
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

PoseVEC: Authoring Adaptive Pose-aware Effects using
Visual Programming and Demonstrations

Anonymous Author(s)

Figure 1: PoseVEC has two authoring stages for creating pose-aware visual effects: offline editing and online testing. Upon
loading an input video, PoseVECwill switch to the offline editing stage. PoseVEC also supports editingwith video demonstration,
users can directly interact with the video canvas to add pose-related configuration to the node program. For example, Users can
scrub the video timeline to create a squatting-down pose recognizer(red node in node canvas). When users finish with their
node program, they can switch to the online testing mode to see the pose effect from another video or in front of a live webcam.

ABSTRACT
Pose-aware visual effects where graphics assets and animations
are rendered reactively to the human pose have become increas-
ingly popular, appearing on mobile devices, the web, or even head-
mounted displays like AR glasses. Yet, creating such effects still
remains difficult for novices. In a traditional video editing work-
flow, a creator could utilize keyframes to create expressive but
non-adaptive results which cannot be reused for other videos. Al-
ternatively, programming-based approaches allow users to develop
interactive effects, but are cumbersome for users to quickly express
their creative intents. In this work, we propose a lightweight visual
programming workflow for authoring adaptive and expressive pose
effects. By combining a programming by demonstration paradigm
with visual programming, we simplify three key tasks in the author-
ing process: creating pose triggers, designing animation parameters,
and rendering. We evaluated our system with a qualitative user
study and a replicated example study, finding that all participants
can create effects efficiently.

ACM Reference Format:
Anonymous Author(s). 2023. PoseVEC: Authoring Adaptive Pose-aware
Effects using Visual Programming and Demonstrations. In Proceedings of
ACM Conference (Conference’17). ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Human-aware motion graphics refer to graphical assets and ani-
mations that can be rendered reactively to changes coming from
tracked biometric data such as face, hand, or body pose. These types
of content are growing in popularity in many creative domains like
visual effects in films or interactive augmented reality (AR) filters in
mobile applications such as Snap, Instagram, or Tiktok. In particular,
pose-aware visual effects—motion graphics designed to be triggered
or controlled by a user’s body pose has gained a lot of attention in
sport tutorials, AR lens and video effects creation. Figure 2 shows
some examples of pose-aware visual effects, which we henceforth
refer to as pose effects.

However, creating adaptive and expressive pose effects still re-
mains a challenging task for visual effect designers. Tradition-
ally, these effects are often produced by using keyframe-based
approaches [1, 5, 19] where animations are baked into the video
timeline. As a result, the output pose effects are non-adaptive, which
means the designers cannot reuse a pose effect on another video
or on a live video stream. For instance, when creating a pose effect
similar to the one shown in Figure 2, if the person in the video
slightly turns around, or changes to a different pose, then the effect
designer will have to adjust the existing animations to adapt to the
new changes in poses. This cumbersome process makes it difficult
for the designer to reuse an existing effect or adapt it to a new
creative idea.

In recent years, various dedicated tools such as Lens Studio,
Spark AR, and Tiktok Effect House have been created to promote
developing pose effects programmatically, with the aim of mak-
ing the authoring workflow both expressive and adaptive. This
approach gives designers a lot of flexibility to fully customize the
low-level details such as how a pose is tracked and how pose data is
transformed and mapped into the video animation. This flexibility

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Figure 2: Examples of pose-aware visual effects. Left: A dance
matching effect and a counter effect Instagram filter that
show the number of dance poses the user could replicate
successfully[27]. Right: A stylized text-shaking animation
for a marketing campaign[25].

empowers users to create more expressive effects. More importantly,
the created effect is now an executable program that could be used
on another input video. This “reusability” benefit is significant
because it promotes community sharing and experimentation.

However, programming-based workflow is notoriously difficult
for non-technical designers. In order to create a pose effect, design-
ers typically need to accomplish three key technical work. Figure 3
provides an overview of these tasks. 1) Pose recognition: they first
need to set up a pose recognizer from the input videos, which often
requires them to manually write various functions to obtain joint
configurations, setting up an algorithm to perform pose matching,
and fine tune the detection threshold. 2) Animation design: in this
step, users transform low-level pose data like joint index, distance,
or angle into animation parameters and establish some parameter
mappings between these data and the graphics that they want to
animate. 3) Rendering: finally, they need to establish a render loop
for that can render graphical assets based on the animation param-
eterizations in step two and the pose recognition events in step one.
All of these steps are tedious and time-consuming as they require
significant technical expertise in handling low-level pose data and
writing event-driven animation codes.

In this paper, we investigate a visual creative workflow for au-
thoring adaptive and expressive pose effects. Our approach lever-
ages both Programming by demonstration (PbD) and visual pro-
gramming paradigms to simplify the programming-based workflow
for non-technical designers. Specifically, we allow a user to inter-
act with both a video canvas and a node programming canvas to
craft a pose effect. For node programming, we adapt the dataflow
programming model [33, 36] to the task of crafting interactive pose
effects. Our model consists of five types of nodes to assist in pose
recognition (e.g., pose recognizer node & logic node), animation
design (data node & transform node) and rendering (render node).
Users can connect one node to another to craft an effect and see it
rendered on the video canvas in real-time. In addition, users can
directly interact with the video canvas to quickly specify complex

Figure 3: Current workflow using Lens Studio to create a
pose effect: 1) pose recognition: obtain T-pose joint data us-
ing a provided function and load a T-pose video into the
system to acquire T-pose data; 2) animation design: storing
and transforming the pose data into animation parameters
using another script; 3) rendering: Using a body tracking
tracker to associate a virtual effect with body parts, and mod-
ifying the movement trigger response script to set up the
trigger response for the T-pose effect.

pose configurations such as pose skeleton data, joint data, or pose-
relative asset positioning. This unique combination allows us to use
the video canvas as both an output panel and a companion editor,
simplifying the visual programming workflow even further.

To this end, we developed a proof-of-concept web authoring
application called PoseVEC (Pose-awareVisual EffectCreator). Our
goal is to use PoseVEC to examine how users could use both PbD
and visual programming in crafting expressive and adaptive pose
effects. PoseVEC supports both video from a live webcam input or
from an uploaded files. To enable adaptive behaviors in pose effects,
we leverage a one-shot pose embedding machine learning (ML)
network [32] to perform real-time pose matching on the source
video. This core detection mechanism is represented as a node
in PoseVEC. More importantly, users could use other nodes in
PoseVEC to iteratively add animation behaviors on top of the initial
pose detection node. This process allows a user to use PoseVEC to
quickly create pose effects that are both expressive and adaptive.
The resulting effects can be reused on a different video or in a
live video with minimal or no configuration needed. In a sense,
PoseVEC empowers users to craft reusable template effects rather
than baked-in effects. It could enable novel visual effect applications.
For example, video editors could save editing time by developing a
pose effect once and apply it to new videos or to existing videos
with compatible poses. Designers could use PoseVEC to mock up
new AR lens effect by designing on an upload video and testing on
the the live webcam view.

