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Abstract— To achieve safe cooperative driving in mixed traffic
of manned and unmanned vehicles, it is necessary to understand
and model human drivers’ driving behaviors. This paper
proposed a Hidden Markov Model (HMM)-based method to
analyze human driver’s control and vehicle’s dynamics; and
then recognize the human driver’s action, such as accelerating,
braking, and changing lanes. With the knowledge of the human
driver’s actions, a probability model is used to predict the
human-driven vehicle’s acceleration. Such information on the
driver behavior and the vehicle behavior can be used to achieve
safer cooperative driving, which is realized using vehicle-to-
vehicle (V2V) communication and model predictive control
(MPC). The proposed method was tested and evaluated in
our custom-built cooperative driving testbed. Experimental
results show that the above driver action model is effective and
accurate. A preliminary case study on a lane merging scenario
is provided to further validate its effectiveness and capability.

I. INTRODUCTION

With the number of autonomous vehicles (AVs) rapidly
increasing [1], one of the biggest challenges is to ensure the
safety of autonomous driving in the transportation system.
It is expected that a transportation system with mixed traffic
of both traditional human-driven vehicles and AVs will exist
for a long time. Therefore, it is highly desirable to develop
cooperative driving mechanisms to improve transportation
safety in a heterogeneous transportation system. In the recent
years, researchers have discovered a number of approaches
to cooperation in a system with both humans and robots.
One challenge is how to leverage human and machine
intelligence, understand human driving behavior, and then
coordinate the motion of human-driven vehicles and AVs.
In the context of cooperative driving, understanding driving
behavior has been a topic of priority in the past few decades.
Given the knowledge of what the human drivers intend to
do, the cooperative driving algorithm can make decisions
for both the human-driven vehicles and AVs.

On the other hand, during the development of such co-
operative driving algorithms, real world testing with real
vehicles is inevitably expensive and dangerous. Therefore
simulation is needed to accelerate and supplement the real
world testing of cooperative driving. In recent years, driving
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simulators have been used for vehicle algorithm development
and experiment. For example, Waymo has logged data of 15
billion miles of simulated driving [2].

In this paper, we aim to tackle the problem of cooperative
driving in mixed traffic of both manned and unmanned
vehicles. The main contribution of this paper is as fol-
lows. First, we introduced a simulated cooperative driving
testbed and an intelligent human-driven vehicle (IHV) in
which a user interface is developed to assist the human
driver. Second, based on the intelligent user interface, we
developed a driving action recognition module to recog-
nize different driving actions including accelerating, slowing
down, braking, normally driving, changing to the left lane,
and changing to the right lane. The driving models were
trained using the drivers’ control data (pedals and steering
wheel) and vehicles’ state data (velocity, acceleration, and
literal position). Third, we proposed a probability model
to predict the human-driven vehicle’s acceleration based on
different driver’s actions, including speeding up, slowing
down, braking, and normally driving. Data collected from
the simulation testbed was used to train the model and obtain
the statistical relationship between states and observations.
Fourth, we conduct a preliminary case study of cooperative
driving based on driver behavior understanding, in which
the model output is used by a cooperative driving algorithm
for lane merging involving a human-driven vehicle and an
autonomous vehicle.

The rest of the paper is organized as follows. The related
work is presented in Section II. The system architecture of
the simulation testbed is introduced in Section III. Section
IV provides the algorithms to understand driving behavior.
Section V demonstrates how to incorporate the driving
behavior model for optimized lane merging between an AV
and an IHV. Section VI presents the experimental results.
Section VII gives conclusions and future work.

II. RELATED WORK

Cooperative driving is a vehicle control method that re-
lies on vehicle-to-vehicle (V2V) communication to achieve
coordinated vehicle movement so that the driving safety can
be improved for all involved vehicles. In recent years, there
are various research efforts in developing approaches and
algorithms for cooperative driving. A cooperative driving
strategy for connected and automated vehicles at unsignal-
ized intersections was presented in [5], which is based on
a tree representation of the solution space by combining
Monte Carlo tree search and some heuristic rules to find
a globally optimal passing order within a very short time.



