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ABSTRACT: Fragility analysis aims to compute the probabilities of a system exceeding certain
damage conditions given different levels of hazard intensity. Fragility analysis is therefore a key
process of performance-based earthquake engineering, with a number of approaches developed
and widely recognized, including Incremental Dynamic Analysis (IDA), Multiple Stripe
Analysis (MSA), and cloud analysis. Additionally, extended fragility analysis has recently been
shown to possess important attributes of mathematical consistency and extensibility. This work
provides a critical review of the different fragility methods by explaining the underlying
probabilistic models and assumptions, as well as their connections to the extended fragility
method. It is proven that IDA-based fragility curves provide an upper bound of the actual
fragility, and cloud analysis manifests suboptimality issues arising from its underlying
assumptions. MSA is identified to be a probit-linked Bernoulli regression model, similar to the
one proposed by Shinozuka and coworkers. The latter, in turn, is shown to be a limiting subcase
of the generalized linear model framework introduced within the extended fragility analysis.
The paper first presents a simple case of one intensity measure and two damage condition states,
and the discussion is subsequently extended to more general cases of multiple intensity
measures and damage states. The discussed attributes are demonstrated in several numerical
applications. Overall, this work aims to provide new insights on fragility methods, enabling
efficient, accurate, and consistent estimations of structural performance, as well as promoting
new research directions in earthquake engineering and other related fields.

KEYWORDS: Fragility analysis, extended fragility analysis, incremental dynamic analysis,
multiple stripe analysis, cloud analysis, generalized linear models

1 INTRODUCTION

Fragility analysis aims to assess the probability of a
system exceeding various damage states (DS) for a
range of intensity measures (IM). It therefore has a
central position in performance-based evaluation of
structural systems subjected to hazards. A number of
systematic fragility analysis methods have been
proposed over the years (Baker 2015, Bakalis &
Vamvatsikos 2018), including the recently developed
extended fragility framework (Andriotis &
Papakonstantinou, 2018), which can consistently
handle multivariate IM and multiple DS of any
dimensions. In Andriotis & Papakonstantinou (2018),
it is proven that under broad probabilistic assumptions

the softmax function describes a consistent
mathematical form for fragility functions, and
these functions should not be generally described
by cumulative distribution functions over the
intensity measures space, as many approaches
currently suggest in the literature. In addition,
extended fragility functions completely resolve,
under no assumptions and limitations, the issue of
crossings of fragility functions, which is a major
mathematical inconsistency. In this paper, a
critical review of available methodologies for
fragility analysis is presented, and their theoretical
attributes and connections to the class of extended
fragility functions are explained. A unified
viewpoint is therefore provided, based on derived
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analytical results and formal proofs. Particularly, it is
proven that Incremental Dynamic Analysis (IDA)
(Vamvatsikos & Cornell 2002, 2004) represents a
theoretical upper bound of the actual structural
fragility, and that the cloud method only provides
suboptimal fragility curves due to its inherent
assumptions related to the utilized objective function.
The Multiple Stripe Analysis (MSA) is studied as a
subcase of the probit-linked Bernoulli model
introduced by Shinozuka et al. (2000), which in turn
is shown to be a limited subcategory of the extended
fragility analysis framework. All relevant aspects,
assumptions, eligibility, and relationships between
methods are also provided for various settings,
starting from the simplest case of one IM and two DS
to general cases with multidimensional IM and
multiple DS. In particular, the crossing issue between
fragility curves of different threshold levels is
discussed, and the fragility (hyper-)surface function
for multidimensional IM is rigorously formulated by
introducing generalized linear model theory.

2 FRAGILITY ANALYSIS
21 Review on fragility analysis

Fragility analysis is defined as the probability of
system damage given the intensity of a hazard.
Consider a single intensity measure parameter /M,
and a binary damage state variable DS. The fragility
function is represented as:

p;(im)=P(DS =1|IM =im) (1)

where im denotes IM of interest, and DS takes values
1 or 0, depending on whether the damage is observed
or not. Often, the DS is represented in terms of a
critical response metric of the system, called the
engineering demand parameter (EDP). In such cases,
Eq. (1) can be rewritten as:

p,(im)=P(EDP 2> edp, | IM =im) 2)

where edp, is a performance threshold value related
to the analyzed system. Throughout the paper, we
will consider a deterministic edp,, but it is noted that
the findings can be equally extended to cases with
random thresholds.

