Analysis of Dual-Row and Dual-Array Crossbars in
Mixed Signal Deep Neural Networks

Melvin D. Edwards II, Student Member, IEEE, Nabil J. Sarhan, Member, IEEE, Mohammad Alhawari, Member, IEEE

Abstract—This paper makes a comparative analysis between
dual row and dual array mixed-signal neural network archi-
tectures through the use of a case study. Dual row and dual
array architectures are used to implement signed operations in
mixed signal neural network circuits. The dual row arrangement
uses two ideal data paths for signed operations in the analog
domain. The dual array arrangement uses two Analog to Digital
Converters (ADCs) to perform the signed operation in the digital
domain wheras the dual row arrangement uses only one. The
trade-offs studied for each topology are: speed/latency, which
has similar performance between both architectures. Power
consumption, which if including the Multiply and Accumulate
(MAC) circuit alone is much lower than the dual row approach.
Area, which is lower for the dual array approach than it is for
the dual row approach. Variability, which is similar for both
approaches, but has limitations when considering the memory
technology used.

Index Terms—mixed signal, neural networks, analog memory,
dual row, dual array

I. INTRODUCTION

Neural networks have found widespread application in
numerous fields including computer vision [1]-[5], natural
language processing [6], [7], fraud detection [8], [9], au-
tonomous technologies [10], [11], healthcare [12], [13], and
behavioral prediction [14], [15]. As neural networks become
larger and more complex there is a growing concern about
power consumption, especially for edge devices that have
limited energy sources. This has led to an increase in research
for smaller and more efficient neural networks which include
techniques to reduce the networks size such as pruning and
weight dropout [16], [17], and thus have the potential to
operate on the edge since they can be scaled down in size
and complexity.

Neural networks can be designed using digital or mixed-
signal architectures [18], [19]. Digital neural networks perform
all calculations related to the vector matrix multiplication
(VMM) in the digital domain [20]. In contrast, mixed-signal
neural networks perform the VMM in the analog domain and
convert the result to the digital domain for further processing
[21]. In particular, mixed-signal neural networks outperform
the digital ones in energy efficiency [22] due to the usage of
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Fig. 1. A high-level schematic of (a) Generic dual array and (b) generic dual
row.

memory technologies that enables in-memory computations
and thus substantially reduce the energy of data transfer.

A key component in mixed-signal neural networks is the
memory to store the values of the weights. Analog memory
technologies that provide in-memory computation include
embedded flash memory, Resistive RAM (RRAM), Phase-
Change RAM (PCRAM), and Magnetic RAM (MRAM).
Other memory technologies can be used to implement near-
memory computation, such as SRAM that stores the weights
digitally and then convert them to analog using pulse width
modulation. The interest in multi-level circuits has grown to
realize a CMOS-based, multi-bit, analog memory circuits that
can perform near memory computation, where the weights are
stored in analog domain [23].

VMMs require signed operation since the weights can be
positive or negative values. There are two ways to accomplish
signed operations: dual array and dual row architectures as
shown in Figures 1 (a) and (b), respectively [24]-[27]. The
dual array implementation shown in Figure 1(a) uses two
identical sub-arrays within a crossbar to subtract the partial
products in the digital domain. In contrast, the dual row
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Fig. 3. Dual array architecture.

implementation displayed in Figure 1(b) uses two identical
memories which have an equal magnitude and opposite sign
applied to each memory for subtraction in the analog domain.
Each approach has advantages and disadvantages over the
other which are discussed throughout this paper.

This paper investigates the design decisions and constraints
that come with the dual row and dual array approaches to im-
plementing signed operations in mixed-signal neural networks.
This investigation will be carried out through the use of a
case study topology which uses an analog multi-level memory,
developed by the authors. This paper is organized as follows.
Section IT will present and explain the two architectures, dual
array and dual row. Section III will provide simulation results
which form the basis of the design decisions. Section IV will
conclude the paper.

II. MIXED SIGNAL NEURAL NETWORK ARCHITECTURES

Mixed Signal accelerators employ two methods to imple-
ment signed weights. The dual row approach in Figure 2
performs the subtraction in the analog domain by subtracting
currents, while the dual array approach in Figure 3 performs
the subtraction in the digital domain after each current is
passed through an ADC. This section will explain each ar-
chitecture of the case study in detail.

A. Multi-level Analog Memory

The memory utilized in this work uses a recently de-
veloped CMOS-based, multi-level memory (MLM) topology,
published by the authors in [28], [29]. The memory takes
an analog input and outputs one of eight distinct analog
voltages. The memory uses a inverter based structure to

generate the eight distinct memory voltages which are then
fed into a feedback structure to produce the distinct memory
voltage (Vs ar) that is closest to the analog input value. The
characteristic of the MLM is shown in the graph in Figure 2,
where 8-level MLM is utilized.

