
Lifting Weak Supervision To Structured Prediction

Harit Vishwakarma
hvishwakarma@wisc.edu

Frederic Sala
fredsala@cs.wisc.edu

Department of Computer Sciences,
University of Wisconsin-Madison, WI, USA.

Abstract

Weak supervision (WS) is a rich set of techniques that produce pseudolabels by
aggregating easily obtained but potentially noisy label estimates from a variety of
sources. WS is theoretically well understood for binary classification, where simple
approaches enable consistent estimation of pseudolabel noise rates. Using this
result, it has been shown that downstream models trained on the pseudolabels have
generalization guarantees nearly identical to those trained on clean labels. While
this is exciting, users often wish to use WS for structured prediction, where the
output space consists of more than a binary or multi-class label set: e.g. rankings,
graphs, manifolds, and more. Do the favorable theoretical properties of WS for
binary classification lift to this setting? We answer this question in the affirmative
for a wide range of scenarios. For labels taking values in a finite metric space,
we introduce techniques new to weak supervision based on pseudo-Euclidean
embeddings and tensor decompositions, providing a nearly-consistent noise rate
estimator. For labels in constant-curvature Riemannian manifolds, we introduce
new invariants that also yield consistent noise rate estimation. In both cases, when
using the resulting pseudolabels in concert with a flexible downstream model, we
obtain generalization guarantees nearly identical to those for models trained on
clean data. Several of our results, which can be viewed as robustness guarantees in
structured prediction with noisy labels, may be of independent interest. Empirical
evaluation validates our claims and shows the merits of the proposed method1.

1 Introduction

Weak supervision (WS) is an array of methods used to construct pseudolabels for training supervised
models in label-constrained settings. The standard workflow [RSW+16, RBE+18, FCS+20] is to
assemble a set of cheaply-acquired labeling functionsÐsimple heuristics, small programs, pretrained
models, knowledge base lookupsÐthat produce multiple noisy estimates of what the true label
is for each unlabeled point in a training set. These noisy outputs are modeled and aggregated
into a single higher-quality pseudolabel. Any conventional supervised end model can be trained
on these pseudolabels. This pattern has been used to deliver excellent performance in a range of
domains in both research and industry settings [DRS+20, RNGS20, SLB20], bypassing the need to
invest in large-scale manual labeling. Importantly, these successes are usually found in binary or
small-cardinality classification settings.

While exciting, users often wish to use weak supervision in structured prediction (SP) settings, where
the output space consists of more than a binary or multiclass label set [BHS+07, KL15]. In such
cases, there exists meaningful algebraic or geometric structure to exploit. Structured prediction
includes, for example, learning rankings used for recommendation systems [KAG18], regression in
metric spaces [PM19], learning on manifolds [RCMR18], graph-based learning [GS19], and more.

1https://github.com/SprocketLab/WS-Struct-Pred

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

An important advantage of WS in the standard setting of binary classification is that it sometimes
yields models with nearly the same generalization guarantees as their fully-supervised counterparts.
Indeed, the penalty for using pseudolabels instead of clean labels is only a multiplicative constant.
This is a highly favorable tradeoff since acquiring more unlabeled data is easy. This property leads us
to ask the key question for this work: does weak supervision for structured prediction preserve
generalization guarantees? We answer this question in the affirmative, justifying the application of
WS to settings far from its current use.

Generalization results in WS rely on two steps [RHD+19, FCS+20]: (i) showing that the estimator
used to learn the model of the labeling functions is consistent, thus recovering the noise rates for these
noisy voters, and (ii) using a noise-aware loss to de-bias end-model training [NDRT13]. Lifting these
two results to structured prediction is challenging. The only available weak supervision technique
suitable for SP is that of [SLV+22]. It suffers from several limitations. First, it relies on the availability
of isometric embeddings of metric spaces into R

dÐbut does not explain how to find these. Second, it
does not tackle downstream generalization at all. We resolve these two challenges.

We introduce results for a wide variety of structured prediction problems, requiring only that the
labels live in some metric space. We consider both finite and continuous (manifold-valued) settings.
For finite spaces, we apply two tools that are new to weak supervision. The approach we propose
combines isometric pseudo-Euclidean embeddings with tensor decompositionsÐresulting in a nearly-
consistent noise rate estimator. In the continuous case, we introduce a label model suitable for the
so-called model spacesÐRiemannian manifolds of constant curvatureÐalong with extensions to
even more general spaces. In both cases, we show generalization results when using the resulting
pseudolabels in concert with a flexible end model from [CRR16, RCMR18].

Contributions:

• New techniques for performing weak supervision in finite metric spaces based on isometric
pseudo-Euclidean embeddings and tensor decomposition algorithms,

• Generalizations to manifold-valued regression in constant-curvature manifolds,

• Finite-sample error bounds for noise rate estimation in each scenario,

• Generalization error guarantees for training downstream models on pseudolabels,

• Experiments confirming the theoretical results and showing improvements over [SLV+22].

2 Background and Problem Setup

Our goal is to theoretically characterize how well learning with pseudolabels (built with weak
supervision techniques) performs in structured prediction. We seek to understand the interplay
between the noise in WS sources and the generalization performance of the downstream structured
prediction model. We provide brief background and introduce our problem and some useful notation.

2.1 Structured Prediction

Structured prediction (SP) involves predicting labels in spaces with rich structure. Denote the label
space by Y . Conventionally Y is a set, e.g., Y = {−1,+1} for binary classification. In the SP setting,
Y has some additional algebraic or geometric structure. In this work we assume that Y is a metric
space with metric (distance) dY . This covers many types of problems, including

• Rankings, where Y = Sρ, the symmetric group on {1, . . . , ρ}, i.e., labels are permutations,

• Graphs, where Y = Gρ, the space of graphs with vertex set V = {1, . . . , ρ},
• Riemannian manifolds, including Y = Sd, the sphere, or Hd, the hyperboloid.