22 Lognormal-linked Bernoulli (Shinozuka et al.)

A number of fragility methods including Shinozuka
et al. (2000, 2003) have modeled the event of a
system damage as a Bernoulli trial, represented as:
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p(DS =z[im) = p, (im)" = (1= p (im))"*" (3)

where z is a binary variable that represents DS, and
II{+} is an indicator function. The probability of
system damage is defined by a link function
pAim), or the fragility function as the definition
suggests. Particularly, Shinozuka et al. introduced
a lognormal cumulative density function (CDF) as
the link function:

p, (im) =c1>{ h‘i”;‘ HJ @

Given data pairs of {im, z}, the parameters of Eq.
(4) can be determined by maximum likelihood
estimation (MLE) using the following likelihood
function:

T 11{z,=0}
L= Hpﬁ; (I=pg) @)
n=1

where ps=pAim,) and N is the number of data
points. Hereafter, this method is referred to as
Shinozuka et al.

23 Multiple stripe analysis (MSA)

MSA is performed at multiple discrete levels of
intensity referred to as stripes (Jalayer and
Cornell, 2009). Particularly, the MSA data are
designed to form horizontal stripes on the {im,
EDP} space, and the dataset in each stripe
represents different input hazard events under the
same IM level. Considering only the samples in a
stripe IM=im, the probability of observing k&
damaged cases out of total n,™ samples is
regarded to follow a binomial distribution:

. n . o alim
p(k IW)=L ks Jp/(lmy(l—pf(W))j )
For the relevant link function, MSA introduces
again a lognormal CDF, as in Eq. (4). Similarly to
the Shinozuka et al. method, the likelihood
function is written as:

N .
M n]

L1l [k] Py A=p)"" @)

where ps=p(im;), nj=n,"™ and Ny is the number
of stripes. Since binomial and Bernoulli trials are
mathematically equivalent and both methods are
using a lognormal CDF as the link function, MSA
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(Eq. 7) and Shinozuka et al. (Eq. 4) give identical
results, when both are applied at the stripe-based
dataset. Thus, MSA can be considered a subcategory
of Shinozuka et al., which is more general in terms of
the flexibility the utilized data can have. An
advantage of MSA, is that it can also estimate the
fragility non-parametrically at each stripe, as a ratio
of damage-related and total samples. However, this
requires availability of ample data per stripe.

24 Cloud analysis

Cloud analysis in Jalayer et al. (2018), Miano et al.
(2017) and other works employs a power-law relation
between IM and EDP to estimate the fragility.
Particularly, cloud analysis first divides the
simulation results to the collapsed (C) (for which
EDP is considered infinite) and non-collapsed cases
(NC) by introducing the logistic classification:

. 1
P(C | lm) = W (8&)
P(NC |im)=1-P(C |im) (8b)

and, then, a linear regression is performed in the log-
space of non-collapsed samples:

E[ln EDP|im,NC] =, + o, Inim 9)

Under the power-law assumption, the probability
exceeding the limit state, edpo,is estimated as:

P(EDP = edp, |im,NC)
B (D[ edp, — E[In EDP | im]} (10)

a

res

where ares® is the sum of squared residuals. All the
parameters in Egs. (9) and (10) can be identified from
a simple linear regression model with closed form
expressions, whereas those of Eq. (8) require a
separate MLE optimization that does not have
analytical solution and is performed numerically. The
two results are then combined to form a single
fragility function, as:

p,(im) =P(EDP = edp, | im, NC)P(NC|im)
+P(C|im)

following the total probability theorem. Given the
underlying and inherent limiting assumptions of Eqgs.
(9) and (10), the solution of the cloud analysis
introduces several sources of model bias, eventually
compromising accuracy.
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25 Incremental dynamic analysis (IDA)

IDA transforms the main question of fragility
analysis from “will the system fail given an
intensity level of hazard? (Eq. (2))” into “what is
the intensity level distribution at the onset of
system failure?”, i.e.,:

p, (im)=P(IM <im| EDP = edp,) (12)

Specifically, by identifying the probability
distribution of the critical IM, which produces
responses that meet the capacity of the system, the
IDA reduces the statistical task to a simple 1-
dimension probability distribution fitting problem
(Vamvatsikos & Cornell 2002, 2004).