B. Dual Row Mixed Signal Neural Network

The dual row architecture is shown in Figure 2, where the
transmission gates, TG1 and TG2, are used to control if the
output of that neuron is zero or non-zero. The control input to
this block is called zero select (ZS). If ZS is logic HIGH (1V)
then the M,...q transistor is OFF and the current in M,..oq Will
be zero. If ZS is logic LOW (-1V), then the overdrive of M,.qq
will be controlled by the output of the analog memory, Vasras.
M.,cqq Works as a current source over the range of Vs as. The
transmission gates, TG3 and TG4, are used to control if the
result is positive or negative. The control input to this block
is called sign select (SS), if SS is logic HIGH (1V) then M,
will act as a current sink, sinking current from the multiply
and accumulate (MAC) node thus removing current from the
MAC node. If SS is logic LOW (-1V), then the current mirror
My, Ms will act as a current source for the MAC node and
supply current current to the node.

The input to this block must be bipolar to allow for the
sourcing and sinking of the MAC node. This requires usage
of Deep N-Well transistors, causing area overhead. For dual
row signed implementations, the input voltage needs to be
bipolar around the bias point of the MAC node. In this
implementation that was chosen to be ground or OV. Another
possibility can be to set the MAC node to be biased to 0.5V
to allow for bipolar operation with a uni-polar supply. The
drawbacks of having the MAC node biased at 0.5V are reduced
range of operation if multi-bit inputs are needed. Also, if
a trans-impedance amplifier (TTA) is used to interface with
the neuron, then the TIA will need to be adjusted based on
a 0.5V input to one terminal which requires extra biasing
circuitry. Another drawback of the dual row implementation is
the inherent sensitivity to mismatch between the positive and
negative MAC current paths. The negative MAC current path
only has M5 whereas the positive MAC current path has M3,
My, and Ms5. Given the same memory input, if we set SS to
logic HIGH or LOW, then the magnitude of current should be
the same, but the sign should be opposite.

In total, the dual row implementation has four transmission
gates, one read transistor, and five transistors to implement the
current mirroring. The total area of the design in 65nm CMOS
is 2087.36,4m?2. This larger area minimizes the scalability of
this particular implementation of the dual row architecture.
There are two control pins zero select (ZS) and sign select
(SS) which require registers if the architecture is scaled up to
avoid a large usage of pins on the IC package.

C. Dual Array Mixed Signal Neural Network

The dual row architecture is shown in Figure 3, which is
simpler than the dual row approach. As depicted in the figure,
M.,cqq is a voltage controlled current source that converts
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Fig. 4. MAC current of the dual array vs. dual row architectures across all
eight analog multi-level memory output levels.

the analog memory voltage Vasras to a MAC current. The
transmission gates TGl and TG2 control zero or non-zero
weight similar to the implementation in the dual row mixed
signal neural network. The input voltage V;,, for this block can
be uni-polar. A drawback of this topology is the large number
of memories required. Each input-weight pair requires two
memories rather than one as shown in the dual row section,
thus matching between the two memories is important.

This architecture has the advantage of only one device
operating in the analog domain to perform the non-signed
part of the VMM. In practice this approach is implemented
by assigning a crossbar to be a positive crossbar and another
crossbar to be a negative crossbar, such as in Figure 1(a).
These crossbar outputs are then combined in the digital domain
to produce the full signed sum.

This structure also requires two ADCs per neuron which
impacts the peripheral power consumption and area. This
limitation is not present in the dual row architecture. For the
MAC structure itself the area is very small which is dictated
by the size of the read transistor. The transconductance of
the read transistor by itself is a function of process, voltage,
and temperature variations which limits the robustness of this
structure thus a limiting the scalability of this implementation.

This structure has a lower MAC current across all input
memory voltages, given the same sizing for M,..q, Which
results in lower power consumption as shown in the next
section. Figure 4 shows the MAC current of the dual array
and the dual row architectures.

III. SIMULATION RESULTS

A few metrics of comparison between the dual row and
dual array architectures are considered to compare the two
implementations from a system level. This includes speed,
power consumption, and variation.

The latency is determined as the time it takes for an input
to produce a stable output. The first type of input is a non-
zero input, which is applied from zero initial condition and the
second type of input is when zero is applied from non-zero
initial condition. These two latencies differ from each other.
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Fig. 5. (a). Latency for dual row and dual array when a non-zero excitation
is applied. (b). Latency for dual row and dual array when a zero excitation is
applied.

In order to determine the maximum frequency that the dual
row/array architecture can operate at, the largest latency must
be chosen. The latency is the settling time which is defined
as the time it takes to reach the final value for the current.
The latency can be decreased by clocking at a period smaller
than the settling time, but results in sampling a current that is
not the final value. This is a trade-off between accuracy and
speed. The decision on the amount of over-clocking is based
on ADC resolution and the minimum delta between current
levels before an adjacent level is chosen.