Learning and Generalization in Structured Prediction In conventional supervised learning we
have a dataset {(x1, y1), . . . , (xn, yn)} of i.i.d. samples drawn from distribution ρ over X × Y .
As usual, we seek to learn a model that generalizes well to points not seen during training. Let
F = {f : X 7→ Y} be a family of functions from X to Y . Define the risk R(f) for f ∈ F and f∗ as

R(f) =

∫

X×Y
d2Y(f(x), y)dρ(x, y) f∗ ∈ argmin

f∈F
R(f). (1)

2

For a large class of settings (including all of those we consider in this paper), [CRR16, RCMR18]

have shown that the estimator f̂ is consistent:

f̂(x) = argmin
y∈Y

F (x, y) F (x, y) :=
1

n

n
∑

i=1

αi(x)d
2
Y(y, yi), (2)

where α(x) = (K+ νI)−1Kx. Here, K is the kernel matrix for a p.d. kernel k : X × X → R, so
that Ki,j = k(xi, xj), (Kx)i = k(x, xi), and ν is a regularization parameter. The procedure here is
to first compute the weights α and then to perform the optimization in (2) to make a prediction.

An exciting contribution of [CRR16, RCMR18] is the generalization bound

R(f̂) ≤ R(f∗) +O(n− 1
4),

that holds with high probability, as long as there is no label noise. The key question we tackle is does
the use of pseudolabels instead of true labels yi affect the generalization rate?

2.2 Weak Supervision

In WS, we cannot access any of the ground-truth labels yi. Instead we observe for each xi the noisy
votes λ1,i, . . . , λm,i. These are m weak supervision outputs provided by labeling functions (LFs) sa,
where sa : X → Y and λa,i = sa(xi). A two step process is used to construct pseudolabels. First,
we learn a noise model (also called a label model) that determines how reliable each source sa is. That
is, we must learn θ for Pθ(λ1, λ2, . . . , λm|y)Ðwithout having access to any samples of y. Second,
the noise model is used to infer a distribution (or its mode) for each point: Pθ(yi|λ1,i, . . . , λm,i).

We adopt the noise model from [SLV+22], which is suitable for our SP setting:

Pθ(λ1, . . . , λm|Y = y) =
1

Z
exp

−
m
∑

a=1

θad
2
Y(λa, y)−

∑

(a,b)∈E

θa,bd
2
Y(λa, λb)

 . (3)

Z is the normalizing partition function, θ = [θ1, . . . , θm]T > 0 are canonical parameters, and E
is a set of correlations. The model can be described in terms of the mean parameters E[d2Y(λa, y)].
Intuitively, if θa is large, the typical distance from λa to y is small and the LF is reliable; if θa is
small, the LF is unreliable. This model is appropriate for several reasons. It is an exponential family
model with useful theoretical properties. It subsumes popular special cases of noise, including, for
regression, zero-mean multivariate Gaussian noise; for permutations, a generalization of the popular
Mallows model; for the binary case, it produces a close relative of the Ising model.

Our goal is to form estimates θ̂ in order to construct pseudolabels. One way to build such pseudolabels

is to compute ỹ = argminz∈Y 1/m
∑m

a=1 θ̂ad
2
Y(z, λa). Observe how the estimated parameters θ̂a

are used to weight the labeling functions, ensuring that more reliable votes receive a larger weight.

We are now in a position to state the main research question for this work:

Do there exist estimation approaches yielding θ̂ that produce pseudolabels ỹ that maintain the
same generalization error rate O(n−1/4) when used in (2), or a modified version of (2)?

3 Noise Rate Recovery in Finite Metric Spaces

In the next two sections we handle finite metric spaces. Afterwards we tackle continuous (manifold-
valued) spaces. We first discuss learning the noise parameters θ, then the use of pseudolabels.

Roadmap For finite metric spaces with |Y| = r, we apply two tools new to weak supervision.
First, we embed Y into a pseudo-Euclidean space [Gol85]. These spaces generalize Euclidean space,
enabling isometric (distance-preserving) embeddings for any metric. Using pseudo-Euclidean spaces
make our analysis slightly more complex, but we gain the isometry property, which is critical.

Second, we form three-way tensors from embeddings of observed labeling functions. Applying tensor
product decomposition algorithms [AGH+14], we can recover estimates of the mean parameters

Ê[d2Y(λa, y)] and ultimately θ̂a. Finally, we reweight the model (2) to preserve generalization.

3

Tensor Decomposition Pseudo-Label InferencePseudo-Euclidean
Embeddings

ℝ
d+

ℝ
d−

{(λa,i λb,i … λm,i)}
n
i=1

= +

= +

λa λb λm

Y

̂θ

T̂
+

λj

z̃i = Y |λa,i, …λm,i; ̂θ

T̂
− z̃i

End Model Training

{(xi, z̃i)}
n
i=1

LF Outputs

{(λa,i λb,i … λm,i)}
n
i=1

λ

Figure 1: Illustration of our weak supervision pipeline for the finite label space setting.