We performed two evaluations to assess the effectiveness of our
tool: a first-use study to gather feedback on our authoring workflow
and the usability of PoseVEC, and a replicated example study to
demonstrate the utility and expressiveness of PoseVEC. In summary,
our contributions include:

• The design of a new approach that combines PbD and visual
programming to help users author adaptive & expressive
pose effects using human poses.

• The instantiation of this workflow in a proof-of-concept
web authoring system called PoseVEC. PoseVEC provides
users with a node graph model that was designed specifi-
cally to ease pose effect authoring. It also integrates direct

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

PoseVEC: Authoring Adaptive Pose-aware Effects using Visual Programming and Demonstrations Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

video interaction to further simplify and speed up user
workflow.

• A qualitative evaluation an a replicated examples demon-
stration to examine the usability and utility of PoseVEC.

2 RELATEDWORK
2.1 Pose Effects Applications and Authoring
Authoring poses effect refers to the task of adding visual effects to a
video that involves human subjects. These visual effects can either
be directly applied to human subjects(e.g., contouring the body part)
or be driven by human actions to create the illusion that the assets
are part of the video and respond to the pose movement. There are
two main approaches to author pose effects:post-production and
the programming.

The post-production approach is more prevalent in filmmak-
ing, where video editors use tools such as After Effects to add
keyframes for graphical assets and animation to the video timeline.
Despite the rich features available in these software to help users
in motion graphics creation and editing, it may be too complex
for amateurs to learn to use. To address this challenge, researchers
have attempted to streamline the motion graphics creation process
for amateurs. For example, Katika [14], is an end-to-end tool for
authoring motion graphics videos that aim to help users understand
the process of motion graphic creation and create motion graphic
videos without external guidance. Similarly, PoseTween [19] is a
system designed for novice users to create virtual object animations
by leveraging human motion. In contrast, our work focuses more
on the programming approach. In particular, we investigate how to
simplify the process of authoring pose effects using programming
workflow. Compared to the post-production approach, developing
effects programmatically allows the creator to have more creative
freedom.

Many complex and novel applications of interactive body-based
experience using programming workflow have been explored. For
instance, Anderson et al. has built a Mirror-based augmented reality
system to record and learn physical movement sequences [7] This
system uses the body-tracking technique and skeleton comparison
to provide posture guidance and feedback in real-time. Another
example is PoseBlocks [15], a block-based programming toolkit
designed for educating students on building interactive physical
movement-based experiences. This toolkit incorporates AI-powered
face, hand, body tracking technique into blocks for students. Re-
alitySketch [34] leverages interactive sketching to parameterize
real world objects and create interactive in-situ AR visualizations
driven by those parameters.

Moreover, some research focuses on virtual puppetry techniques
to create animations for non-human objects, where virtual objects
are manipulated through physical control such as keyboard con-
trol and body-tracking sensors. For instance, Chen et al propose
an interactive system that allows novice users to scan and ani-
mate real-world objects by employing a deformation method to
process skeleton information and object geometry [9]. Similarly,
Seol et al. proposed a real-time motion puppetry system that allows
users to manipulate the motion of non-living creatures naturally
through direct feature mapping and motion coupling [30] In all
of these examples, the high barrier of entry associated with the

programming-based approach is apparent, as it typically requires a
team of researchers or engineers to write programs from scratch in
order for users to create pose effects. Our research makes the first
attempt into looking at how to simplify this workflow, such that
normal designers could also directly learn and create pose effects.

2.2 Visual Programming for Interactive
Animations

Visual programming is a common approach to reducing program-
ming complexity, including declarative programming, dataflow pro-
gramming, or block-based programming. These approaches typi-
cally present users with a visual abstraction in the form of blocks
or nodes. Each of these nodes could represent a source of data or
functions or operations to be executed. By setting up and connect-
ing these nodes, users could construct a program in a declarative
manner. Dataflow programming is most often used in helping users
work with complex 3D rendering pipelines to produce shaders [31]
or materials [4]. In contrast, our research focuses on helping users
create interactive behaviors. To this end, numerous dataflow pro-
gramming models have been developed for a wide variety of tasks
such as gesture programming [16, 21], animations [26, 29], vector
drawing [13], and VR programming [11, 36]. And yet, non of these
works have focused on pose effects design. More recently, social
media platforms like Tiktok and Snap have started introducing
creator tools for users to create AR filters based on body tracking,
allowing users to create and share interactive pose effects. However,
their dataflow programming is not specific to pose effect design. In
designing PoseVec, we identified three key tasks for pose effect pro-
gramming and developed a set of nodes and authoring interactions
to simplify these tasks. Briefly, these features support creating pose
recognition, animation design, setting up the rendering loop, and
refining and test. See Sec. 3 for more task details.

2.3 Integrating Visual Programming with
Programming by Demonstration

One main issue of visual programming systems is that it can be
slow for users to describe complex behaviors quickly. For example,
when describing geometric configurations of a particular pose of
interest, it is usually faster and easier for users to provide a sys-
tem with some examples rather than constructing the example in a
declarative manner. To this end, several recent works have started
integrating programming by demonstration components into vi-
sual programming systems. For example, in GestureStudio [22],
each gesture is recorded and visualized in a timeline block, which
later can be assembled with other gestures or attached callback
action. Similarly, Gesture Knitter [23] allows designers to provide
hand gesture demonstrations first, then convert them into primitive
blocks. This approach enables the creation and customization of
complex gesture recognizers.

In addition, recent research utilized this new workflow approach
in AR experience authoring. GestureAR [35], for example, enables
freehand AR authoring and AR interactive experience. In the au-
thoring process, users start by recording hand gestures, which are
then associated with virtual content behaviors using a visual pro-
gramming interface. Subsequently, they can test interactive content
in real-time. Similarly, Rapido [18] focuses on video prototyping

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 4: Overview of how users could author and test a pose effect using PoseVEC. Here the user is creating an effect that could
dynamically render the angle value of the right knee on the video. Left: The PoseVEC interface in offline editing mode. Right:
The PoseVEC interface in online tracking mode. In offline editing mode, we show the steps for creating a pose recognizer by
scrubbing the video (black numbered annotations) and steps for creating a pose-related data node through joint selection on
video canvas (blue numbered annotations). In online tracking mode, users can see the pose effect happens on the video canvas
and observe the data flow in the pose program.

using AR-enabled mobile devices. Designers first draw sketches
and demonstrate user intention in a video embedded with AR infor-
mation. Then they use Rapido to convert the video prototype into
an executable state machine, such that they can switch between
these representations to test and refine the prototype. Teachable
Reality [24] employs vision-based interactive machine learning
to author tangible AR prototypes in-situ, by enabling the user to
detect, train, bind, and author physical-virtual interactions.

Inspired by these works, we adopt a similar strategy in our
research into the new problem domain of pose effect authoring. We
developed several unique PbD components to make it easier for
users to construct a pose effect program in PoseVEC. The key idea
in our PbD approach is to enable users to interact directly with the
video canvas to provide complex pose configurations to the node
program. For example, using a pre-trained one-shot pose embedding
model [32], we could accelerate the process of creating and fine-
tuning a pose recognizer node. Users could interact with the pose
skeleton joint on the video to select joint of interest, compute joint-
wise parameters like distance and angle, or position assets relative
to some joints. By identifying and offsetting these tasks to the video
canvas, we create a more streamlined programming workflow for
pose effect designers.