Xie et al. proposed two cooperative driving strategies for
connected vehicles that move in heterogeneous traffic of
regular vehicles and connected vehicles, in order to stabilize
the traffic flow [6].

Advanced driver-assistance systems (ADAS) can assist
human-drivers to improve driving safety and efficiency [7].
There has been a significant amount of research conducted to
enhance the effectiveness and functionality of ADAS. Cueva
et al., for example, developed an ADAS using computer
vision to detect drowsiness of a human driver, thereby
avoiding potential traffic accidents [8]. Divakarla et al.
proposed a cognitive ADAS for Level-4 AVs which achieved
23% energy economy increase compared to human-driven
vehicles [9].

Driving behavior modeling has become an increasingly
important research topic. To identify drivers’ action and
intent, a number of approaches were used including Sup-
port Vector Machine (SVM), Convolutional Neural Network
(CNN), and Hidden Markov Model (HMM). Wang et al.
proposed an HMM-based model to understand and recognize
driver behavior based on driving data, including brake/gas
pedal position and steering wheel angle [10]. Anup et al.
investigated several algorithms for tactical driver behav-
ior prediction using HMM, SVM, and Dynamic Bayesian
Network (DBN)-based algorithm [11], respectively. Among
them, HMM-based algorithms achieved the highest accu-
racy. Lin et al. developed and compared several algorithms
for driver behavior identification, including Neural Network
(NN), HMM, fuzzy control theory, and Gaussian Mixture
Model (GMM). The author pointed out that HMM achieves
higher accuracy in real-time driving behavior prediction [12].
The advantage of HMM being a probability-based model
makes it easier for researchers to understand and define the
relationship between different states [13]. Improving decision
making in human-in-the-loop (HITL) systems is a great
challenge [14]. Li et al. proposed a human action predictor
based on sparse Bayesian learning in physical human-robot
interaction (HRI) [15]. They proposed that human partner’s
operating force and the performance of the HRI process are
the two main influence factors for the HITL system. Pang
et al. presented an approach based on Stochastic Model
Predictive Control (SMPC) to recognize human driver’s
action and provided two experimental scenarios to test the
effectiveness and robustness of the proposed control strategy
[16]. However, there lacks implementation of HITL on
driving simulation and thus some potential problems are
not considered, such as the delay of human reaction. HITL
systems rely on a feedback loop between the human operator
and the machine learning model. If delay is not considered,
the machine learning model expects the human driver to react
instantly, which is not realistic.

III. THE SIMULATION TESTBED FOR COOPERATIVE
DRIVING

As shown in Fig. 1, our cooperative driving testbed
consists of a driving simulator and a user interface, which
simulates an IHV. The driving simulator has 3 connected

Fig. 1: The cooperative driving simulation testbed.

monitors for in-vehicle view, an extra monitor for control
and data display, and a Logitech G290 driving force suit
(a steering wheel, pedals, and a shifter). The Carnetsoft
driving simulator provides an open environment for further
development [17]. It has a road map database, a script
language, an interface to other devices, and user-friendly
tools to configure the system.

The user interface, also called copilot, has a touch screen,
a speaker, a camera, a microphone, and two embedded
minicomputers. A Raspberry Pi 4B is used to implement the
user interface functions, while an NVIDIA Jetson Nano is
used to run a variety of machine learning tasks. The screen
can display different information for the driver and also has
an animated face which is capable of displaying different
facial expressions.

The user interface communicates with the driving simula-
tor to obtain the vehicle control data and status data, which
are used to understand the vehicle driving behavior.

IV. UNDERSTANDING DRIVING BEHAVIOR

A. Recognizing human driver’s action

To recognize a driver’s driving action, we propose to use
an HMM-based method, which consist of 6 HMMs for 6
different driving actions, as shown in Table I.

TABLE I: The driver action recognition HMM models

HMM Corresponding Action
HS slowing down
HB braking
HN normally driving
HU accelerating
HL changing to the left lane
HR changing to the right lane

In the table, a set of 6 symbols corresponding to the 6
actions are defined and correspondingly, we have

A = {S,B,N,U, L,R}

and a driving action a ∈ A. Each HMM consists of the
parameters shown in Table II. The observations are discrete
symbols converted from the raw input data using K-means
clustering. For the HMMs corresponding to the longitudinal
driving actions HS , HB , HN , HU , the raw input data include
the vehicle’s velocity, the gas pedal percentage, and the brake



pedal percentage. For the HMMs corresponding to the lateral
driving actions HL and HR, the raw input data include the
steering wheel angle, the vehicle’s velocity, and the lateral
position.

