDA curve given by event α
denoted as gα(im). The IDA estimates are unbiased 
only if the conditions below are satisfied:

, )( ) fora l [l ,o og im imedp im    (14)
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where imα,o is the smallest IM on the IDA curve that 
crosses the threshold level (see Fig.1). In case Eq.
(14) is not satisfied, the fragility curve obtained by 
Eq. (12) always overestimates the exact fragility 
definition in Eq. (2):

( )

( )

( )

( )

( )

( )

( )

,

P |

Pr ( )

Pr ( )

( )      

          

if Eq. (14) holds, then equality holds

Pr |

P

|

|

,

,

o

A A o

A o

A o

A o

A o

EDP edp IM im

g IM

g im

g im

im im

im EDP edp

im ED

edp IM im A

edp

edp

IM A

IM











=

 =   
 =   
 =   




   

  = =  

=



 = =





=





 
 


( )oP edp=

(15)

where A denotes a seismic event. Let us consider, for 
example, two IDA curves shown in Figure 1. The 
fragility value at im* is of interest given the threshold 
level of edpo. If one follows the exact fragility 
definition in Eq. (2), the fragility value is 0 (by 
counting the points satisfying {EDP≥edpo} on the 
horizontal line of IM=im*). However, if one follows 
the so-called IM-based definition in Eq. (12) (by 
counting the points satisfying {IM≤im*} on the 
vertical line of EDP=edpo), the fragility value is 
estimated as 1/2, which is a clear overestimation.
Therefore, for precise computation of fragility 
values, one may want to avoid the IM-based 
definition. It is also noted that the resulting error is 
reduced as a larger number of ground motion cases is 
considered or when a parametric (typically the 
lognormal CDF) function is fitted to the relevant data.

Figure 1. Example of IDA curves leading to fragility 
overestimation

2.6 Extended fragility analysis
Extended fragility analysis (Andriotis & 
Papakonstantinou, 2018) adopts and extends the 
theory of Generalized Linear Models (GML),
often presented in the form of:

1 T[ ] ( )Y g−= X β (16)

where X is the vector of input variables, β is the 
coefficient vector, and g(•) is some link function 
that relates the linear predictor and the output of 
interest. Particularly for a classification problem,
where Y is a binary variable and its mean is
bounded to the range of E[Y]∈[0,1], the probit 
and logistic functions are common choices related 
to link functions (Calvin and Long, 1998).

Note that the formulation by Shinozuka et al.
described in Section 2.2 is practically equivalent 
to a probit regression model. Similarly, extended 
fragility analysis introduces the logit link function, 
which, in the single IM case, is:

0 1)
l

1
(

n
)

(
n lf

f

p
im

ip
im

m
 = +

−
(17)

where lnim is the predictor variable, and the left-
hand side term is an inverse form of the logistic 
function or else a special case of the softmax
function with a binary label. Rearranging, Eq. (17),
the fragility form is derived:

0 1 ln )(
1(

1
) mf ip

e
im

 − +
=

+
(18)

It has been shown by Andriotis and
Papakonstantinou (2018) that the softmax 
function provides an accurate mathematical 
representation for fragility analysis under broad 
probabilistic assumptions. Further, it retains this 
property and smoothly extends to multivariate IM 
and multinomial DS fragility analysis, while 
bypassing important concerns discussed in the 
next section.

3 MULTIPLE DS AND MULTIVARIATE IM 

3.1 Multiple DS and crossing concerns
When multiple threshold levels are of interest, i.e.,
when DS is a nominal or ordinal variable with 
more than two states, the concern of crossings
between fragility curves arises (Porter, 2007). As 
the intersection of two fragility curves necessarily 
implies that the probability of the system being in 
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a certain damage state is a negative value, it should 
be strictly prevented. However, when all the fragility 
curves maintain the same functional form, e.g.,
lognormal CDF, fragility curve crossings always 
occur unless all the curves are constrained to have the 
same dispersion. For example, consider two
lognormal CDF functions. Provided that the first 
lognormal function has the parameters of θ1=−1.2
and β1=0.5, the domains, related to the parameters of 
the second function, where a crossing occurs and is 
significant are illustrated in Figure 2a. The fragility 
curves corresponding to point A in Figure 2a are 
illustrated in Figure 2b. Note that although this is a 
numerically possible outcome, it is physically 
unacceptable.

One way to avoid the crossings is to constrain the 
dispersion parameters to be common during the 
optimization (Shinozuka et al., 2003), which puts a 
strong limitation. On the other hand, the extended 
fragility method does not need to apply this 
restriction and successfully avoids crossings by 
allowing each fragility curve to have a different shape, 
not assigning a single CDF expression.

(a) Parameter space of the second function given the first 
fragility function parameters (θ1, β1)=(−1.2,0.5).

(b) The crossing of fragility curves at point A.
Figure 2. Crossing of fragility curves.

3.2 Multiple DS with fixed dispersion
As the cloud analysis already assumes the 
dispersion parameter αres in its linear regression
part to be the same over the range of thresholds, it 
circumvents crossings. Note that the logistic 
regression subpart of cloud analysis provides just 
a multiplication factor equally applied for 
different DS, and therefore it does not change the 
ordering between the fragility curves.