3 SYSTEM OVERVIEW
In this section, we outline the key components of our system and
illustrate how these components are used to produce a pose effect.
We follow a hypothetical user, Alice, as she designs a pose effect
illustrated in Figure 4. We show how Alice could craft this pose
effect using the visual workflow in PoseVEC without having to
resort to using any explicit programming.

For this effect, Alice wants to display an overhead text that shows
the joint angle of the right knee while the person is squatting down.
The text is anchored to the person’s head and moves along with the
head movement during squatting. Please refer to the supplementary
video for the complete design process and the final pose effect.
Detailed definitions of the pose program and node designs are in
Section 4. Alice starts by uploading a video of someone doing the
similar squat pose that she found online.
Pose recognition. The pose recognition trigger is the most impor-
tant component in PoseVEC as it drives pose effect and animation to
occur. After Alice uploads a video to the scene, she drags around the
slider bar to select an interesting pose. Then, she presses the ’Pose
recognizer’ button under the recognizer tab to add pose recognizer
to the node program. As her design goal is to create a pose effect
for a squat-down video, she adds a standing pose and a squatting
pose trigger to the node program. See Figure 4 (black numbered
annotations) for an illustration of these steps.
Animation design. Next, Alice needs to obtain joint angle of the
right knee and then render this value on top of the person’s head.
Using PoseVEC, Alice needs to add two more nodes to the current
node program: the Joint Angle Node from the Data Node category
and the Single Text Render node from the Render Node category.
First, she creates a Joint Angle Data node by selecting the right hip,
knee, and ankle joints. This Joint Angle Data node will output the
selected joint angle information as the node program runs. Then,
she adds a Single Text Render node to the node program, which
will automatically add text to the video canvas. She then drags the
text to her head and holds it for one second to anchor the text to
her head. We explain this anchoring operation in more details in
the System Design section below (Figure 5). Lastly, she saves this

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

PoseVEC: Authoring Adaptive Pose-aware Effects using Visual Programming and Demonstrations Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

anchoring information by clicking on the render node. To make
the text more intuitive, she also inputs "Angle" as the prefix of the
final text. Finally, she connects the Joint Angle Data node to the
input of the Single Text Render node to complete the pose effect
design. See Figure 4 (blue numbered annotations).
Rendering. Now, Alice needs a logical condition that controls the
timing of the appearance of this pose effect so that it only appears
while the person is squatting down. She adds a During node from
the Logic node category. This During node takes two boolean inputs
and constantly outputs a boolean value. It outputs true as long as
input 1 is true before input 2 turns true. In this context, Alice uses it
to ensure that the pose effect is triggered only when the transition
of poses, from the squatting position to the standing position, is
detected. She then connects the squatting down pose trigger to
input 1 of during node and the standing pose trigger to input 2.
Finally, she connects the output of during node to the input of the
joint angle node for completing this node program. See Figure 4,
bottom-left).
Refine and Test. After Alice finishes all node connections, she
switches the offline editing mode to online tracking mode. Imme-
diately, she can see that the right knee joint angle is highlighted
while the person is squatting down. Alice can also observe how
data flow from one node to another at some key moments. (See
Figure 4, right)

Once Alice is satisfied with the pose effect, she can upload an-
other video of a squatting pose or turn on the webcam to test the
pose effect. Alternatively, she can upload a different sport video and
refine the pose program slightly to adapt the same pose effect to a
different sport pose. All she needs to do is to drag around the video
slider and adding more pose recognizers to the current program.

4 SYSTEM DESIGN
We designed PoseVEC to help users craft expressive pose effects
using visual programming. To make the system easy to use for
non-technical designers, we have three main design goals:

(1) Visual workflow: providing a node programming UI that
can support all key tasks in programming pose effects, in-
cluding asset import, pose recognition, animation design,
and rendering.

(2) PbD via video interaction: simplify the programming work-
flow by allowing users to directly interact with the input
video stream to specify pose-related configurations for the
node program.

(3) Ease of testing: providing visualizations and tools that allow
users to quickly see results, test, and refine the pose effect
program.

4.1 Programming a Pose Effect
Figure 4 shows an overview of PoseVec. A user can craft a pose effect
by interacting with both the video canvas and the node canvas. A
user can start by creating an input video source. We support both
live webcam stream and offline video upload. Upon selecting an
input video source, PoseVEC will switch to the editing mode.

Editing with nodes. In the editing mode, a user can add graph-
ical assets (Figure 4, top-left) to the video canvas and modify them.
They can also add nodes to the node canvas to construct pose effects.

Note that the node program remains inactive during this stage as
there is no data flow in the connections. Our node program follows
the dataflow programming model [36] where connected nodes form
a direct graph and data can flow from the leftmost source nodes
(e.g., pose recognizer & nodes) to the rightmost sink nodes (e.g.,
render nodes). Users can establish connections between nodes by
dragging an edge from one node and connecting it to another node.
While dragging the edge, input slots that have different input types
will be disabled, allowing users to easily identify which input slots
can be connected.

Editing with video demonstrations. During editing, users
could interact with the video canvas to provide additional pose-
related configurations to the node program. Table 1 provides an
overview of which nodes could be created via the video canvas,
these nodes are marked with “video-linked”. Video-linked nodes
can store pose-related data and can monitor and update its stored
data. For example, to create a pose recognizer node, users could
scrub the video timeline to select the desirable pose and click on the
pose recognizer node button on the UI. Likewise, selecting a joint
on the pose and clicking on a Joint ID data node will create a data
source for the corresponding joint. A user can also add, position,
or anchor graphical assets to the pose to more easily define how an
asset should be rendered relative to the selected pose. Selecting an
asset and clicking on a render node will add it to the node canvas.

Testing mode. To test the node program, a user can switch
to the online tracking mode. In this mode, “source” nodes like
recognizer and data will start propagating data to the rest of the
node graph. For example, the pose recognizer node will leverage
a pose similarity ML model to output a true trigger event if the
stored pose is similar to the current pose in the video window. The
data node will simply output the data that was set when the node
is created. Eventually, when the data reaches the “sink” render
nodes, the assets on the video canvas are rendered accordingly,
creating the resulting animations of the pose effect. Running the
node program in this way gives users flexible options to test the
pose effect. They could see the effect on a static frame, a playback of
a video file, or a live webcam stream. Note that in this mode, users
cannot modify graphical assets or nodes, they can only observe the
behavior of the node program and switch back to the editing mode
to refine the pose effect. When the node program is executed, we
render line animations to visualize how the data moves through
the graph to help users better understand the model. See Figure 4
(bottom-right).

4.2 Node Types
Now we will describe in more details the design of PoseVEC’s node
model. A complete description of our node model is included in
the Appendix. Overall, we have five main types of nodes. These
nodes were designed specifically to support three main tasks in
authoring pose effects: pose recognition (pose recognizer node &
logic node), animation design (data node & transform node), and
rendering (render node).

