
NVLeak: Off-Chip Side-Channel Attacks via Non-Volatile Memory Systems

Zixuan Wang? Mohammadkazem Taram]? Daniel Moghimi†?

Steven Swanson? Dean Tullsen? Jishen Zhao?

?UC San Diego]Purdue University †UT Austin

Abstract

We study microarchitectural side-channel attacks and de-

fenses on non-volatile RAM (NVRAM) DIMMs. In this

study, we first perform reverse-engineering of NVRAMs as

implemented by the Intel Optane DIMM and reveal several

of its previously undocumented microarchitectural details:

on-DIMM cache structures (NVCache) and wear-leveling

policies. Based on these findings, we first develop cross-core

and cross-VM covert channels to establish the channel ca-

pacity of these shared hardware resources. Then, we devise

NVCache-based side channels under the umbrella of NVLeak.

We apply NVLeak to a series of attack case studies, including

compromising the privacy of databases and key-value stor-

age backed by NVRAM and spying on the execution path

of code pages when NVRAM is used as a volatile runtime

memory. Our results show that side-channel attacks exploit-

ing NVRAM are practical and defeat previously-proposed

defense that only focuses on on-chip hardware resources. To

fill this gap in defense, we develop system-level mitigations

based on cache partitioning to prevent side-channel leakage

from NVCache.

1 Introduction

Microarchitectural side channels allow attackers to leak in-

formation from other users co-located on shared computing

resources. Researchers have demonstrated such attacks by

exploiting various hardware resources that are shared among

untrusted users [16, 44, 48, 50, 54, 86]. For example, an at-

tacker can construct a timing side channel based on the

shared CPU cache and use this to break cryptography [6, 53],

steal keystrokes [41], and violate the privacy of encrypted

databases [64]. These side channels are also the basic block to

developing more advanced microarchitectural attacks that leak

arbitrary data and undermine the confidentiality of several

isolation domains on modern systems [9,35,42,58,62,68–70].

The research community has put a lot of effort into propos-

ing defenses against microarchitectural attacks, but these pro-

posals are not comprehensive. For attacks that target compo-

nents internal to the CPU core [3,16,48], the recommendation

is to isolate these resources for security-critical operations

spatially and temporally [66, 67]. On existing CPUs with no

fine-grain support for isolation, this can be achieved by flush-

ing CPU resources across context switching or making sure

untrusted threads are not simultaneously executed on the same

core. For attacks on the shared CPU cache and its directory

structure [44, 82], mitigations based on partitioning the cache

and randomizing cache accesses are proposed [43, 56, 57, 78].

These CPU mitigations, promising for protecting security-

sensitive computation, come with a performance penalty. Un-

fortunately, systems practically benefit little from paying the

corresponding performance penalty to defend against CPU

side channels if attackers can exploit other shared hardware

resources such as the on-chip interconnect [33, 51, 63, 72, 74]

and the DRAM banks and row buffers [55]. This gap moti-

vates us to look into attacks on new memory subsystems.

We study the security implications of scalable server-grade

non-volatile RAM (NVRAM) DIMMs as implemented by

Intel’s Optane DIMM [31]. NVRAM DIMMs enable a larger

memory capacity and support for data persistence long desired

by server developers. Recent performance characterization

studies [76, 85] have shown that the Optane DIMM delivers

its high levels of performance and scalability by employing

various optimizations including multi-level buffers, internal

address remapping schemes, and wear-leveling mechanisms.

This combination leads to a discrepant performance behavior

compared to what researchers expected before the product

release [34, 37, 83]. Although previous studies have investi-

gated the microarchitecture of the Optane DIMM and ana-

lyzed its performance, its security implications remain largely

unexplored. In this study, we investigate microarchitectural

covert/side channels enabled by Optane DIMM, their impact

on the security of real-world applications, and how we can

improve system security against potential side channels. More

specifically, we contribute the following:

1. Reverse-engineering (§ 3). We perform reverse-

engineering of the opaque design of NVRAMs, which helps

us uncover new information leakage sources. Our goal is

to detail the on-DIMM cache structures and configurations,

control policies, and performance behaviors. We develop care-

fully crafted microbenchmarks that run in both kernel and

user spaces to achieve this. These microbenchmarks trigger

specific memory behaviors, which lead to detectable perfor-

mance variances that reveal the corresponding hardware de-

signs. As a result, we unveil a much more detailed picture

of Optane DIMM microarchitecture compared to previous

works [76, 85]. Our findings include the on-DIMM cache

structures and wear-leveling policies, which we then exploit

to develop new information leakage attacks.

2. Constructing covert channels (§ 4). We develop and

quantify new covert/side-channel attacks to empirically verify

the existence of information leakage via the uncovered knowl-

edge of Optane DIMM microarchitecture. First, we exploit

the previously-undocumented on-DIMM cache structure to

construct a cross-VM covert-channel attack. We show that

cross-VM covert channels using the NVRAM cache are stable

and achieve high channel capacity and low noise by solving

several challenges. Second, we construct a covert channel

that exploits the NVRAM wear-leveling mechanism to leak

updates to a filesystem, which allows an attacker to monitor

whether a victim updates its file without requiring elevated

permission.

3. Side-channel attack case studies (§ 5). Next, we show

that our findings go beyond covert communication channels

and affect the security of real-world applications. We demon-

strate several side-channel attacks exploiting the NVRAM

cache, under the umbrella of NVLeak attacks, applicable to

everyday use cases of NVRAM:

First, we demonstrate several attacks in the scenario where

NVRAM is used as persistent storage, compromising the pri-

vacy of a SQL database or key-value storage. Although an

attacker who shares the NVRAM with a victim does not have

access to the victim’s database/storage file and its queries,

they can learn about its queries through NVRAM cache ac-

cess patterns. Ultimately, an attacker can learn the details of

queries and parameters, and previous work [19] shows that

such information leakage is devastating for the privacy of

encrypted databases.

Then, we demonstrate an NVLeak attack in the scenario

where NVRAM is deployed like a volatile memory (like the

DRAM). In this common scenario, to speed up workloads

that don’t require persistent storage, we show NVLeak can

spy on code pages and detect which execution path is taken

by a program whose code pages are stored in the NVRAM.

Ultimately, we show that this has consequences for security-

critical applications like cryptographic schemes.

4. Mitigations (§ 6). We propose a set of mitigation mech-

anisms to defend against the NVCache-based side channels

based on the reverse engineering results and side-channel

attacks. We first propose a software-based L2 NVCache mit-

CORE

LLC

CORE

CPUMemor y Mode AppDi r ect Mode

DRAM NVRAM

NVRAM

NVRAM

DRAM

DRAM

NVRAM

NVRAM

NVRAM

Stand-alone pmem devices

Direct access from processor
DRAM Data Cache

DRAM

DRAM

DRAM
i MC

WPQ

RPQ

i MC

WPQ

RPQ

L1C

L2C

L1C

L2C

Figure 1: Memory hierarchy equipped with Optane DIMMs.

igation that allows a victim application to allocate mem-

ory blocks from isolated NVCache sets that are not shared

with other applications, including the attackers, thus prevent-

ing information leakages. We develop this mitigation into a

PMDK [32] key-value store to make it resistant to NVCache-

base side channels. The experimental results show that this

mitigation’s performance overhead is < 4%. We then propose

a software-based mitigation for L1 NVCache and WPQ, and

a hardware-level mitigation for the entire NVRAM hierarchy.

Open source and responsible disclosure. We open source

our code1 in the hope of facilitating future off-chip memory

security research. We have disclosed the vulnerabilities and

our code to Intel.

2 Background

In this section, we provide some background knowledge of

the NVRAM and microarchitectural side-channel attacks.

2.1 NVRAM

Like DRAM, Non-Volatile RAM (NVRAM) provides a byte-

addressable interface that allows the CPU to access NVRAM

directly. NVRAM promises low-latency and high-bandwidth

performance that is comparable to DRAM and faster than

conventional NAND-based persistent storage devices [34].

On the other hand, NVRAM can also work as persistent stor-

age, guaranteeing its data survives power reset, i.e., a user

can rely on an NVRAM-aware filesystem for persistent stor-

age [80]. Intel Optane DIMM [1] is the most widely adopted

commercial NVRAM product.

NVRAM-based server systems. Figure 1 shows an example

architecture of a server system equipped with Optane DIMM.

Optane DIMMs (denoted as NVRAMs) are connected to the

memory bus along with DRAM DIMMs. Intel’s Cascade

Lake processors, the first microarchitecture to support Optane

DIMM [30], can support up to 6 Optane DIMMs per processor.

The processor’s integrated memory controllers (iMCs) man-

age access to the memory bus and connected memory mod-

ules, including the CPU’s last level cache (LLC) and off-chip

memory media. The iMCs have read-pending-queues (RPQs)

1https://github.com/TheNetAdmin/NVLeak

and write-pending-queues (WPQs) to process accesses to Op-

tane DIMMs. WPQ, which is interesting for our work, stores

the pending cache line data to be written back to NVRAM

and ensures its data is safely persisted during power failures.

Intel only documented the existence of WPQ [60] without

further details such as WPQ size.

NVRAM operation modes. As shown in Figure 1, Optane

DIMMs can be configured to operate in two different modes:

Memory Mode or AppDirect Mode. In Memory Mode, a

DRAM DIMM becomes a data cache for the Optane DIMM

in the same channel. This mode allows users to enjoy the extra

capacity provided by Optane DIMM, but it does not provide

data persistence. In contrast, in AppDirect Mode, the Optane

DIMMs are used as stand-alone persistent memory that is

directly accessible to the software running on the CPU cores.

The programmers can use regular load/store instructions to

the NVRAM region and access in-NVRAM data structures.

In this case, system software and NVRAM hardware should

guarantee that the data structures are recoverable during sys-

tem crashes or power outages [71, 80].

NVRAM wear leveling. Persistent storage devices such as

SSDs use wear-leveling mechanisms to prolong the device

service life: the persistent media’s cells generally only support

a limited number of write cycles [2], after which the cell is

worn-out and not reliable to store data. The wear-leveling

mechanism tries to evenly distribute write accesses to the

media cells by migrating data from one cell to another after

a number of write cycles. Optane DIMM uses 3D-Xpoint as

its persistent media [47], which also requires wear-leveling

to reduce the number of bad media cells. Currently, there is

no publicly available documentation about the details of its

wear-leveling algorithms.

NVRAM microarchitecture. Recent works [76, 85] unveil

several previously unknown microarchitectural details of Op-

tane DIMM. These works identify the existence of on-DIMM

buffers organized as a hierarchy and the presence of a wear-

leveling mechanism and a multi-DIMM interleaving scheme.

In this work, we dive deeper into its microarchitecture, reveal-

ing more details and correcting some of the findings of the

prior work. Thus, this paper represents the most comprehen-

sive analysis of NVRAM to date, which also leads us to the

first security analysis of an NVRAM microarchitecture.