For the Shinozuka et al. method, in order to 
secure a common variance, the below form of 
fragility curves is introduced as an extension of Eq. 
(4):

l
( )

n j
z jp

im
im






 
   
 

−
= (19)

where pz≥j (•) indicates the fragility curve for the
j-th damage state, while j=1 is an intact reference 
state. Note from Eq. (19), that the different
fragility curves are merely horizontally shifted in 
the log-IM axis. The maximum likelihood 
estimator for the involved parameters is obtained 
from the following likelihood function:

( )
 

1 1

n

n

N J

z j n
n j

II z jL p im=
=

=

=

= (20)

where II{•} is again an indicator function, and 
pzn=j (•) denotes the probability that the DS of the
n-th sample, zn, belongs to the j-th damage state.

The variance constraint can also be optionally
applied to extended fragility analysisof Eq. (18) as

0 1 l )( n
1( )

1 jz ij mp i
e

m
  − +

=
+

(21)

and substituted to the same likelihood as in Eq.
(20). This method is referred to as the ordinal
approach (Andriotis & Papakonstantinou, 2018).

3.3 Multiple DS without crossings
In its utmost generality, the extended fragility
analysis, is not constrained to have the same 
variance among fragility curves nor a single CDF
expression per fragility curve. This is defined by 
the nominal case, introduced by the following 
definition:

0 1
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j j
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where the J-th DS is referred to as a pivot DS. Eq. 
(22) can be equivalently written as:

0 1
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(23)

Eq. (23) can be directly used for MLE optimization 
in Eq. (20). Once the parameters are identified, the
fragility function is then obtained as the cumulative 
sum:

( ( ))
J

z j z i
i j

p p imim =
=

= (24)

Note that since pz=j (•), j=1,…,J, are always non-
negative, Eq. (24) ensures that fragility curves of
different DS levels do not intersect each other at any 
IM point.

3.4 Multiple DS and multivariate IM
Let us now consider multivariate IM cases where 
fragility curves become higher dimension fragility 
(hyper-)surfaces (Baker 2007, Ebrahimian et al. 
2015). For the cloud method, the fragility function in 
Eq. (11) is generalized as:

( )
P( | , )P( | )
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z j

j

p
EDP edp NC NC

C
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

+

im
im im
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(25)

where im is now an M dimensional vector. Each 
logistic and linear regression part is parametrized as:
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respectively, where:
1

0 1( ) ln( ) ln( )M
Mh im im   = + + +im  (28a)

1
0 1( ) ln( ) ln( )M

Mh im im   = + + +im  (28b)

Further, by introducing the methodologies of GML, 
Shinozuka et al. and ordinal extended fragility can be 

easily generalized to have multiple explanatory 
variables, as:

( ))( ) (z j jp h = im im (29)
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respectively, where:
1
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j j Mh im im  = + + +im  (31)

Thus, by constraining the slope parameters to be 
shared among all DS, the two methods 
successfully avoid crossings between fragility 
surfaces. However, mere distinction with respect 
to intercept parameters reduces the flexibility of 
the models, as also described in Sections 3.1-3.2.

Finally, the nominal approach can similarly 
be generalized for multi-dimensional IM, as:
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where, in this case:

1
0 1( ) ln( ) ln( )M

j j j Mjh im im  = + + +im  (33)

Note that the number of parameters in the 
nominal extension is M(J−1), while in the ordinal 
case and probit regression M+J−1 parameters are 
required. The model flexibility can further be 
increased by introducing higher-order polynomial 
terms to Eq. (33) (Andriotis & Papakonstantinou, 
2018). A final remark is that although this work 
describes the extended fragility analysis from a 
GLM perspective, the original work of Andriotis 
and Papakonstantinou (2018) used the more 
general form of softmax representation, that can 
additionally describe fragility functions when
uncertain damage states are present.

4 NUMERICAL EXAMPLES

The findings in this paper are further supported by 
numerical examples. A two-story moment 
resisting frame is considered, where beams and 
columns are respectively modeled by W24☓131 
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and W27☓102 sections. Analyses are conducted in 
OpenSees, version 3.2.1 (McKenna et al., 2010). The 
initial first and second period of the structure is 0.96
and 0.27 secs respectively, and the damping ratio is 
0.05. The modified Ibarra-Krawinkler deterioration 
model is adopted to describe bilinear plastic hinges,
and the details of the nonlinearity properties are
retrieved from Eads (2010), while only the rotational 
capacity of the hinges is modified to θu=0.04 rad. 
Earthquake ground motions are generated from the 
site-specific ground motion generator introduced by
Vlachos et al. (2016, 2018), with parameters in Table 
1. Sixteen ground motions are selected from random 
realizations to demonstrate the findings. The spectral 
acceleration at 5% damping is used as the IM and the 
inter-story drift ratio as the EDP.

(a) IDA curves.

(b) Scattered data points.
Figure 3. Example of IDA curves.

