21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

PoseVEC: Authoring Adaptive Pose-aware Effects using
Visual Programming and Demonstrations

Anonymous Author(s)

viogo | wescam

Load videos,
Manipulate graphics,

Create pose recognizer,
Create nodes,

Video Canvas

Node Canvas

i Tacking ks Fide

Offline Editing Stage

Online Testing Stage

Figure 1: PoseVEC has two authoring stages for creating pose-aware visual effects: offline editing and online testing. Upon
loading an input video, PoseVEC will switch to the offline editing stage. PoseVEC also supports editing with video demonstration,
users can directly interact with the video canvas to add pose-related configuration to the node program. For example, Users can
scrub the video timeline to create a squatting-down pose recognizer(red node in node canvas). When users finish with their
node program, they can switch to the online testing mode to see the pose effect from another video or in front of a live webcam.

ABSTRACT

Pose-aware visual effects where graphics assets and animations
are rendered reactively to the human pose have become increas-
ingly popular, appearing on mobile devices, the web, or even head-
mounted displays like AR glasses. Yet, creating such effects still
remains difficult for novices. In a traditional video editing work-
flow, a creator could utilize keyframes to create expressive but
non-adaptive results which cannot be reused for other videos. Al-
ternatively, programming-based approaches allow users to develop
interactive effects, but are cumbersome for users to quickly express
their creative intents. In this work, we propose a lightweight visual
programming workflow for authoring adaptive and expressive pose
effects. By combining a programming by demonstration paradigm
with visual programming, we simplify three key tasks in the author-
ing process: creating pose triggers, designing animation parameters,
and rendering. We evaluated our system with a qualitative user
study and a replicated example study, finding that all participants
can create effects efficiently.

ACM Reference Format:

Anonymous Author(s). 2023. PoseVEC: Authoring Adaptive Pose-aware
Effects using Visual Programming and Demonstrations. In Proceedings of
ACM Conference (Conference’17). ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Human-aware motion graphics refer to graphical assets and ani-
mations that can be rendered reactively to changes coming from
tracked biometric data such as face, hand, or body pose. These types
of content are growing in popularity in many creative domains like
visual effects in films or interactive augmented reality (AR) filters in
mobile applications such as Snap, Instagram, or Tiktok. In particular,
pose-aware visual effects—motion graphics designed to be triggered
or controlled by a user’s body pose has gained a lot of attention in
sport tutorials, AR lens and video effects creation. Figure 2 shows
some examples of pose-aware visual effects, which we henceforth
refer to as pose effects.

However, creating adaptive and expressive pose effects still re-
mains a challenging task for visual effect designers. Tradition-
ally, these effects are often produced by using keyframe-based
approaches [1, 5, 19] where animations are baked into the video
timeline. As a result, the output pose effects are non-adaptive, which
means the designers cannot reuse a pose effect on another video
or on a live video stream. For instance, when creating a pose effect
similar to the one shown in Figure 2, if the person in the video
slightly turns around, or changes to a different pose, then the effect
designer will have to adjust the existing animations to adapt to the
new changes in poses. This cumbersome process makes it difficult
for the designer to reuse an existing effect or adapt it to a new
creative idea.

In recent years, various dedicated tools such as Lens Studio,
Spark AR, and Tiktok Effect House have been created to promote
developing pose effects programmatically, with the aim of mak-
ing the authoring workflow both expressive and adaptive. This
approach gives designers a lot of flexibility to fully customize the
low-level details such as how a pose is tracked and how pose data is
transformed and mapped into the video animation. This flexibility

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

116

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

Conference’17, July 2017, Washington, DC, USA

Figure 2: Examples of pose-aware visual effects. Left: A dance
matching effect and a counter effect Instagram filter that
show the number of dance poses the user could replicate
successfully[27]. Right: A stylized text-shaking animation
for a marketing campaign[25].

empowers users to create more expressive effects. More importantly,
the created effect is now an executable program that could be used
on another input video. This “reusability” benefit is significant
because it promotes community sharing and experimentation.

However, programming-based workflow is notoriously difficult
for non-technical designers. In order to create a pose effect, design-
ers typically need to accomplish three key technical work. Figure 3
provides an overview of these tasks. 1) Pose recognition: they first
need to set up a pose recognizer from the input videos, which often
requires them to manually write various functions to obtain joint
configurations, setting up an algorithm to perform pose matching,
and fine tune the detection threshold. 2) Animation design: in this
step, users transform low-level pose data like joint index, distance,
or angle into animation parameters and establish some parameter
mappings between these data and the graphics that they want to
animate. 3) Rendering: finally, they need to establish a render loop
for that can render graphical assets based on the animation param-
eterizations in step two and the pose recognition events in step one.
All of these steps are tedious and time-consuming as they require
significant technical expertise in handling low-level pose data and
writing event-driven animation codes.

In this paper, we investigate a visual creative workflow for au-
thoring adaptive and expressive pose effects. Our approach lever-
ages both Programming by demonstration (PbD) and visual pro-
gramming paradigms to simplify the programming-based workflow
for non-technical designers. Specifically, we allow a user to inter-
act with both a video canvas and a node programming canvas to
craft a pose effect. For node programming, we adapt the dataflow
programming model [33, 36] to the task of crafting interactive pose
effects. Our model consists of five types of nodes to assist in pose
recognition (e.g., pose recognizer node & logic node), animation
design (data node & transform node) and rendering (render node).
Users can connect one node to another to craft an effect and see it
rendered on the video canvas in real-time. In addition, users can
directly interact with the video canvas to quickly specify complex

Figure 3: Current workflow using Lens Studio to create a
pose effect: 1) pose recognition: obtain T-pose joint data us-
ing a provided function and load a T-pose video into the
system to acquire T-pose data; 2) animation design: storing
and transforming the pose data into animation parameters
using another script; 3) rendering: Using a body tracking
tracker to associate a virtual effect with body parts, and mod-
ifying the movement trigger response script to set up the
trigger response for the T-pose effect.

pose configurations such as pose skeleton data, joint data, or pose-
relative asset positioning. This unique combination allows us to use
the video canvas as both an output panel and a companion editor,
simplifying the visual programming workflow even further.

To this end, we developed a proof-of-concept web authoring
application called PoseVEC (Pose-aware Visual Effect Creator). Our
goal is to use PoseVEC to examine how users could use both PbD
and visual programming in crafting expressive and adaptive pose
effects. PoseVEC supports both video from a live webcam input or
from an uploaded files. To enable adaptive behaviors in pose effects,
we leverage a one-shot pose embedding machine learning (ML)
network [32] to perform real-time pose matching on the source
video. This core detection mechanism is represented as a node
in PoseVEC. More importantly, users could use other nodes in
PoseVEC to iteratively add animation behaviors on top of the initial
pose detection node. This process allows a user to use PoseVEC to
quickly create pose effects that are both expressive and adaptive.
The resulting effects can be reused on a different video or in a
live video with minimal or no configuration needed. In a sense,
PoseVEC empowers users to craft reusable template effects rather
than baked-in effects. It could enable novel visual effect applications.
For example, video editors could save editing time by developing a
pose effect once and apply it to new videos or to existing videos
with compatible poses. Designers could use PoseVEC to mock up
new AR lens effect by designing on an upload video and testing on
the the live webcam view.