2.2 Microarchitectural Side Channels

Microarchitectural side-channel attacks exploit contention

on shared hardware resources such as shared caches [22, 23,

50, 52, 84], translation lookaside buffers (TLBs) [18], branch

predictor structures [15, 16], DRAM buffers [55], and CPU

execution ports [3, 8] to bypass software isolations and leak

private information from other users. We discuss memory-

related attacks in more detail due to the focus of our work:

Cache attacks. In a cache-based side-channel attack (cache

attack), an attacker who cannot directly access the victim’s

data can observe the cache state changes made by the victim

application. The attacker can monitor the state of the cache

and derive the victim’s secret information from its cache-

access pattern. A typical cache attack comprises three main

steps: (1) the attacker prepares the cache into a desired state so

that the victim’s cache activities are measurable. For example,

the attacker prepares the cache by evicting specific cache lines

from the shared cache. (2) the attacker waits for the victim to

modify the cache state. (3) the attacker measures the cache

state to determine whether the victim has accessed a target

cache line or not. An attacker can achieve this by measuring

the access time of its cache lines [52, 84] or the time of the

victim’s execution [50].

Cache attacks can be categorized into different classes

based on their method for the preparation step. Flush-based

attacks [21, 22, 84] assume a shared memory (e.g., a shared

library) between the attacker and the victim, so the attacker

can prepare the cache by simply executing a clflush [26]

instruction to evict target cache lines. In contrast, conflict-

based attacks (e.g., Prime+Probe [52]) do not rely on shared

memory. Instead, to prepare the cache states, the attacker

identifies and loads multiple cache lines mapped to the same

cache set as the target address, forcing the cache to evict the

victim’s target cache line due to conflicts.

DRAM row-buffer conflicts. Previous research has also

attacked on-DIMM structures. These attacks leak secrets by

exploiting DRAM-specific optimizations and features such as

row buffers [55] and row activation [36]. DRAMA [55], for

example, exploits the DRAM row buffer, an on-DIMM SRAM

memory that caches an entire DRAM row and provides faster

access than DRAM banks. DRAMA performs a Prime+Probe

attack by leveraging the timing difference between row buffer

hits and misses to detect victim activities such as keystrokes.

3 NVLeak Reverse-Engineering

In this section, we perform reverse-engineering of the NV-

RAM’s microarchitecture. We build our experiments on top

of LENS [76], a recent performance characterization study

of Optane DIMM. Our results confirm some of LENS’ find-

ings, including the capacity of DIMM caches and their block

size on two different versions of the Optane DIMM. Addi-

tionally, we recover undocumented details such as the set

associativity of the DIMM caches and their indexing schemes

(§ 3.2). Finally, we correct some essential details about the

wear-leveling policy and its implementation (§ 3.3).

3.1 NVRAM System Configuration

Table 1 shows the configuration of the NVRAM-equipped ma-

chines we use for our experiments. We configure all DIMMs

to be non-interleaved to ensure that our experiments always

Table 1: NVRAM-equipped server system configuration.

Server A Server B

CPU

Intel Xeon Cascade Lake Intel Xeon Gold 6230

24 Cores per socket, 2 sockets 20 Cores per socket, 2 sockets

HyperThreading off

L1 Cache 32 KiB 8-way I-Cache, 32 KiB 8-way D-Cache, private

L2 Cache 1 MiB, 16-way, private

L3 Cache 33 MiB, 11-way, shared 27.5 MiB, 11-way, shared

DRAM
6 channels per socket

DDR4, 32 GiB, 2666MHz DDR4, 16 GiB, 2666MHz

NVRAM

Intel Optane DIMM

6 channels per socket

256 GiB, 2666 MHz 128 GiB, 2666 MHz

Firmware: 01.01.00.5253 Firmware: 01.02.00.5355

Kernel Linux 5.4.0

run on a single DIMM. Additionally, we configure Optane

DIMMs to operate in AppDirect mode. For our reverse-

engineering microbenchmarks, we mount a dummy filesystem

on an Optane DIMM which provides identity memory map-

ping on the Optane DIMM memory region. To minimize

the noise in our experiments, we turn off the CPU hardware

prefetchers, disable simultaneous multithreading (SMT), and

boost the CPU to performance mode with the help of the CPU

scaling governor. This section presents results using Server A

(Table 1), and § A.2 shows results on Server B.

3.2 Recovering Details of NVCache and WPQ

We design a pointer chasing microbenchmark that reveals

the structure of the NVRAM cache (NVCache) and CPU’s

write-pending-queue (WPQ). Here, we first describe the mi-

crobenchmark, then briefly discuss how we instantiate this

program to confirm the results of LENS on cache capacity,

block size, and WPQ structure. We then discuss how we

recover NVCache set associativity, the number of sets, and

NVCache indexing scheme.

Pointer chasing microbenchmark. We divide a contiguous

memory region—a pointer chasing region (PC-Region)—into

equal-sized blocks (PC-Blocks). We initialize each PC-Block

with a pointer to another random PC-Block. Recursively deref-

erencing the pointers results in accessing all PC-Blocks in ran-

dom order. This also defeats a cache prefetcher if that exists.

To minimize the effects of CPU caches on our measurements,

we set the NVRAM memory region as uncacheable through

x86 Memory Type Range Register (MTRR) [26]. We en-

sure that every read or write operation reaches the NVRAM

DIMM by using non-temporal load and store instructions.

In an environment where MTRR is not available, e.g., user-

space processes or virtual machines, one can instead insert a

clflush instruction after each memory access instruction to

imitate the uncacheable effects.

Recovering cache capacity. To identify the cache capac-

ity, we follow the LENS [76] methodology and run the

0

250

500

750

1000

64 512 16 K 1 M 16 M 256 M

PC-Region size (byte)

L
a

te
n

c
y

(c
y
c
le

) ld st

(a) Pointer Chasing

PC-Block L1 NVC L2 NVC WPQ

64B 1.73 1.21 6.65

128B 1.43 1.17 3.80

256B 1.00 1.17 1.85

512B 1.00 1.12 1.00

1K 1.00 1.07 1.00

2K 1.00 1.03 1.00

4K 1.00 1.00 1.00

(b) Amplification

Figure 2: Pointer chasing microbenchmark results and ampli-

fication factors for each architectural components.

pointer chasing microbenchmark with varying region sizes

(PC-Region) while keeping the PC-Block size constant. The

results of this experiment (Figure 2a) confirm the presence of

two levels of NVCaches with 16 KiB and 16 MiB capacities

on both of our machines. Hereafter, we refer to the 16 KiB

cache as L1 NVCache and the 16 MiB one as L2 NVCache.

Recovering L1/L2 NVCache block size. To confirm the

block size reported by LENS [76], we use the pointer chasing

microbenchmark with varying PC-Block sizes and measure

the read/write amplification factor. The read/write amplifica-

tion factor is the ratio of data that is read/written to the size

of the requested data. For example, for a cache with 256 B

block size, a single read request of 64 B will bring a 256 B

block into the cache; thus, we will have a read amplification

of 4. Our read/write amplification results (details in Figure 2b)

confirm that the two NVCaches have different block sizes. L1

has 256 B blocks while the L2 NVCache has 4 KiB blocks.

Recovering CPU WPQ structure. Figure 2a shows that

pointer chasing write latency drops until 512 B region size,

which indicates a buffer or queue on the write path. Given its

small size and presence only on the write path, we believe

it is the write pending queue (WPQ) embedded in the Intel

CPU’s on-chip memory controller [60]. The WPQ’s write

amplification factor (Figure 2b) drops to 1 when using 512 B

PC-Block; considering the pointer chasing microbenchmark

inserts one mfence instruction after each PC-Block access, we

believe that one mfence instruction flushes the entire WPQ.

Recovering NVCache associativity and number of sets.

We run the pointer chasing microbenchmark with strides to

identify the number of cache sets, which prior works [76,

85] have not revealed. As illustrated by Figure 3, increasing

the stride size directs the pointer chasing accesses to fewer

cache sets. For example, assuming a target cache has four sets

(unknown to the attacker) where each set stores two cache

blocks, and the cache uses a linear indexing function to index

the sets. If the attacker runs the pointer chasing code to access

eight continuous cache blocks, the attacker can fill up the

entire cache (Figure 3a). But if the attacker doubles the stride

size (Figure 3b), its accesses will skip every other set, and

the attacker can only use half of the cache sets. Finally, once

the attacker reaches a stride that matches the number of sets,

all memory accesses will be mapped to only one cache set

NVCache

NVRAM

Set

#1

Set

#2

Set

#3

Set

#4

(a) Stride Size = Cache Block Size

Set

#1

Set

#2

Set

#3

Set

#4

(b) Stride Size = 2 * Cache Block Size

Set

#1

Set

#2

Set

#3

Set

#4

(c) Stride Size = 4 * Cache Block Size

Set

#1

Set

#2

Set

#3

Set

#4

(d) Stride Size = 8 * Cache Block Size

Figure 3: Detecting NVCache set structures with a strided pointer chasing microbenchmark. In this example, NVCache has 4

sets, where each set has 2 cache blocks. The strided access reaches a maximum cache contention once the stride size reaches 4

times the cache block size. Figure (d) is cut off with 4 more memory block accesses out of the figure range.

Bl k 2

Bl k 1

Bl k 0

NVCache

Bl k 15

. . .

Set

#0

Set

#1
 . . .

Set

#255

Figure 4: Pointer chasing microbenchmark results. The

heatmap shows the pointer chasing latency under varying

striding sizes and number of blocks. When we have 16 blocks

or less, the latency does not increase for any stride size, indicat-

ing that we have at least 16 block available, i.e., associativity

of 16.

(Figure 3c). At this point, doubling the stride size does not

reduce the available cache capacity anymore (Figure 3d).

Using this method, we scan all possible stride sizes and

measure the available cache capacity, and find a point where

the cache capacity stops decreasing. We can then use that

stride size to deduce the number of sets in the cache, and since

we already know the total number of blocks in the cache, we

can also derive its set associativity.

Figure 4 shows a heatmap of the pointer chasing read access

with different stride sizes and different numbers of blocks.

We repeat the pointer chasing with strides for multiple rounds

(16 or more) and measure the average latency to get a stable

result. We use a 64 B pointer chasing block size2 so that each

264 B is the AVX512 register size we use and is unrelated to the NVCache

parameters. SSE and AVX2 registers can also be used with non-temporal

NVCache block gets only one memory access.

L1 NVCache set structure. We start with a stride size of 256

bytes. This stride size matches the L1 NVCache block size, so

all pointer chasing accesses reside in different consecutive L1

blocks. We observe a rapid sizable increase in the read latency

at 44 blocks. This overflow point is close to L1 total blocks,

so we believe this reflects the L1 NVCache overflow. This

overflow point remains at 44 blocks under various stride sizes,

which means that the mapping of blocks to cache sets does

not depend on their addresses, indicating a fully-associative

structure. These results also suggest that L1 employs a re-

placement policy different from Least Recently Used (LRU).