The intuition behind this approach is the following. First, we need a technique that can provide
consistent or nearly-consistent estimates of the parameters in the noise model. Second, we need
to handle any finite metric space. Techniques like the one introduced in [FCS+20] handle the
firstÐbut do not work for generic finite metric spaces, only binary labels and certain sequences.
Techniques like the one in [SLV+22] handle any metric spaceÐbut only have consistency guarantees
in highly restrictive settings (e.g., it requires an isometric embedding, that the distribution over the
resulting embeddings is isomorphic to certain distributions, the true label only takes on two values).
Pseudo-Euclidean embeddings used with tensor decomposition algorithms meet both requirements

3.1 Pseudo-Euclidean Embeddings

Our first task is to embed the metric space into a continuous spaceÐenabling easier computation and
potential dimensionality reduction. A standard approach is multi-dimensional scaling (MDS) [KW78],
which embeds Y into R

d. A downside of MDS is that not all metric spaces embed (isometrically)
into Euclidean space, as the square distance matrix D must be positive semi-definite.

A simple and elegant way to overcome this difficulty is to instead use pseudo-Euclidean spaces
for embeddings. These pseudo-spaces do not require a p.s.d. inner product. As an outcome, any
finite metric space can be embedded into a pseudo-Euclidean space with no distortion [Gol85]Ðso
that distances are exactly preserved. Such spaces have been applied to similarity-based learning

methods [PPD01, LRBM06, PHD+06]. A vector u in a pseudo-Euclidean space R
d+,d−

has two

parts: u+ ∈ R
d+

and u− ∈ R
d−

. The dot product and the squared distance between any two vectors
u,v are ⟨u,v⟩φ = ⟨u+,v+⟩ − ⟨u−,v−⟩ and d2φ(u,v) = ||u+ − v+||22 − ||u− − v−||22. These

properties enable isometric embeddings: the distance can be decomposed into two components that
are individually induced from p.s.d. inner productsÐand can thus be embedded via MDS. Indeed,
pseudo-Euclidean embeddings effectively run MDS for each component (see Algorithm 1 steps 4-9).
To recover the original distance, we obtain ||u+ − v+||22 and ||u− − v−||22 and subtract.

Example: To see why such embeddings are advantageous, we compare with a one-hot vector
representation (whose dimension is |Y|). Consider a tree with a root node and three branches, each of
which is a path with t nodes. Let Y be the nodes in the tree with the shortest-hops distance as the
metric. The pseudo-Euclidean embedding dimension is just d = 3; see Appendix for more details.
The one-hot embedding dimension is d = |Y| = 3t+ 1Ðarbitrarily larger!

Now we are ready to apply these embeddings to our problem. Abusing notation, we write λa and y
for the pseudo-Euclidean embeddings of λa, y, respectively. We have that d2Y(λa, y) = d2φ(λa,y),
so that there is no loss of information from working with these spaces. In addition, we write the
mean as µa,y = E[λa|y] and the covariance as Σa,y. Our goal is to obtain an accurate estimate

µ̂a,y = Ê[λa|y], which we will use to estimate the mean parameters E[d2Y(λa, y)]. If we could
observe y, it would be easy to empirically estimate µa,yÐbut we do not have access to it. Our
approach will be to apply tensor decomposition for multi-view mixtures [AGJ14].

3.2 Multi-View Mixtures and Tensor Decompositions

In a multi-view mixture model, multiple views {λa}ma=1 of a latent variable Y are observed. These
views are independent when conditioned on Y . We treat the positive and negative components

λ+
a ∈ R

d+

and λ−
a ∈ R

d−

of our pseudo-Euclidean embedding as separate multi-view mixtures:

λ+
a |y ∼ µ+

a,y + σ
√
d+ · ϵ+a and λ−

a |y ∼ µ−
a,y + σ

√
d− · ϵ−a ∀a ∈ [m], (4)

where µ+
a,y = E[λ+

a |y], µ−
a,y = E[λ−

a |y] and ϵ+a , ϵ
−
a are mean zero random vectors with covariances

1
d+ Id+ , 1

d−
Id− respectively. Here σ2 is a proxy variance whose use is described in Assumption 3.

4

Algorithm 1 Algorithm for Pseudolabel Construction

Input: Labeling function outputs L = {(λ1,i, . . . , λm,i)}ni=1, Label Space Y = {y0, . . . , yr−1}
Output: Pseudolabels for each data point Z = {z̃i}ni=1

▷ Step 1: Compute pseudo-Euclidean Embeddings
1: Construct matrices D ∈ R

r×r, Dij = d2Y(yi, yj) and M ∈ R
r×r, Mij =

1
2 (D

2
0i +D2

0j −D2
ij)

2: Compute eigendecomposition of M and let M = UCUT

3: Set l+, l− be indices of positive and negative eigenvalues sorted by their magnitude
4: Let d+ = |l+|, d− = |l−| i.e. the sizes of lists l+ and l− respectively.

5: Construct permutation matrix Iperm ∈ R
r×(d++d−) by concatenating l+, l− in order

6: C̄ = CIperm, Ū = UIperm

7: Y = ŪT C̄
1
2 ∈ R

r×(d++d−) and let this define the mapping g : Y 7→ Y

▷ Step 2: Parameter Estimation Using Tensor Decomposition
8: for a← 1 to m− 3 do
9: Obtain embeddings λa,i = g(λa,i),λb,i = g(λb,i),λc,i = g(λc,i) ∀i ∈ [n] where a, b, c

are uncorrelated
10: Construct tensors T̂+ and T̂− as defined in (5) for triplet (a, b, c)

11: µ̂+
a,y, µ̂

+
b,y, µ̂

+
c,y = TensorDecomposition(T̂+)

12: µ̂−
a,y, µ̂

−
b,y, µ̂

−
c,y = TensorDecomposition(T̂−)