We performed two evaluations to assess the effectiveness of our
tool: a first-use study to gather feedback on our authoring workflow
and the usability of PoseVEC, and a replicated example study to
demonstrate the utility and expressiveness of PoseVEC. In summary,
our contributions include:

o The design of a new approach that combines PbD and visual
programming to help users author adaptive & expressive
pose effects using human poses.

e The instantiation of this workflow in a proof-of-concept
web authoring system called PoseVEC. PoseVEC provides
users with a node graph model that was designed specifi-
cally to ease pose effect authoring. It also integrates direct

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

233
234
235
236
237
238
239
240

242
243
244
245
246
247
248
249
250

251

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

278
279
280
281
282
283
284
285
286
287
288
289

290

PoseVEC: Authoring Adaptive Pose-aware Effects using Visual Programming and Demonstrations

video interaction to further simplify and speed up user
workflow.

e A qualitative evaluation an a replicated examples demon-
stration to examine the usability and utility of PoseVEC.

2 RELATED WORK
2.1 DPose Effects Applications and Authoring

Authoring poses effect refers to the task of adding visual effects to a
video that involves human subjects. These visual effects can either
be directly applied to human subjects(e.g., contouring the body part)
or be driven by human actions to create the illusion that the assets
are part of the video and respond to the pose movement. There are
two main approaches to author pose effects:post-production and
the programming.

The post-production approach is more prevalent in filmmak-
ing, where video editors use tools such as After Effects to add
keyframes for graphical assets and animation to the video timeline.
Despite the rich features available in these software to help users
in motion graphics creation and editing, it may be too complex
for amateurs to learn to use. To address this challenge, researchers
have attempted to streamline the motion graphics creation process
for amateurs. For example, Katika [14], is an end-to-end tool for
authoring motion graphics videos that aim to help users understand
the process of motion graphic creation and create motion graphic
videos without external guidance. Similarly, PoseTween [19] is a
system designed for novice users to create virtual object animations
by leveraging human motion. In contrast, our work focuses more
on the programming approach. In particular, we investigate how to
simplify the process of authoring pose effects using programming
workflow. Compared to the post-production approach, developing
effects programmatically allows the creator to have more creative
freedom.

Many complex and novel applications of interactive body-based
experience using programming workflow have been explored. For
instance, Anderson et al. has built a Mirror-based augmented reality
system to record and learn physical movement sequences [7] This
system uses the body-tracking technique and skeleton comparison
to provide posture guidance and feedback in real-time. Another
example is PoseBlocks [15], a block-based programming toolkit
designed for educating students on building interactive physical
movement-based experiences. This toolkit incorporates Al-powered
face, hand, body tracking technique into blocks for students. Re-
alitySketch [34] leverages interactive sketching to parameterize
real world objects and create interactive in-situ AR visualizations
driven by those parameters.

Moreover, some research focuses on virtual puppetry techniques
to create animations for non-human objects, where virtual objects
are manipulated through physical control such as keyboard con-
trol and body-tracking sensors. For instance, Chen et al propose
an interactive system that allows novice users to scan and ani-
mate real-world objects by employing a deformation method to
process skeleton information and object geometry [9]. Similarly,
Seol et al. proposed a real-time motion puppetry system that allows
users to manipulate the motion of non-living creatures naturally
through direct feature mapping and motion coupling [30] In all
of these examples, the high barrier of entry associated with the

Conference’17, July 2017, Washington, DC, USA

programming-based approach is apparent, as it typically requires a
team of researchers or engineers to write programs from scratch in
order for users to create pose effects. Our research makes the first
attempt into looking at how to simplify this workflow, such that
normal designers could also directly learn and create pose effects.

2.2 Visual Programming for Interactive
Animations

Visual programming is a common approach to reducing program-
ming complexity, including declarative programming, dataflow pro-
gramming, or block-based programming. These approaches typi-
cally present users with a visual abstraction in the form of blocks
or nodes. Each of these nodes could represent a source of data or
functions or operations to be executed. By setting up and connect-
ing these nodes, users could construct a program in a declarative
manner. Dataflow programming is most often used in helping users
work with complex 3D rendering pipelines to produce shaders [31]
or materials [4]. In contrast, our research focuses on helping users
create interactive behaviors. To this end, numerous dataflow pro-
gramming models have been developed for a wide variety of tasks
such as gesture programming [16, 21], animations [26, 29], vector
drawing [13], and VR programming [11, 36]. And yet, non of these
works have focused on pose effects design. More recently, social
media platforms like Tiktok and Snap have started introducing
creator tools for users to create AR filters based on body tracking,
allowing users to create and share interactive pose effects. However,
their dataflow programming is not specific to pose effect design. In
designing PoseVec, we identified three key tasks for pose effect pro-
gramming and developed a set of nodes and authoring interactions
to simplify these tasks. Briefly, these features support creating pose
recognition, animation design, setting up the rendering loop, and
refining and test. See Sec. 3 for more task details.

2.3 Integrating Visual Programming with
Programming by Demonstration

One main issue of visual programming systems is that it can be
slow for users to describe complex behaviors quickly. For example,
when describing geometric configurations of a particular pose of
interest, it is usually faster and easier for users to provide a sys-
tem with some examples rather than constructing the example in a
declarative manner. To this end, several recent works have started
integrating programming by demonstration components into vi-
sual programming systems. For example, in GestureStudio [22],
each gesture is recorded and visualized in a timeline block, which
later can be assembled with other gestures or attached callback
action. Similarly, Gesture Knitter [23] allows designers to provide
hand gesture demonstrations first, then convert them into primitive
blocks. This approach enables the creation and customization of
complex gesture recognizers.

In addition, recent research utilized this new workflow approach
in AR experience authoring. GestureAR [35], for example, enables
freehand AR authoring and AR interactive experience. In the au-
thoring process, users start by recording hand gestures, which are
then associated with virtual content behaviors using a visual pro-
gramming interface. Subsequently, they can test interactive content
in real-time. Similarly, Rapido [18] focuses on video prototyping

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

Conference’17, July 2017, Washington, DC, USA

sttt et Jow(T) (Gt g @

ADD GRAPMICAL ASSETS | MODIFY GRAPHICAL A
ey |_owe wew nowan][0][7 Jone e

Height

it S/ Backgrovd) [ot Opacy| .

oo <suge s

Anon.

[Tt (5]

| Onine Trechg |

Node Cazvas Graph Cortrols

Figure 4: Overview of how users could author and test a pose effect using PoseVEC. Here the user is creating an effect that could
dynamically render the angle value of the right knee on the video. Left: The PoseVEC interface in offline editing mode. Right:
The PoseVEC interface in online tracking mode. In offline editing mode, we show the steps for creating a pose recognizer by
scrubbing the video (black numbered annotations) and steps for creating a pose-related data node through joint selection on
video canvas (blue numbered annotations). In online tracking mode, users can see the pose effect happens on the video canvas

and observe the data flow in the pose program.

using AR-enabled mobile devices. Designers first draw sketches
and demonstrate user intention in a video embedded with AR infor-
mation. Then they use Rapido to convert the video prototype into
an executable state machine, such that they can switch between
these representations to test and refine the prototype. Teachable
Reality [24] employs vision-based interactive machine learning
to author tangible AR prototypes in-situ, by enabling the user to
detect, train, bind, and author physical-virtual interactions.

