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Abstract

The importance of machine learning (ML) in scientific dis-
covery is growing. In order to prepare the next generation for
a future dominated by data and artificial intelligence, we need
to study how ML can improve K-12 students’ scientific dis-
covery in STEM learning and how to assist K-12 teachers in
designing ML-based scientific discovery (SD) learning activ-
ities. This study proposes research ideas and provides initial
findings on the relationship between different ML compo-
nents and young learners’ scientific investigation behaviors.
Results show that cluster analysis is promising for support-
ing pattern interpretation and scientific communication be-
haviors. The levels of cognitive complexity are associated
with different ML-powered SD and corresponding learning
support is needed. The next steps include a further co-design
study between K-12 STEM teachers and ML experts and a
plan for collecting and analyzing data to further understand
the connection between ML and SD.

Introduction

As Machine Learning (ML) becomes more prevalent in sci-
entific investigation, it is crucial to introduce it as a new tool
for K-12 students’ scientific discovery (SD). However, few
empirical efforts contributed to supporting K-12 students
in conducting scientific investigations, discovering causal-
ity, and making arguments with authentic multidimensional
data (Kuhn 2016; Kuhn et al. 2017; Kuhn, Ramsey, and
Arvidsson 2015). The current school curriculum, limited to
bivariate data, may pose a challenge for K-12 students to
interpret ML-generated data (Association et al. 2010). With
the learning environment we created, our preliminary eval-
uation indicated that young students can be more equipped
with knowledge and skills of a global understanding of a
group of data, which is fundamental to interpreting multidi-
mensional data (Ben-Zvi and Arcavi 2001). However, it is
under-explored how different ML components can inspire
different scientific discovery behaviors during young stu-
dents’ learning.

Existing work either establishes connections between ma-
chine learning methods and scientific discovery in the sci-
ence community’s professional practices (Gil et al. 2014), or
conducted a descriptive analysis with a few ML-powered SD
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learning activities created by K-12 STEM teachers (Zhou
et al. 2021). To gain a set of more reliable and generalizable
connections between ML components and young learners’
SD learning behaviors, however, a larger amount of data and
modeling are needed. Thus, we raise one research question:

1. How to identify potential connections between ML com-
ponents and SD behaviors to create adaptive feedback
to scaffold novice learners to go through the ML-
empowered SD learning processes?

To address this research question, we model the connec-
tion between ML components and SD learning behaviors
using data from 25 young learners’ interactions with an ac-
cessible ML-powered SD environment. Our proposed ML-
SD authoring system for K-12 teachers allows them to cre-
ate their own ML-powered SD activities and explore data
with ML methods. Initial results show how ML compo-
nents such as cluster analysis and outlier analysis can en-
hance pattern interpretation and scientific communication.
We also analyze the relationship between learners’ perfor-
mance and language use in scientific discussions, offering
insights for effective scaffolding for K-12 students to carry
out ML-powered scientific discovery.

Related Work
Integrating ML and K-12 STEM Education

There are emerging research efforts to explore the opportu-
nities of making ML concepts and methods accessible for
K-12 students (Evangelista, Blesio, and Benatti 2018; Lin
et al. 2020; Wan et al. 2020; Zimmermann-Niefield et al.
2019). One study shows that data visualization supports stu-
dents with limited computing knowledge to gain a basic un-
derstanding of cluster analysis (Wan et al. 2020). Further, it
indicates the potential of applying ML methods for pattern
interpretation by pattern generation. Zimmermann-Niefield
et al. (2019) facilitates youth to train and test ML mod-
els of their athletic activities. It shows that ML enhances
science learning by aligning ML modeling with modeling
scientific phenomena, an essential practice of science rec-
ommended in curriculum standards (States 2013). Design
guidelines have been extracted from existing research about
introducing ML in K-12 STEM contexts, such as unveil-
ing complex ML concepts step by step (Evangelista, Ble-
sio, and Benatti 2018; Lin et al. 2020) and visualizing ML



Table 1: ML components in the system for scientific investigation.