TABLE II: Parameters of the driver action recognition
HMMs

Symbol Meaning
MT

a transition probability matrix
MI

a initial probability matrix
ME

a emission probability matrix
Sa hidden states
Oa observations

The HMMs are trained based on the Baum-Welch al-
gorithm [18] with the data collected from the cooperative
driving simulation testbed. The input sequence consists of
30 consecutive discrete data points with 33 ms interval,
which are collected through a sliding window with the length
of 30. In the inference stage, the K-means cluster centers
for each HMM are used to convert the raw input data
sequence to a formatted input sequence {Oa|a ∈ A}. Then,
we calculate the likelihood probabilities of Oa fitting the
corresponding HMM. After normalization, the probability
distribution vector of the 6 actions Pa is obtained.

B. Predicting human-driven vehicle’s acceleration

To predict acceleration we first denote a set of 4 sym-
bols corresponding to the 4 longitudinal driving actions
A′ = {S,B,N,U}, 4 probability models for these 4 driving
actions, and an action a ∈ A′. For each prediction model
Ha corresponding to action a, the definition of its element is
similar to the recognition model, except for the state Sa and
Observation Oa. State Sa represents the Cartesian product
of different pedal data and velocity depending on the model
it belongs to, as shown in Table III. Observation Oa consists
of a sequence of discrete acceleration ui, converted from the
continuous acceleration ai, where i is the time index.

TABLE III: Definition of the state

Symbol Definition
SSL {Brake pedal ∗ speed}
SBR {Brake pedal ∗ speed}
SNM {Brake pedal ∗Gas pedal ∗ speed}
SUP {Gas pedal ∗ speed}

To train the probability matrices, first, the initial proba-
bility matrix is set to be uniform. For transition probability
matrix MT

a =
{
P (Sj

a|Si
a,a)

}
,

P (Sj
a|Si

a,a) =
P (Si

a, S
j
a,a)

P (Si
a,a)

, (1)

where i is the index of the current state and j is the index
of the next state. For emission probability matrix ME

a ={
P (ut

a|Si
a,a)

}
,

P (ut
a|Si

a,a) =
P (ut

a, S
i
a,a)

P (Si
a,a)

, (2)

where t is the index of the observation.

Given the action recognition probability vector Pa and the
state Si

a corresponding to the current pedal percentage and
velocity, the acceleration ui is inferred as

ui = argmax
ut

P (ut, i), (3)

where

P (ut, i) =
∑
a

∑
Si
a

{
P (Si

a,a)× P (ut
a|Si

a,a)
}
, (4)

for each ut in Oa.
To calculate the acceleration in the next time step, we use

the forward process to calculate the probability distribution
matrix of Sj

a based on the transition probability matrix,

P (Sj
a,a) =

∑
Si
a

{
P (Sj

a|Si
a,a) · P (Si

a,a)
}
. (5)

Then, the acceleration in the next time step is calculated as

fh
j = uj = argmax

ut

P (ut, j), (6)

which is used for modeling IHV in Section V.

V. INCORPORATING DRIVER ACTION MODEL IN
COOPERATIVE DRIVING

In this section, we discuss how the driver action model
is employed to optimize coordination between an AV and
an IHV. With this formulation, we improved over our past
work [20] to include the stochasticity of the human state
estimation. We use a lane merging example. While the
motion of the AV can be directly controlled, the motion
of the IHV can only be changed by the driver’s inputs via
advisory commands. The dynamics of the IHV is a hybrid
system, which switches between two inputs: the human input
and the advisory input, based on whether the driver follows
and does not follow the advisory input. The human input is
obtained from the behavior model in (6). Denote the event
of the IHV driver following the advisory command by a
binary variable xB

k ∈ {0, 1} where the discrete-time index is
given by k ∈ Z+. If the IHV follows the advisory command,
then xB

k = 1; otherwise, xB
k = 0. Then the probability of

the driver following the advisory command at time step k is
PB
k = p[xB

k = 1]. The probability of the driver not following,
p[xB

k = 0], is 1− PB
k .