An LRU cache should overflow when it is full, but L1 starts

to overflow at 44 instead of 64 blocks (the maximum capacity

of the L1 NVCache).

L2 NVCache set structure. When stride size is set as 4 KiB,

which matches the L2 block size, every memory access falls

into a different L2 block, and we observe an additional distin-

guishable latency change at 4096 blocks. The first overflow

point at 44 blocks reflects the L1 NVCache capacity, while

the second one matches the size of L2 NVCache (4096 blocks

× 4 KiB = 16 MiB = Size(L2 NVCache)). Unlike L1, the L2

overflow point changes with the pointer chasing stride size: it

overflows at 4096 blocks with 4 KiB stride size, then at 2048

with 8 KiB stride, etc. The overflow point stops at 16 blocks

with 1 MiB stride and does not change with larger stride sizes.

This indicates that L2 is a set-associative cache because its

overflow point changes and each L2 set has 16 cache blocks

because the overflow point stops moving at 16 blocks. This

result also shows L2 likely uses LRU replacement, as L2

starts to overflow with 4096 blocks which match the number

of L2 blocks, i.e., L2 overflows when it is full. L2 NVCache

is likely to use a linear indexing scheme because there is a

linear relationship between the number of PC-Blocks and the

stride size for L2 overflow points.

load/store instructions.

0.2

1.0

10.0

60.0

0 50 k 100 k 150 k

Access iteration

L
a
te

n
c
y

(u
s
)

(a) Per-iter latency.

0

15

30

45

60

256 2 K 32 K 512 K

Delay Duration (Cycle)

P
9
9
.9

9
L
a
te

n
c
y

(u
s
)

Inject Interval (Byte)

256

1 K

4 K

8 K

(b) 99.99 percentile latencies.

Figure 5: Overwrite microbenchmark results. (b) shows a

sample of results from Figure 6.

3.3 Recovering Wear-Leveling Policy

Next, we recover the wear-leveling policy used in the Optane

DIMM. To that end, we extend the overwrite microbenchmark

from LENS [76] to measure the timing of the data migration

and its spatial granularity (i.e., the block size).

Triggering a data migration. We start with a variant of

the overwrite microbenchmark that repeatedly writes 256 B

regions and measures the latency of each write operation. If a

write in this region triggers a data migration, e.g., by a wear-

leveling algorithm, the subsequent writes cannot be issued

until the migration completes. As a result, a write stalled by

a migration exhibits a latency over a magnitude higher than

an average write. We estimate the migration latency using

the elevated tail latency. Furthermore, we can calculate the

migration frequency by measuring the time intervals between

two consecutive migrations.

Figure 5a shows the results of the overwrite microbench-

mark for data migration latency analysis. The results of Fig-

ure 5a show that long-latency writes (∼60 us) happen at

regular intervals. We see one after writing every ∼4 MiB

(∼16 K write operations) to the memory region when using

non-temporal stores. This confirms the behavior observed by

previous work [76]. We also performed the same overwrite

experiment on DRAM and did not observe such a long la-

tency effect. Thus we consider the cause of this NVRAM

long write latency is its data migration for wear-leveling or

thermal control.

Data migration timing conditions. To further investigate

the conditions upon which a data migration happens, which

is not covered by prior works [76,85], we examine the effects

of write frequency in triggering long delays. We inject delays

with varying lengths in the overwrite microbenchmark and

measure the 99.99 percentile latency. We can inject delays via

two knobs: the delay duration, which indicates the number

of CPU cycles that we wait during each delay, and the delay

injection interval, which determines how much data we write

between two consecutive injected delays. By changing the

delay duration and injection interval and observing the tail

latency, we can deduce the timing conditions for data migra-

tions, i.e., the correlation between the data write frequency

and the data migration frequency.

Figure 6 shows the results of this experiment. Each point

256

2 K

32 K

512 K

8 M

256 2 K 32 K 512 K

Injection Interval (Byte)

D
e

la
y

D
u

ra
ti
o

n
(C

y
c
le

)

15 30 45
P99.99 Latency (us)

Figure 6: Overwrite 99.99 percentile (P99.99) latencies under

various delay duration and delay injection interval settings.

represents a 99.99 percentile latency of the overwrite mi-

crobenchmark that writes 512 MiB data to the same 256 B

NVRAM region. We observe that injecting longer delays re-

duces the frequency of long latency writes significantly. This

might be due to the data migration process hidden in the de-

lays. So, when the delay duration is too long, the migration

process is likely to happen when we execute delays, and thus

none of our writes encounters a long latency. In addition, we

observe that overwrites trigger the maximum amount of long

latencies (i.e., highest P99.99 latency) if the delay is infre-

quent (injection interval ≥ 8 KiB) or delay duration is short

(duration < 32 K cycle).

Data migration spatial granularity. We run two threads

writing data to NVRAM simultaneously but on different re-

gions to detect the migration granularity, i.e., the block size

for each migration. Two threads inject delays at different fre-

quencies: one scratch thread injects no delays, and the other

probe thread injects delays that do not trigger the full amount

of long latency (the migration timing conditions identify this

delay setting). When two threads are working within the same

migration block, the probe thread observes the full amount of

long latencies due to the scratch thread’s activity. Once two

threads’ regions are distant enough to guarantee they do not

share a migration block, the probe thread is the only writer

working on its region, thus observing few long latencies.

On our machine, we set the probe thread to inject a 128 K

cycle of delay after each 256 B write, gradually increase the

delta between the two threads’ starting addresses, and observe

that the probe thread’s P99.99 latency drastically drops when

the delta reaches 4 KiB or larger. This indicates that two

threads are now separated into two different data migration

blocks. Thus, the migration block size is 4 KiB.

1024

4096

16384

65536

256 512 1024 2048 4096 8192

Region Size (Byte)

W
ri

te
It
e
rs

Figure 7: Data migration robustness when using various mem-

ory regions. The y-axis shows the number of 256 B writes it

requires to trigger one data migration. Each bar shows the

distribution of write iterations.

Data migration robustness. Next, we examine the distribu-

tion of the number of writes needed to trigger a single data

migration. We repeatedly write to a memory region, where

each repeat consists of sequential writes to each 256 B block

within the region. We then count how many writes it requires

to trigger one data migration (latency over 100 K CPU cy-

cle). In this experiment, we use the clwb instruction instead

of the non-temporal stores because clwb executes faster and

generates more frequent writes to NVRAM, which trigger

more frequent data migrations and give us a more accurate

observation of the data migration robustness.

Figure 7 is a box plot that shows the results of the above-

mentioned experiment. The figure shows that it is easier to

trigger a migration when overwriting a smaller region, and

at minimum, it takes ∼3,700 iterations (i.e., 3,700 × 256

= 925 KiB) to trigger one data migration. This also shows

that for a region size of 256 B, 50% of the time the required

number of writes is within the range of [3027:4552]. The

migration happens at 4 KiB granularity, i.e., one migration

affects the entire 4 KiB page, but any of its 256 B blocks

can trigger it. We also observe a more frequent data migra-

tion in Figure 7 (every ∼4 K writes) compared to Figure 5a

(every ∼16 K writes) due to clwb’s faster execution than non-

temporal stores.

Feasibility of side channel. We analyze the feasibility of

establishing a side channel based on this data migration mech-

anism, using a proof-of-concept code: the victim and the

attacker shares the write access to a 4 KiB page and update

different regions. The victim writes to its region at the highest

frequency, while the attacker updates the region at a frequency

that does not trigger data migration on its own. In this POC,

the attacker observes frequent data migrations when the vic-

tim is updating the shared page, compared to when the victim

is idle. We evaluated this POC and found that the attacker

can detect if the victim has written more than one MiB of

data to the shared page, which aligns with the data migration

robustness analysis (it takes ∼925 KiB writes to trigger one

migration). This channel may leak the information when the

victim application repeatedly updates metadata or a file: e.g.,

an attacker times a database row update to detect if there are

updates to nearby rows by the victim.

CPU CORE

CPU Cache

Mem Ct r l

NVRAM

WPQ

L1 Cache

L2 Cache DRAM

Medi a Medi a

Medi a Medi a

Si ze: 512B
mf ence f l ushes t he
 ent i r e WPQ

Si ze : 16Ki B
Bl ock s i ze : 256B
Memor y medi a: SRAM
Ful l y- associ at i ve
Non- LRU r epl acement

Si ze : 16Mi B
Bl ock s i ze : 4Ki B
Memor y medi a: DRAM
Set - associ at i ve
 Tot al set s: 256
 Bl ock/ Set : 16
LRU r epl acement

Dat a mi gr at i on
Lat ency : 60us
Bl ock : 4 Ki B
Fr eq. : ~ 1/ 4k
Ti mi ng sensi t i ve

Compar i son t o LENS

Repr oduced

Repr oduced

New

Repr oduced

New

Repr oduced

Cor r ect ed

New

Figure 8: Overview of the NVRAM findings. Reproduced

results are from LENS, corrected results are from NVLeak

and correct observations from LENS, and new results are from

NVLeak and not discovered by LENS.

3.4 Summary of Findings

Figure 8 shows an overview of our findings:

• Optane DIMM has two data caches (NVCaches), organized

as two-level inclusive caches: The Level 1 NVCache is a

fully-associative cache with 16 KiB size and 256 B block

size. The Level 2 NVCache is a 16-way set-associative

cache with 16 MiB size and 4 KiB block size.

• The size of the write-pending-queue [60] is 512 B.

• There is a long-latency effect (60 us) when frequently flush-

ing data to NVRAM.

• The data migration happens after ∼4 K writes to the same

migration block of 4 KiB.

Compared to LENS [76], we have corrected a set of obser-

vations, and discovered previously unknown architecture de-

signs, as shown in Figure 8.

4 NVLeak Covert Channels

Based on our findings from the previous section, we demon-

strate covert channels across isolated security domains. We

first demonstrate a cross-VM covert-channel attack based

on the Prime+Probe attack technique [52] exploiting the on-

DIMM NVCaches. We then demonstrate a wear-leveling-

based covert-channel attack across filesystem boundaries.

These attacks are demonstrated on Server A (Table 1).

4.1 Cross-VM NVCache Channel

This section presents our cross-VM covert-channel attack

exploiting the level 2 NVCache.

Threat model. We assume the sender is a program running

inside a guest VM that maps an NVRAM memory region

DAX DEV 1

NVRAM

L1 Cache

Medi a Medi a

L2 Cache

DAX DEV 2

Host Ker nel

KVM KVM

QEMU 1 QEMU 2

vNVRAM vNVRAM

Sender
Ker nel

Recei ver
Ker nel

Guest memor y access

Host memor y access

(a) Overview.