ML component

ML sub-component for individual tasks

T1 - Intra-group similarity comparison

Similarity computation | T2 - Intra-group variation comparison

T3 - Inter-group variation comparison

Centroid

T4 - Centroid

Outlier

TS - Outlier analysis

K-value selection

T6 - K-value selection for k-means clustering

Cluster analysis

T7 - Cluster analysis with k-means clustering

models for explainability (Essinger and Rosen 2011; Wan
et al. 2020; Zimmermann-Niefield et al. 2019). A recent lit-
erature review on ML learning and teaching in K-12 (Sanusi
et al. 2022) reveals the emerging future research directions
include (1) more ML resources are needed for K-12 and in-
formal settings; (2) further research is needed on integrating
ML into non-computing subject areas; (3) most studies con-
centrate on pedagogical development, with limited focus on
teacher professional development; (4) future research should
examine the societal and ethical implications of ML. These
findings align with the fundamental research motivation that
we propose to make ML more accessible tools for kids to
conduct discovery in diverse subject domains and for teach-
ers to develop corresponding professional skills.

Research shows that ML approaches empower data-
driven discovery by enabling hypothesis generation, itera-
tive experimentation with different parameters, and pattern
recognition by gradually revealing more refined parameters
(McAbee, Landis, and Burke 2017; Muller et al. 2016). Var-
ious ML techniques have been proposed to automate SD
(Langley 2000). For example, k-means clustering, an unsu-
pervised ML algorithm, is used to discover laws by grouping
similar objects (Essinger and Rosen 2011; Evangelista, Ble-
sio, and Benatti 2018), identify dependencies of attributes
(Skapa et al. 2012), and form taxonomies (Wang, Nie, and
Huang 2014). Such methods, however, are applied in sci-
ence at a professional level (Gil et al. 2014; Kitano 2016)
and thus are inappropriate for K-12 teachers and students
with limited CS/ML backgrounds. This points out a demand
for designing an ML-powered SD learning environment in
K-12 contexts.

Connections between ML and SD

Inquiry-based learning (IBL) is a well-recognized educa-
tional strategy in today’s K-12 classrooms to facilitate sci-
entific discovery (SD) learning (Pedaste et al. 2015; Furtak
et al. 2012; De Jong, Sotiriou, and Gillet 2014; Gormally
et al. 2009). To engage students in SD, the main SD stages
involve hypothesis generation, investigation, and discussion
(Pedaste et al. 2015). Hypothesis generation is the process
of generating a testable hypothesis. Investigation refers to
the process of analyzing data to answer questions or test
hypotheses, which involves two main activities: a) planning
and conducting exploration activities or experimentation; b)
analyzing and interpreting data. Discussion, the last one, is
to communicate with others to present findings and collect
feedback.

From existing ML-supported science research, we identi-
fied common connections in how different ML methods can
be used to support different SD stages. First, ML brings new
opportunities for scientists to generate hypotheses by auto-
matically extracting patterns from large datasets (Gil et al.
2014). Second, pairwise similarity comparison (i.e., com-
paring two data points) supports initial observations of con-
trastive data points, which can trigger contrastive explana-
tions that support students’ abductive reasoning for hypoth-
esis generation and investigation (Folger and Stein 2017).
Third, clustering and classification can serve as more data-
driven methods for exploration or experimentation (Romes-
burg 2004; Gil et al. 2014). Existing work also identifies
common ML-SD connections in learning activities designed
by K-12 teachers (Zhou et al. 2021). For example, teach-
ers preferred hypothesis generation by ML methods with a
small amount of data rather than prior knowledge. Teach-
ers also designed iterative investigations from small to large
datasets.