Inspired by these works, we adopt a similar strategy in our
research into the new problem domain of pose effect authoring. We
developed several unique PbD components to make it easier for
users to construct a pose effect program in PoseVEC. The key idea
in our PbD approach is to enable users to interact directly with the
video canvas to provide complex pose configurations to the node
program. For example, using a pre-trained one-shot pose embedding
model [32], we could accelerate the process of creating and fine-
tuning a pose recognizer node. Users could interact with the pose
skeleton joint on the video to select joint of interest, compute joint-
wise parameters like distance and angle, or position assets relative
to some joints. By identifying and offsetting these tasks to the video
canvas, we create a more streamlined programming workflow for
pose effect designers.

3 SYSTEM OVERVIEW

In this section, we outline the key components of our system and
illustrate how these components are used to produce a pose effect.
We follow a hypothetical user, Alice, as she designs a pose effect
illustrated in Figure 4. We show how Alice could craft this pose
effect using the visual workflow in PoseVEC without having to
resort to using any explicit programming.

For this effect, Alice wants to display an overhead text that shows
the joint angle of the right knee while the person is squatting down.
The text is anchored to the person’s head and moves along with the
head movement during squatting. Please refer to the supplementary
video for the complete design process and the final pose effect.
Detailed definitions of the pose program and node designs are in
Section 4. Alice starts by uploading a video of someone doing the
similar squat pose that she found online.

Pose recognition. The pose recognition trigger is the most impor-
tant component in PoseVEC as it drives pose effect and animation to
occur. After Alice uploads a video to the scene, she drags around the
slider bar to select an interesting pose. Then, she presses the "Pose
recognizer’ button under the recognizer tab to add pose recognizer
to the node program. As her design goal is to create a pose effect
for a squat-down video, she adds a standing pose and a squatting
pose trigger to the node program. See Figure 4 (black numbered
annotations) for an illustration of these steps.

Animation design. Next, Alice needs to obtain joint angle of the
right knee and then render this value on top of the person’s head.
Using PoseVEC, Alice needs to add two more nodes to the current
node program: the Joint Angle Node from the Data Node category
and the Single Text Render node from the Render Node category.
First, she creates a Joint Angle Data node by selecting the right hip,
knee, and ankle joints. This Joint Angle Data node will output the
selected joint angle information as the node program runs. Then,
she adds a Single Text Render node to the node program, which
will automatically add text to the video canvas. She then drags the
text to her head and holds it for one second to anchor the text to
her head. We explain this anchoring operation in more details in
the System Design section below (Figure 5). Lastly, she saves this

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459

461
462
463
464

465

466

467

468

469

470

471

472

473

474

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494
495

PoseVEC: Authoring Adaptive Pose-aware Effects using Visual Programming and Demonstrations

anchoring information by clicking on the render node. To make
the text more intuitive, she also inputs "Angle" as the prefix of the
final text. Finally, she connects the Joint Angle Data node to the
input of the Single Text Render node to complete the pose effect
design. See Figure 4 (blue numbered annotations).

Rendering. Now, Alice needs a logical condition that controls the
timing of the appearance of this pose effect so that it only appears
while the person is squatting down. She adds a During node from
the Logic node category. This During node takes two boolean inputs
and constantly outputs a boolean value. It outputs true as long as
input 1 is true before input 2 turns true. In this context, Alice uses it
to ensure that the pose effect is triggered only when the transition
of poses, from the squatting position to the standing position, is
detected. She then connects the squatting down pose trigger to
input 1 of during node and the standing pose trigger to input 2.
Finally, she connects the output of during node to the input of the
joint angle node for completing this node program. See Figure 4,
bottom-left).

Refine and Test. After Alice finishes all node connections, she
switches the offline editing mode to online tracking mode. Imme-
diately, she can see that the right knee joint angle is highlighted
while the person is squatting down. Alice can also observe how
data flow from one node to another at some key moments. (See
Figure 4, right)

Once Alice is satisfied with the pose effect, she can upload an-
other video of a squatting pose or turn on the webcam to test the
pose effect. Alternatively, she can upload a different sport video and
refine the pose program slightly to adapt the same pose effect to a
different sport pose. All she needs to do is to drag around the video
slider and adding more pose recognizers to the current program.

4 SYSTEM DESIGN

We designed PoseVEC to help users craft expressive pose effects
using visual programming. To make the system easy to use for
non-technical designers, we have three main design goals:

(1) Visual workflow: providing a node programming UI that
can support all key tasks in programming pose effects, in-
cluding asset import, pose recognition, animation design,
and rendering.

(2) PbD via video interaction: simplify the programming work-
flow by allowing users to directly interact with the input
video stream to specify pose-related configurations for the
node program.

(3) Ease of testing: providing visualizations and tools that allow
users to quickly see results, test, and refine the pose effect
program.

4.1 Programming a Pose Effect

Figure 4 shows an overview of PoseVec. A user can craft a pose effect
by interacting with both the video canvas and the node canvas. A
user can start by creating an input video source. We support both
live webcam stream and offline video upload. Upon selecting an
input video source, PoseVEC will switch to the editing mode.
Editing with nodes. In the editing mode, a user can add graph-
ical assets (Figure 4, top-left) to the video canvas and modify them.
They can also add nodes to the node canvas to construct pose effects.

Conference’17, July 2017, Washington, DC, USA

Note that the node program remains inactive during this stage as
there is no data flow in the connections. Our node program follows
the dataflow programming model [36] where connected nodes form
a direct graph and data can flow from the leftmost source nodes
(e.g., pose recognizer & nodes) to the rightmost sink nodes (e.g.,
render nodes). Users can establish connections between nodes by
dragging an edge from one node and connecting it to another node.
While dragging the edge, input slots that have different input types
will be disabled, allowing users to easily identify which input slots
can be connected.

Editing with video demonstrations. During editing, users
could interact with the video canvas to provide additional pose-
related configurations to the node program. Table 1 provides an
overview of which nodes could be created via the video canvas,
these nodes are marked with “video-linked”. Video-linked nodes
can store pose-related data and can monitor and update its stored
data. For example, to create a pose recognizer node, users could
scrub the video timeline to select the desirable pose and click on the
pose recognizer node button on the Ul Likewise, selecting a joint
on the pose and clicking on a Joint ID data node will create a data
source for the corresponding joint. A user can also add, position,
or anchor graphical assets to the pose to more easily define how an
asset should be rendered relative to the selected pose. Selecting an
asset and clicking on a render node will add it to the node canvas.

Testing mode. To test the node program, a user can switch
to the online tracking mode. In this mode, “source” nodes like
recognizer and data will start propagating data to the rest of the
node graph. For example, the pose recognizer node will leverage
a pose similarity ML model to output a true trigger event if the
stored pose is similar to the current pose in the video window. The
data node will simply output the data that was set when the node
is created. Eventually, when the data reaches the “sink” render
nodes, the assets on the video canvas are rendered accordingly,
creating the resulting animations of the pose effect. Running the
node program in this way gives users flexible options to test the
pose effect. They could see the effect on a static frame, a playback of
a video file, or a live webcam stream. Note that in this mode, users
cannot modify graphical assets or nodes, they can only observe the
behavior of the node program and switch back to the editing mode
to refine the pose effect. When the node program is executed, we
render line animations to visualize how the data moves through
the graph to help users better understand the model. See Figure 4
(bottom-right).

4.2 Node Types

Now we will describe in more details the design of PoseVEC’s node
model. A complete description of our node model is included in
the Appendix. Overall, we have five main types of nodes. These
nodes were designed specifically to support three main tasks in
authoring pose effects: pose recognition (pose recognizer node &
logic node), animation design (data node & transform node), and
rendering (render node).