1 K

10 K

100 K

0 10 20 30 40 50 60 70 80 90 100

Receiver Error Rate (%)

R
e
c
e
iv

e
r

B
it
 R

a
te

 (
b
p
s
)

(b) Channel performance.

850

900

950

1000

0 16 32 48 64 80 96 112 128
Iter

A
v
g
.

L
a
t.

(c
y
c
le

)

(c) Channel receiver signal.

Figure 9: Cross-VM covert channel. (c) is a receiver signal

from (b) that achieves 11 kbps bandwidth with 3.5% error

rate. This channel uses 14 blocks, 1 MiB stride size and 16

repeat rounds. Y-axis shows the average per-block latency.

from the host system (the virtualization hypervisor) to the

guest VM. This region appears as a virtual NVRAM device

in the guest VM. We assume the receiver is another guest VM

that maps a different NVRAM memory region. We assume

the sender does not have any shared memory with the receiver;

their NVRAM memory regions are not overlapping and can

belong to two different partitions, as long as these regions are

both on the same NVRAM DIMM. We assume the sender and

receiver have full control of their own guest VM’s software,

i.e., they can replace OS kernels or run code at the kernel

level within their guests.

Challenges. To obtain a stable, low-noise, and high-

resolution channel, we overcome the following challenges:

Challenge 1: Bypassing L1 NVCache. Our reverse-

engineering results (§ 3) showed that the L1 NVCache is

a fully-associative on-NVRAM cache shared by all cores. Its

fully-associative property introduces noise and reduces the

resolution of the channel. To bypass the L1 NVCache effect

in our Prime+Probe attack, we must flush the L1 NVCache

before every Prime step. To achieve this, we read data from

an NVRAM region different from the Prime memory region.

This guarantees the Prime step’s memory accesses are cache

misses in the L1, thus bypassing the L1 and directly accessing

L2.

Challenge 2: Targeting L2 NVCache sets. We need to Prime

and Probe each L2 NVCache set separately to construct a

high-resolution channel. We rely on the knowledge of L2’s

indexing scheme we discovered in § 3—L2 takes bits [13:20]

of each address—and use it as an index to a set. Thus, to evict

a specific L2 set, we first identify the set address of the target

L2 set, then create our conflict set with a set of 16 blocks that

are based on the set address and are 1 MiB apart. This ensures

that all of these blocks go to the desired set.

Challenge 3: Avoiding noises due to cache prefetchers. There

are multiple prefetchers for on-CPU caches and on-NVRAM

caches in our system. These prefetchers cause latency fluc-

tuations in the Prime+Probe accesses, adding noises to the

channel. To defeat these prefetchers, we use our pointer chas-

ing access pattern, which accesses all memory blocks, but in

a random order so that prefetchers cannot detect a predictable

pattern.

Challenge 4: Synchronizing the parties. Without synchro-

nization, the sender and receiver can easily drift, making the

received bit sequence unreliable, especially for long bit se-

quences. To overcome this challenge, we implement a timing-

based synchronization, where the sender and receiver use

the same predefined time interval for each bit send/receive

iteration: After the pointer-chasing operation finishes, the

thread waits until the time interval is finished, then starts the

next iteration. From our evaluation, this timing-based sync

introduces ∼10% additional waiting time compared to the

pointer-chasing operation time.

Evaluation. We configure a single-DIMM NVRAM into

two non-overlapping DAX devices (Figure 9a). Each DAX

device is passed to KVM and QEMU to create a virtual NV-

RAM for the guest VM.

We use the KVM-unit-tests framework [40] to implement

two OS kernels for the sender and receiver to run at ring-0

within the guest VM. KVM-unit-tests provide a set of libraries

to build customized OS kernels, and each of its test cases is a

small kernel that boots up from a guest VM and runs a piece

of testing code. We implement the sender and receiver as two

test cases in KVM-unit-tests that run covert channel code at

kernel level or ring-0 level.

Figure 9b shows the performance of the cross-VM covert

channel. Each point in the figure represents one covert-

channel experiment that sends/receives a binary data sequence.

Different points use different configurations for the underlying

pointer-chasing microbenchmark, including region size, block

size, stride size, repeat rounds, and flushing L1 NVCache or

not. From Figure 9b we find the best configuration achieves

11 kbps bandwidth with 3.5% error rate (Figure 9c).

4.2 Data-Migration-Based Channel

This section describes how we construct a covert channel that

exploits the NVRAM-specific wear-leveling data migration

mechanism.

NVRAM data migration. As described in § 3, the Optane

DIMM uses a wear-leveling data migration mechanism that

triggers long latencies in response to frequent writes to the

same migration block. This migration mechanism is sensi-

tive to the memory write frequency: the migration happens

less frequently (relative to the write traffic) once the write

frequency drops to a certain point (e.g., one access per 32 K

cycles as shown in Figure 6).

0

10

20

30

0 8 16 24 32 40 48 56 64
Iter

#
o

f
L

o
n

g
L

a
te

n
c
ie

s

(a) NVRAM

0

10

20

30

0 8 16 24 32 40 48 56 64
Iter

#
o

f
L

o
n

g
L

a
te

n
c
ie

s

(b) DRAM

Figure 10: Filesystem inode-based covert channel on NV-

RAM and DRAM.

We exploit the migration latency to construct a covert-

channel attack where the receiver and the sender write to the

same NVRAM data migration block. The receiver uses a low-

frequency write and measures write latencies. If the sender

frequently writes to the same migration block, the block gets

migrated more regularly, which results in long-latency writes

detected by the receiver.

This attack requires the receiver and the sender to write

the same 4 KiB migration block. However, this write access

does not need to be direct. For example, we can assume a

receiver and a sender own two separate files, but the files’

metadata resides in the same migration block. In such cases,

any write to the sender’s file results in a metadata update, and

the metadata update involves a write to the migration block.

Neither thread has direct access to the metadata, but they leak

information through underlying filesystem operations.

Threat model. We assume the receiver is a user-space pro-

gram with access to a file. This file’s inode–Linux filesystems

metadata—is stored in a metadata page that also stores the

sender’s file inode. The filesystem maintains the inode, and

the user space program cannot directly modify a file’s inode.

However, a user space program can use (1) futimes() to

update a file’s access and modify time, or (2) ftruncate()

to update the file size, without the overhead of an actual file

data update. The size of an inode is typically sub-page-size,

e.g., inodes in the EXT4 filesystem are 256 bytes [39]. Thus

one metadata page (4 KiB) stores multiple inodes, enabling

the receiver to access a file that shares a metadata page with

the sender’s file.

Cross-filesystem covert channel. We construct a covert

channel based on the filesystem’s inode updates triggered by

the data migrations. The sender program updates its file’s

metadata at maximum frequency if sending bit 0; otherwise,

it remains idle for a predetermined period to communicate bit

1. The receiver constantly updates its file at a low frequency

to not trigger data migrations on its own but to detect that

of the sender. The receiver also times these inode update

functions and identifies the data migration as a long latency.

The receiver picks up a bit 0 if it detects data migrations.

The widely-adopted EXT4 filesystem allocates inodes se-

quentially, i.e., for each newly created file, EXT4 allocates

the first available inode from a list of free inodes sorted by the

inode number. The receiver can exploit this allocation mech-

-- U1: Update 100 records in 'info' table

UPDATE info SET name = "New Name" WHERE npi == 1144223363;

-- U2: Update 1 record in 'address' table

UPDATE address SET city = "New City" WHERE npi == 1144223363;

-- C1: Count records in 'address' table

SELECT COUNT(*) FROM address WHERE LOWER(city)='athens';

-- C2: Count records in 'info' and 'address' tables

SELECT COUNT(*) FROM info, address WHERE

info.npi = address.npi AND LOWER(city)='athens';

-- C3: Count records in 'info' and 'address' tables

SELECT COUNT(*) FROM info, address WHERE

info.npi = address.npi AND LOWER(city)='houston';

-- Q1: Query both tables

SELECT * FROM info, address WHERE

info.npi = address.npi AND info.npi == 1144223363;

-- I1: Insert 10,000 records in 'info' table

INSERT INTO info values (...), (...);

-- S1: Sort records in 'address' table

SELECT * FROM address WHERE LOWER(city)='athens'

ORDER BY city DESC LIMIT 1;

Figure 11: Evaluate SQL operations.

anism to create its file at roughly the same time the sender

creates its files so that their inodes are placed on the same

metadata page with a high probability.

Evaluation. In our evaluation, we configure the NVRAM

into filesystem DAX mode and create an EXT4 filesystem on

the NVRAM. We mount the EXT4 filesystem in DAX mode,

which disables the filesystem page cache and allows direct

access to the underlying NVRAM. This is the preferred use

case of a filesystem for NVRAM [38].

Figure 10a shows the receiver signal on an NVRAM-based

inode channel, where the sender sends 0xcc followed by re-

peated 0xf0. In this example, this channel achieves 217 bps

bandwidth with 0% error rate. The bandwidth can be fur-

ther improved to 1.5 kbps if we reduce the number of inode

updates for each bit. For comparison, we also evaluate the

possibility of covert communication if we use DRAM instead

of NVRAM. As shown in Figure 10b, the DRAM does not

achieve a stable channel as it does not implement the data

migration for wear-leveling.

5 NVLeak Side-Channel Attacks

We demonstrate three types of attacks on Server A (Table 1)

where victims access NVRAM through different interfaces:

(1) attacking a database which accesses NVRAM through

conventional filesystem interface, where the attacker exploits

L2 NVCache to learn information about SQL queries (§ 5.1);

(2) attacking an NVRAM-optimized key-value store which

accesses NVRAM through NVRAM-aware filesystem and

libraries, where the attacker learns the in-flight key-value pair

information (§ 5.2); (3) attacking a victim program that links

with shared libraries that are stored in NVRAM and accessed

without page cache, where the attacker exploits L1 NVCache

to learn the victim code execution path (§ 5.3).

800 1000 1200
Latency

D
e
n
s
it
y

0

16

32

48

64

80

96

112

128

0 25 50 75 100
Iter.

L
2

N
V

C
a
c
h
e

S
e
t

(a) U1

800 1000 1200
Latency

D
e
n
s
it
y

0

16

32

48

64

80

96

112

128

0 25 50 75 100
Iter.

L
2

N
V

C
a
c
h
e

S
e
t

(b) U2

800 1000 1200
Latency

D
e
n
s
it
y

0

16

32

48

64

80

96

112

128

0 100 200 300
Iter.

L
2

N
V

C
a
c
h
e

S
e
t

(c) C1

800 1000 1200
Latency

D
e
n
s
it
y

0

16

32

48

64

80

96

112

128

0 50 100 150
Iter.