System Design: ML-Powered SD Learning
Environment

ML Components

The main ML components (Table 1) involved in the system
include (1) similarity computation, (2) centroid, (3) outlier,
(4) k-value selection, and (5) cluster analysis. With similar-
ity computation, learners are supported in examining shared
patterns within a group of data points (T1: intra-group sim-
ilarity comparison), analyzing variations of individual fea-
tures within a group (T2: intra-group variation comparison),
and comparing the overall variation of all data attributes
between two groups of data points (T3: inter-group varia-
tion comparison). The ML component of centroids enables
learners to generate a centroid for a cluster of data points
and compare patterns between different centroids. Outlier
analysis allows learners to examine outliers for individual
clusters. With the ML components of k-value selection and
k-means clustering results, learners can study the impact
of k-values on clustering results and examine potential re-
lationships among data attributes through cluster analysis.
The corresponding data visualization and interaction design
is depicted in Figure 1.

Learning Activity Design
Four scientific investigation learning activities are designed
in the system with the ML components described above.
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Figure 1: ML-Powered SD learning environment with a set
of scientific investigation activities: (a) getting familiar with
the data visualization and interaction; (b) interpreting the
classification result by applying the ML component - sim-
ilarity computation; (c) applying ML components related to
k-means clustering, including outlier analysis, k-value selec-
tion, and cluster analysis.

The first learning activity is designed with a dataset about
adult income. Learners are guided to investigate the poten-
tial factors influencing a person’s income level. In the sec-
ond learning activity, learners conduct a scientific investiga-
tion on what ecological features make a field site livable for
an alien rose. The third learning activity, involving a breast
cancer dataset, asks learners to discover the patterns of ma-
lignant cells and the patterns of benign cells. The fourth ac-
tivity integrates a dataset related to TV shows and their tar-
get audience. Learners apply ML components to investigate
what features are related to high-rating TV shows and what
features are more likely to form low-rating shows.

Research Method

Participants

This research study enrolled 25 participants through teach-
ers and parents in compliance with the approved Institutional

Review Board guidelines. The gender composition of the
participants was comprised of 10 women, 14 men, and one
participant who chose not to disclose their gender. The par-
ticipants’ grade levels ranged from 7 to 11, with a mean of
9.76 and a standard deviation of 1.16. The pre-study survey
revealed that 12 participants had no previous exposure to Al,
five had exposure to Al-related consumer products or films,
and eight had participated in robotics clubs or possessed ba-
sic coding knowledge.

Procedure and Data Collection

The study took place online via Zoom and each study ses-
sion lasted about 1.5 hours, facilitated by one researcher.
During the study, each participant went through four learn-
ing activities with the same ML components but different
visualization designs. Therefore, the sample size is 25 x 4 =
100. To address the issue of a participant’s exposure to
four activities with different visualization designs affecting
the learning outcome, we employed partial counterbalancing
and calculated the number of various combinations through
the Latin square technique (Gravetter and Forzano 2018).

During ML-powered SD learning, participants are asked
to think aloud (Van Someren, Barnard, and Sandberg 1994)
while working on individual investigation tasks. Through
such think aloud method, we are able to collect audio record-
ing data describing learners’ cognitive process of investigat-
ing data patterns by applying different ML components.

Data Analysis

Data Annotation A coding scheme along with corpus ex-
amples (Table 2) is developed to analyze the investigation
behaviors during scientific discovery learning based on the
existing literature review on SD learning (Pedaste et al.
2015). The codes mainly focus on the investigation phase
during a cycle of inquiry-based learning.

Preliminary Analysis of the ML-SD Connection To
have a preliminary view of the association between differ-
ent ML components and SD learning behaviors, we calcu-
lated the occurrence of ML components for individual SD
behaviors. This reveals potential patterns in how different
ML components are connected with investigation behaviors.
To obtain robust findings, we exclude the SD behaviors with
less than 10 observations. As a result, behaviors include ob-
servation and orientation, exploration and experimentation,
analysis, pattern interpretation, and reflection.