4.2.1 Recognizer Node. When added to the node canvas, PoseVEC
runs a one-shot pose embedding network to transform the currently
selected pose on the video canvas in to a pose embedding vector.
We use Pr-VIPE [32] due to its robustness performance in viewing

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

angle and self-occlusion. The pose embedding vector is then stored
internally in the recognizer node.

When the user switches to editing mode, our system also com-
putes a pose embedding vector for every new frame in the video
window. When this data is available, all recognizer nodes currently
in the node graph will perform a similarity check between the
stored pose vectors and the current pose vector on the screen. We
use L2 distance to estimate a similarity score. If the resulting score
is smaller than a user-defined value, the pose recognizer node will
continuously output true signals.

4.2.2 Logic Node. Logic nodes can take pose recognizer nodes as
inputs to construct conditional logics. Users can use logic nodes to
create more interesting pose recognition behaviors. The input and
output values of logic nodes are boolean values. There are two main
categories of logic nodes: single-pose logic nodes and dual-pose
logic nodes.

Single-pose logic nodes accept only one input. These nodes are
used to create basic boolean operations. Specifically, trigger node
outputs a single true value when the input value changes from false
to true. It acts as a switch that is triggered by a change in the input
value. Constant boolean node contains a toggle that outputs true
(on) when the toggle is switched on, and false (off) when the toggle
is switched off. Reverse logic node outputs the opposite value of its
input.

Dual pose logic nodes typically take two or more pose recognizer
nodes as inputs. Or node output true if any of the input is true.
During node outputs true while the first input is true and until
the second input is true. Sequence node outputs true only if both
inputs had turned true sequentially. These nodes can be used to
craft more complex behaviors. For example, with Or Node, users
could chain multiple pose recognizer nodes together to create a
more robust recognizer for a certain pose. During node is useful
for rendering animations that should only appear within a time
range. And sequence node can be used for incremental tasks like
counting.

4.2.3 Data Node. A data node is a complementary “source” to the
pose recognizer node. It contains values useful for animating a
motion graphics effect around the human body. These values can
either be pose-related data or variables. The pose-related data could
include joint locations, distances, angles or even pose embedding
vectors. Data node actively monitors the skeleton pose on video
canvas and computes output pose-related information. To create a
pose-related data node, the user must first select the joints from the
2D estimated pose skeleton on the video canvas and then choose
the type of data node the user wants to create. Additionally, variable
nodes are used to store and manage numerical or vector data, and
they can be directly added to the node canvas.

4.2.4 Transform Node. A transform node contains mathematical
expressions and transforms the data in the data node into anima-
tion parameters. Some example operations supported by Transform
nodes include standard arithmetic operations (plus, minus, mul-
tiply, divide), vector operations (L2Distance, scalar), conversions
(normalization, number to text), and comparison.

4.2.5 Rendering node & graphical assets. In PoseVEC, users can
add by interacting with the asset panel(Figure 4, orange rectangle

Figure 5: PoseVEC supports anchoring to the skeleton op-
tion. To do this, users can drag and hold an asset (e.g., the
text “SQUAT DOWN”) for one second, then PoseVEC will
highlight the closet joint to which the asset can be anchored
with a yellow line. This anchoring information could then be
stored in the render node that controls the asset movement
(e.g., MoveTo Node) so that the anchoring information can
be applied during rendering.

annotation). After adding, users can design and adjust the assets by
dragging it on the video canvas. We provide options for working
with primitive 2D shapes, texts, imported images and GIF anima-
tions. Users can customize their look (e.g., sizes, colors, and styles)
or group assets together into a single object.

To render an asset, a user selects it on the video canvas and
clicks on a render node. A render node will be added to the node
canvas. A render node is a type of “sink” node, it only receives data
from other nodes. Render nodes represent render functions that
are executed on a group of graphical assets when receiving true
signals.

PoseVEC provides different kinds of functions such as asset
placement and movement, as well as adjusting asset opacity and
color. In addition, PoseVEC provides special render nodes that
contain a predefined asset group assigned with a specific render
function. More importantly, it also exposes animation parameters
as input for customization.

In particular, we define Joint Angle Annotation node and Joint
Distance Annotation node, which are designed to compute joint-
related information constantly and display that information on the
human body directly. We also have a GIF animation render node for
displaying and controlling GIF animation, and a Single Text Render
node that accepts text input dynamically and displays that text.

A common rendering operation in pose effects is anchoring an
asset to a pose joint in the video. PoseVEC simplifies this operation
using video canvas interaction. When a new asset is added to the
video canvas, by default, it is anchored to the video canvas. The
user can anchor an asset to a joint on the pose skeleton by dragging

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

PoseVEC: Authoring Adaptive Pose-aware Effects using Visual Programming and Demonstrations Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Figure 6: Distribution of participants’ programming experience (top) and visual authoring experience (bottom).

and holding the asset for one second. A yellow line indicator will
pop up to help users confirm the selected joint (Figure 5). Releasing
the mouse click button will associate the joint identifier with the
asset. After this assignment, any subsequent operations to set the
position of the asset will record the position relative to the selected
pose joint.

4.3 Implementation Details
We develop PoseVEC as a web application using Typescript. We use
Fabric.js [28]. for canvas rendering andAnimation.js [10]. for anima-
tion rendering. Our node graph model is based on Litegraph.js [6].

For ML capabilities, we use Tensorflow.js [3] and Mediapipe [20].
Specifically, we use Mediapipe to perform real-time 2D pose estima-
tion on the incoming images from the video window. We support
both uploaded video and live webcam video. We convert a pre-
trained checkpoint of the Pr-VIPE model [32] into binary files that
could then be loaded to the browser at run time. This model is then
used to compute pose embedding vectors from the estimated pose
skeleton data.

To improve playback and pose detection performance, we pro-
vide users with a script to pre-process the video file before up-
loading it to PoseVEC. The script computes pose skeleton and its
corresponding pose embedding vector for each frame, and store all
data into a JSON file. A user could then load both the video and the
JSON file into our system.

5 USER EVALUATION
We conducted two studies to assess the usability and utility of
PoseVEC. The first study was a first-use study with novice users
to help us assess the system’s usability and threshold. The second
study is a replicated example study to examine the utility and
expressiveness of the system.

A more controlled experiment to compare PoseVEC with a base-
line would be difficult because there is no clear baseline. PoseVEC
focuses on pose-based expressions, which is not a common fea-
ture in video editing tools. Some commercial solutions like Lens
Studio can support authoring body tracking based effects, but cur-
rent workflow still requires a significant amount of programming
knowledge. As our workflow design is geared toward designers,
we wanted to first conduct this qualitative evaluation to assess
the system’s usability and examine the validity of our workflow

for pose effect design. Although we did not test it with experts,
our replicated example studies revealed some insights about what
experts could achieve using our tool.