4.2.1 Recognizer Node. When added to the node canvas, PoseVEC
runs a one-shot pose embedding network to transform the currently
selected pose on the video canvas in to a pose embedding vector.
We use Pr-VIPE [32] due to its robustness performance in viewing

539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562

581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638

Conference’17, July 2017, Washington, DC, USA

angle and self-occlusion. The pose embedding vector is then stored
internally in the recognizer node.

When the user switches to editing mode, our system also com-
putes a pose embedding vector for every new frame in the video
window. When this data is available, all recognizer nodes currently
in the node graph will perform a similarity check between the
stored pose vectors and the current pose vector on the screen. We
use L2 distance to estimate a similarity score. If the resulting score
is smaller than a user-defined value, the pose recognizer node will
continuously output true signals.

4.2.2 Logic Node. Logic nodes can take pose recognizer nodes as
inputs to construct conditional logics. Users can use logic nodes to
create more interesting pose recognition behaviors. The input and
output values of logic nodes are boolean values. There are two main
categories of logic nodes: single-pose logic nodes and dual-pose
logic nodes.

Single-pose logic nodes accept only one input. These nodes are
used to create basic boolean operations. Specifically, trigger node
outputs a single true value when the input value changes from false
to true. It acts as a switch that is triggered by a change in the input
value. Constant boolean node contains a toggle that outputs true
(on) when the toggle is switched on, and false (off) when the toggle
is switched off. Reverse logic node outputs the opposite value of its
input.

Dual pose logic nodes typically take two or more pose recognizer
nodes as inputs. Or node output true if any of the input is true.
During node outputs true while the first input is true and until
the second input is true. Sequence node outputs true only if both
inputs had turned true sequentially. These nodes can be used to
craft more complex behaviors. For example, with Or Node, users
could chain multiple pose recognizer nodes together to create a
more robust recognizer for a certain pose. During node is useful
for rendering animations that should only appear within a time
range. And sequence node can be used for incremental tasks like
counting.

4.2.3 Data Node. A data node is a complementary “source” to the
pose recognizer node. It contains values useful for animating a
motion graphics effect around the human body. These values can
either be pose-related data or variables. The pose-related data could
include joint locations, distances, angles or even pose embedding
vectors. Data node actively monitors the skeleton pose on video
canvas and computes output pose-related information. To create a
pose-related data node, the user must first select the joints from the
2D estimated pose skeleton on the video canvas and then choose
the type of data node the user wants to create. Additionally, variable
nodes are used to store and manage numerical or vector data, and
they can be directly added to the node canvas.

4.2.4 Transform Node. A transform node contains mathematical
expressions and transforms the data in the data node into anima-
tion parameters. Some example operations supported by Transform
nodes include standard arithmetic operations (plus, minus, mul-
tiply, divide), vector operations (L2Distance, scalar), conversions
(normalization, number to text), and comparison.

4.2.5 Rendering node & graphical assets. In PoseVEC, users can
add by interacting with the asset panel(Figure 4, orange rectangle

Anon.

Dur 0.500

Set To Ungroup

onebyone p

Set Loc
LKnee
[26,-12]

Figure 5: PoseVEC supports anchoring to the skeleton op-
tion. To do this, users can drag and hold an asset (e.g., the
text “SQUAT DOWN?) for one second, then PoseVEC will
highlight the closet joint to which the asset can be anchored
with a yellow line. This anchoring information could then be
stored in the render node that controls the asset movement
(e.g., MoveTo Node) so that the anchoring information can
be applied during rendering.

annotation). After adding, users can design and adjust the assets by
dragging it on the video canvas. We provide options for working
with primitive 2D shapes, texts, imported images and GIF anima-
tions. Users can customize their look (e.g., sizes, colors, and styles)
or group assets together into a single object.

To render an asset, a user selects it on the video canvas and
clicks on a render node. A render node will be added to the node
canvas. A render node is a type of “sink” node, it only receives data
from other nodes. Render nodes represent render functions that
are executed on a group of graphical assets when receiving true
signals.

PoseVEC provides different kinds of functions such as asset
placement and movement, as well as adjusting asset opacity and
color. In addition, PoseVEC provides special render nodes that
contain a predefined asset group assigned with a specific render
function. More importantly, it also exposes animation parameters
as input for customization.

In particular, we define Joint Angle Annotation node and Joint
Distance Annotation node, which are designed to compute joint-
related information constantly and display that information on the
human body directly. We also have a GIF animation render node for
displaying and controlling GIF animation, and a Single Text Render
node that accepts text input dynamically and displays that text.

A common rendering operation in pose effects is anchoring an
asset to a pose joint in the video. PoseVEC simplifies this operation
using video canvas interaction. When a new asset is added to the
video canvas, by default, it is anchored to the video canvas. The
user can anchor an asset to a joint on the pose skeleton by dragging

639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

753
754

PoseVEC: Authoring Adaptive Pose-aware Effects using Visual Programming and Demonstrations

Please rate your own programming experience
0 2

mNone Novice

Have use 3D software (Blender, Maya, Houdini) to create motion
graphics

Have use video editing software (After Effects/Premiere
Pro/Final Cut) to create motion graphics

Have used AR design tools(SparkAR/ TikTok Effect House/Lens
Studio) to create lens

Have used with TikTok/Instagram/Snapchat filter

Intermedian

Conference’17, July 2017, Washington, DC, USA

5 2
4 6 8 10 12

Advance mExpert

2 4 6 8 10 12

Figure 6: Distribution of participants’ programming experience (top) and visual authoring experience (bottom).

and holding the asset for one second. A yellow line indicator will
pop up to help users confirm the selected joint (Figure 5). Releasing
the mouse click button will associate the joint identifier with the
asset. After this assignment, any subsequent operations to set the
position of the asset will record the position relative to the selected
pose joint.

4.3 Implementation Details

We develop PoseVEC as a web application using Typescript. We use
Fabric.js [28]. for canvas rendering and Animation.js [10]. for anima-
tion rendering. Our node graph model is based on Litegraph.js [6].

For ML capabilities, we use Tensorflow.js [3] and Mediapipe [20].
Specifically, we use Mediapipe to perform real-time 2D pose estima-
tion on the incoming images from the video window. We support
both uploaded video and live webcam video. We convert a pre-
trained checkpoint of the Pr-VIPE model [32] into binary files that
could then be loaded to the browser at run time. This model is then
used to compute pose embedding vectors from the estimated pose
skeleton data.

To improve playback and pose detection performance, we pro-
vide users with a script to pre-process the video file before up-
loading it to PoseVEC. The script computes pose skeleton and its
corresponding pose embedding vector for each frame, and store all
data into a JSON file. A user could then load both the video and the
JSON file into our system.

5 USER EVALUATION

We conducted two studies to assess the usability and utility of
PoseVEC. The first study was a first-use study with novice users
to help us assess the system’s usability and threshold. The second
study is a replicated example study to examine the utility and
expressiveness of the system.

A more controlled experiment to compare PoseVEC with a base-
line would be difficult because there is no clear baseline. PoseVEC
focuses on pose-based expressions, which is not a common fea-
ture in video editing tools. Some commercial solutions like Lens
Studio can support authoring body tracking based effects, but cur-
rent workflow still requires a significant amount of programming
knowledge. As our workflow design is geared toward designers,
we wanted to first conduct this qualitative evaluation to assess
the system’s usability and examine the validity of our workflow

for pose effect design. Although we did not test it with experts,
our replicated example studies revealed some insights about what
experts could achieve using our tool.