Figure 5 shows the latency at different weight storage
values. To calculate the maximum usable frequency without
performance degradation the worst case for each architecture
must be chosen. In Figure 5(a), the maximum latency for
the dual array architecture is 4.8 ns at MAC level 8. The
maximum operating frequency of the dual array architecture is
208 MHz without degradation in performance. In Figure 5(a)
the maximum latency for the dual row architecture is 2.02
ns at MAC level 8. The maximum operating frequency of
the dual row architecture is 495 MHz without degradation in
performance. The latency and frequency is calculated under
the worst case scenario of a square waveform input.

The power consumption has two components: static and
dynamic. The static power consumption is dominated by
the transconductance of the read transistor. This relationship
implies the static power consumption is directly proportional



TABLE I
SUMMARY OF THE POWER CONSUMPTION AND FREQUENCY PERFORMANCE OF EACH ARCHITECTURE.

Dual Row Dual Array
MAC Level || Frequency (MHz) | Power Consumption (uW) || Frequency (MHz) | Power Consumption (©W)
1 696 10.7 434 1.95
2 649 9.50 370 1.71
3 628 8.70 322 1.56
4 637 8.05 285 1.43
5 596 7.45 250 1.32
6 566 6.84 222 1.20
7 548 6.14 210 1.07
8 497 5.09 208 0.88
—e—Dual Row array structure consumes 68pW, which is the leakage of each
10 1 —e—Dual Array

'S

Power Consumption (uW)
N (<2}

1 2 3 4 5 6 71 8
MAC Level

Fig. 6. Power Consumption for the Dual Row and Dual Array architectures.

to transistor width and over-drive and is inversely proportional
to transistor length. The over-drive of the read transistor
is controlled by the output voltage of the analog memory,
leaving the aspect ratio as the design variable. The dynamic
power consumption is directly proportional to the frequency
and the gate-source capacitance: wCy,. The dynamic power
consumption also depends on Cj,; fV2. This implies another
system level trade-off between power consumption and speed.
There are two methods to reduce dynamic power consumption:
slope control and transistor sizing. Slope control will reduce
the amount of high frequency content at the falling and
rising edges which sees the gate-source capacitance as low
impedance. Reducing the width of the transistor will reduce
the gate-source capacitance.

The power consumption of the two architectures is shown
in Figure 6. The power consumption of the dual array im-
plementation is less than that of the dual row implementation
with smaller size and little sacrifice in operating frequency.
The lower power consumption of the dual array approach is
due to the MAC current being lower given the same sizing
for the M,...q transistor. Also, the dual array structure does
not have the current mirroring topology to occupy more area.
The dual row structure has a power consumption of 10.54W
where the dual array structure has a power consumption of
2uW per neuron. This corresponds to MAC level 1 which
is the highest over-drive on the M,..,q transistor. In the zero
state, the dual row structure consumes 6nW while the dual

topology. Table I shows a summary of the dual row and dual
array architectures explored in this paper.

The trade-off of limiting power consumption from the MAC
circuit has implications on the ADC resolution. the trade-off
between read transistor transconductance and power consump-
tion means that the ADC must have a higher resolution since
the transconductance of the read transistor is lower.

The MAC circuits of the dual array or dual row must be
scaled up for a large neural network. Therefore, the impact of
variation and any possible trade-offs within the MAC circuit
itself or impacts on ADCs or TIAs must be investigated. It is
important to understand this impact on a large scale because
variation on the device current will impact the overall MAC
current and degrade overall system accuracy. The drawback of
using MOSFETs (NMOS or PMOS) for VMM is the variation
in transconductance. In both the dual array and dual row ar-
chitectures presented in this work the transconductance varies
with the weight voltage. This gives a non-linear response to
the variation, meaning that the distribution will be dependent
on the weight value. The variation performance points to
another trade-off between robustness and power consumption.
If the transconducatance is minimized to minimize power
consumption then the spacing of the distributions will be
small and robustness will be low. The robustness is directly
proportional to the system level accuracy, on a large scale.

IV. CONCLUSION

This paper made a comparative analysis between dual row
and dual array architectures through the use of two case study
architectures. The trade-offs between speed/latency, power
consumption, accuracy, and robustness were explored. The
trade-off between speed and accuracy exists because more
settling time allows for higher accuracy, but more settling
settling time also means slower operating frequency. The
trade-off between speed and power consumption exists be-
cause at a higher frequency, the dynamic power consumption
becomes dominant over static power consumption. The trade-
off between power consumption and accuracy exists because
to increase the spacing between MAC current distributions and
to allow for more selectivity, the current must be increased.
Downstream trade-offs were also explored which is why the
crossbar architecture must be designed with the ADC in mind.
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