5.1 Participants
We recruited 12 participants to conduct our first-use study (5 males,
6 females, 1 prefer not to disclose; aging from 19 to 30). We selected
users with some programming and visual effect creation experience
(Figure 6). In general, most of our participants have some program-
ming experience and have used AR lens filters. All of them have
some experience in creating motion graphics using at least one type
of commercial software.

5.2 Procedure
Each participant spent about two hours in the study. We began the
session by presenting an overview of PoseVEC, followed by three
tutorials of increasing difficulty for the participants to practice. For
each tutorial, we showed the output effect of a node program and
asked them to replicate the same effect. We then introduced the
nodes that would be used for the tutorial and guided them through
completing the example. The tutorial session lasted for about 50
minutes.
Open-EndedExploration Session. In this session, we first showed
our participants some pose-based effects that we created. We then
asked them to describe a pose-based effect they would like to create
using PoseVEC based on the examples we provided. During creation,
participants could use the documentation of PoseVEC as a refer-
ence. They could ask questions about the system for clarification.
When participants were satisfied with the results they created, they
were asked to fill out the Likert scale questions (partially adapted
from the SUS questionnaire [8]) as well as some open-ended ques-
tions. The session lasted about 60 minutes. We compensated the
participants for their time.

5.3 Results and Discussion
Figure 8 shows an overview of participants’ ratings on PoseVEC. All
participants were able to explore PoseVEC and create unique pose-
based effects.We show some examples in Figure 7. Please refer to the
supplementary videos formore details on the participants’ creations.
In general, participants agreed that PoseVEC helped them create
what they had in mind, (Mean = 4.67, SD = 0.49). P6 commented

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 7: Screenshot of pose effects created by participants
using PoseVEC.

“I am able to apply most of my imagination including using all the
nodes introduced to me to create motion graphics”. P10 commented
“It has lots of flexibility in creation”.
System Usability. In Q2 (Mean = 1.50, SD = 0.52), most partici-
pants agree that our system is not cumbersome to use because its
UI is straightforward and similar to that of other software (like the
blueprint in UnrealEngine), and its keyboard control is similar to
others. They found the node programming and its operation useful
because "it visualizes variables and connections I have made for con-
structing motion graphics." (P2). P4 commented that "The operation
like dragging assets and nodes to the scene is straightforward.". P8
commented that "The node programming makes the logic flow more
modular. It breaks down into smaller steps so that you can modify to
a higher degree."
System Expressiveness. In Q4 (Mean = 4.50, SD = 0.80) and Q5
(Mean = 4.42, SD = 0.67), many participants agreed that they could
try out creative ideas and explore many alternative design options
by using PoseVEC. Several participants specifically mentioned that
the use of pose recognizer helps them create design quickly. P10
commented that "Normally I would use keyframes to create motion
graphics, which I have to go back and forward to find the perfect
keyframe in the video. But with this pose recognizer, I can drag the
slider and add it to the scene, it is easier than my current workflow.".
P1 mentioned how easy it is to apply the same effect on different
videos: "I take a pose from one video and convert it to a pose recognizer,
then I can use the same recognizer and nodes on other videos." P3 said
that the design of logic nodes is convenient. He was able to "quickly
construct complex behavior using existing logic nodes."

Specially, all of the participants rated positively on how pose-
related nodes like joint angle annotation and joint distance annota-
tion nodes can speed up their creation process (Q7, Mean = 4.75,

SD = 0.45). P12 commented "I can use joint distance annotation node
to visualize distance of between joints so that it helps me to make
decisions in design". P4 said "It is nice because I don’t need to do extra
programming to implement it. I just add it to the scene and it is ready
to go." P2 commented "I like it because once I define joint as input,
this node handles the rest."
Technical Expertise. When asked whether our system requires a
high level of technical expertise (Q3, Mean = 3.67, SD = 0.78), half
of our participants rated it positively while the other half had a
neutral opinion. For participants who have a positive view on this,
they said there is a learning curve for this system but the tutorials
and documentation provided make it manageable. Those who had
a neutral view pointed out that the logic nodes and data flow may
not be common knowledge for someone with no programming
experience. However, both sides agreed that people need to take
some time to understand the concept and explore the system. The
results of the first-use study showed that themajority of participants
(10 out of 12) felt confident using our system (Q6, Mean= 4.33,
SD=0.98). One participant described it as feeling natural to use,
while another participant had a negative rating towards the system
However, both of them mentioned that they needed more time to
explore the system on their own to fully master it.
Workflow Comparison. In answering the question "If you have
to produce this result again, would you use your existing workflow
(software), or would you consider using this system?, 67% of the
participants choose our system over their current workflow. Several
participants who are relatively new to visual effects share a common
belief that existing software is mainly designed for other types of
functionality, which can be difficult for them to learn how to create
the same effects. As a result, they prefer to use our system for
expressive pose-based effects as they find the learning curve to be
relatively mild.

Some participants who have more experience using visual effect
editing software have different perspectives on this question due to
some specific needs in their current workflow. One pointed out that
"Our system is more user friendly but it lacks some extra customization
for graphical design. For showing pose-based related graphics this is
the easiest one I have seen. but for creating other graphics, it lacks a bit
of power" (P9). P9was referring to being able to create and customize
more expressive animation such as spinning that our tool currently
do not support well. P5 noted that since mainstream expressive AR
lenses tend to focus on facial expressions, she prefers to use existing
software for those purposes. However, for pose-based expressive
lenses, she finds our tool to be more suitable since it is specifically
designed for that purpose. P11 shared similar comments, "If this
tool can be integrated into the software I use, I definitely will use that
to improve my workflow."
Application of pose effects. In response to the question "how
would you use the output pose effect?", the majority of participants
(10/12) mentioned that they would apply it to a workout training
video. They believe that PoseVEC can help them improve their
workout forms, prevent injuries as well as increase workout ef-
ficiency. They believe that the interactive visualization of poses
can help people learn better. Some participants expressed interest
in creating motion graphics for workout poses. Moreover, a few
participants mentioned that PoseVEC can be used for animation
creation and video editing. P12 said "I would like to use it in video

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

PoseVEC: Authoring Adaptive Pose-aware Effects using Visual Programming and Demonstrations Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Figure 8: Percentage stacked bars showing the participants’ ratings on PoseVEC after the open-ended exploration session.

editing so that I can add effects on specific moments." She said that
she could use PoseVEC to combine her pose and some gif effects to
create more expressive motion graphics.

In summary, the feedback from our novice users indicates that
novice visual effect creators could learn the programming model of
PoseVEC and use the system to produce the effect that they want.
These findings also suggest the following key benefits of PoseVEC:

(1) Our approach of combining video interaction with pose
recognition is straightforward and user-friendly.

(2) The specialized pose-based node design saves users from
performing complex data transformations; instead, they
could focus more on their creation process.

(3) Our visual programming workflow enables users to craft
complex poses without requiring explicit programming.