5.1 Participants

We recruited 12 participants to conduct our first-use study (5 males,
6 females, 1 prefer not to disclose; aging from 19 to 30). We selected
users with some programming and visual effect creation experience
(Figure 6). In general, most of our participants have some program-
ming experience and have used AR lens filters. All of them have
some experience in creating motion graphics using at least one type
of commercial software.

5.2 Procedure

Each participant spent about two hours in the study. We began the
session by presenting an overview of PoseVEC, followed by three
tutorials of increasing difficulty for the participants to practice. For
each tutorial, we showed the output effect of a node program and
asked them to replicate the same effect. We then introduced the
nodes that would be used for the tutorial and guided them through
completing the example. The tutorial session lasted for about 50
minutes.

Open-Ended Exploration Session. In this session, we first showed
our participants some pose-based effects that we created. We then
asked them to describe a pose-based effect they would like to create
using PoseVEC based on the examples we provided. During creation,
participants could use the documentation of PoseVEC as a refer-
ence. They could ask questions about the system for clarification.
When participants were satisfied with the results they created, they
were asked to fill out the Likert scale questions (partially adapted
from the SUS questionnaire [8]) as well as some open-ended ques-
tions. The session lasted about 60 minutes. We compensated the
participants for their time.

5.3 Results and Discussion

Figure 8 shows an overview of participants’ ratings on PoseVEC. All
participants were able to explore PoseVEC and create unique pose-
based effects. We show some examples in Figure 7. Please refer to the
supplementary videos for more details on the participants’ creations.
In general, participants agreed that PoseVEC helped them create
what they had in mind, (Mean = 4.67, SD = 0.49). P6 commented

760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

812

813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870

Conference’17, July 2017, Washington, DC, USA

Great Job!

Figure 7: Screenshot of pose effects created by participants
using PoseVEC.

“I am able to apply most of my imagination including using all the
nodes introduced to me to create motion graphics”. P10 commented
“It has lots of flexibility in creation”.
System Usability. In Q2 (Mean = 1.50, SD = 0.52), most partici-
pants agree that our system is not cumbersome to use because its
Ul is straightforward and similar to that of other software (like the
blueprint in UnrealEngine), and its keyboard control is similar to
others. They found the node programming and its operation useful
because "it visualizes variables and connections I have made for con-
structing motion graphics." (P2). P4 commented that "The operation
like dragging assets and nodes to the scene is straightforward.". P8
commented that "The node programming makes the logic flow more
modular. It breaks down into smaller steps so that you can modify to
a higher degree."
System Expressiveness. In Q4 (Mean = 4.50, SD = 0.80) and Q5
(Mean = 4.42, SD = 0.67), many participants agreed that they could
try out creative ideas and explore many alternative design options
by using PoseVEC. Several participants specifically mentioned that
the use of pose recognizer helps them create design quickly. P10
commented that "Normally I would use keyframes to create motion
graphics, which I have to go back and forward to find the perfect
keyframe in the video. But with this pose recognizer, I can drag the
slider and add it to the scene, it is easier than my current workflow.".
P1 mentioned how easy it is to apply the same effect on different
videos: "Itake a pose from one video and convert it to a pose recognizer,
then I can use the same recognizer and nodes on other videos." P3 said
that the design of logic nodes is convenient. He was able to "quickly
construct complex behavior using existing logic nodes."

Specially, all of the participants rated positively on how pose-
related nodes like joint angle annotation and joint distance annota-
tion nodes can speed up their creation process (Q7, Mean = 4.75,

Anon.

SD = 0.45). P12 commented "I can use joint distance annotation node
to visualize distance of between joints so that it helps me to make
decisions in design". P4 said "It is nice because I don’t need to do extra
programming to implement it. I just add it to the scene and it is ready
to go." P2 commented "I like it because once I define joint as input,
this node handles the rest."

Technical Expertise. When asked whether our system requires a
high level of technical expertise (Q3, Mean = 3.67, SD = 0.78), half
of our participants rated it positively while the other half had a
neutral opinion. For participants who have a positive view on this,
they said there is a learning curve for this system but the tutorials
and documentation provided make it manageable. Those who had
a neutral view pointed out that the logic nodes and data flow may
not be common knowledge for someone with no programming
experience. However, both sides agreed that people need to take
some time to understand the concept and explore the system. The
results of the first-use study showed that the majority of participants
(10 out of 12) felt confident using our system (Q6, Mean= 4.33,
SD=0.98). One participant described it as feeling natural to use,
while another participant had a negative rating towards the system
However, both of them mentioned that they needed more time to
explore the system on their own to fully master it.

Workflow Comparison. In answering the question "If you have
to produce this result again, would you use your existing workflow
(software), or would you consider using this system?, 67% of the
participants choose our system over their current workflow. Several
participants who are relatively new to visual effects share a common
belief that existing software is mainly designed for other types of
functionality, which can be difficult for them to learn how to create
the same effects. As a result, they prefer to use our system for
expressive pose-based effects as they find the learning curve to be
relatively mild.

Some participants who have more experience using visual effect
editing software have different perspectives on this question due to
some specific needs in their current workflow. One pointed out that
"Our system is more user friendly but it lacks some extra customization
for graphical design. For showing pose-based related graphics this is
the easiest one I have seen. but for creating other graphics, it lacks a bit
of power" (P9). P9 was referring to being able to create and customize
more expressive animation such as spinning that our tool currently
do not support well. P5 noted that since mainstream expressive AR
lenses tend to focus on facial expressions, she prefers to use existing
software for those purposes. However, for pose-based expressive
lenses, she finds our tool to be more suitable since it is specifically
designed for that purpose. P11 shared similar comments, "If this
tool can be integrated into the software I use, I definitely will use that
to improve my workflow."

Application of pose effects. In response to the question "how
would you use the output pose effect?", the majority of participants
(10/12) mentioned that they would apply it to a workout training
video. They believe that PoseVEC can help them improve their
workout forms, prevent injuries as well as increase workout ef-
ficiency. They believe that the interactive visualization of poses
can help people learn better. Some participants expressed interest
in creating motion graphics for workout poses. Moreover, a few
participants mentioned that PoseVEC can be used for animation
creation and video editing. P12 said "I would like to use it in video

871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928

929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985

986

PoseVEC: Authoring Adaptive Pose-aware Effects using Visual Programming and Demonstrations

Conference’17, July 2017, Washington, DC, USA

Q1. The system assist me to create what | had in mind 4 8 |

Q2. | found the system very cumbersome to use | INNININIGINININGGE S 6
Q3. This system can be used without requiring a high level of technical expertise 4 ez
Q4. | feel like | could easily and quickly try out creative ideas by using this system 2 8 |
Q5. | feel like | could explore many alternative designs quickly by using this system 6 |
Q6. | felt very confident using the system 1
Q7. Pose-related nodes can speed up my creation process 3 9 |

0%

m Strongly Disagree

Disagree

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Neutral Agree mStrongly Agree

Figure 8: Percentage stacked bars showing the participants’ ratings on PoseVEC after the open-ended exploration session.

editing so that I can add effects on specific moments." She said that
she could use PoseVEC to combine her pose and some gif effects to
create more expressive motion graphics.

In summary, the feedback from our novice users indicates that
novice visual effect creators could learn the programming model of
PoseVEC and use the system to produce the effect that they want.
These findings also suggest the following key benefits of PoseVEC:

(1) Our approach of combining video interaction with pose
recognition is straightforward and user-friendly.