13: s+a,y = minz∈{−1,+1} ϕ(z · µ̂+
a,y,y

+) and similarly s+b,y, s
+
c,y, s

−
a,y, s

−
b,y, s

−
c,y

14: µ̂+
a,y = s+a,y · µ̂+

a,y and similarly correct signs of µ̂+
b,y, µ̂

+
c,y, µ̂

−
a,y, µ̂

−
b,y, µ̂

−
c,y

15: end for

▷ Step 3: Infer Pseudo-Labels

16: Z̃(i) = z̃i ∼ Y |λa = λ
(i)
a , . . . λm = λ

(i)
m ; θ̂

17: return {z̃i}ni=1

We cannot directly estimate these parameters from observations of λa, due to the fact that y is not
observed. However, we can observe various moments of the outputs of the LFs such as tensors of
outer products of LF triplets. We require that for each a such a triplet exists. Then,

T+ := E[λ+
a ⊗λ+

b ⊗λ+
c] =

∑

y∈Ys

wyµ
+
a,y⊗µ+

b,y⊗µ+
c,y and T̂+ :=

1

n

n
∑

i=1

λ+
a,i⊗λ+

b,i⊗λ+
c,i. (5)

Here wy are the mixture probabilities (prior probabilities of Y) and Ys = {y : wy > 0}. We similarly

define T− and T̂−. We then obtain estimates µ̂+
a,y, µ̂

−
a,y using an algorithm from [AGH+14] with

minor modifications to handle pseudo-Euclidean rather than Euclidean space. The overall approach
is shown in Algorithm 1. We have three key assumptions for our analysis,

Assumption 1. The support of PY , i.e., k = |{y : wy > 0}| and the label space Y is such that
min(d+, d−) ≥ k, ||µ+

a,y||2 = 1, ||µ−
a,y||2 = 1 for a ∈ [m], y ∈ Y .

Assumption 2. (Bounded angle between µ and y) Let ϕ(u,v) denote the angle between any two
vectors u,v in a Euclidean space. We assume that ϕ(µ+

a,y,y
+) ∈ [0, π/2 − c), ϕ(µ−

a,y,y
−) ∈

[0, π/2 − c) ∀a ∈ [m], and y ∈ Ys, for some sufficiently small c ∈ (0, π/4] such that sin(c) ≥
max(ϵ0(d

+), ϵ0(d
−)), where ϵ0(d) is defined for some n > n0 samples in (6).

Assumption 3. σ is such that the recovery error with model (4) is at least as large as with (3) .

These enable providing guarantees on recovering the mean vector magnitudes (1) and signs (2) and
simplify the analysis (1), (3); all three can be relaxed at the expense of a more complex analysis.

Our first theoretical result shows that we have near-consistency in estimating the mean parameters in

(3). We use standard notation Õ ignoring logarithmic factors.

5

Theorem 1. Let µ̂+
a,y, µ̂

−
a,y be the estimates of µ+

a,y,µ
−
a,y returned by Algorithm 1 with input T̂+, T̂−

constructed using isometric pseudo-Euclidean embeddings (in R
d+,d−

). Suppose Assumptions 1 and
2 are met, a sufficiently large number of samples n are drawn from the model in (3), and k = |Ys|.
Then there exists a constant C0 > 0 such that with high probability ∀a ∈ [m] and y ∈ Ys,

|θa − θ̂a| ≤ C0

∣

∣

∣E[d2Y(λa, y)]− Ê[d2Y(λa, y)]
∣

∣

∣ ≤ ϵ(d+) + ϵ(d−),

where

ϵ(d) :=

Õ
(

k
√

d
n

)

+ Õ
(√

k
d

)

if σ2 = Θ(1),

Õ
(
√

k
n

)

+ Õ
(√

k
d

)

if σ2 = Θ(1d).
(6)

We interpret Theorem 1. It is a nearly direct application of [AGJ14]. There are two noise cases for σ.
In the high-noise case, σ is independent of dimension d (and thus |Y|). Intuitively, this means the
average distance balls around each LF begin to overlap as the number of points growsÐexplaining
the multiplicative k term. If the noise scales down as we add more embedded points, this problem
is removed, as in the low-noise case. In both cases, the second error term comes from using the
algorithm of [AGH+14] and is independent of the sampling error. Since k = Θ(d), this term goes
down with d. The first error term is due to sampling noise and goes to zero in the number of samples
n. Note the tradeoffs of using the embeddings. If we used one-hot encoding, d = |Y|, and in the

high-noise case, we would pay a very heavy cost for
√

d/n. However, while sampling error is
minimized when using a very small d, we pay a cost in the second error term. This leads to a tradeoff
in selecting the appropriate embedding dimension.

4 Generalization Error for Structured Prediction in Finite Metric Spaces

We have access to labeling function outputs λa,i, . . . , λm,i for points xi and noise rate estimates

θ̂a, . . . , θ̂m. How can we use these to infer unobserved labels y in (2)? Our approach is based on
[NDRT13, vRW18],where the underlying loss function is modified to deal with noise. Analogously,
we modify (2) in such a way that the generalization guarantee is nearly preserved.

4.1 Prediction with Pseudolabels

First, we construct the posterior distribution P
θ̂
(Y = y|λ). We use our estimated noise model

P
θ̂
(λ|Y) and the prior P (Y = y). We create pseudo-labels for each data point by drawing a

random sample from the posterior distribution conditioned on the output of labeling functions:

Z̃(i) = z̃i ∼ Y |λa = λ
(i)
a , . . . , λm = λ

(i)
m ; θ̂. We thus observe (x1, z̃1), . . . , (xn, z̃n) where z̃i is

sampled as above. To overcome the effect of noise we create a perturbed version of the distance
function using the noise rates, generalizing [NDRT13]. This requires us to characterize the noise

distribution induced by our inference procedure. In particular we seek the probability that Z̃ = yj
when the true label is yj . This can be expressed as follows. Let Ym denote the m-fold Cartesian

product of Y and let Λu = (λ
(u)
1 , . . . , λ

(u)
m) denote its uth entry. We write

Pij = Pθ(Z̃ = yj |Y = yi) =

|Ym|
∑

u=1

Pθ(Y = yj |Λ = Λ(u)) · Pθ(Λ = Λ(u)|Y = yi). (7)