5.4 Areas for Improvement
We also collected feedback from participants when they disagreed
with the rating questions for future improvement.
UI Controls. Several participants commented on the need for
UI improvements and better controls on asset properties. P10 sug-
gested using icons to represent buttons: "When I am doing design, I
used to look for icons, not text buttons." Participants also reported
that it was sometimes inconvenient to scroll up and down between
video canvas and node canvas to edit the nodes and see the effect:
"Not being able to increase the size of node canvas makes it difficult
to read and do operation node canvas." (P9). They suggested that
adding a customization for the node canvas window can solve this
issue. Moreover, they also suggested to add a variety of styles and
properties to current assets such as gradient color (P12, P3) and
color filters (P8).
Animation and Workflow. Several participants recommended
PoseVEC should add more render nodes to enable more precise
control over animation movement. They requested functionalities
to trace animation paths using brushes (P1) or joint movements
(P12) as paths that can be edited later on. This would give them
greater control and flexibility in designing movement animations.

6 REPLICATED EXAMPLE STUDY
To show the utility and expressiveness of the authoring workflow
in PoseVEC, we conducted a replicated example study and recre-
ated three complex pose effects from examples. We followed the

Type 1 Demonstration study approach that Ledo et al. had char-
acterized [17]. The first example is an interactive Yoga tutorial
inspired by the YouMove system [7]. The second example is an
interactive basketball dribbling effect inspired by the PoseTween
system [19]. The third example called “Just Do It” is a kinetic typo-
graphic effect inspired by a collection of effect we found online [25].
Figure 9 shows some keyframes of the examples that we produced.
The full demonstrations of these replications can be found in the
supplementary video.

6.1 YouMove’s Yoga Tutorial
The goal of this example is to showcase how PoseVEC can be used
to create interactive exercise tutorial content. A unique feature of
the YouMove system is pose guidance. Using an augmented mirror,
a user could receive real-time feedback about her own pose when
striking that pose for a period of time in front of the system. The
system could also provide feedback to the user’s performance with
some on-screen texts.

To reconstruct this key feature, we first use the elapse time data
node and the comparison transform node to create a time delay
trigger. The trigger will fire True signals after the user strikes a pose
for a period of time. Connecting to this delay trigger, we further
design the pose guidance feedback text rendering mechanism. To
do this, we need to convert pose similarity scores to performance
rating text. We obtain current pose information on the video and
then compute similarity scores with a target pose using a com-
bination of pose-related data nodes and a vector math node. We
then normalize the scores to values between zero and one using a
transform node, and convert them into performance text using a
"number to string" transform node. This performance text serves
as input for the render node. With this program, the text can be
rendered while the user was holding the pose, providing real-time
feedback on the similarity between the user’s current pose and a
target pose of a Yoga instructor.

6.2 PoseTween’s Ball Dribbling
This example aims to demonstrate the ability of PoseVEC in creating
interactive animations driven by animation parameters. The key
challenge of PoseTween is to recreate the basketball dribbling and
shooting effects. We need to create a hand-bouncing and hand-
shooting behaviors for the virtual ball.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Figure 9: Keyframes of the three replicated examples: YouMove [7] Yoga Tutorial (top), PoseTween [19] Basketball (middle),
Kinetic Typography (bottom).

For the first effect, the ball should exhibit a vertical movement
that corresponds to the user’s hand. The movement of the ball must
also synchronize with the up-down movement of the person’s hand
movement. To allow users to control the ball movement with their
hands, we used a joint angle data node to capture the angle of
the user’s elbow joint. This data is then normalized into a value
between zero and one using a transform node so that it can be
used to control the animation timeline of the ball. We uploaded
a basketball dribbling GIF animation as a render node. Then we
anchored the GIF animation to a desired location near to the hand
joint. We then connected the aforementioned transform node to
the GIF animation rendering node, so the elbow angle in the person
pose can be used to drive the timeline of the GIF animation. As a
result, when the user raises his hand (i.e., the elbow angle is low),
the animation seeks to the beginning (near the hand); and when the
user lowers his hand(i.e., with a high elbow angle), the animation
seeks to the end (e.g., near the floor). Finally, we used a change

opacity node to hide this render node when the user performs the
shooting pose by connecting it to the shooting pose recognizer.

To ensure that the first effect only occurs before the shooting
effect, we added a new pose recognizer for the ball-shooting pose,
and then used a during node that connects the ball-dribbling pose
recognizer and the ball-shooting pose recognizer. For the shooting
effect, we also uploaded a basketball shooting GIF animation as
a render node and anchored it to the user’s hand. To ensure that
the user only saw this animation when the he was performing a
shooting ball pose, we used a change opacity node to hide this ani-
mation when the ball-dribbling pose occurred. We then connected
the shooting pose to a ball-shooting animation.

6.3 “Just Do It” Kinetic Typography
In the original collection, the artists at Shotopop studio created
many different kinetic typography effects where the text “Just Do
It” are stylized and animated dynamically to various athletic poses.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

PoseVEC: Authoring Adaptive Pose-aware Effects using Visual Programming and Demonstrations Conference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

We attempted to create an example in the style of this collection.
Briefly, for this effect: 1) the texts would initially show up at the
user’s feet and gradually move to the user’s shoulders; and 2) as the
user performs a jumping jack pose motion, we would dynamically
stylize the text by changing its color and line distance parameters.

There are two main tasks involved in creating this example:
animating the color, opacity, and positions of the text and imple-
menting logical conditions to control the changes in response to
the jumping jack motion.

For the first task, we combined the recognizer node with the
during node to ensure that the computation occurred only when
users were performing a jumping jack pose. Then we obtained
the joint location of a wrist from the data node. By computing
the height of the wrist location between two jumping poses, we
converted it into an animation parameter that controlled animation
render nodes.

For the second task, we use the moveTo render node to render
keyframed transformations of the text. This node allows us to record
a beginning state and and ending state for the input text, and it will
render the interpolated changes in between these two states. We
made the size and the line distance slightly bigger for the end state
to create the expanding effect for the text. We then anchored the
text to the user’s feet as the starting location of the movement and
then to the user’s shoulder as the ending location. Additionally, we
also added the change opacity node for the appearing animation,
and the change color node to alter the text’s color.

7 SUMMARY
We present PoseVEC, a lightweight web-based authoring tool to
create expressive and adaptive pose effects. To flatten the learning
curve for users, it provides a visual workflow using node program-
ming. It combines programming by demonstration and visual pro-
gramming to allow users to create pose recognizer directly from the
input video stream, obtain low-level pose information from node
programs, and easily convert it into animation parameters. More
importantly, it also relieves the burden of non-technical designers
for testing. The visualization of node programming allows users to
quickly test and refine the pose effect program, making it easier for
them to iterate and improve their designs. We evaluated PoseVEC’s
usability and utility through two stuides: first-use study with novice
users and a replicate example study. All users from the first-use
study could create expressive pose effects efficiently.

7.1 Limitations and Future Work
Our work suggests several interesting directions for future research.
We would like to incorporate depth estimation [2] into our current
workflow to create more pose-aware graphics according to changes
in pose size. For example, as a user walks away from the camera,
the size of the graphic could resize accordingly. This way we can
create more realistic effects.