(2) The specialized pose-based node design saves users from
performing complex data transformations; instead, they
could focus more on their creation process.

(3) Our visual programming workflow enables users to craft
complex poses without requiring explicit programming.

5.4 Areas for Improvement

We also collected feedback from participants when they disagreed
with the rating questions for future improvement.

UI Controls. Several participants commented on the need for
Ul improvements and better controls on asset properties. P10 sug-
gested using icons to represent buttons: "When I am doing design, I
used to look for icons, not text buttons.” Participants also reported
that it was sometimes inconvenient to scroll up and down between
video canvas and node canvas to edit the nodes and see the effect:
"Not being able to increase the size of node canvas makes it difficult
to read and do operation node canvas." (P9). They suggested that
adding a customization for the node canvas window can solve this
issue. Moreover, they also suggested to add a variety of styles and
properties to current assets such as gradient color (P12, P3) and
color filters (P8).

Animation and Workflow. Several participants recommended
PoseVEC should add more render nodes to enable more precise
control over animation movement. They requested functionalities
to trace animation paths using brushes (P1) or joint movements
(P12) as paths that can be edited later on. This would give them
greater control and flexibility in designing movement animations.

6 REPLICATED EXAMPLE STUDY

To show the utility and expressiveness of the authoring workflow
in PoseVEC, we conducted a replicated example study and recre-
ated three complex pose effects from examples. We followed the

Type 1 Demonstration study approach that Ledo et al. had char-
acterized [17]. The first example is an interactive Yoga tutorial
inspired by the YouMove system [7]. The second example is an
interactive basketball dribbling effect inspired by the PoseTween
system [19]. The third example called “Just Do It” is a kinetic typo-
graphic effect inspired by a collection of effect we found online [25].
Figure 9 shows some keyframes of the examples that we produced.
The full demonstrations of these replications can be found in the
supplementary video.

6.1 YouMove’s Yoga Tutorial

The goal of this example is to showcase how PoseVEC can be used
to create interactive exercise tutorial content. A unique feature of
the YouMove system is pose guidance. Using an augmented mirror,
a user could receive real-time feedback about her own pose when
striking that pose for a period of time in front of the system. The
system could also provide feedback to the user’s performance with
some on-screen texts.

To reconstruct this key feature, we first use the elapse time data
node and the comparison transform node to create a time delay
trigger. The trigger will fire True signals after the user strikes a pose
for a period of time. Connecting to this delay trigger, we further
design the pose guidance feedback text rendering mechanism. To
do this, we need to convert pose similarity scores to performance
rating text. We obtain current pose information on the video and
then compute similarity scores with a target pose using a com-
bination of pose-related data nodes and a vector math node. We
then normalize the scores to values between zero and one using a
transform node, and convert them into performance text using a
"number to string” transform node. This performance text serves
as input for the render node. With this program, the text can be
rendered while the user was holding the pose, providing real-time
feedback on the similarity between the user’s current pose and a
target pose of a Yoga instructor.

6.2 PoseTween’s Ball Dribbling

This example aims to demonstrate the ability of PoseVEC in creating
interactive animations driven by animation parameters. The key
challenge of PoseTween is to recreate the basketball dribbling and
shooting effects. We need to create a hand-bouncing and hand-
shooting behaviors for the virtual ball.

987

988

989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

1044

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

1102

Conference’17, July 2017, Washington, DC, USA

Anon.

Figure 9: Keyframes of the three replicated examples: YouMove [7] Yoga Tutorial (top), PoseTween [19] Basketball (middle),
Kinetic Typography (bottom).

For the first effect, the ball should exhibit a vertical movement
that corresponds to the user’s hand. The movement of the ball must
also synchronize with the up-down movement of the person’s hand
movement. To allow users to control the ball movement with their
hands, we used a joint angle data node to capture the angle of
the user’s elbow joint. This data is then normalized into a value
between zero and one using a transform node so that it can be
used to control the animation timeline of the ball. We uploaded
a basketball dribbling GIF animation as a render node. Then we
anchored the GIF animation to a desired location near to the hand
joint. We then connected the aforementioned transform node to
the GIF animation rendering node, so the elbow angle in the person
pose can be used to drive the timeline of the GIF animation. As a
result, when the user raises his hand (i.e., the elbow angle is low),
the animation seeks to the beginning (near the hand); and when the
user lowers his hand(i.e., with a high elbow angle), the animation
seeks to the end (e.g., near the floor). Finally, we used a change

10

opacity node to hide this render node when the user performs the
shooting pose by connecting it to the shooting pose recognizer.

To ensure that the first effect only occurs before the shooting
effect, we added a new pose recognizer for the ball-shooting pose,
and then used a during node that connects the ball-dribbling pose
recognizer and the ball-shooting pose recognizer. For the shooting
effect, we also uploaded a basketball shooting GIF animation as
a render node and anchored it to the user’s hand. To ensure that
the user only saw this animation when the he was performing a
shooting ball pose, we used a change opacity node to hide this ani-
mation when the ball-dribbling pose occurred. We then connected
the shooting pose to a ball-shooting animation.

6.3 “Just Do It” Kinetic Typography

In the original collection, the artists at Shotopop studio created
many different kinetic typography effects where the text “Just Do
It” are stylized and animated dynamically to various athletic poses.

1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160

1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217

1218

PoseVEC: Authoring Adaptive Pose-aware Effects using Visual Programming and Demonstrations

We attempted to create an example in the style of this collection.
Briefly, for this effect: 1) the texts would initially show up at the
user’s feet and gradually move to the user’s shoulders; and 2) as the
user performs a jumping jack pose motion, we would dynamically
stylize the text by changing its color and line distance parameters.

There are two main tasks involved in creating this example:
animating the color, opacity, and positions of the text and imple-
menting logical conditions to control the changes in response to
the jumping jack motion.

For the first task, we combined the recognizer node with the
during node to ensure that the computation occurred only when
users were performing a jumping jack pose. Then we obtained
the joint location of a wrist from the data node. By computing
the height of the wrist location between two jumping poses, we
converted it into an animation parameter that controlled animation
render nodes.

For the second task, we use the moveTo render node to render
keyframed transformations of the text. This node allows us to record
a beginning state and and ending state for the input text, and it will
render the interpolated changes in between these two states. We
made the size and the line distance slightly bigger for the end state
to create the expanding effect for the text. We then anchored the
text to the user’s feet as the starting location of the movement and
then to the user’s shoulder as the ending location. Additionally, we
also added the change opacity node for the appearing animation,
and the change color node to alter the text’s color.

7 SUMMARY

We present PoseVEC, a lightweight web-based authoring tool to
create expressive and adaptive pose effects. To flatten the learning
curve for users, it provides a visual workflow using node program-
ming. It combines programming by demonstration and visual pro-
gramming to allow users to create pose recognizer directly from the
input video stream, obtain low-level pose information from node
programs, and easily convert it into animation parameters. More
importantly, it also relieves the burden of non-technical designers
for testing. The visualization of node programming allows users to
quickly test and refine the pose effect program, making it easier for
them to iterate and improve their designs. We evaluated PoseVEC’s
usability and utility through two stuides: first-use study with novice
users and a replicate example study. All users from the first-use
study could create expressive pose effects efficiently.