In general, acquiring the critical (or design) IM
is an inverse problem that requires numerical
optimization. To avoid such iterations, IDA
introduces the so-called IDA curve, which
represents a trajectory of structural responses for a
sequence of IM scaling factors and estimates the
IM value at the response limit by interpolation.
For each ground motion, one IDA curve is
generated in the space of IM and EDP, by scaling
the ground motion intensity, and the point where
the curve meets the threshold EDP level, edpo, is
considered as the critical IM. The collected
samples of critical IM are used to identify the
corresponding empirical CDF leading to the
definition of fragility curve in Eq. (12). A
lognormal CDF 1is also often chosen as a
parametric probability distribution to fit Eq. (12):

B,

One advantage of IDA is that it does not require
numerical iterations for this parametric estimation
in Eq. (13), since the parameters are simply the
sample mean and standard deviation of the critical
IM in the log-transformed space.

However, IDA curves can often exhibit
negative slopes, leading to multiple threshold
crossing points. When an IDA curve presents
multiple threshold crossing points, the failure IM
is defined as the lower one. This assumption leads
to an overestimation of the fragility. In more
detail, consider an IDA curve given by event a
denoted as gq(im). The IDA estimates are unbiased
only if the conditions below are satisfied:

) ) Inim -6,
p;(im)= Fotiean, (im|edp,)= (D[—J (13)

g,(im)2edp, forall im e[im,,,) (14)
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where imq,, 18 the smallest IM on the IDA curve that
crosses the threshold level (see Fig.1). In case Eq.
(14) is not satisfied, the fragility curve obtained by
Eq. (12) always overestimates the exact fragility
definition in Eq. (2):

P(EDP > edp, | IM =im)

~E,| Pr(g,(IM)2 edp, | IM =im, A=a)]
=E, | Pr(ga(im) > edp, )J

~B,| I(g,(im) > edp,) |

<E, | H(im zim,, )J

(f: Eq. (14) holds, then equality holds)
~B,| Pr(im> IM | EDP=edp,. A=a)]

= P([_M <im|EDP =edp,)

(15)

—

where A denotes a seismic event. Let us consider, for
example, two IDA curves shown in Figure 1. The
fragility value at im" is of interest given the threshold
level of edp,. If one follows the exact fragility
definition in Eq. (2), the fragility value is 0 (by
counting the points satisfying {EDP>edp,} on the
horizontal line of IM=im"). However, if one follows
the so-called IM-based definition in Eq. (12) (by
counting the points satisfying {/M<im"} on the
vertical line of EDP=edp,), the fragility value is
estimated as 1/2, which is a clear overestimation.
Therefore, for precise computation of fragility
values, one may want to avoid the IM-based
definition. It is also noted that the resulting error is
reduced as a larger number of ground motion cases is
considered or when a parametric (typically the
lognormal CDF) function is fitted to the relevant data.

g1(im)
My

im* b

_ g2(imn)
Mo,

edp,
Figure 1. Example of IDA curves leading to fragility
overestimation
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26 Extended fragility analysis

Extended fragility analysis (Andriotis &
Papakonstantinou, 2018) adopts and extends the
theory of Generalized Linear Models (GML),
often presented in the form of:

E[Y]=g"(X"P) (16)

where X is the vector of input variables, p is the
coefficient vector, and g(¢) is some link function
that relates the linear predictor and the output of
interest. Particularly for a classification problem,
where Y is a binary variable and its mean is
bounded to the range of E[Y]<[0,1], the probit
and logistic functions are common choices related
to link functions (Calvin and Long, 1998).

Note that the formulation by Shinozuka et al.
described in Section 2.2 is practically equivalent
to a probit regression model. Similarly, extended
fragility analysis introduces the logit link function,
which, in the single IM case, is:

p(im)

In———
l-p, (im)

=B, + B Inim (17)

where Inim is the predictor variable, and the left-
hand side term is an inverse form of the logistic
function or else a special case of the softmax
function with a binary label. Rearranging, Eq. (17),
the fragility form is derived:

. 1
p(im) = T3 oA (18)
It has been shown by Andriotis and
Papakonstantinou (2018) that the softmax
function provides an accurate mathematical
representation for fragility analysis under broad
probabilistic assumptions. Further, it retains this
property and smoothly extends to multivariate IM
and multinomial DS fragility analysis, while
bypassing important concerns discussed in the
next section.