Although PoseVEC is currently limited to prototyping single-
person pose effects, it would be valuable to extend the workflow to
explore group interactions such as collaboration and competition.
PoseVEC has to incorporate multi-person pose tracking technol-
ogy [12] to replace the current Mediapipe backend. In addition,
creating pose effects for groups would require the use of new node

designs. For instance, we could create a group exercise counter
which counts as the entire group completes a set of exercises. Or
we could create an animated text effect that responds to the distance
between two dancers on the screen.

Although PoseVEC focuses specifically on pose-effect authoring,
the framework in PoseVEC could potentially generalize to authoring
effects based on other types of discrete ML-based recognizer like
sound, effect, facial gesture, or hand gesture. A direction for future
work is to explore extending PoseVEC into a general authoring tool
for multimodal ML-based recognizers.

PoseVEC currently leverages an off-the-shell pose embedding
model called Pr-VIPE [32] to handle pose matching. This model
has been shown to be effective against view angle changes and
self-occlusion. However, false positives might still occur. PoseVEC
allows users to tune the behavior of the recognizer using threshold
or by combiningmultiple recognizer nodes together. However, since
we are focusing on the authoring aspect of PoseVEC, we have not
evaluated it in a production use case where false positives are much
more difficult to control. Future work should consider how to fine
tune or even retrain Pr-VIPE on more domain-specific pose dataset
to enable export and production workflow in PoseVEC.

Feedback from users in our user study suggests that there is still
room for improvement in the user interface of our tool. For instance,
when making connections between nodes, it would be helpful to
show hints or suggestions about which nodes could be connected.
This would prevent non-technical users from making mistakes.
While PoseVEC has an inspector panel that lists all graphical assets
and their associated render nodes, it would be beneficial to allow
users to preview the animation details of each render node, making
it easier to modify each render node. It would be helpful to provide
a library of node programs and templates for designers to browse
for ideas and improvise.

REFERENCES
[1] [n. d.]. Professional video editing software | adobe premiere pro. https://www.

adobe.com/products/premiere.html
[2] 2021. Robust Consistent Video Depth Estimation. https://robust-cvd.github.io/.

[Accessed 05-Apr-2023].
[3] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
https://www.tensorflow.org/ Software available from tensorflow.org.

[4] Adobe. 2023. Create 3D Models on Desktop and in VR. https://www.adobe.com/
products/substance3d-modeler.html. [Accessed 04-Apr-2023].

[5] Adobe. 2023. Motion graphics software | Adobe After Effects — adobe.com.
https://www.adobe.com/products/aftereffects.html. [Accessed 05-Apr-2023].

[6] Javi Agenjo. 2022. litegraph.js. https://github.com/jagenjo/litegraph.js?files=1.
[Accessed 05-Apr-2023].

[7] Fraser Anderson, Tovi Grossman, Justin Matejka, and George Fitzmaurice. 2013.
YouMove: enhancing movement training with an augmented reality mirror. In
Proceedings of the 26th annual ACM symposium on User interface software and
technology. 311–320.

[8] J Brooke. 1996. SUS: A ‘Quick and Dirty’ Usability Scale, Usability Evaluation in
Industry, Jordan, PW, Thomas, B., Weerdmeester, BA and McClelland, AL.

[9] Jiawen Chen, Shahram Izadi, and Andrew Fitzgibbon. 2012. KinÊtre: animating
theworld with the human body. In Proceedings of the 25th annual ACM symposium
on User interface software and technology. 435–444.

[10] Julian Garnier. 2023. anime.js. https://animejs.com/. [Accessed 05-Apr-2023].
11

https://www.adobe.com/products/premiere.html
https://www.adobe.com/products/premiere.html
https://robust-cvd.github.io/
https://www.tensorflow.org/
https://www.adobe.com/products/substance3d-modeler.html
https://www.adobe.com/products/substance3d-modeler.html
https://www.adobe.com/products/aftereffects.html
https://github.com/jagenjo/litegraph.js?files=1
https://animejs.com/

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference’17, July 2017, Washington, DC, USA Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

[11] Epic Games Inc. 2023. Unreal Engine. https://www.unrealengine.com/. [Accessed
04-Apr-2023].

[12] Umar Iqbal, Anton Milan, and Juergen Gall. 2017. Posetrack: Joint multi-person
pose estimation and tracking. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2011–2020.

[13] Jennifer Jacobs, Joel Brandt, RadomírMech, andMitchel Resnick. 2018. Extending
manual drawing practices with artist-centric programming tools. In Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems. 1–13.

[14] Amir Jahanlou and Parmit K Chilana. 2022. Katika: An End-to-End System for
Authoring Amateur Explainer Motion Graphics Videos. In Proceedings of the
2022 CHI Conference on Human Factors in Computing Systems. 1–14.

[15] Brian Jordan, Nisha Devasia, Jenna Hong, Randi Williams, and Cynthia Breazeal.
2021. PoseBlocks: A toolkit for creating (and dancing) with AI. In Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 35. 15551–15559.

[16] Kenrick Kin, Björn Hartmann, Tony DeRose, and Maneesh Agrawala. 2012.
Proton: multitouch gestures as regular expressions. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. 2885–2894.

[17] David Ledo, Steven Houben, Jo Vermeulen, Nicolai Marquardt, Lora Oehlberg,
and Saul Greenberg. 2018. Evaluation strategies for HCI toolkit research. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
1–17.

[18] Germán Leiva, Jens Emil Grønbæk, Clemens Nylandsted Klokmose, Cuong
Nguyen, Rubaiat Habib Kazi, and Paul Asente. 2021. Rapido: Prototyping Inter-
active AR Experiences through Programming by Demonstration. In The 34th
Annual ACM Symposium on User Interface Software and Technology. 626–637.

[19] Jingyuan Liu, Hongbo Fu, and Chiew-Lan Tai. 2020. Posetween: Pose-driven
tween animation. In Proceedings of the 33rd Annual ACM Symposium on User
Interface Software and Technology. 791–804.

[20] Google LLC. 2022. MediaPipe — mediapipe.dev. https://mediapipe.dev/. [Ac-
cessed 05-Apr-2023].

[21] Hao Lü and Yang Li. 2012. Gesture coder: a tool for programming multi-touch
gestures by demonstration. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. 2875–2884.

[22] Hao Lü and Yang Li. 2013. Gesture studio: authoring multi-touch interactions
through demonstration and declaration. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. 257–266.

[23] George B Mo, John J Dudley, and Per Ola Kristensson. 2021. Gesture knitter:
A hand gesture design tool for head-mounted mixed reality applications. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1–13.

[24] Kyzyl Monteiro, Ritik Vatsal, Neil Chulpongsatorn, Aman Parnami, and Ryo
Suzuki. 2023. Teachable Reality: Prototyping Tangible Augmented Reality with
Everyday Objects by Leveraging Interactive Machine Teaching. arXiv preprint
arXiv:2302.11046 (2023).

[25] NIKE OLYMPICS. 2022. NIKE OLYMPICS. https://www.behance.net/gallery/
73353531/NIKE-OLYMPICS. [Accessed 05-Apr-2023].