7.1 Limitations and Future Work

Our work suggests several interesting directions for future research.
We would like to incorporate depth estimation [2] into our current
workflow to create more pose-aware graphics according to changes
in pose size. For example, as a user walks away from the camera,
the size of the graphic could resize accordingly. This way we can
create more realistic effects.

Although PoseVEC is currently limited to prototyping single-
person pose effects, it would be valuable to extend the workflow to
explore group interactions such as collaboration and competition.
PoseVEC has to incorporate multi-person pose tracking technol-
ogy [12] to replace the current Mediapipe backend. In addition,
creating pose effects for groups would require the use of new node

Conference’17, July 2017, Washington, DC, USA

designs. For instance, we could create a group exercise counter
which counts as the entire group completes a set of exercises. Or
we could create an animated text effect that responds to the distance
between two dancers on the screen.

Although PoseVEC focuses specifically on pose-effect authoring,
the framework in PoseVEC could potentially generalize to authoring
effects based on other types of discrete ML-based recognizer like
sound, effect, facial gesture, or hand gesture. A direction for future
work is to explore extending PoseVEC into a general authoring tool
for multimodal ML-based recognizers.

PoseVEC currently leverages an off-the-shell pose embedding
model called Pr-VIPE [32] to handle pose matching. This model
has been shown to be effective against view angle changes and
self-occlusion. However, false positives might still occur. PoseVEC
allows users to tune the behavior of the recognizer using threshold
or by combining multiple recognizer nodes together. However, since
we are focusing on the authoring aspect of PoseVEC, we have not
evaluated it in a production use case where false positives are much
more difficult to control. Future work should consider how to fine
tune or even retrain Pr-VIPE on more domain-specific pose dataset
to enable export and production workflow in PoseVEC.

Feedback from users in our user study suggests that there is still
room for improvement in the user interface of our tool. For instance,
when making connections between nodes, it would be helpful to
show hints or suggestions about which nodes could be connected.
This would prevent non-technical users from making mistakes.
While PoseVEC has an inspector panel that lists all graphical assets
and their associated render nodes, it would be beneficial to allow
users to preview the animation details of each render node, making
it easier to modify each render node. It would be helpful to provide
a library of node programs and templates for designers to browse
for ideas and improvise.

REFERENCES

[1] [n.d.]. Professional video editing software | adobe premiere pro. https://www.
adobe.com/products/premiere html

[2] 2021. Robust Consistent Video Depth Estimation. https://robust-cvd.github.io/.

[Accessed 05-Apr-2023].

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yanggqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,

Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike

Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul

Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,

Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

https://www.tensorflow.org/ Software available from tensorflow.org.

[4] Adobe. 2023. Create 3D Models on Desktop and in VR. https://www.adobe.com/
products/substance3d-modeler.html. [Accessed 04-Apr-2023].

[5] Adobe. 2023. Motion graphics software | Adobe After Effects — adobe.com.
https://www.adobe.com/products/aftereffects.html. [Accessed 05-Apr-2023].

[6] Javi Agenjo. 2022. litegraph.js. https://github.com/jagenjo/litegraph.js?files=1.
[Accessed 05-Apr-2023].

[7] Fraser Anderson, Tovi Grossman, Justin Matejka, and George Fitzmaurice. 2013.
YouMove: enhancing movement training with an augmented reality mirror. In
Proceedings of the 26th annual ACM symposium on User interface software and
technology. 311-320.

[8] J Brooke. 1996. SUS: A ‘Quick and Dirty’ Usability Scale, Usability Evaluation in

Industry, Jordan, PW, Thomas, B., Weerdmeester, BA and McClelland, AL.

Jiawen Chen, Shahram Izadi, and Andrew Fitzgibbon. 2012. KinFEtre: animating

the world with the human body. In Proceedings of the 25th annual ACM symposium

on User interface software and technology. 435-444.

[10] Julian Garnier. 2023. anime.js. https://animejs.com/. [Accessed 05-Apr-2023].

3

[

1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275

1276

https://www.adobe.com/products/premiere.html
https://www.adobe.com/products/premiere.html
https://robust-cvd.github.io/
https://www.tensorflow.org/
https://www.adobe.com/products/substance3d-modeler.html
https://www.adobe.com/products/substance3d-modeler.html
https://www.adobe.com/products/aftereffects.html
https://github.com/jagenjo/litegraph.js?files=1
https://animejs.com/

1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334

Conference’17, July 2017, Washington, DC, USA

[11]
[12]

[13]

[14]

[15]

[16

[17

(18]

[19]

[20

[21]

[22]

[23

[24]

[25]

[26]

[27]

[28

[29]

[30

[31

[32

[33

[34]

[35]

[36]

Epic Games Inc. 2023. Unreal Engine. https://www.unrealengine.com/. [Accessed
04-Apr-2023].

Umar Igbal, Anton Milan, and Juergen Gall. 2017. Posetrack: Joint multi-person
pose estimation and tracking. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2011-2020.

Jennifer Jacobs, Joel Brandt, Radomir Mech, and Mitchel Resnick. 2018. Extending
manual drawing practices with artist-centric programming tools. In Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems. 1-13.
Amir Jahanlou and Parmit K Chilana. 2022. Katika: An End-to-End System for
Authoring Amateur Explainer Motion Graphics Videos. In Proceedings of the
2022 CHI Conference on Human Factors in Computing Systems. 1-14.

Brian Jordan, Nisha Devasia, Jenna Hong, Randi Williams, and Cynthia Breazeal.
2021. PoseBlocks: A toolkit for creating (and dancing) with AL In Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 35. 15551-15559.

Kenrick Kin, Bjérn Hartmann, Tony DeRose, and Maneesh Agrawala. 2012.
Proton: multitouch gestures as regular expressions. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. 2885-2894.

David Ledo, Steven Houben, Jo Vermeulen, Nicolai Marquardt, Lora Oehlberg,
and Saul Greenberg. 2018. Evaluation strategies for HCI toolkit research. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
1-17.

German Leiva, Jens Emil Grenbzek, Clemens Nylandsted Klokmose, Cuong
Nguyen, Rubaiat Habib Kazi, and Paul Asente. 2021. Rapido: Prototyping Inter-
active AR Experiences through Programming by Demonstration. In The 34th
Annual ACM Symposium on User Interface Software and Technology. 626—637.
Jingyuan Liu, Hongbo Fu, and Chiew-Lan Tai. 2020. Posetween: Pose-driven
tween animation. In Proceedings of the 33rd Annual ACM Symposium on User
Interface Software and Technology. 791-804.

Google LLC. 2022. MediaPipe — mediapipe.dev. https://mediapipe.dev/. [Ac-
cessed 05-Apr-2023].

Hao Lii and Yang Li. 2012. Gesture coder: a tool for programming multi-touch
gestures by demonstration. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. 2875-2884.

Hao Lii and Yang Li. 2013. Gesture studio: authoring multi-touch interactions
through demonstration and declaration. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. 257-266.

George B Mo, John J Dudley, and Per Ola Kristensson. 2021. Gesture knitter:
A hand gesture design tool for head-mounted mixed reality applications. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1-13.

Kyzyl Monteiro, Ritik Vatsal, Neil Chulpongsatorn, Aman Parnami, and Ryo
Suzuki. 2023. Teachable Reality: Prototyping Tangible Augmented Reality with
Everyday Objects by Leveraging Interactive Machine Teaching. arXiv preprint
arXiv:2302.11046 (2023).