3 MULTIPLE DS AND MULTIVARIATE IM

31 Multiple DS and crossing concerns

When multiple threshold levels are of interest, i.e.,
when DS is a nominal or ordinal variable with
more than two states, the concern of crossings
between fragility curves arises (Porter, 2007). As
the intersection of two fragility curves necessarily
implies that the probability of the system being in
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a certain damage state is a negative value, it should
be strictly prevented. However, when all the fragility
curves maintain the same functional form, e.g.,
lognormal CDF, fragility curve crossings always
occur unless all the curves are constrained to have the
same dispersion. For example, consider two
lognormal CDF functions. Provided that the first
lognormal function has the parameters of 6;=1.2
and £1=0.5, the domains, related to the parameters of
the second function, where a crossing occurs and is
significant are illustrated in Figure 2a. The fragility
curves corresponding to point A in Figure 2a are
illustrated in Figure 2b. Note that although this is a
numerically possible outcome, it is physically
unacceptable.

One way to avoid the crossings is to constrain the
dispersion parameters to be common during the
optimization (Shinozuka et al., 2003), which puts a
strong limitation. On the other hand, the extended
fragility method does not need to apply this
restriction and successfully avoids crossings by
allowing each fragility curve to have a different shape,
not assigning a single CDF expression.

1.2F

1K x
0.8
0.6

0.4

0.2 -
crossing occurs

[ crossing is significant
= = crossing does not occur
% point A

0F

-0.2E i
-2 -1.5 -1 -0.5 0

(a) Parameter space of the second function given the first
fragility function parameters (6, £1)=(-1.2,0.5).
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-
- |
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(b) The crossing of fragility curves at point A.

Figure 2. Crossing of fragility curves.
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32 Multiple DS with fixed dispersion

As the cloud analysis already assumes the
dispersion parameter ares in its linear regression
part to be the same over the range of thresholds, it
circumvents crossings. Note that the logistic
regression subpart of cloud analysis provides just
a multiplication factor equally applied for
different DS, and therefore it does not change the
ordering between the fragility curves.

For the Shinozuka et al. method, in order to
secure a common variance, the below form of
fragility curves is introduced as an extension of Eq.

4:

19
3 (19)

where p.>; (¢) indicates the fragility curve for the
Jj-th damage state, while j=1 is an intact reference
state. Note from Eq. (19), that the different
fragility curves are merely horizontally shifted in
the log-IM axis. The maximum likelihood
estimator for the involved parameters is obtained
from the following likelihood function:

il . 1{z,=j}
L=T1[1p..-, (im,) (20)

n=1 j=1

] Inim—-6,
pzzj(lm) =0 —

where /I{*} is again an indicator function, and
P-—i (*) denotes the probability that the DS of the
n-th sample, z,, belongs to the j-th damage state.

The variance constraint can also be optionally
applied to extended fragility analysis of Eq. (18) as

Do (im) =—— 1)
z2j 1+ e—(ﬁo‘/+ﬂ1 Inim)

and substituted to the same likelihood as in Eq.
(20). This method is referred to as the ordinal
approach (Andriotis & Papakonstantinou, 2018).

33 Multiple DS without crossings

In its utmost generality, the extended fragility
analysis, is not constrained to have the same
variance among fragility curves nor a single CDF
expression per fragility curve. This is defined by
the nominal case, introduced by the following
definition:

. ::B01+181/h1im (22)
p._,(im) ‘
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where the J-th DS is referred to as a pivot DS. Eq.
(22) can be equivalently written as:

ﬁ0/+ﬁ”1nim

1+ J-1 ﬁn +p; Inim
p..,;(im) = 25 | (23)

1 +Zif:—11 pPoithilnim

for j<J

for j=J

Eq. (23) can be directly used for MLE optimization
in Eq. (20). Once the parameters are identified, the
fragility function is then obtained as the cumulative
sum:

p..;(im) = Zj?z:l- (im) (24)

Note that since p.- (¢), j=1,...,J, are always non-
negative, Eq. (24) ensures that fragility curves of
different DS levels do not intersect each other at any
IM point.