We define Qij = P
θ̂
(Z̃ = yj |Y = yi) using θ̂. P is the noise distribution induced by the true

parameters θ and Q is an approximation obtained from inference with the estimated parameters

θ̂. With this terminology, we can define the perturbed version of the distance function and a
corresponding replacement of (2):

d̃q(T, Ỹ = yj) :=

k
∑

i=1

(Q−1)jid
2
Y(T, Y = yi) ∀yj ∈ Y, (8)

F̃q(x, y) :=
1

n

n
∑

i=1

αi(x)d̃q(y, z̃i) f̂q(x) = argmin
y∈Y

F̃q(x, y). (9)

6

We similarly define d̃p, F̃p, f̂p using the true noise distribution P. The perturbed distance d̃p is an
unbiased estimator of the true distance. However we do not know the true noise distribution P
hence we cannot use it for prediction. Instead we use d̃q. Note that d̃q is no longer an unbiased
estimatorÐits bias can be expressed as function of the parameter recovery error bound in Theorem 1.

4.2 Bounding the Generalization Error

What can we say about the excess risk R(f̂q)−R(f∗)? Note that compared to the prediction based
on clean labels, there are two additional sources of error. One is the noise in the labels (i.e., even
if we know the true P, the quality of the pseudolabels is imperfect). The other is our estimation
procedure for the noise distribution. We must address both sources of error.

Our analysis uses the following assumptions on the minimum and maximum singular values σmin(P)
, σmax(P) and the condition number κ(P) of true noise matrix P and the function F . Additional
detail is provided in the Appendix.

Assumption 4. (Noise model is not arbitrary) The true parameters θ are such that σmin(P) > 0,
and the condition number κ(P) is sufficiently small.

Assumption 5. (Normalized features) |α(x)| ≤ 1, for all x ∈ X .

Assumption 6. (Proxy strong convexity) The function F in (2) satisfies the following property with
some β > 0. As we move away from the minimizer of F , the function increases and the rate of
increase is proportional to the distance between the points:

F
(

x, f(x)
)

≥ F
(

x, f̂(x)
)

+ β · d2Y
(

f(x), f̂(x)
)

∀x ∈ X , ∀f ∈ F . (10)

With these assumptions, we provide a generalization result for prediction with pseudolabels,

Theorem 2. (Generalization Error) Let f̂ be the minimizer as defined in (2) over the clean labels

and let f̂q (defined in (9)) be the minimizer over the noisy labels obtained from inference in Algorithm

1. Suppose Assumptions 4,5,6 hold. Then for ϵ2 = k5/2 · Õ(ϵ(d+) + ϵ(d−)) ·
(

1 + κ(P)
σmin(P)

)

and

c1 = 1 +
√
k

σmin(P) , with high probability,

R(f̂q) ≤ R(f∗) +O(n− 1
4) + Õ

(c1
β
n− 1

2

)

+ Õ
(3ϵ2

β
n− 1

2

)

. (11)

Implications and Tradeoffs: We interpret each term in the bound. The first term is present even
with access to the clean labels and hence unavoidable. The second term is the additional error we
incur if we learn with the knowledge of the true noise distribution. The third term is due to the use
of the estimated noise model. It is dominated by the noise rate recovery result in Theorem 1. If the

third term goes to 0 (perfect recovery) then we obtain the rate O(n−1/4), the same as in the case of
access to clean labels. The third term is introduced by our noise rate recovery algorithm and has two

terms: one dominated by Õ(n−1/2) and the other on Õ(
√
k/d) (see discussion of Theorem 1). Thus

we only pay an extra additive factor O(
√
k/d) in the excess risk when using pseudolabels.

5 Manifold-Valued Label Spaces: Noise Recovery and Generalization

We introduce a simple recovery method for weak supervision in constant-curvature Riemannian
manifolds. First we briefly introduce some background notation on these spaces, then provide our
estimator and consistency result, then the downstream generalization result. Finally, we discuss
extensions to symmetric Riemannian manifolds, an even more general class of spaces.

Background on Riemannian manifolds The following is necessarily a very abridged background;
more detail can be found in [Lee00, Tu11]. A smooth manifold M is a space where each point is
located in a neighborhood diffeomorphic to R

d. Attached to each point p ∈ M is a tangent space
TpM ; each such tangent space is a d-dimensional vector space enabling the use of calculus.

7

A Riemannian manifold equips a smooth manifold with a Riemannian metric: a smoothly-varying
inner product ⟨·, ·⟩p at each point p. This tool allows us to compute angles, lengths, and ultimately,
distances dM(p, q) between points on the manifold as shortest-path distances. These shortest paths
are called geodesics and can be parametrized as curves γ(t), where γ(0) = p, or by tangent vectors
v ∈ TpM . The exponential map operation exp : TpM 7→M takes tangent vectors to manifold points.
It enables switching between these tangent vectors: expp(v) = q implies that dM(p, q) = ∥v∥. The
logarithmic map operation log : M 7→ TpM takes manifold points to tangent vectors. Further,
expp(v) = q is equivalent to logp(q) = v.