L
2

N
V

C
a
c
h
e

S
e
t

(d) C2

800 1000 1200
Latency

D
e
n
s
it
y

0

16

32

48

64

80

96

112

128

0 50 100 150 200
Iter.

L
2

N
V

C
a
c
h
e

S
e
t

(e) C3

800 1000 1200
Latency

D
e
n
s
it
y

0

16

32

48

64

80

96

112

128

0 100 200 300
Iter.

L
2

N
V

C
a
c
h
e

S
e
t

(f) Q1

800 1000 1200
Latency

D
e
n
s
it
y

0

16

32

48

64

80

96

112

128

0 25 50 75 100
Iter.

L
2

N
V

C
a
c
h
e

S
e
t

(g) I1

800 1000 1200
Latency

D
e
n
s
it
y

0

16

32

48

64

80

96

112

128

0 25 50 75 100
Iter.

L
2

N
V

C
a
c
h
e

S
e
t

(h) S1

Figure 12: Access patterns of database operations. (a)-(h) each shows the access pattern for a database operation: the bottom

figure shows the latencies in a concentrated range of iterations and sets, and the top figure shows the latency distributions.

5.1 Database Operation Leakage

This section describes an NVCache-based side-channel attack

that can violate the privacy of encrypted database applications.

Threat model. Motivated by previous work on cache-based

side-channel attacks on encrypted databases [64], we assume

the victim is a database application that accesses data stored

in NVRAM, and the attacker runs in another process or virtual

machine. We assume an attacker who does not have direct

access to the database and whose goal is to learn about the

queries that the victim runs. The attacker repeatedly probes

all the NVCache sets to detect the victim’s NVRAM access

pattern. The attacker first records access patterns of different

database SQL operations and uses them to categorize newly

detected patterns.

System and software configuration. We configure an Op-

tane DIMM into two partitions, one for the victim database

to store files, and the other one for the attacker to probe the

NVCache. We use sqlite3 [65] as the victim database, and

create the database tables from the NPPES dataset [11], which

results in a 286 MiB database file. There is an info table with

users’ basic info (e.g., full names) and National Provider Iden-

tifiers (NPI) as primary keys. There is another address table

that stores user addresses, including city and state, and NPI

as a foreign key referencing the info table.

Leak SQL statements. Figure 12a to Figure 12g show the

access pattern under different victim database operations (Fig-

ure 11), detected by the attacker program. U1 and U2 are

updating to two different tables, and their access patterns

are visually different: U1 only affects 1-2 attacker iterations,

while U2 affects 70 iterations. U1 and U2 also have different

latency distributions, as shown on top of the access pattern fig-

ure. U2’s latencies are more concentrated around 900 cycles,

while U1’s are more evenly distributed. All other operations

have different access patterns and latency distributions.

We use the k-nearest neighbors algorithm [4] (k-NN) with

Pearson correlation coefficients to analyze and categorize

these access patterns quantitatively: We first identify a latency

threshold range to filter out the non-relevant latencies and then

encode the latencies into a binary array, where bit 1 represents

the corresponding latency within the threshold. We use this

binary array as the feature of the corresponding database

operation.

To categorize a newly detected database operation, we cal-

culate the Pearson correlation coefficients between its feature

and previously-recorded features, and use their coefficients

as distances in the k-NN algorithm. We categorize this newly

detected operation as one of the previously-known operations

that takes the majority of the k nearest neighbors of the new

operation. To evaluate this categorization algorithm, we run

each SQL operation 100 times, then for each operation, ran-

domly choose 70 samples as the k-NN training set and use the

rest 30 samples as the test set. In this evaluation, 240 SQL op-

erations are tested and 202 of them are correctly categorized,

resulting in an accuracy of 84%.

Leak SQL range query. We then demonstrate that the

NVCache-based side channel can leak more detailed infor-

mation in database accesses. As demonstrated by previous

work [19, 64], leaking range query details is specifically criti-

cal for encrypted databases where learning about these queries

can almost result in a complete loss of privacy. As an example,

we assume the victim executes a range query (Figure 13a)

based on the creation date of NPPES data records; And the

attacker performs the side-channel attack to leak the victim’s

memory access pattern.

This range-query attack improves the attack resolution and

analysis correctness compared to the SQL execution attack

(Figure 12): (1) in the range query attack, the attacker probes

the memory in a per-set order, i.e., the attacker triggers the

victim SQL query repeatedly and probes different NVCache

sets for each repeat. Compared to the previous per-iter prob-

ing that sequentially probes all NVCache sets during each

-- Query records using a ranged condition

SELECT * FROM info WHERE create_date BETWEEN 06-01-2005 AND 07-01-2005;

(a) Ranged query (1st month)

(b) 1st month (c) 2nd month

(d) 3rd month (e) 4th month

Figure 13: Memory access pattern of SQLite ranged query.

iteration, this per-set probing runs at a much higher frequency

(256× faster) and retrieves information with a much higher

resolution. (2) the range-query attack uses a two-dimension

Pearson correlation as distance in the k-NN algorithm to cate-

gorize results, i.e., the attacker calculates the correlation for

each cache set and uses the average correlation coefficients

as k-NN distances. This improves the categorization quality

because range query attacks generate much more iterations,

leading to high-noise results when using the one-dimension

correlation.

Figure 13b to Figure 13e shows the side channel results

of four victim queries using different date ranges. The color

represents the memory access latency, which further indicates

the victim’s memory access in the corresponding NVCache

set: Darker color represents a higher attacker latency and in-

dicates the victim has more memory accesses in the cache set.

These figures show that these queries have different memory

access patterns in terms of access addresses and timings. We

run each ranged query 100 times and use 70% of the results

as training samples for the k-NN algorithm. In this evalu-

ation, 120 queries are tested and 86 of them are correctly

categorized, resulting in a 72% accuracy.

5.2 PMDK Key-Value Store Leakage

We mount the NVCache-based side channel attack to leak

information from NVRAM-optimized applications.

NVRAM-aware applications. NVRAM-aware applica-

tions are designed to leverage NVRAM features, including

byte-addressability, persistence, and DRAM-like performance.

These applications (1) issue memory load and store instruc-

tions to access NVRAM instead of relying on filesystem

read/write APIs; (2) issue cache line flush and memory fence

instructions to flush data to NVRAM for persistence, instead

of using conventional fsync(); and (3) configure the filesys-

tem to bypass the DRAM page cache, thus ensuring CPU data

is directly flushed to NVRAM, without relying on fsync()

to flush the page cache.

It is non-trivial to implement such applications from scratch

as the programmer has to manually insert the flush and fence

instructions to proper code sites. Thus, programmers typically

rely on NVRAM programming libraries that abstract these

low-level operations and provide library functions to reduce

the NVRAM programming complexity. PMDK [32] is one of

the most mature and widely-adopted NVRAM programming

libraries.

In this attack, we leak information from the applications

that use PMDK to access NVRAM.

Threat model. The Threat model is similar to the database

operation leakage (§ 5.1). The major difference is the victim in

this attack is an NVRAM-aware application, which inherently

flushes data to NVRAM at a high frequency to maintain fine-

granularity crash consistency. This frequent memory access

pattern enables attackers to detect more detailed information

compared to the conventional filesystem access approach

(§ 5.1).

Leak PMDK KV store accesses. We target an example

key-value store application provided by PDMK developers

[29]. This example uses the libmemobj-cpp library [28] and

stores key-value pairs in NVRAM. To access them, it uses the

PMDK library to achieve per KV-pair persistence and crash

consistency. We mount the NVCache-based side-channel at-

tack on this KV-store and leak which specific key-value pair

is being accessed: Figure 14 shows four example memory ac-

cess patterns that are visually distinguishable. These patterns

can be categorized using the k-NN categorization described

in § 5.1. We evaluated 8 different key-value updates, where

each operation is executed 100 times and 70% of the results

are used as the k-NN training set. In this evaluation, 182 out

of 240 samples are correctly categorized, resulting in a 76%

accuracy.

In conclusion, by targeting the NVRAM-aware victim ap-

plications that directly access the NVRAM, the attacker can

detect a detailed NVRAM access pattern that is not filtered by

the DRAM page cache, thus further learning high-resolution

victim activities.

5.3 Code Execution Path Leakage

Motivated by the NVRAM memory mode (Figure 1), this

section describes an attack that leaks code execution paths,

where the attacker leverages the L1 NVCache to detect which

shared library function is being executed by the victim.

0

64

128

192

256

0 2 4 6 8 10

Iter

S
e

t

(a) Key = 256

0

64

128

192

256

0 2 4 6 8 10

Iter

S
e

t

(b) Key = 512

0

64

128

192

256

0 2 4 6 8 10

Iter

S
e

t

(c) Key = 768

0

64

128

192

256

0 2 4 6 8 10

Iter

S
e

t

(d) Key = 1024

Figure 14: PMDK key-value store’s memory access pattern

when updating different key-value pairs.

Threat model. We assume the NVRAM is running in the

memory mode (§ 2.1), acting as a large system memory in-

stead of persistent storage. We assume the attacker and the

victim share library code pages, similar to the Flush+Reload

attack [84], and shared code pages reside in the NVRAM and

are cached in the DRAM. The attacker repeatedly (1) flushes

the shared library code pages to NVRAM, (2) waits for the

victim’s activities, (3) then reads the code pages back and

times page loads. Whenever the victim calls a shared library

function, the corresponding code page is loaded, which is fur-

ther detected by the attacker as a low latency page load, thus

leaking the victim’s execution pattern of the shared library

code.

System configuration. Instead of setting up the entire sys-

tem to use NVRAM in the memory mode, we emulate this

attack environment based on existing settings: The shared

library is stored in an NVRAM-aware filesystem which en-

ables direct access to the NVRAM and bypasses the DRAM

page cache. This emulates the library code stored using the

memory mode, just without the DRAM cache, as the attacker

can follow prior approaches [20] to flush the code pages from

DRAM. To achieve high temporal resolution, the attacker

assumes the victim mostly runs on a certain CPU core, which

is a realistic assumption. We emulate this setting by pinning

the victim process to one CPU core.

Temporal resolution. Figure 15a shows the victim code,

which calls the library function, flushes the code page, and

waits for predefined cycles. And Figure 15b shows the attacker

code that times the library code page load, flushes the code

page, and then flushes the L1 NVCache to prepare for the

next iteration. Figure 15c shows that the attacker can detect

victim function calls that take ≥ 22 us, with a call interval

≥ 5 us. The attacker can detect function calls shorter than

22 us with a risk of losing precision. This proof-of-concept

shows that even if systems deploy mitigations for protecting

on-chip side channels [43, 57], an attacker can still measure

non-constant time code with relatively high spatial (256 B)

and temporal resolution (22 us).