NIKE OLYMPICS. 2022. NIKE OLYMPICS. https://www.behance.net/gallery/
73353531/NIKE-OLYMPICS. [Accessed 05-Apr-2023].

Randy Pausch, Tommy Burnette, AC Capeheart, Matthew Conway, Dennis Cos-
grove, Rob DeLine, Jim Durbin, Rich Gossweiler, Shuichi Koga, and Jeff White.
1995. Alice: Rapid prototyping system for virtual reality. IEEE Computer Graphics
and Applications 15, 3 (1995), 8-11.

petricoregames. 2023. Pose Dancer. https://lenslist.co/pose-dancer/. [Accessed
05-Apr-2023].

Printio.ru Lab Project. 2023. Fabric.js Javascript Canvas Library. http://fabricjs.
com/. [Accessed 05-Apr-2023].

Nazmus Saquib, Rubaiat Habib Kazi, Li-Yi Wei, and Wilmot Li. 2019. Interactive
body-driven graphics for augmented video performance. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems. 1-12.

Yeongho Seol, Carol O’Sullivan, and Jehee Lee. 2013. Creature features: online
motion puppetry for non-human characters. In Proceedings of the 12th ACM
SIGGRAPH/Eurographics Symposium on Computer Animation. 213-221.
ShaderPlayStudios. 2014. ShaderPlay.com. https://www.shaderplay.com/. [Ac-
cessed 04-Apr-2023].

Jennifer J Sun, Jiaping Zhao, Liang-Chieh Chen, Florian Schroff, Hartwig Adam,
and Ting Liu. 2020. View-invariant probabilistic embedding for human pose.
In Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK, August
23-28, 2020, Proceedings, Part V 16. Springer, 53-70.

William Robert Sutherland. 1966. The on-line graphical specification of computer
procedures. Ph. D. Dissertation. Massachusetts Institute of Technology.

Ryo Suzuki, Rubaiat Habib Kazi, Li-Yi Wei, Stephen DiVerdi, Wilmot Li, and
Daniel Leithinger. 2020. Realitysketch: Embedding responsive graphics and
visualizations in AR through dynamic sketching. In Proceedings of the 33rd
Annual ACM Symposium on User Interface Software and Technology. 166-181.
Tianyi Wang, Xun Qian, Fengming He, Xiyun Hu, Yuanzhi Cao, and Karthik
Ramani. 2021. Gesturar: An authoring system for creating freehand interactive
augmented reality applications. In The 34th Annual ACM Symposium on User
Interface Software and Technology. 552-567.

Lei Zhang and Steve Oney. 2020. Flowmatic: An immersive authoring tool for
creating interactive scenes in virtual reality. In Proceedings of the 33rd Annual

12

Anon.

ACM Symposium on User Interface Software and Technology. 342-353.

A APPENDIX

Table 1 shows all nodes in PoseVEC. We also identify “video-linked”
node, source node, and sink node in the table.

1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391

1392

https://www.unrealengine.com/
https://mediapipe.dev/
https://www.behance.net/gallery/73353531/NIKE-OLYMPICS
https://www.behance.net/gallery/73353531/NIKE-OLYMPICS
https://lenslist.co/pose-dancer/
http://fabricjs.com/
http://fabricjs.com/
https://www.shaderplay.com/

1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449

1450

PoseVEC: Authoring Adaptive Pose-aware Effects using Visual Programming and Demonstrations

Conference’17, July 2017, Washington, DC, USA

Node Type

Subcategory

Node Name

Description

source

video-inked

sink

Recognizer

Pose Recognizer

It takes the current pose from
the video canvas as key pose;
When online tracking is
enabled, it constantly
compares the key pose

with poses from

the video canvas, and shows
a similarity score. It outputs a
true signal when the similarity
the score is below a
user-defined value.

Logic node

Single Pose Logic

Constant boolean

Trigger

Reverse logic

Turn on once

It contains a toggle that outputs
true (on) when the toggle is
switched on, and false (off)
when the toggle is switched off.
It outputs a single true value
when the input value changes
from false to true. It acts as

a switch that is triggered by

a change in the input value.

It outputs the opposite value

of its input.

Special version of trigger node,
only activate once during
online tracking mode

Dual Pose Logic

Or

Sequence

During

It outputs true if any of the input
is true. Users could chain
multiple pose recognizer nodes
together to create a more robust
recognizer for a certain pose.

It outputs true only if both inputs
had turned true sequentially.

It is useful for rendering
animations that should only
appear within a time range.

It outputs true while the first
input is true before the

second input turns true.

Data node

Joint Information

Joint indices
Joint location
Joint angle
Joint distance

It outputs selected joint indices.
It outputs selected joint location.
It outputs selected joint angle.

It outputs selected joint distance.

KX XX

Pose Information

Current pose embedding

Target pose embedding

It outputs embedding vectors of
poses from video canvas.

It outputs embedding vectors of
pose from user-defined

pose recognizer.

XX R XX

Variable

Constant number

Numeric variable

Vector variable

It outputs a constant number.

It outputs a number variable.
Users must specify if they want
to update this variable during
the online tracking stage.

If they do, users must specify
the transform node ID, which is
the execution point after which
the variable will be updated.
Same as above. Instead of
outputting number variable,

it outputs vector variable.

Table 1

13

1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508

1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

1566

Conference’17, July 2017, Washington, DC, USA

Node Type Subcategory

Node Name

Description source video-inked

sink

Basic Math

Basic math
Vector math
Vector scalar
Convert to [0,1]

*

+,-,",/ operations

+,-, L2 distance operations
*/ operations
normalization

Transform node

Comparison

Compare node

Compare two numeric values
using a user-defined comparator
such as greater than

or equal to (>=)

and less than or equal to (<=).

Location comparison

Compare two vector variable
A and B using a user-defined
comparator. For example,
outputs true if A is on

the left of B.

Other Function

[0,1]To text

Elapse time

Convert input value to text
based on its range.

For example, user can define
if x < 0.3, output 'bad’;

if x >= 0.3, output ’excellent’.
Record and output theamount
of time that has passed when
the input is true.

Basic

Render node

Place at animation

Chang opacity animation

Move To animation

Change color animation

It renders the appearance
animation of a group of
graphical objects at

a specific location.

It controls the opacity of a group
of graphical objects.

It moves a group of

graphical objects from X
one place to another.

It changes color of

a group of graphical objects.

Special Render

Joint Angle Annotation

Joint Distance Annotation

Single Text Render

Gif Render Node

It displays the angle of a joint as
text and highlights it using

two lines and an arc.

It displays the distance between
two joint as text and highlights
the joints by a line.

It accept a number, vector, or text
as input and display the content
using a text object.

It renders a GIF animation.

14

Anon.

1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623

1624

	Abstract
	1 Introduction
	2 Related Work
	2.1 Pose Effects Applications and Authoring
	2.2 Visual Programming for Interactive Animations
	2.3 Integrating Visual Programming with Programming by Demonstration

	3 System Overview
	4 System Design
	4.1 Programming a Pose Effect
	4.2 Node Types
	4.3 Implementation Details

	5 User Evaluation
	5.1 Participants
	5.2 Procedure
	5.3 Results and Discussion
	5.4 Areas for Improvement

	6 Replicated Example Study
	6.1 YouMove's Yoga Tutorial
	6.2 PoseTween's Ball Dribbling
	6.3 ``Just Do It'' Kinetic Typography

	7 Summary
	7.1 Limitations and Future Work

	References
	A Appendix