Invariant Our first contribution is a simple invariant that enables us to recover the error parameters.
Note that we cannot rely on the finite metric-space technique, since the manifolds we consider have an
infinite number of points. Nor do we need an embeddingÐwe have a continuous representation as-is.
Instead, we propose a simple idea based on the law of cosines. Essentially, on average, the geodesic
triangle formed by the latent variable y ∈M and two observed LFs λa, λb, is a right triangle. This
means it can be characterized by the (Riemannian) version of the Pythagorean theorem:

Lemma 1. For Y =M, a hyperbolic manifold, y ∼ P for some distribution P onM and labeling
functions λa, λb drawn from (3), E cosh dY(λa, λb) = E cosh dY(λb, y)E cosh dY(λb, y), while for
Y =M a spherical manifold, E cos dY(λa, λb) = E cos dY(λb, y)E cos dY(λb, y).

These invariants enable us to easily learn by forming a triplet system. Suppose we construct the
equation in Lemma 1 for three pairs of labeling functions. The resulting system can be solved to ex-
press E[cosh(dY(λa, y))] in terms of E cosh(dY(λa, λb)),E cosh(dY(λa, λc)),E cosh(dY(λb, λc)).
Specifically,

E cosh(dY(λa, y)) =

√

E cosh dY(λa, λb)E cosh dY(λa, λc)

(E cosh(dY(λb, λc))2
.

Note that we can estimate Ê via the empirical versions of terms on the right , as these are based
on observable quantities. This is a generalization of the binary case in [FCS+20] and the Gaussian
(Euclidean) case in [SLV+22] to hyperbolic manifolds. A similar estimator can be obtained for
spherical manifolds by replacing cosh with cos.

Using this tool, we can obtain a consistent estimator for θa for each of a = 1, . . . ,m. Let C0

satisfy E|Ê cosh(dY(λa, λb))− E cosh(dY(λa, λb))| ≥ C0E|Êd2Y(λa, λb))− Ed2Y(λa, λb)|; that is,

C0 reflects the preservation of concentration when moving from distribution cosh(d) to d2. Then,

Theorem 3. Let M be a hyperbolic manifold. Fix 0 < δ < 1 and let ∆(δ) =

minρ Pr
(

∀i, dY(λa,i, λb,i) ≤ ρ
)

≥ 1 − δ. Then, there exists a constant C1 so that with proba-

bility at least 1− δ, E|Êd2Y(λa, y))− Ed2Y(λa, y)| ≤ C1 cosh(∆(δ))3/2/C0

√
2n.

As we hoped, our estimator is consistent. Note that we pay a price for a tighter bound: ∆(δ) is
large for smaller probability δ. It is possible to estimate the size of ∆(δ) (more generally, it is a
function of the curvature). In addition, it is possible to replace the ∆(δ) term by applying a version
of McDiarmid’s inequality for unbounded spaces as in [Kon14].

Next, we adapt the downstream model predictor (2) in the following way. Let µ̂2
a = Ê[d2Y(λa, y)].

Let β = [β1, . . . , βm]T be such that
∑

a βa = 1 and β minimizes
∑

a β
2
aµ̂

2
a. Then, we set

f̃(x) = argmin
y∈Y

1

n

n
∑

i=1

αi(x)

m
∑

a=1

β2
ad

2
Y(y, λa,i).

We simply replace each of the true labels with a combination of the labeling functions. With this, we
can state our final result. First, we introduce our assumptions.

Let q = argminz∈Y E[α(x)(y)d2Y(z, y)], where the expectation is taken over the population level
distribution and α(x)(y) denotes the kernel at y.

Assumption 7. (Bounded Hugging Function c.f. [Str20]) Let q be defined as above. For all a, b ∈M,
the hugging function at q is given by kbq(a) = 1− (∥ logq(a)− logq(b)∥2 − d2Y(a, b))/d

2
Y(q, b). We

assume that kbq(a) is lower bounded by kmin.

8

102 103 104 105 106
n

10 7

10 6

10 5

10 4

10 3

10 2

10 1

M
SE

(T
,T
)

T+

T

102 103 104 105 106

n

10 2

10 1

100

101

|
[d

2 (
a,
y]

)]
[d

2 (
a,
y)

]|

1, Ours
2, Ours
3, Ours

1, UWS
2, UWS
3, UWS

200 400 600 800 1000 1200 1400 1600 1800 2000
n

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

 a
cc

ur
ac

y

Ours
(label model)
UWS
(label model)

Ours
(end model)
UWS
(end model)

Figure 2: Finite metric space case. Parameter estimation improves with samples n in learning
to rankÐshowing nearly-consistent behavior. Our tensor decomposition estimator outperforms
[SLV+22]. In particular, (top left) as the number of samples increases, our estimates of the positive
and negative components of T improve. (Top right) the improvements in T recovery with more
samples translates to significantly improved performance over [SLV+22], which is close to constant
across n. (Bottom) this improved parameter estimation further translates to improvements in label
model accuracy (using only the noisy estimates for prediction, without training an end model) and
end model generalization. For the top two plots, we use θ = [6, 3, 8], and in the bottom plot, we use
θ = [0, 0, 1]. In all plots, we report medians along with upper and lower quartiles across 10 trials.

Assumption 8. (Kernel Symmetry) We assume that for all x and all v ∈ TqM, α(x)(expq(v)) =
α(x)(expq(−v)).

The first condition provides control on how geodesic triangles behave; it relates to the curvature.
We provide more details on this in the Appendix. The second assumption restricts us to kernels
symmetric about the minimizers of the objective F . Finally, suppose we draw (x, y) and (x′, y′)
independently from PXY . Set σ2

o = α(x)(y)Ed2Y(y, y
′).

Theorem 4. LetM be a complete manifold and suppose the assumptions above hold. Then, there
exist constants C3, C4 such that,

E[d2Y(f̂(x), f̃(x))] ≤
C3σ

2
o + C4

∑m
a=1 β

2
a(µ̂

2
a + σ2

o)

n(1− kmin)2
.