We estimate PB
k from the probability distribution vector

of different actions in Section IV.A.It takes one time step for
the driver to be alerted of the advisory command after it has
been calculated. The driver takes an additional time step to
respond. The probability that a driver will take the action
recommended by the advisory command two time steps
before is considered the probability PB

k . We specify a lower
limit li and an upper limit ui for each action i ∈ [S,B,N,U ].
Then using Pi from Section IV.A, PB

k is calculated as

li < ua
k−2 < ui → PB

k = Pi. (7)

Based on the state of the vehicle, the estimated human
input fh

k , and the probability of following PB
k , we formulate

and solve a model predictive control (MPC) problem to



obtain optimal advisory commands and control inputs for
the IHV and the AV, respectively.

A. Optimization problem

The initial conditions are crucial for formulating the op-
timization problem. In our formulation, the initial human
state is a stochastic parameter. To accommodate for this
stochasticity we propose the following optimization formu-
lation which is weighted by the probabilities of the initial
state. The optimization objective here is the expectation of a
cost function with respect to the distribution p[xB

k ].

min
θk

J(θk) = PB
k (θ⊤k Qθk + c⊤θk)

∣∣∣
xB
k =1

+ (1− PB
k )(θ⊤k Qθk + c⊤θk)

∣∣∣
xB
k =0

(8)

s.t. PB
k Gkθk

∣∣∣
xB
k =1

≤ PB
k gk

∣∣∣
xB
k =1

(9)

(1− PB
k )Gkθk

∣∣∣
xB
k =0

≤ (1− PB
k )gk

∣∣∣
xB
k =0

. (10)

Here, θk ∈ Rnt is a vector of decision variables to optimize
the system containing the control inputs to the system and
binary state variables. Q ∈ Rnt×nt and c ∈ R1×nt are the
designed objective weights for the cost function. nt is the
total number of decision variables. The designed constraints
are defined with Gk ∈ Rnc×nt and gk ∈ Rnc×1 where nc

is the total number of constraints. The goal is to find θk at
each time step k to minimize the cost function which will
be designed by preference while satisfying all the constraints
required to model the coordination of the IHV and the AV.
We next provide some details on the constraints and the cost
function in the MPC.

B. MPC formulation

We use Discrete Hybrid Stochastic Automata (DHSA) [19]
to model the motion of the IHV into the MPC problem. We
consider a linear state space model for the motion of an AV

xr
k+1 = Arx

r
k +Bru

r
k. (11)

The position and speed along the longitudinal axis relative
to the origin are represented by xr

k ∈ R2, Ar and Br are
matrices of suitable dimensions that define the AV dynamics,
and ur ∈ R is the input (acceleration) to the AV.

The IHV alternates between two dynamical systems:

IHV under human control: xh
k+1 = Ahx

h
k +Bhf

h
k (12)

IHV under advisory control: xh
k+1 = Ahx

h
k +Bhu

a
k, (13)

where Ah and Bh are matrices defining the IHV dynamics,
and fh

k ∈ R is the human input estimated in (6), and ua
k ∈ R

is the advisory commands for the IHV. One can deduce the
solution to xk as follows:

xr
k = Ak

rx
r
0 +

k−1∑
j=0

Ak−j−1
r Bru

r
j , (14)

xh
k = Ak

hx
h
0 +

k−1∑
j=0

Ak−j−1
h Bhf

h
j +

k−1∑
j=0

Ak−j−1
h Bhz

u
j (15)

where zuk = xB
k (u

a
k−fh

k ), which formulates the transition of
different inputs to the system based on xB

k and is enforced
as constraints in the following form:

zuk ≤ (Mu − fh
k )x

B
k , zuk ≥ (mu − fh

k )x
B
k (16)

zuk ≤ (ua
k − fh

k )− (mu − fh
k )(1− xB

k ) (17)

zuk ≥ (ua
k − fh

k )− (Mu − fh
k )(1− xB

k ) (18)

where Mu and mu are the upper and lower limit of the input.
We use a stochastic finite state machine (sFSM) to model

the stochastic transitions of the binary human state xB
k . Let

uB
k ∈ {0, 1} denote the on/off of an advisory control at

time step k. Based on the first-order Markov assumption, we
prescribe the transition probability of xB

k+1 given xB
k and uB

k .
Therefore, there are 8 different possibilities for transitions.
Following [19], we introduce a binary variable wi ∈ {0, 1}
(an uncontrollable event) for each transition and constrain
wi = 1 if and only if the ith transition occurs.