Feasibility to attack cryptographic operations. Based on

the code execution leakage, we analyze the feasibility of at-

tacking real cryptographic code, the wolfSSL library [25]

for (int i=0; i<n; i++) {

shared lib func();

while(cnt < wait_cycle) {

cnt++;

}

}

(a) Victim code.

while (true) {

cycle_start = rdtscp();

tmp += *((char *)shared_lib_func);

cycle_total = rdtscp() - cycle_start;

clflush(shared_lib_func);

flush l1 nvcache();

}

(b) Attacker code.

200

400

600

800

1000

0 40 80 120 160
Iter

L
a

te
n

c
y

(c
y
c
le

)

(c) Temporal resolution (function

call duration 22 us, interval 5 us)

200

400

600

800

1000

0 1000 2000 3000
Iter

L
a

te
n

c
y

(c
y
c
le

)

(d) Detect wolfSSL private-key-

dependent function calls, 225 out of

275 calls detected.

Figure 15: Code execution leakage and wolfSSL analysis.

version 4.2.0. We identified a secret-key-dependent branch

in wolfSSL’s _fp_exptmod() function as part of the RSA

private key decoding process3. This function loops over

the key material of an RSA private key using a sliding

window algorithm which calls three extra functions in a

set of secret-depend if statements, fp_sqr(), fp_mul(),

and fp_montgomery_reduce(), depending on secret values.

We further assume the victim is vulnerable to code page

flushes [20]. Hence, the attacker can flush the shared code

pages and apply the code execution analysis on these func-

tions, to detect when secret-dependent branches are taken.

The victim runs the full RSA decoding algorithm instead of

just the isolated functions vulnerable to attacks.

Figure 15d shows the attacker’s latency measurements of

the fp_sqr() function, where low latencies indicate the vic-

tim calls of this function. In this example, the victim has

called this function 275 times, and the attacker detected 225

calls. We repeat this attack 100 times with different secret

keys and find that the attacker detects approximately 77% of

the calls.

Recovering RSA private key bits. The detected function

calls indicate that an attacker can recover significant parts of

the key material from such non-constant-time implementa-

tions: The attacker monitors all three above-mentioned secret-

dependent functions to learn: (1) the first bit of each 6-bit

sliding window data, and (2) all the zero bits between sliding

windows. This on average recovers 28.55% bits from 1000

randomly generated 2048-bit RSA keys. According to prior

attacks exploiting partial information [7,24,46], a partial RSA

key (with ≥ 27% bits recovered) has a high probability for

an attacker to recover the full RSA key using the branch and

prune technique [24].

3We disable wolfSSL’s harden feature to attack the original version of

this function, which is vulnerable to timing side channels.

3

4

5

6

7

1052 1060 1068

0

64

128

192

256

0 500 1000 1500 2000
Key

N
V

C
a
c
h
e

S
e
t
In

d
e
x

(a) Original.

3

4

5

6

7

32 40 48

0

64

128

192

256

0 500 1000 1500 2000
Key

N
V

C
a
c
h
e

S
e
t
In

d
e
x

(b) With NVLeak defense.

0.0

0.5

1.0

1.5

app spp asrp ssrp rti rtr rts rtsn chmi gmean
Benchmark

N
o
rm

.
R

u
n

T
im

e

original mitigation

(c) Defense performance evaluation.

Figure 16: NVLeak mitigations applied to (a-b) PMDK key-

value store and (c) a PMDK benchmark suite.

6 Mitigations

We propose three mitigations based on reverse engineer-

ing results (§ 3) and attacks (§ 4 and § 5). We first pro-

pose a software-based partitioning mechanism to protect L2

NVCache and evaluate its effectiveness and performance. We

then propose a software mitigation and a hardware mitiga-

tion to protect the NVCache hierarchy, based on prior works

that are proved to be effective in defending against cache

side-channels [13, 59, 61, 73, 75].

Software-based mitigation for L2 NVCache. The NVLeak

attacks are made possible mainly because the performance

of a security domain can be influenced by the memory ac-

cesses of another as they compete for shared on-DIMM re-

sources such as L1 or L2 NVCaches. In particular, in our

attacks, the victim and the attacker can compete for a single

set in the L2 NVCache. Therefore, we propose a simple yet

effective software-only mitigation scheme that isolates the

L2 NVCache sets that belong to disjoint security domains.

Since we know the exact indexing scheme used by the Optane

DIMM (§ 3), we can modify the memory allocation such

that the memory of a process can be mapped to specific sets

in the L2 NVCache. This software mitigation leverages the

set-associativity and thus only protects the L2 NVCache.

We implement the NVLeak mitigation at the persistent

memory library level where all the persistent memory alloca-

tions are handled by PMDK [32]. We modify the PMDK’s

memory allocator, make_persistent(), to take an additional

bitmap parameter that specifies a list of NVCache sets to be

used. The allocator then allocates memory in the next block

whose NVCache set is 1 in the bitmap. Hence, the allocator

avoids the L2 NVCache sets that may leak information to an

attacker.

We converted PMDK persistent data structures to use this

Table 2: PMDK Benchmarks in Figure 16c

Name Data Structure Operation

app
Persistent Pointer

Assignment

spp Swap

asrp
Self-Relative Pointer

Assignment

ssrp Swap

rti

Radix Tree

Insert

rtr Remove

rts Search

rtsn Search (key not present)

chmi Concurrent Hash Map Insert

secure memory allocator, and then converted the key-value

store (§ 5.2) and a PMDK benchmark suite [28] to use the

secure data structures.

Figure 16a shows how the memory allocated to different

keys in the PMDK key-value store is mapped into different

sets in the L2 NVCache. Without our defense, the memory

allocation is unrestricted, and any key can be mapped into

any NVCache set. However, when we enable our defense

(Figure 16b), the memory allocator only allocates the mem-

ory regions that are guaranteed to be mapped into the lower

sets in the L2 NVCache, eliminating any potential contention.

We then perform the side channel attack described in § 5.2

and confirm that the attacker is not able to detect the vic-

tim’s L2 NVCache activities when applying this mitigation.

Figure 16c shows the performance evaluation of our defense

using a PMDK benchmark suite. The full description of the

benchmarks can be found in Table 2. On average, our parti-

tioning mitigation incurs less than 4% performance overhead.

Software-based mitigation for WPQ and L1 NVCache.

The WPQ and L1 NVCache leakage can be mitigated in soft-

ware by flushing the WPQ and L1 NVCache before accessing

secret data in NVRAM, or randomizing memory accesses

in the program. This software mitigation can significantly

reduce the possibility of leakages in these fully-associative

structures [59], while the hardware mitigation is preferred to

prevent these leakages at a lower performance cost [10, 75].

Hardware-based mitigation. To prevent information leak-

age in NVRAM, the hardware and software need the ability

to distinguish memory requests from different security do-

mains at the NVRAM DIMM level. This is similar to the

Intel Cache Allocation Technology [27] (Intel CAT), which

dynamically partitions CPU caches for different processes.

Thus it’s possible to extend the Intel CAT to partition the

WPQ and NVCache, and provide a software interface for pro-

cesses to allocate their private partitions. This prevents the

sharing of these queue and cache structures and thus prevents

the corresponding information leakages [13, 61, 73, 75].

7 Discussion

In this paper, we present the reverse engineering and attacks in

NVRAM systems, demonstrate the results using Intel Optane

DIMM, and propose mitigation designs. These techniques

and ideas are generic and can be applied to investigate future

hardware designs because: (1) Future NVRAM systems are

likely to adopt similar design choices as Intel Optane DIMM,

such as using on-NVRAM cache to fill the performance gap

between fast interconnection and slow NVRAM media. These

designs are likely to be vulnerable to off-chip attacks similar

to the ones described in our paper. (2) Our tools do not rely

on specific CPU instructions to access Intel Optane DIMM,

thus can be used on future NVRAM devices as long as they

support direct access through CPU memory load/store in-

structions (e.g., using CXL [12] technology). We hope our

methodologies and tools influence the future NVRAM system

design choices.

8 Related Work

To our knowledge, we are the first to develop covert and

side-channel attacks on real NVRAM systems. This section

discusses related works.

NVRAM characterization. Wang et al. [76] are the first to

reverse engineer the Optane DIMM architecture with LENS,

an NVRAM reverse engineering tool. That work revealed the

NVRAM on-DIMM buffer sizes and their block sizes, but

failed to reveal more detailed structures such as cache set

sizes and indexing schemes. Zhang et al. [85] reverse engi-

neered Optane DIMMs with GORDON – an FPGA-based

profiling tool – and confirmed most of the LENS observations.

Xiang et al. [79] investigated the on-DIMM buffer structures

on the first and second generations of Optane DIMM and con-

firmed many observations from LENS [76]. Several recent

studies [34,83] observed that repeated writes to a concentrated

Optane DIMM memory area lead to high write latency. Com-

pared to these prior works, our paper depicts more detailed

NVRAM architectural designs that raise security concerns;

our paper also revises several inaccurate conclusions from

these previous works.

NVRAM architecture security. Liu et al. [45] presented a

set of side-channel attacks on Optane DIMM, which is a con-

current work. Previous NVRAM architecture security works

primarily focus on protecting NVRAM data integrity: Triad-

NVM [5] proposed a new persistence mechanism of Merkle

Tree and encryption counters to enable secure recovery of

NVRAM data. SuperMem [87] facilitated a write-through

counter cache to guarantee the security and atomicity of data

writes at a low overhead. Freij et al. [17] proposed a set of

optimizations to reduce the overhead of persisting the Bonsai

Merkle Tree that is used to encrypt the NVRAM data. Xu et

al. [81] proposed a framework to mitigate persistent memory

object corruption vulnerabilities.

Off-chip microarchitectural side channels. Most previous

attacks that bypass cache side-channel defense focus on on-

chip components [14,33,51,63,72,74,82], but our work is an

off-chip attack that directly affects the applications running

on the CPU, so we will discuss such attacks further. Pessl

et al. [55] showed that the DRAM row buffer could be used

to spy on memory operations. However, a single row buffer

with 8 KB spatial resolution is shared across many workloads

on the system, which makes attacks relying on them highly

noisy and impractical. Gruss et al. [20] demonstrated the

page-cache attack, which essentially exploits the contention

of memory pages within the DRAM. Page-cache attacks can

be combined with NVLeak when NVRAM is used in memory

mode. On the other hand, page-cache attacks are noisier than

attacks based on the set-associative L2 NVCache and have

a lower spatial resolution than the L1 NVCache with 256 B

granularity. Aside from the off-chip DRAM, attackers can

also exploit accelerators such as GPU [49] and FPGA [77]

connected to the memory subsystem over PCIe. A major

limitation of these attacks compared to NVLeak is that the

memory shared by these accelerators and the CPU is generally

not as privacy/security-sensitive as the file system and code

pages, which are backed by NVRAM.