34 Multiple DS and multivariate IM

Let us now consider multivariate IM cases where
fragility curves become higher dimension fragility
(hyper-)surfaces (Baker 2007, Ebrahimian et al.
2015). For the cloud method, the fragility function in
Eq. (11) is generalized as:
p..,(im) =

P(EDP > edp, | im, NC)P(NC | im) (25)

+P(C|im)
where im is now an M dimensional vector. Each
logistic and linear regression part is parametrized as:

1

l+e™

and
P(EDP 2 edp; | IM =im, NC)
_ q)[ edp, —h, (im)] (27)
a

res
respectively, where:

hy(im) = B, + 8, In(im") + ---+ B, In(im"") (28a)

h,(im) =, + , In(im') + ---+a,, In(im™) (28b)

Further, by introducing the methodologies of GML,
Shinozuka et al. and ordinal extended fragility can be
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easily generalized to have multiple explanatory
variables, as:

p..,(im)=®(/,(im)) (29)

and

p..,(im) = ———— 30
=/ 1+ t™ (30)

respectively, where:
h,(im)= B, + B In(im') + ---+ B, In(im") ~ (31)

Thus, by constraining the slope parameters to be
shared among all DS, the two methods
successfully avoid crossings between fragility
surfaces. However, mere distinction with respect
to intercept parameters reduces the flexibility of
the models, as also described in Sections 3.1-3.2.

Finally, the nominal approach can similarly
be generalized for multi-dimensional 1M, as:

h (im)
1+2“ D for j<J
p..,(im) = (32)
1+ZJ 7y (im) for j=J

where, in this case:
h,(im)= 4, + B, In(im") + o+ By In(im™) (33)

Note that the number of parameters in the
nominal extension is M(J—1), while in the ordinal
case and probit regression M+J—1 parameters are
required. The model flexibility can further be
increased by introducing higher-order polynomial
terms to Eq. (33) (Andriotis & Papakonstantinou,
2018). A final remark is that although this work
describes the extended fragility analysis from a
GLM perspective, the original work of Andriotis
and Papakonstantinou (2018) used the more
general form of softmax representation, that can
additionally describe fragility functions when
uncertain damage states are present.

4 NUMERICAL EXAMPLES

The findings in this paper are further supported by
numerical examples. A two-story moment
resisting frame is considered, where beams and
columns are respectively modeled by W24X131
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and W27X102 sections. Analyses are conducted in
OpenSees, version 3.2.1 (McKenna et al., 2010). The
initial first and second period of the structure is 0.96
and 0.27 secs respectively, and the damping ratio is
0.05. The modified Ibarra-Krawinkler deterioration
model is adopted to describe bilinear plastic hinges,
and the details of the nonlinearity properties are
retrieved from Eads (2010), while only the rotational
capacity of the hinges is modified to #,=0.04 rad.
Earthquake ground motions are generated from the
site-specific ground motion generator introduced by
Vlachos et al. (2016, 2018), with parameters in Table
1. Sixteen ground motions are selected from random
realizations to demonstrate the findings. The spectral
acceleration at 5% damping is used as the IM and the
inter-story drift ratio as the EDP.

2571

—~ 15

M

0571

0 0.01 0.02 0.03 0.04 0.05 0.06
EDP (Maximum interstory drift ratio)
(a) IDA curves.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
EDP (Maximum interstory drift ratio)
(b) Scattered data points.

Figure 3. Example of IDA curves.
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Table 1. Parameters of site-specific earthquake model

Parameters Value
fault distance 10-15 km
magnitude 6.0-8.0
ground velocity 212 m/s

Figure 3a shows the obtained IDA curves, and
Figure 3b the corresponding scattered data
representation. To configure the same conditions
for each method, the same dataset shown in Figure
3 is used for every fragility method. The fragility
analysis results are plotted in Figure 4. It can be
shown from Figure 4a that the parametrically
fitted MSA and Shinozuka et al. are identical as
they are mathematically equivalent. On the other
hand, IDA overestimates the fragility curves due
to the reversing behavior of IDA curves, as
observed in Figure 3a. However, it should be
noted again that although IDA is strictly an upper
bound of the unbiased MSA estimator for the
nonparametric results, this is not always true when
it is fitted to a lognormal CDF. Instead, the curves
from IDA and MSA can cross at some point. On
the other hand, Figure 4b shows that Shinozuka et
al. and extended fragility methods are in close
agreement. It implies that the wunderlying
functional form, i.e., lognormal and log-logistic
CDFs form a close match with each other for the
univariate IM and binomial DS case. However, it
should be mentioned that as the problem
dimensions increase, extended fragility allows a
more flexible shape that does not rely on a single
CDF expression over the IM-space. Finally, cloud
analysis also shows some discrepancies arising
from the violation of the linearity assumption in
Eq. (9).