Linguistic Analysis To have a further understanding of
when the learning support will be most needed, we inves-
tigate the difficulty levels for different parts of such ML-
powered investigation by analyzing the cognitive complex-
ity that learners experience while applying different ML
components for investigation. We apply LIWC (Linguistic
Inquiry and Word Count) (Tausczik and Pennebaker 2010)
to the transcripts of the participants during the experiment.
LIWC is a lexicon-based textual data analysis framework
that measures the psychological states, sentiment, and lin-
guistic patterns of the authors by counting the words of
different categories. It outputs multiple linguistic variables



Table 2: A preliminary coding scheme used to annotate the video and audio recordings of students applying different ML
components for scientific investigation.

SD Behaviors
in Investigation
Phase

Definition

Definition in the study

Corpus Examples

Observation
and orientation
(Topic)

Behaviors in relation to
gaining interest and ob-
taining background infor-
mation about a topic at
hand.

Learning about the scientific context to
be investigated, such as the meaning of
data attributes.

“So tell me the definition of ad-
hesion (a data attribute in the
Breast Cancer dataset).”

Observation
and  orientation
(Tech)

Behaviors in relation to
addressing learning chal-
lenges of technology de-
sign.

Learning the operation and the function
of SmileyDiscovery in supporting sci-
entific investigation, such as the mech-
anisms behind the connections between
data attributes and visual features.

“(The participant is trying to
figure out how data attributes
and facial features are con-
nected) Does it [data attributes]
go anywhere [any facial fea-
ture]?”

Exploration and
experimentation

Behaviors in relation to
collecting data or con-
structing models.

Conducting observation by applying
specific functions of SmileyDiscovery,
such as adjusting the pointer, selecting
the k value, overlaying glyphs, and can-
celing the overlay.

Clicking different k values to
investigate the changes in dif-
ferent clustering results; shift-
ing between generating cen-
troids and taking back centroids
to investigate differences be-
tween two data points or clus-
ters.

Analysis

Behaviors in relation to
analyzing data and pre-
senting evidence.

Explaining data using visual features of
SmileyDiscovery, such as their shapes,
positions, and distribution (variation v.s.
concentrate)

“..some of these (data points)
still like have that variation”

Pattern interpre-
tation

Behaviors in relation to
making meaning out of
data or models.

Synthesizing or integrating different
pieces of information from data analysis
to answer a target question.

“I would say low precipitation,
and then, um, few small ani-
mals.”

Reflection

Behaviors in relation to

Responding to the hints, evaluations, or

“Uh, because those with higher

students  reconstructing
their understanding of
the topic or the data after
receiving feedback or
evaluation.

critiques provided by the researcher.

income.”

such as sentiment, cognitive processes, and so on. It can out-
put the linguistic score that indicates the cognitive complex-
ity involved in certain activities (Li and Lee 2019; Biel et al.
2013; Haulcy and Glass 2021). More specifically, we first
concatenate the text of each participant between two ML
components, and then we apply LIWC. Further, we perform
multiple ANOVA experiments to test whether or not there is
a significant difference in the linguistic scores among differ-
ent SD behaviors. The significant level is set as 0.05.

Preliminary Results of ML-SD Modeling

ML components are associated with different SD behav-
iors. The distributions of the SD behaviors and the ML com-
ponents across different categories are depicted in Figure 2
and Figure 3, respectively. It is noteworthy that the first col-
umn in Figure 3 represents the distributions in the pattern
interpretation behaviors during the investigation stage. Each
SD behavior is associated with ML components to varying
degrees.

First, cluster analysis (T7) is associated with analysis, pat-
tern interpretation, and reflection, the key behaviors dur-
ing the scientific investigation. The SD behavior triggered
by cluster analysis, in particular, exhibits a high proportion
of pattern interpretation due to the involvement of a larger
number of pattern elements for learners to analyze and inte-
grate. It is also the most frequent ML component that trig-
gers reflection behavior. It shows the need for feedback and
evaluation for the investigation supported by cluster anal-
ysis. This also indicates that cluster analysis may have a
higher potential to support the effective development of the
skills for scientific discovery learning and scientific commu-
nication. Second, k-value selection for k-means clustering is
associated with more than half of the young learners’ ex-
perimentation behaviors. This suggests that the practice of
adjusting ML algorithm parameters and observing its im-
mediate effect on data visualization can encourage experi-
mentation for kids. This can further foster a trial-and-error
learning approach. Third, outlier analysis (T5) is observed
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Figure 2: Distribution of the SD behaviors across various ML components: T1 - Intra-group similarity comparison, T2 - Intra-
group variation comparison, T3 - Inter-group variation comparison, T4 - Centroid, TS - Outlier analysis, T6 - K-value selection
for k-means clustering, T7 - Cluster analysis with k-means clustering.