The probability of each event p[wi
k] needs to be specified.

In particular, we let p[w2
k] = pt which is the probability

of transitioning to an advisory action. We also let p[w6
k] =

pf which is the probability of continuously following the
advisory control. We set p[w3

k] = 1, p[w4
k] = 0, p[w7

k] = 1,
p[w8

k] = 0. Note that p[wi
k] + p[wi+1

k ] = 1, i = 1, 3, 5, 7.
The pt and pf may be learned from human-in-the-loop
experiments. Let δ1k = xB

k u
B
k . Then the possible transitions

of the sFSM can be enforced using the following constraints:

w1
k + w2

k ≤ uB
k − δ1k, w1

k + w2
k ≥ uB

k − δ1k, (19)

w5
k + w6

k ≤ δ1k, w5
k + w6

k ≥ δ1k, (20)

−xB
k + δ1k ≤ 0, − uB

k + δ1k ≤ 0, (21)

uB
k + xB

k ≤ 1 + δ1k, (22)

xB
k =

k−1∑
j=0

uB
j + C

k−1∑
j=0

wj , ∀k ≥ 1 (23)

where C = [−1 0 − 1 0].
For collision avoidance during lane merging, the longitu-

dinal position between the two vehicles needs to be larger
than a threshold dr > 0. To enforce that we introduce two
binary variables b1,k and b2,k and two inequalities

xr
k,1 − xh

k,1 ≤ −dr + M̄b1,k, (24)

xr
k,1 − xh

k,1 ≥ dr − M̄b2,k (25)

where xk,1 denotes the position state and M̄ is a sufficiently
large number. b1,k + b2,k = 1 ensures that the safe distance
dr is satisfied at time step k. To reduce the time to reach
this condition, we introduce a constraint

b1,k + b2,k ≥ 1 (26)

and minimize b1,k + b2,k in the objective function.
To enforce that our solution of wk = [w1

k w2
k w5

k w6
k]

⊤

realizes with at least p̃ probability, we have

lnπ(w) =
K−1∑
k=0

∑
i=1,2,5,6

wi
k ln(p[w

i
k]) ≥ ln(p̃). (27)



Let K be the length of the look-ahead window in the
MPC. At time step k, the decision variables are summa-
rized as θk = [ur

k ua
k zuk uB

k wk δ1k bk] where ur
k =[

ur
k, ur

k+1, · · · , ur
k+K−1

]
and ua

k, zuk , uB
k , wk, δ1k

and bk are defined similarly to ur
k. The continuous variables

are ur
k, ua

k, and zuk while the rest are binary. For the control
input that satisfies the constraints for both the xB

k = 1 and
xB
k = 0 we require

[ur
k ua

k zuk uB
k ]

⊤
∣∣∣
xB
k =1

= [ur
k ua

k zuk uB
k ]

⊤
∣∣∣
xB
k =0

. (28)

In the cost function, we consider five objectives: 1) Mini-
mize the control inputs to the AV and the IHV based on their
respective weights, 2) Maximize the speed of both vehicles
within a speed limit for fast lane merging, 3) Minimize the
number of advisory actions so that the merge can happen
with reduced advisory actions, 4) Maximize the probability
of the stochastic events, and 5) Minimize b1,k + b2,k so that
dr can be reached quickly.

The constraints from (14) to (28) are linear in θk and
can be written in the form of (9) and (10). With the
constraints and designed objective, we apply the optimization
in a receding horizon fashion and obtain the MPC solution
consisting of the control inputs applied to the AV and the
advisory commands conveyed to the IHV at each time step.