When a higher threshold level is of interest, i.e.,
when edp, = 0.06, all five fragility curves give
consistent results. The discrepancies in IDA and
cloud method have been now removed, as (i) the
obtained IDA curves were monotonic at the
specific threshold level, and (i) most of the failure
cases are collapsed cases, enforcing the cloud
analysis to be dominated by the logistic regression
part.

The problem is now further generalized to
incorporate 2-dimensional IM. The significant
earthquake duration, i.e., the time interval within
an earthquake event of which Arias intensity lies
between 5% to 95% of its final value, is added as
an IM, and 50 ground motions are randomly
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generated for this analysis. One can notice from
Figures 5a and 5b that Shinozuka et al. and extended
fragility (ordinal) methods are in good agreement as
they are both constrained to have common variances
for different threshold levels. On the other hand,
cloud analysis results in Figure 5c show a large
discrepancy due to the linear regression implications.
Nominal extended fragility method results are
illustrated in Figure 5d. It is shown that the surface
for the most severe DS (the lowest surface) exhibits
some differences with Figures 5a and 5b. By allowing
a higher level of flexibility, the nominal extended
fragility method is capable of describing a more

1 HO-C
= |DA (lognormal) A
=== |DA (nonparam.) A/’P-d
0.8 | |[=MSA (lognormal) S o
O MSA (nonparam.) (7o)
= = Shinozuka

Fragility
o
2]

°
~

0.5 1 1.5 2 2.5
IM (Sa)
(a) IDA, MSA, Shinozuka et al. (edp~0.022).

1 ¥
—— DA (lognormal) I
=== |DA (nonparam.) | 2%
0.8 | | MSA (lognormal) o
O MSA (nonparam.) ’d/
- — Shinozuka '
06" {(
%)
i

©
~

0.2

M (-Sa)
(c) IDA, MSA, Shinozuka et al. (edp.=0.06).
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precise shape of the fragility surface.

A third IM is further introduced, which is the
ratio between the first and second mode spectral
acceleration. Figure 6 presents the IM dataset used
for fragility analysis. Instead of describing the
fragility 3D-surface, the separation boundaries
(Andriotis & Papakonstantinou, 2018) between
neighboring DS are now illustrated along with the
sample points in Figure 6. The described different
attributes and constraints between ordinal and
nominal fragility analyses are clearly showcased
in the figures.

1
= = Shinozuka
Extended(nominal)
0.8 | |===—~=cloud
= 0.6
%
Y
0.4+
0.2 ¢
0 . . .
0 0.5 1 1.5 2 25

IM (Sa)
(b) Shinozuka et al., extended, cloud (edp~0.022).

1
= = Shinozuka _
Extended(nominal) /”
0.8 f|===—=cloud
> 06|
%
o
L 04+t
0.2t
0 : | | |
0 0.5 1 1.5 2 2.5 3

IM (Sa)
(d) Shinozuka et al., extended, cloud (edp.=0.06).

Figure 4. Fragility curves by different methods.
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5 CONCLUSIONS

This paper provides a mathematical appraisal and
overview for different fragility analysis methods. The
well-known approaches of multiple-stripe analysis
(MSA), incremental dynamic analysis (IDA), and
cloud analysis are examined, along with the classical
Bernoulli-link model and the recently developed
extended fragility framework. A unified viewpoint is
presented, and mathematical proofs that discuss the
eligibility of and interconnections between the
methods are provided. It is shown that MSA is a
subclass of Shinozuka ef al. and IDA is an upper
bound of the unbiased fragility estimator. Shinozuka
et al. and extended fragility analysis can be viewed
through the framework of generalized linear models,
but the extended fragility has also capabilities beyond
this framework as far as function choices, versatility,
and extensibility are concerned.

Extended fragility analysis, cloud analysis, and
Shinozuka et al. are then studied for multivariate IM
and multiple DS cases, where only the extended
fragility approach provides the most flexible
descriptions without allowing crossings between the
fragility curves.

The unique integrative perspective in this study
further supports several new research and practical
directions, such as state-dependent transitions in time
and hidden condition states. Overall, this work aims
at providing several insights, enabling efficient,
accurate, and consistent probabilistic estimations of
structural conditions, in earthquake engineering and
beyond. Finally, it is remarked that a more complete
study of this topic is in preparation for publication
(Papakonstantinou et al., in preparation).
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