9 Conclusion

We conclude that NVLeak is a practical concern for the secu-

rity of NVRAM storage. We demonstrate that attacks based

on NVRAM’s cache structure can break cross-core and cross-

VM isolation and leak information from real-world applica-

tions such as databases, NVRAM-aware key-value stores,

cryptography libraries, and more; We also demonstrate a

leakage channel based on NVRAM-specific wear-leveling

mechanism, which breaks the filesystem isolation and leaks

Linux file metadata updates. Our empirical attack study moti-

vates the development and deployment of new defense against

NVRAM-based microarchitectural side channels, as we also

came up with such mitigation. Ultimately, we hope that our

work encourages the community to investigate more into the

security of NVRAM and, in general, more holistic approaches

to prevent side channels on complex computing systems.

Acknowledgements

The authors thank the anonymous shepherd and reviewers for
their careful feedback and support. This paper is supported
in part by NSF grants 1829524, 2011212, and SRC/DARPA
Center for Research on Intelligent Storage and Processing-in-
memory.

References

[1] Intel® Optane™ Persistent Memory. URL:

https://www.intel.com/content/www/

us/en/architecture-and-technology/

optane-dc-persistent-memory.html.

[2] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D.

Davis, Mark Manasse, and Rina Panigrahy. Design tradeoffs

for SSD performance. In ATC, 2008.

[3] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Has-

san, Cesar Pereida García, and Nicola Tuveri. Port Contention

for Fun and Profit. In S&P, 2019.

[4] N. S. Altman. An introduction to kernel and nearest-neighbor

nonparametric regression. The American Statistician, 1992.

[5] Amro Awad, Mao Ye, Yan Solihin, Laurent Njilla, and

Kazi Abu Zubair. Triad-NVM: Persistency for integrity-

protected and encrypted non-volatile memories. In ISCA, 2019.

[6] Naomi Benger, Joop van de Pol, Nigel P Smart, and Yuval

Yarom. "ooh aah... just a little bit": A small amount of side

channel can go a long way. In CHES, 2014.

[7] Daniel J. Bernstein, Joachim Breitner, Daniel Genkin,

Leon Groot Bruinderink, Nadia Heninger, Tanja Lange, Chris-

tine van Vredendaal, and Yuval Yarom. Sliding right into

disaster: Left-to-right sliding windows leak. In CHES, 2017.

[8] Atri Bhattacharyya, Alexandra Sandulescu, Matthias

Neugschwandtner, Alessandro Sorniotti, Babak Falsafi, Math-

ias Payer, and Anil Kurmus. SMoTherSpectre: Exploiting

Speculative Execution through Port Contention. In CCS, 2019.

[9] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss,

Moritz Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens,

Michael Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom.

Fallout: Leaking data on meltdown-resistant CPUs. In CCS,

2019.

[10] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp,

Benjamin Von Berg, Philipp Ortner, Frank Piessens, Dmitry

Evtyushkin, and Daniel Gruss. A systematic evaluation of

transient execution attacks and defenses. In USENIX Security,

2019.

[11] Centers for Medicare & Medicaid Services. NPPES

Dataset. URL: https://download.cms.gov/nppes/NPI_

Files.html.

[12] CXL Consortium. Compute Express Link. URL: https:

//www.computeexpresslink.org/.

[13] Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza

Sadeghi. HybCache: Hybrid side-channel-resilient caches for

trusted execution environments. In USENIX Security, 2020.

[14] Sankha Baran Dutta, Hoda Naghibijouybari, Nael Abu-

Ghazaleh, Andres Marquez, and Kevin Barker. Leaky buddies:

Cross-component covert channels on integrated CPU-GPU

systems. In ISCA. IEEE, 2021.

[15] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-

Ghazaleh. Jump over ASLR: Attacking branch predictors

to bypass ASLR. In MICRO, 2016.

[16] Dmitry Evtyushkin, Ryan Riley, Nael Abu-Ghazaleh, and

Dmitry Ponomarev. Branchscope: A new side-channel attack

on directional branch predictor. In ASPLOS, 2018.

[17] Alexander Freij, Shougang Yuan, Huiyang Zhou, and Yan Soli-

hin. Persist level parallelism: Streamlining integrity tree up-

dates for secure persistent memory. In MICRO, 2020.

[18] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.

Translation leak-aside buffer: Defeating cache side-channel

protections with TLB attacks. In USENIX Security, 2018.

[19] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Ken-

neth G Paterson. Pump up the volume: Practical database

reconstruction from volume leakage on range queries. In CCS,

2018.

[20] Daniel Gruss, Erik Kraft, Trishita Tiwari, Michael Schwarz,

Ari Trachtenberg, Jason Hennessey, Alex Ionescu, and Anders

Fogh. Page cache attacks. In CCS, 2019.

[21] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp,

and Stefan Mangard. Prefetch side-channel attacks: Bypassing

SMAP and kernel ASLR. In CCS, 2016.

[22] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan

Mangard. Flush+Flush: A fast and stealthy cache attack. In

DIMVA, 2016.

[23] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache

template attacks: Automating attacks on inclusive last-level

caches. In USENIX Security, 2015.

[24] Nadia Heninger and Hovav Shacham. Reconstructing rsa pri-

vate keys from random key bits. In CRYPTO, 2009.

[25] WolfSSL Inc. WolfSSL embedded ssl/tls library. URL: https:

//www.wolfssl.com/.

[26] Intel. Intel 64 and IA-32 architectures software developer

manual.

[27] Intel. Introduction to cache allocation technology in the Intel

Xeon processor E5 v4 family.

[28] Intel. Libpmemobj-cpp: C++ bindings and contain-

ers for libpmemobj. URL: https://github.com/pmem/

libpmemobj-cpp.

[29] Intel. Libpmemobj-cpp examples. URL: https:

//github.com/pmem/libpmemobj-cpp/tree/master/

examples/map_cli.

[30] Intel. 2nd generation Intel® Xeon® Scalable processors with

Intel® C620 series chipsets (purley refresh), 2019.

[31] Intel. Intel Optane DC Persistent Memory,

2019. URL: https://www.intel.com/content/

www/us/en/architecture-and-technology/

optane-dc-persistent-memory.

[32] Intel. Persistent memory development kit, 2019. URL: https:

//pmem.io/.

[33] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Cross

processor cache attacks. In ASIA CCS, 2016.

[34] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu,

Amirsaman Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu,

Subramanya R. Dulloor, Jishen Zhao, and Steven Swanson.

Basic performance measurements of the Intel Optane DC per-

sistent memory module. arXiv, 2019.

[35] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel

Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Man-

gard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.

Spectre attacks: Exploiting speculative execution. In S&P,

2019.

[36] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval

Yarom. RAMBleed: Reading bits in memory without accessing

them. In S&P, 2020.

[37] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger.

Architecting phase change memory as a scalable DRAM alter-

native. In ISCA, 2009.

[38] Linux Kernel Organization. Direct access for files.

URL: https://www.kernel.org/doc/Documentation/

filesystems/dax.txt.

[39] Linux Kernel Organization. ext4 Data Structures and

Algorithms. URL: https://www.kernel.org/doc/html/

latest/filesystems/ext4.

[40] Linux Kernel Organization. KVM-unit-tests. URL: https:

//www.linux-kvm.org/page/KVM-unit-tests.

[41] Moritz Lipp, Daniel Gruss, Michael Schwarz, David Bidner,

Clémentine Maurice, and Stefan Mangard. Practical keystroke

timing attacks in sandboxed javascript. In European Sympo-

sium on Research in Computer Security, 2017.

[42] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,

Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul

Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.

Meltdown: Reading kernel memory from user space. In

USENIX Security, 2018.

[43] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos

Rozas, Gernot Heiser, and Ruby B Lee. Catalyst: Defeating

last-level cache side channel attacks in cloud computing. In

HPCA, 2016.

[44] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B

Lee. Last-level cache side-channel attacks are practical. In

S&P, 2015.

[45] Sihang Liu, Suraaj Kanniwadi, Martin Schwarzl, Andreas

Kogler, Daniel Gruss, , and Samira Khan. Side-channel at-

tacks on optane persistent memory. In USENIX Security, 2023.

[46] Gabrielle De Micheli and Nadia Heninger. Recovering crypto-

graphic keys from partial information, by example, 2020.

[47] Micron Technology, Inc. 3D XPoint technology,

2018. URL: https://www.micron.com/products/

advanced-solutions/3d-xpoint-technology.

[48] Ahmad Moghimi, Jan Wichelmann, Thomas Eisenbarth, and

Berk Sunar. MemJam: A false dependency attack against

constant-time crypto implementations. International Journal

of Parallel Programming, 2019.

[49] Hoda Naghibijouybari, Ajaya Neupane, Zhiyun Qian, and Nael

Abu-Ghazaleh. Rendered insecure: Gpu side channel attacks

are practical. In CCS, 2018.

[50] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks

and countermeasures: The case of aes. In CT-RSA, 2006.

[51] Riccardo Paccagnella, Licheng Luo, and Christopher W

Fletcher. Lord of the ring (s): Side channel attacks on the

CPU on-chip ring interconnect are practical. In USENIX Secu-

rity, 2021.

[52] Colin Percival. Cache missing for fun and profit. In In Proc.

of BSDCan 2005, 2005.

[53] Cesar Pereida García, Billy Bob Brumley, and Yuval Yarom.

Make sure DSA signing exponentiations really are constant-

time. In CCS, 2016.

[54] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael

Schwarz, and Stefan Mangard. DRAMA: Exploiting DRAM

addressing for Cross-CPU attacks. In USENIX Security, 2016.

[55] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael

Schwarz, and Stefan Mangard. DRAMA: Exploiting dram

addressing for cross-cpu attacks. In USENIX Security, 2016.

[56] Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid Ver-

bauwhede. Systematic analysis of randomization-based pro-

tected cache architectures. In S&P, 2021.

[57] Moinuddin K Qureshi. CEASER: Mitigating conflict-based

cache attacks via encrypted-address and remapping. In MICRO,

2018.

[58] Hany Ragab, Enrico Barberis, Herbert Bos, and Cristiano Giuf-

frida. Rage against the machine clear: A systematic analysis of

machine clears and their implications for transient execution

attacks. In USENIX Security, 2021.

[59] Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon: Closing

digital side-channels through obfuscated execution. In USENIX

Security, 2015.

[60] Andy M Rudoff. Deprecating the PCOMMIT Instruction, 2016.

URL: https://software.intel.com/en-us/blogs/2016/

09/12/deprecate-pcommit-instruction.

[61] Gururaj Saileshwar and Moinuddin Qureshi. MIRAGE: Mit-

igating conflict-based cache attacks with a practical fully-

associative design. In USENIX Security, 2021.

[62] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck,

Julian Stecklina, Thomas Prescher, and Daniel Gruss. Zom-

bieload: Cross-privilege-boundary data sampling. In CCS,

2019.