VI. EXPERIMENTAL RESULTS

A. Recognition algorithm

An experiment was conducted to test the accuracy of
the proposed human-driver action recognition algorithm. The
volunteers were asked to run each of the 6 driving actions
10 times. The experiment setting and results are shown
in Table. IV. Totally 4197 data sequences were collected.
86.73% of them, or 3640 data sequences, were successfully
recognized. As an example, Fig. 2 shows the ground truth
of the gas pedal percentage, the vehicle speed during an
accelerating action, and the probability change during the
recognition. It can be observed as the percentage of gas
pedal pressing increases, the probability of accelerating also
increases.

TABLE IV: Experiment of testing the recognition algorithm

Action Name Times Number of AccuracySeq. Recognized Seq.
slowing down 10 513 405 79%

braking 10 278 216 78%
normally driving 10 1048 931 89%

accelerating 10 719 679 94%
changing left 10 846 748 88%

changing right 10 793 661 83%

B. Prediction model

In this experiment, the probability model for predicting
vehicle’s acceleration was validated. Each of the 4 driving
forward actions, including slowing down, accelerating, nor-
mally driving, and braking, was conducted by the volunteers
5 times. For every action instance, as soon as the action
was recognized, the corresponding prediction model started

Fig. 2: Recognition of the accelerating action.

to calculate the vehicle’s acceleration at the next time step.
Fig. 3 and Fig. 4 show two prediction instances for acceler-
ating and slowing down, where the red curves represent the
actual accelerations during the actions and the green curves
are the predicted accelerations.

C. Optimizing lane-changing: a case study

To prove the effectiveness of the proposed driver action
model, we conducted the lane merging experiment using
the human driver action behavior model in the MPC opti-
mization. The human driver action behavior model and the
MPC algorithm ran on a remote computer with an Intel
Core i9-11900k CPU and an NVIDIA Geforce RTX 3070
graphic card. In this experiment, the AV and the human-
driven vehicle were driven alongside with the same initial
speed of 15 meter/second. The AV in the left lane tried to
change into the middle lane where the human-driven vehicle
was in, as shown in Fig. 5. The MPC algorithm employs the
action behavior model to optimize the process of establishing
a safe distance before the lane merging starts.

In the first set of experiments, the volunteer followed the
advice, as shown in Fig. 6a and Fig. 6b. The figure depicts
the change of velocity from the starting point to when a safe
distance is reached. Without the knowledge that the driver
was following the advice, the system made more conservative



Fig. 3: Prediction of the ac-
celerating action.

Fig. 4: Prediction of the
slowing down action.

Fig. 5: Experiment scenario

advice for the IHV, resulting in a longer completion time.
For another set of experiments, the volunteer did not follow
the advice and kept driving normally. As shown in Fig. 6c,
the system was aware that the driver was not following the
advice and controlled the AV to speed up notably faster,
which reduced the completion time significantly compared
with the result in Fig. 6d where the system is not aware of
the driver is following the advice or not.

To compare the completion time, 10 tests were conducted
for each of the above four cases. Fig. 7 shows the comparison
of the completion time. In the figure, the boxes demonstrate
the interquartile range of the data with a line inside each box
representing the median. As we can see, the behavior model
significantly improved the optimization process, whether the
driver was following or not.

VII. CONCLUSIONS AND FUTURE WORK

This paper proposes the modelling of human drive be-
havior and investigates its use in cooperative driving for
lane-changing in mixed traffic with both human-driven ve-
hicles and autonomous vehicles. The action behavior model

(a) (b)

(c) (d)

Fig. 6: The volunteer follows the advice in (a) and (b), while
not following in (c) and (d). Recognition and prediction
models are enabled at (a) and (c), while turned off at (b)
and (d).

Fig. 7: Statistical results of the experiment

consists of an HMM-based model for recognizing driver’s
actions, and a probability model for predicting the human-
driven vehicle’s acceleration. We conducted experimental
evaluations on a custom-built cooperative driving testbed.
Experimental results show that the model helps the MPC
algorithm achieve better performance in a cooperative driving
scenario. Future work will consider improving the recogni-
tion and prediction model using other sensor data and inves-
tigating cooperative driving algorithms in more complicated
driving scenarios.
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