Note that as n grows, as long as our worst-quality LF has bounded variance, our estimator of the
true predictor is consistent. Moreover, we also have favorable dependence on the noise rate. This
is because the only error we incur is in computing suboptimal β coefficients. We comment on this
suboptimality in the Appendix.

A simple corollary of Theorem 4 provides the generalization guarantees we sought,

Corollary 1. LetM be a complete manifold and suppose the assumptions above hold. Then, with

high probability, R(f̃) ≤ R(f∗) +O(n− 1
4).

Extensions to Other Manifolds First, we note that all of our approaches almost immediately lift to
products of constant-curvature spaces. For example, we have thatM1 ×M2 has metric d2Y(p, q) =
d2M1

(p1, q1) + d2M2
(p2, q2), where pi, qi are the projections of p, q onto the ith component.

9

102 103 104 105 106

n

10 2

10 1

100

Ab
so

lu
te

 E
rro

r o
n

LF
 1

Ours
UWS

Figure 3: Continuous case. Parameter estimation improves with more samples in the hyperbolic
regression problem. Our estimator outperforms [SLV+22]. Here, we use different randomly sampled
values of θ for each run. We report medians along with upper and lower quartiles across 10 trials.

We can go beyond products of constant-curvature spaces as well. To do so, we can build generaliza-
tions of the law of cosines (as needed for the invariance in Lemma 1). For example, it is possible to
do so for symmetric Riemannian manifolds using the tools in [AH91].

6 Experiments

Finally, we validate our theoretical claims with experimental results demonstrating improved parame-
ter recovery and end model generalization using our techniques over that of prior work [SLV+22].
We illustrate both the finite metric space and continuous space cases by targeting rankings (i.e.,
permutations) and hyperbolic spaces. In the case of rankings we show that our pseudo-Euclidean
embeddings with tensor decomposition estimator yields stronger parameter recovery and downstream
generalization than [SLV+22]. In the case of hyperbolic regression (an example of a Riemannian
manifold), we show that our estimator yields improved parameter recovery over [SLV+22].

Finite metric spaces: Learning to rank To experimentally evaluate our tensor decomposition
estimator for finite metric spaces, we consider the problem of learning to rank. We construct a
synthetic dataset whose ground truth comprises n samples of two distinct rankings among the finite
metric space of all length-four permutations. We construct three labeling functions by sampling
rankings according to a Mallows model, for which we obtain pseudo-Euclidean embeddings to use
with our tensor decomposition estimator.

In Figure 2 (top left), we show that as we increase the number of samples, we can obtain an
increasingly accurate estimate of TÐexhibiting the nearly-consistent behavior predicted by our
theoretical claims. This leads to downstream improvements in parameter estimates, which also
become more accurate as n increases. In contrast, we find that the estimates of the same parameters
given by [SLV+22] do not improve substantially as n increases, and are ultimately worse (see
Figure 2, top right). Finally, this leads to improvements in the label model accuracy as compared
to that of [SLV+22], and translates to improved accuracy of an end model trained using synthetic
samples (see Figure 2, bottom).

Riemannian manifolds: Hyperbolic regression We similarly evaluate our estimator using syn-
thetic labels from a hyperbolic manifold, matching the setting of Section 5. As shown in Figure 3, we
find that our estimator consistently outperforms that of [SLV+22], often by an order of magnitude.

7 Conclusion

We studied the theoretical properties of weak supervision applied to structured prediction in two
general scenarios: label spaces that are finite metric spaces or constant-curvature manifolds. We
introduced ways to estimate the noise rates of labeling functions, achieving consistency or near-
consistency. Using these tools, we established that with suitable modifications downstream structured
prediction models maintain generalization guarantees. Future directions include extending these
results to even more general manifolds and removing some of the assumptions needed in our analysis.

10

Acknowledgments

We are grateful for the support of the NSF (CCF2106707), the American Family Funding Initiative
and the Wisconsin Alumni Research Foundation (WARF). We are thankful to Changho Shin and
Harshavardhan Adepu for the discussions and feedback.

References

[AGH+14] Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M Kakade, and Matus Telgarsky.
Tensor decompositions for learning latent variable models. Journal of Machine Learning
Research, 15:2773±2832, 2014.

[AGJ14] Animashree Anandkumar, Rong Ge, and Majid Janzamin. Sample complexity analysis
for learning overcomplete latent variable models through tensor methods. arXiv preprint
arXiv:1408.0553, 2014.

[AH91] Helmer Aslaksen and Hsueh-Ling Huynh. Laws of trigonometry in symmetric spaces.
Geometry from the Pacific Rim, 1991.

[BHS+07] Gükhan H. Bakir, Thomas Hofmann, Bernhard Schölkopf, Alexander J. Smola, Ben
Taskar, and S. V. N. Vishwanathan. Predicting Structured Data (Neural Information
Processing). The MIT Press, 2007.

[CRR16] Carlo Ciliberto, Lorenzo Rosasco, and Alessandro Rudi. A consistent regularization
approach for structured prediction. In Advances in Neural Information Processing
Systems 30 (NIPS 2016), volume 30, 2016.

[DRS+20] Jared A. Dunnmon, Alexander J. Ratner, Khaled Saab, Nishith Khandwala, Matthew
Markert, Hersh Sagreiya, Roger Goldman, Christopher Lee-Messer, Matthew P. Lungren,
Daniel L. Rubin, and Christopher Ré. Cross-modal data programming enables rapid
medical machine learning. Patterns, 1(2), 2020.

[FCS+20] Daniel Y. Fu, Mayee F. Chen, Frederic Sala, Sarah M. Hooper, Kayvon Fatahalian,
and Christopher Ré. Fast and three-rious: Speeding up weak supervision with triplet
methods. In Proceedings of the 37th International Conference on Machine Learning
(ICML 2020), 2020.