Table 1. Parameters of site-specific earthquake model
Parameters Value
fault distance 10-15 km

magnitude 6.0-8.0
ground velocity 212 m/s

Figure 3a shows the obtained IDA curves, and
Figure 3b the corresponding scattered data 
representation. To configure the same conditions
for each method, the same dataset shown in Figure 
3 is used for every fragility method. The fragility 
analysis results are plotted in Figure 4. It can be 
shown from Figure 4a that the parametrically 
fitted MSA and Shinozuka et al. are identical as 
they are mathematically equivalent. On the other 
hand, IDA overestimates the fragility curves due 
to the reversing behavior of IDA curves, as 
observed in Figure 3a. However, it should be 
noted again that although IDA is strictly an upper 
bound of the unbiased MSA estimator for the 
nonparametric results, this is not always true when 
it is fitted to a lognormal CDF. Instead, the curves 
from IDA and MSA can cross at some point. On 
the other hand, Figure 4b shows that Shinozuka et 
al. and extended fragility methods are in close 
agreement. It implies that the underlying 
functional form, i.e., lognormal and log-logistic 
CDFs form a close match with each other for the 
univariate IM and binomial DS case. However, it 
should be mentioned that as the problem
dimensions increase, extended fragility allows a 
more flexible shape that does not rely on a single 
CDF expression over the IM-space. Finally, cloud 
analysis also shows some discrepancies arising 
from the violation of the linearity assumption in 
Eq. (9).

When a higher threshold level is of interest, i.e.,
when edpo = 0.06, all five fragility curves give 
consistent results. The discrepancies in IDA and 
cloud method have been now removed, as (i) the 
obtained IDA curves were monotonic at the 
specific threshold level, and (ii) most of the failure 
cases are collapsed cases, enforcing the cloud
analysis to be dominated by the logistic regression 
part.

The problem is now further generalized to 
incorporate 2-dimensional IM. The significant 
earthquake duration, i.e., the time interval within 
an earthquake event of which Arias intensity lies 
between 5% to 95% of its final value, is added as 
an IM, and 50 ground motions are randomly 
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generated for this analysis. One can notice from 
Figures 5a and 5b that Shinozuka et al. and extended 
fragility (ordinal) methods are in good agreement as 
they are both constrained to have common variances 
for different threshold levels. On the other hand, 
cloud analysis results in Figure 5c show a large 
discrepancy due to the linear regression implications. 
Nominal extended fragility method results are 
illustrated in Figure 5d. It is shown that the surface 
for the most severe DS (the lowest surface) exhibits 
some differences with Figures 5a and 5b. By allowing 
a higher level of flexibility, the nominal extended 
fragility method is capable of describing a more 

precise shape of the fragility surface.
A third IM is further introduced, which is the 

ratio between the first and second mode spectral 
acceleration. Figure 6 presents the IM dataset used 
for fragility analysis. Instead of describing the 
fragility 3D-surface, the separation boundaries
(Andriotis & Papakonstantinou, 2018) between 
neighboring DS are now illustrated along with the 
sample points in Figure 6. The described different
attributes and constraints between ordinal and 
nominal fragility analyses are clearly showcased 
in the figures. 

(a) IDA, MSA, Shinozuka et al. (edpo=0.022). (b) Shinozuka et al., extended, cloud (edpo=0.022).

(c) IDA, MSA, Shinozuka et al. (edpo=0.06). (d) Shinozuka et al., extended, cloud (edpo=0.06).

Figure 4. Fragility curves by different methods.
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(a) Shinozuka et al. (b) Extended fragility (Ordinal)

(c) Cloud method (d) Extended fragility (Nominal)

Figure 5. Fragility surfaces by different methods.

(a) Ordinal (b) Nominal

Figure 6. Separation boundaries obtained by extended fragility methods.
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5 CONCLUSIONS
This paper provides a mathematical appraisal and 
overview for different fragility analysis methods. The 
well-known approaches of multiple-stripe analysis 
(MSA), incremental dynamic analysis (IDA), and 
cloud analysis are examined, along with the classical
Bernoulli-link model and the recently developed 
extended fragility framework. A unified viewpoint is 
presented, and mathematical proofs that discuss the 
eligibility of and interconnections between the 
methods are provided. It is shown that MSA is a 
subclass of Shinozuka et al. and IDA is an upper 
bound of the unbiased fragility estimator. Shinozuka 
et al. and extended fragility analysis can be viewed 
through the framework of generalized linear models, 
but the extended fragility has also capabilities beyond 
this framework as far as function choices, versatility,
and extensibility are concerned. 

Extended fragility analysis, cloud analysis, and 
Shinozuka et al. are then studied for multivariate IM 
and multiple DS cases, where only the extended 
fragility approach provides the most flexible 
descriptions without allowing crossings between the
fragility curves. 

The unique integrative perspective in this study 
further supports several new research and practical 
directions, such as state-dependent transitions in time 
and hidden condition states. Overall, this work aims 
at providing several insights, enabling efficient, 
accurate, and consistent probabilistic estimations of 
structural conditions, in earthquake engineering and 
beyond. Finally, it is remarked that a more complete
study of this topic is in preparation for publication
(Papakonstantinou et al., in preparation).
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