[26] Randy Pausch, Tommy Burnette, AC Capeheart, Matthew Conway, Dennis Cos-
grove, Rob DeLine, Jim Durbin, Rich Gossweiler, Shuichi Koga, and Jeff White.
1995. Alice: Rapid prototyping system for virtual reality. IEEE Computer Graphics
and Applications 15, 3 (1995), 8–11.

[27] petricoregames. 2023. Pose Dancer. https://lenslist.co/pose-dancer/. [Accessed
05-Apr-2023].

[28] Printio.ru Lab Project. 2023. Fabric.js Javascript Canvas Library. http://fabricjs.
com/. [Accessed 05-Apr-2023].

[29] Nazmus Saquib, Rubaiat Habib Kazi, Li-Yi Wei, and Wilmot Li. 2019. Interactive
body-driven graphics for augmented video performance. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems. 1–12.

[30] Yeongho Seol, Carol O’Sullivan, and Jehee Lee. 2013. Creature features: online
motion puppetry for non-human characters. In Proceedings of the 12th ACM
SIGGRAPH/Eurographics Symposium on Computer Animation. 213–221.

[31] ShaderPlayStudios. 2014. ShaderPlay.com. https://www.shaderplay.com/. [Ac-
cessed 04-Apr-2023].

[32] Jennifer J Sun, Jiaping Zhao, Liang-Chieh Chen, Florian Schroff, Hartwig Adam,
and Ting Liu. 2020. View-invariant probabilistic embedding for human pose.
In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part V 16. Springer, 53–70.

[33] William Robert Sutherland. 1966. The on-line graphical specification of computer
procedures. Ph. D. Dissertation. Massachusetts Institute of Technology.

[34] Ryo Suzuki, Rubaiat Habib Kazi, Li-Yi Wei, Stephen DiVerdi, Wilmot Li, and
Daniel Leithinger. 2020. Realitysketch: Embedding responsive graphics and
visualizations in AR through dynamic sketching. In Proceedings of the 33rd
Annual ACM Symposium on User Interface Software and Technology. 166–181.

[35] Tianyi Wang, Xun Qian, Fengming He, Xiyun Hu, Yuanzhi Cao, and Karthik
Ramani. 2021. Gesturar: An authoring system for creating freehand interactive
augmented reality applications. In The 34th Annual ACM Symposium on User
Interface Software and Technology. 552–567.

[36] Lei Zhang and Steve Oney. 2020. Flowmatic: An immersive authoring tool for
creating interactive scenes in virtual reality. In Proceedings of the 33rd Annual

ACM Symposium on User Interface Software and Technology. 342–353.

A APPENDIX
Table 1 shows all nodes in PoseVEC. We also identify “video-linked”
node, source node, and sink node in the table.

12

https://www.unrealengine.com/
https://mediapipe.dev/
https://www.behance.net/gallery/73353531/NIKE-OLYMPICS
https://www.behance.net/gallery/73353531/NIKE-OLYMPICS
https://lenslist.co/pose-dancer/
http://fabricjs.com/
http://fabricjs.com/
https://www.shaderplay.com/

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

PoseVEC: Authoring Adaptive Pose-aware Effects using Visual Programming and Demonstrations Conference’17, July 2017, Washington, DC, USA

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Node Type Subcategory Node Name Description source video-inked sink

Recognizer Pose Recognizer

It takes the current pose from
the video canvas as key pose;
When online tracking is
enabled, it constantly
compares the key pose
with poses from
the video canvas, and shows
a similarity score. It outputs a
true signal when the similarity
the score is below a
user-defined value.

X X

Logic node

Single Pose Logic

Constant boolean

It contains a toggle that outputs
true (on) when the toggle is
switched on, and false (off)
when the toggle is switched off.

Trigger

It outputs a single true value
when the input value changes
from false to true. It acts as
a switch that is triggered by
a change in the input value.

Reverse logic It outputs the opposite value
of its input.

Turn on once
Special version of trigger node,
only activate once during
online tracking mode

Dual Pose Logic
Or

It outputs true if any of the input
is true. Users could chain
multiple pose recognizer nodes
together to create a more robust
recognizer for a certain pose.

Sequence It outputs true only if both inputs
had turned true sequentially.

During

It is useful for rendering
animations that should only
appear within a time range.
It outputs true while the first
input is true before the
second input turns true.

Data node

Joint Information

Joint indices It outputs selected joint indices. X X
Joint location It outputs selected joint location. X X
Joint angle It outputs selected joint angle. X X
Joint distance It outputs selected joint distance. X X

Pose Information Current pose embedding It outputs embedding vectors of
poses from video canvas. X

Target pose embedding
It outputs embedding vectors of
pose from user-defined
pose recognizer.

X

Variable
Constant number It outputs a constant number. X

Numeric variable

It outputs a number variable.
Users must specify if they want
to update this variable during
the online tracking stage.
If they do, users must specify
the transform node ID, which is
the execution point after which
the variable will be updated.

X

Vector variable
Same as above. Instead of
outputting number variable,
it outputs vector variable.

X

Table 1

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference’17, July 2017, Washington, DC, USA Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

Node Type Subcategory Node Name Description source video-inked sink

Transform node

Basic Math

Basic math +,-,*,/ operations
Vector math +,-, L2 distance operations
Vector scalar *,/ operations
Convert to [0,1] normalization

Comparison Compare node

Compare two numeric values
using a user-defined comparator
such as greater than
or equal to (>=)
and less than or equal to (<=).

Location comparison

Compare two vector variable
A and B using a user-defined
comparator. For example,
outputs true if A is on
the left of B.

Other Function [0,1]To text

Convert input value to text
based on its range.
For example, user can define
if x < 0.3, output ’bad’;
if x >= 0.3, output ’excellent’.

Elapse time
Record and output theamount
of time that has passed when
the input is true.

Render node

Basic

Place at animation

It renders the appearance
animation of a group of
graphical objects at
a specific location.

X X

Chang opacity animation It controls the opacity of a group
of graphical objects. X X

Move To animation
It moves a group of
graphical objects from
one place to another.

X X

Change color animation It changes color of
a group of graphical objects. X X

Special Render

Joint Angle Annotation
It displays the angle of a joint as
text and highlights it using
two lines and an arc.

X

Joint Distance Annotation
It displays the distance between
two joint as text and highlights
the joints by a line.

X

Single Text Render
It accept a number, vector, or text
as input and display the content
using a text object.

X

Gif Render Node It renders a GIF animation. X

14

	Abstract
	1 Introduction
	2 Related Work
	2.1 Pose Effects Applications and Authoring
	2.2 Visual Programming for Interactive Animations
	2.3 Integrating Visual Programming with Programming by Demonstration

	3 System Overview
	4 System Design
	4.1 Programming a Pose Effect
	4.2 Node Types
	4.3 Implementation Details

	5 User Evaluation
	5.1 Participants
	5.2 Procedure
	5.3 Results and Discussion
	5.4 Areas for Improvement

	6 Replicated Example Study
	6.1 YouMove's Yoga Tutorial
	6.2 PoseTween's Ball Dribbling
	6.3 ``Just Do It'' Kinetic Typography

	7 Summary
	7.1 Limitations and Future Work

	References
	A Appendix