to be more likely to trigger analysis and pattern interpreta-
tion. This implies that outlier analysis potentially inspires
more pattern interpretation behaviors or requires more effort
in analyzing data to reach conclusions.

The language reveals different levels of cognitive com-
plexity during various ML components and SD behav-
iors. According to the results of ANOVA, we find significant
differences in the average linguistic scores among different
ML components and SD behaviors (p < .05). In particular,
the cognitive process score is higher during those advanced
stages such as reflection and analysis, and lower during the
initial stages such as observation. This suggests that the in-
troduction of the new ML components didn’t make the initial
interaction more cognitively challenging than data analysis
and pattern interpretation. The cognitive process score repre-
sents the frequency of words such as “cause”, “know”, and
“ought”, which suggests the active process of reappraisal.
An increasing usage may be indicative of a higher level of
cognitive complexity (Tausczik and Pennebaker 2010). This
is consistent with the dynamic mechanism of SD behaviors,
where synthesizing different pieces of evidence from data
is a sign of a more comprehensive understanding (Pedaste
et al. 2015).

The ML components, ranked in order of decreasing cog-
nitive process scores, are T6, T2, T7, T3, TS5, T1, and T4.
It is noteworthy that, despite being a more open-ended and
advanced task that involves a combination of ML compo-
nents, cluster analysis (T7) exhibits a lower cognitive com-
plexity compared to k-value evaluation (T6) and intra-group
variation comparison (T2) with similarity computation. The
reason for this may stem from our design strategy of incre-
mentally introducing complexity. By placing cluster analysis
as the final task in the learning activity, a strong foundation
is provided for young learners to gradually gain a basic un-
derstanding of how to apply various ML sub-components in
scientific investigations. The findings suggest a need for fur-
ther visualization and interaction design to scaffold the anal-
ysis of variations among different attributes within a group

of data points, as well as the evaluation of the overall clus-
tering results.

Future Work
Further Co-Design Study

For machine learning educators and researchers, we would
like to highlight a limitation in our previous study where
teachers co-designed ML-powered SD learning activities.
The study used an online platform for creating diagrams but
teachers could not refine their designs based on real-time
outputs from ML components. This hindered in-depth dis-
cussions on ML’s role in K-12 STEM education and led to
missing details in the final design results. To address this, we
suggest conducting a follow-up study where teachers design
and implement ML-powered SD learning activities using an
ML-SD authoring system, allowing them to interact with in-
termediate results generated by ML components.

According to teachers’ feedback from the prior study,
some of them still did not feel prepared enough to develop
ML-powered SD learning activities, even when collaborat-
ing with other teachers. As a result, the further co-design
study should support more elaborated collaboration between
teachers and ML experts.

Data Collection and Analysis for Future Modeling

In addition to the video transcripts, we intend to exploit the
video itself to further understand the interplay between ML
components and SD learning activities. For example, we in-
tend to capture the level of engagement of each participant
by analyzing how the participant uses the learning tool of
our study.

In terms of modeling, we intend to extend our study in
two directions. First, unlike the univariate statistical tests we
conduct in the current study, we plan to jointly model the vi-
sual features, textual features, and the involvement of differ-
ent ML components to investigate the SD learning activities.
Second, the current experiment design is cross-sectional. We
plan to employ models such as LSTM (Long Short-Term
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Memory) (Hochreiter and Schmidhuber 1997) to incorpo-
rate the temporal patterns because of the dynamic character-
istics of SD learning activities (Pedaste et al. 2015).
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