[Gol85] Lev Goldfarb. A new approach to pattern recognition. pages 241±402, 1985.

[GS19] Colin Graber and Alexander Schwing. Graph structured prediction energy networks.
In Advances in Neural Information Processing Systems 33 (NeurIPS 2019), volume 33,
2019.

[KAG18] Anna Korba and Florence d’Alché-Buc Alexandre Garcia. A structured prediction
approach for label ranking. In Advances in Neural Information Processing Systems 32
(NeurIPS 2018), volume 32, 2018.

[KL15] Volodymyr Kuleshov and Percy S Liang. Calibrated structured prediction. In Advances
in Neural Information Processing Systems 28 (NIPS 2015), 2015.

[Kon14] Aryeh Kontorovich. Concentration in unbounded metric spaces and algorithmic stability.
In Eric P. Xing and Tony Jebara, editors, Proceedings of the 31st International Confer-
ence on Machine Learning, volume 32 of Proceedings of Machine Learning Research,
pages 28±36, Bejing, China, 22±24 Jun 2014. PMLR.

[KW78] J.B. Kruskal and M. Wish. Multidimensional Scaling. Sage Publications, 1978.

[Lee00] John M. Lee. Introduction to Smooth Manifolds. Springer, 2000.

[LRBM06] Julian Laub, Volker Roth, Joachim M Buhmann, and Klaus-Robert Müller. On the
information and representation of non-euclidean pairwise data. Pattern Recognition,
39(10):1815±1826, 2006.

11

[NDRT13] Nagarajan Natarajan, Inderjit S. Dhillon, Pradeep Ravikumar, and Ambuj Tewari. Learn-
ing with noisy labels. In Proceedings of the 26th International Conference on Neural
Information Processing Systems - Volume 1, NIPS’13, page 1196±1204, 2013.

[PHD+06] Elżbieta Pękalska, Artsiom Harol, Robert P. W. Duin, Barbara Spillmann, and Horst
Bunke. Non-euclidean or non-metric measures can be informative. In Dit-Yan Yeung,
James T. Kwok, Ana Fred, Fabio Roli, and Dick de Ridder, editors, Structural, Syntactic,
and Statistical Pattern Recognition, pages 871±880, 2006.

[PM19] Alexander Petersen and Hans-Georg Müller. Fréchet regression for random objects with
euclidean predictors. Annals of Statistics, 47(2):691±719, 2019.

[PPD01] Elżbieta Pękalska, Pavel Paclik, and Robert P.W. Duin. A generalized kernel approach
to dissimilarity-based classification. Journal of Machine Learning Research, 2:175±211,
2001.

[RBE+18] Alexander Ratner, Stephen H. Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and Christo-
pher Ré. Snorkel: Rapid training data creation with weak supervision. In Proceedings
of the 44th International Conference on Very Large Data Bases (VLDB), Rio de Janeiro,
Brazil, 2018.

[RCMR18] Alessandro Rudi, Carlo Ciliberto, GianMaria Marconi, and Lorenzo Rosasco. Mani-
fold structured prediction. In Advances in Neural Information Processing Systems 32
(NeurIPS 2018), volume 32, 2018.

[RHD+19] A. J. Ratner, B. Hancock, J. Dunnmon, F. Sala, S. Pandey, and C. Ré. Training complex
models with multi-task weak supervision. In Proceedings of the AAAI Conference on
Artificial Intelligence, Honolulu, Hawaii, 2019.

[RNGS20] Christopher Ré, Feng Niu, Pallavi Gudipati, and Charles Srisuwananukorn. Overton: A
data system for monitoring and improving machine-learned products. In Proceedings of
the 10th Annual Conference on Innovative Data Systems Research, 2020.

[RSW+16] A. J. Ratner, Christopher M. De Sa, Sen Wu, Daniel Selsam, and C. Ré. Data program-
ming: Creating large training sets, quickly. In Proceedings of the 29th Conference on
Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, 2016.

[SLB20] Esteban Safranchik, Shiying Luo, and Stephen Bach. Weakly supervised sequence tag-
ging from noisy rules. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), pages 5570±5578, Apr. 2020.

[SLV+22] Changho Shin, Winfred Li, Harit Vishwakarma, Nicholas Carl Roberts, and Frederic
Sala. Universalizing weak supervision. In International Conference on Learning
Representations, 2022.

[Str20] Austin J. Stromme. Wasserstein Barycenters: Statistics and Optimization. MIT, 2020.

[Tu11] Loring W. Tu. An Introduction to Manifolds. Springer, 2011.

[vRW18] Brendan van Rooyen and Robert C. Williamson. A theory of learning with corrupted
labels. Journal of Machine Learning Research, 18(228):1±50, 2018.

Checklist

1. Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

2. Did you describe the limitations of your work? [Yes]

3. Did you discuss any potential negative societal impacts of your work? [N/A]

4. Have you read the ethics review guidelines and ensured that your paper conforms to them?
[Yes]

5. Did you state the full set of assumptions of all theoretical results? [Yes]

6. Did you include complete proofs of all theoretical results? [Yes] See appendix

12

	Introduction
	Background and Problem Setup
	Structured Prediction
	Weak Supervision

	Noise Rate Recovery in Finite Metric Spaces
	Pseudo-Euclidean Embeddings
	Multi-View Mixtures and Tensor Decompositions

	Generalization Error for Structured Prediction in Finite Metric Spaces
	Prediction with Pseudolabels
	Bounding the Generalization Error

	Manifold-Valued Label Spaces: Noise Recovery and Generalization
	Experiments
	Conclusion