[63] Johanna Sepúlveda, Mathieu Gross, Andreas Zankl, and Georg

Sigl. Beyond cache attacks: Exploiting the bus-based com-

munication structure for powerful on-chip microarchitectural

attacks. ACM Transactions on Embedded Computing Systems

(TECS), 2021.

[64] Aria Shahverdi, Mahammad Shirinov, and Dana Dachman-

Soled. Database reconstruction from noisy volumes: A cache

Side-Channel attack on SQLite. In USENIX Security, 2021.

[65] SQLite Consortium. SQLite. URL: https://www.sqlite.

org/index.html.

[66] Mohammadkazem Taram, Xida Ren, Ashish Venkat, and Dean

Tullsen. SecSMT: Securing smt processors against contention-

based covert channels. In USENIX Security, 2022.

[67] Daniel Townley and Dmitry Ponomarev. SMT-COP: Defeating

side-channel attacks on execution units in smt processors. In

PACT, 2019.

[68] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin,

Baris Kasikci, Frank Piessens, Mark Silberstein, Thomas F

Wenisch, Yuval Yarom, and Raoul Strackx. Foreshadow: Ex-

tracting the keys to the intel SGX kingdom with transient

Out-of-Order execution. In USENIX Security, 2018.

[69] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz

Lippi, Marina Minkin, Daniel Genkin, Yuval Yarom, Berk

Sunar, Daniel Gruss, and Frank Piessens. Lvi: Hijacking tran-

sient execution through microarchitectural load value injection.

In S&P, 2020.

[70] Jose Sanchez Vicarte, Michael Flanders, Riccardo Paccagnella,

Grant Garrett-Grossman, Adam Morrison, Chris Fletcher, and

David Kohlbrenner. Augury: Using data memory-dependent

prefetchers to leak data at rest. In S&P, 2022.

[71] Haris Volos, Andres Jaan Tack, and Michael M. Swift.

Mnemosyne: Lightweight persistent memory. In ASPLOS,

2011.

[72] Junpeng Wan, Yanxiang Bi, Zhe Zhou, and Zhou Li. MeshUp:

Stateless cache side-channel attack on cpu mesh. In S&P,

2022.

[73] Yao Wang, Andrew Ferraiuolo, Danfeng Zhang, Andrew C.

Myers, and G. Edward Suh. SecDCP: Secure dynamic cache

partitioning for efficient timing channel protection. In DAC,

2016.

[74] Yao Wang and G Edward Suh. Efficient timing channel pro-

tection for on-chip networks. In International Symposium on

Networks-on-Chip, 2012.

[75] Zhenghong Wang and Ruby B. Lee. New cache designs for

thwarting software cache-based side channel attacks. In ISCA,

2007.

[76] Zixuan Wang, Xiao Liu, Jian Yang, Theodore Michailidis,

Steven Swanson, and Jishen Zhao. Characterizing and model-

ing non-volatile memory systems. In MICRO, 2020.

[77] Zane Weissman, Thore Tiemann, Daniel Moghimi, Evan Cus-

todio, Thomas Eisenbarth, and Berk Sunar. Jackhammer: Effi-

cient rowhammer on heterogeneous fpga-cpu platforms. IACR

Transactions on Cryptographic Hardware and Embedded Sys-

tems, 2020.

[78] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael

Schwarz, Daniel Gruss, and Stefan Mangard. ScatterCache:

Thwarting cache attacks via cache set randomization. In

USENIX Security, 2019.

[79] Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang, and

Hong Jiang. Characterizing the performance of intel optane

persistent memory: A close look at its on-DIMM buffering. In

EuroSys, 2022.

[80] Jian Xu and Steven Swanson. NOVA: A log-structured file

system for hybrid volatile/non-volatile main memories. In

FAST, 2016.

[81] Yuanchao Xu, Chencheng Ye, Xipeng Shen, and Yan Solihin.

Temporal exposure reduction protection for persistent memory.

In HPCA, 2022.

[82] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher

Fletcher, Roy Campbell, and Josep Torrellas. Attack directories,

not caches: Side channel attacks in a non-inclusive world. In

S&P, 2019.

[83] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz,

and Steve Swanson. An empirical guide to the behavior and

use of scalable persistent memory. In FAST, 2020.

[84] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A high

resolution, low noise, L3 cache side-channel attack. In USENIX

Security, 2014.

[85] Jialiang Zhang, Nicholas Beckwith, and Jing Jane Li. GOR-

DON: Benchmarking Optane DC persistent memory modules

on FPGAs. In FCCM, 2021.

[86] Tao Zhang, Kenneth Koltermann, and Dmitry Evtyushkin. Ex-

ploring branch predictors for constructing transient execution

trojans. In ASPLOS, 2020.

[87] Pengfei Zuo, Yu Hua, and Yuan Xie. SuperMem: Enabling

Application-transparent Secure Persistent Memory with Low

Overheads. In MICRO, 2019.

A Additional Reverse Engineering Results

A.1 Additional Results on Server A

We present the majority of the Server A (Table 1) reverse

engineering results in the main paper, this section provides ad-

ditional results of NVCache reverse engineering: Figure 17a

to Figure 17o are NVLeak’s strided pointer chasing results,

which are detailed illustrations of the Figure 4.

A.2 Additional Results on Server B

In this section, we provide reverse engineering on an addi-

tional server machine (Server B from Table 1) which equips

Optane DIMMs of different sizes and firmware versions com-

pared to Server A.

Figure 18 shows the NVLeak reverse engineering results.

Following the analysis in § 3, we conclude that Server B’s

Optane DIMMs have similar architecture design and perfor-

mance characteristics as in Server A: Server B Optane DIMM

has two levels inclusive NVCaches (Figure 18a), where L1 is

16 KiB fully associative cache with 256 B blocks, and L2 is a

16-way set associative cache with 4 KiB blocks. This Optane

DIMM also has a long latency effect triggered by repeated

writes (Figure 18c), and this latency is timing-sensitive (Fig-

ure 18b and Figure 18d). This Optane DIMM’s data-migration

trigger conditions (Figure 18e) under 256 B region have a me-

dian of 2,802 write iterations, with 50% of them falling in the

[2782:2814] range, which is much more concentrated than

in Server A (Figure 7).

600

900

1200

1500

1 4 16 64 256 1 K 4 K

of PC-Blocks

L
a
te

n
c
y

(C
y
c
le

) ld st

(a) Stride 256 B

600

900

1200

1500

1 4 16 64 256 1 K 4 K

of PC-Blocks
L
a
te

n
c
y

(C
y
c
le

) ld st

(b) Stride 512 B

600

900

1200

1500

1 4 16 64 256 1 K 4 K

of PC-Blocks

L
a
te

n
c
y

(C
y
c
le

) ld st

(c) Stride 1 KiB

600

900

1200

1500

1 4 16 64 256 1 K 4 K

of PC-Blocks

L
a
te

n
c
y

(C
y
c
le

) ld st

(d) Stride 2 KiB

600

900

1200

1500

1 4 16 64 256 1 K 4 K

of PC-Blocks

L
a
te

n
c
y

(C
y
c
le

) ld st

(e) Stride 4 KiB

600

900

1200

1500

1 4 16 64 256 1 K 4 K

of PC-Blocks

L
a
te

n
c
y

(C
y
c
le

) ld st

(f) Stride 8 KiB

600

900

1200

1500

1 4 16 64 256 1 K 4 K

of PC-Blocks

L
a
te

n
c
y

(C
y
c
le

) ld st

(g) Stride 16 KiB

600

900

1200

1500

1 4 16 64 256 1 K 4 K

of PC-Blocks

L
a
te

n
c
y

(C
y
c
le

) ld st

(h) Stride 32 KiB

600

900

1200

1500

1 4 16 64 256 1 K 4 K

of PC-Blocks

L
a
te

n
c
y

(C
y
c
le

) ld st

(i) Stride 64 KiB

600

900

1200

1500

1 4 16 64 256 1 K 4 K

of PC-Blocks

L
a
te

n
c
y

(C
y
c
le

) ld st

(j) Stride 128 KiB

600

900

1200

1500

1 4 16 64 256 1 K 4 K

of PC-Blocks

L
a
te

n
c
y

(C
y
c
le

) ld st

(k) Stride 256 KiB

600

900

1200

1500

1 4 16 64 256 1 K 4 K

of PC-Blocks

L
a
te

n
c
y

(C
y
c
le

) ld st

(l) Stride 512 KiB

600

900

1200

1500

1 4 16 64 256 1 K 4 K

of PC-Blocks

L
a
te

n
c
y

(C
y
c
le

) ld st

(m) Stride 1 MiB

600

900

1200

1500

1 4 16 64 256 1 K 4 K

of PC-Blocks

L
a
te

n
c
y

(C
y
c
le

) ld st

(n) Stride 2 MiB

600

900

1200

1500

1 4 16 64 256 1 K 4 K

of PC-Blocks

L
a
te

n
c
y

(C
y
c
le

) ld st

(o) Stride 4 MiB

Figure 17: Pointer chasing latency under various stride sizes.

256 4 K 64 K 1 M 16 M

4

16

64

256

1 K

4 K

16 K

600
700
800
900
1000

Lat (Cycle)

Stride Size (Byte)

of

 P
C-

Bl
oc

ks

(a) Pointer chasing strided.

256

2 K

32 K

512 K

8 M

256 2 K 32 K 512 K

Injection Interval (Byte)

D
e
la

y
D

u
ra

ti
o
n

(C
y
c
le

)

15 30 45
P99.99 Latency (us)

(b) Overwrite 99.99 percentile (P99.99) latencies.

0.2

1.0

10.0

60.0

0 50 k 100 k 150 k

Access iteration

L
a
te

n
c
y

(u
s
)

(c) Overwrite per-iter latency.

0

15

30

45

60

256 2 K 32 K 512 K

Delay Duration (Cycle)

P
9
9
.9

9
L
a
te

n
c
y

(u
s
)

Inject Interval (Byte)

256

1 K

4 K

8 K

(d) Overwrite P99.99 latencies.

1024

4096

16384

65536

256 512 1024 2048 4096 8192

Region Size (Byte)

W
ri

te
It
e
rs

(e) Data migration trigger distribution.

Figure 18: Reverse engineering results on Server B (Table 1).

	Introduction
	Background
	NVRAM
	Microarchitectural Side Channels

	NVLeak Reverse-Engineering
	NVRAM System Configuration
	Recovering Details of NVCache and WPQ
	Recovering Wear-Leveling Policy
	Summary of Findings

	NVLeak Covert Channels
	Cross-VM NVCache Channel
	Data-Migration-Based Channel

	NVLeak Side-Channel Attacks
	Database Operation Leakage
	PMDK Key-Value Store Leakage
	Code Execution Path Leakage

	Mitigations
	Discussion
	Related Work
	Conclusion
	Acknowledgements
	Additional Reverse Engineering Results
	Additional Results on Server A
	Additional Results on Server B

