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A b s t r a c t : An important class of techniques for resonant anomaly detection in high
energy physics builds models that can distinguish between reference and target datasets,
where only the latter has appreciable signal. Such techniques, including Classication
Without Labels ( C Wo L a )  and Simulation Assisted Likelihood-free Anomaly Detection
( S A L A D )  rely on a single reference dataset. They cannot take advantage of commonly-
available multiple datasets and thus cannot fully exploit available information. In this
work, we propose generalizations of C W o L a  and S A L A D  for settings where multiple
reference datasets are available, building on weak supervision techniques. We demonstrate
improved performance in a number of settings with realistic and synthetic data. As an
added benet, our generalizations enable us to provide nite-sample guarantees, improving on
existing asymptotic analyses.
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1 Introduction

Due to the vast parameter space of Standard Model extensions and to the lack of signicant
evidence for new particles or forces of nature, a new model-agnostic search paradigm has
emerged. Many of these anomaly detection ( A D )  strategies are enabled by machine learning
(see e.g. Ref. [1{4]) and the rst results with collision data are now available [5, 6]. One way to
characterize A D  methods is based on their physics assumption of the new phenomena [2].
Strategies that assume the new physics is \rare" [7] estimate (explicitly or implicitly) the
data probability density and focus on events with low density. In contrast, techniques that
assume the new physics will manifest as an overdensity in phase space use likelihood ratio
methods to compare a reference dataset to a target dataset. The latter approach has been
extensively studied in the context of resonant anomaly detection [8], where one resonant
feature (usually a mass) is used to create a sideband region (reference dataset) nearly devoid of
any anomalous events and a signal region (target dataset) that may contain anomalies. The
reference dataset is used to estimate the presence of anomalies in the target dataset via
interpolation.

Many existing approaches are dened using one reference dataset and one target
dataset [9{18, 18{24]. However, in practice one can have access to or construct multiple
references. First, there may exist multiple resonant features that can be used to construct
sideband and signal regions. For instance, when a particle decays into two new particles,
the decay products can be used to construct all three intermediate resonances, a setting
present in the L H C  Olympics Dataset [3]. Second, there may also exist multiple inde-
pendent Standard Model simulators available for producing a dataset (e.g. Pythia [25],
Herwig [26], or Sherpa [27]). Using multiple reference datasets may improve performance,
but it is not clear how to incorporate all of their information when using existing methods
designed for a single set.

We explore two generalizations of resonant A D  to multiple reference datasets. First,
we consider Classication Without Labels ( C Wo L a )  [9, 10, 28], in which the reference is
simply the sideband region|a form of weak supervision where the noisy label of \signal"
is assigned to events in the signal region and the noisy label of ‘background’ to events in
the sideband region. We propose a new method, Mu lt i - C Wo L a ,  that builds multiple
reference datasets by constructing signal and sideband regions along dierent resonant
features. We consider a point’s membership in each feature’s signal region as a noisy
vote for anomaly, learn weights on each vote, and aggregate them to produce a higher-
quality noisy label. We demonstrate Mult i -CWoLa ’ s  performance on the L H C  Olympics
Dataset [3].

Next, we study Simulation Assisted Likelihood-free Anomaly Detection ( S A L A D )  [14].
In this method, a reweighting function between a reference simulation dataset and a target
dataset is learned in the sideband conditioned on the resonant feature. The simulated
events in the signal region are reweighted by interpolating this function and then are used
to distinguish anomalies in the target dataset. We extend this to the case of multiple
simulated datasets, each of which may make dierent approximation choices and thus pro-
vide complementary accuracy when using S A L A D .  We introduce M u lt i - S A L A D ,  which
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combines the simulated datasets accordingly and then reweights, with the key nding that
combining data helps when each simulator approximates dierent components of the back-
ground well. We demonstrate M u lt i - S A L A D ’ s  performance on synthetic data.

Finally, we study the nite sample guarantees of our proposed methods. Many resonant
A D  methods have optimality guarantees in some asymptotic limit, but there is no rst-
principles understanding of the methods’ performance with nite samples. In particular,
approaches like the ones described above that use classiers to distinguish a reference
dataset from a target dataset approximate the data-to-background likelihood ratio. When
the reference (physics) model is correct, this approach will converge to the optimal Neyman-
Pearson likelihood ratio test in the limit of innite statistics, complex enough classier
architecture, and exible enough training procedure [15, 29]. However, a nite sample
understanding of these approaches is lacking. We draw on results from statistical theory
to begin a formal study of resonant A D  methods with limited data. Our results lay a
foundation for future investigations into the nite sample properties of A D  and related
methods.

This paper is organized as follows. Section 2 briey set up the resonant A D  setting and
then M u lt i - C Wo L a  and M u lt i - S A L A D  are introduced in Secs. 3 and 4, respectively.
The paper ends with conclusions and outlook in Sec. 5.

2 Problem Setup

We have an input space of discriminating features x  2  X  and k resonant features m =
[m1; : : : ; mk] 2  Rk . Associated with a point (x; m) is an unknown label y 2  Y  for Y  =  f0; 1g
(background vs. signal). Points (x; m; y) are drawn from a distribution P  with density
p(). For a resonant feature mi 2  R,  an interval I m i   R  is used to dene a signal region S R i  =
f(x; m) : mi 2  Im i g  and a sideband region S B i  =  f(x; m) : mi 2= Im i g  (when the resonant
feature is obvious, the i  is dropped and we use S R  and S B ) .  We assume that the
sideband region contains little to no signal, i.e., p(y =  1j(x; m) 2  S B )   0. Our goal is to
construct a predictor f  : X  !  Y  to perform anomaly detection.

3 Mult i -CWoLa:  Learning from Multiple Resonant Features

We introduce Mu lt i - C Wo L a ,  an approach to anomaly detection that uses multiple ref-
erence datasets and is built using principles from the area of weak supervision [30, 31].

Standard C Wo L a      We have one unlabeled dataset D  =  f(x i ; mi )gi=1  with one resonant
feature (k =  1) that we want to use to learn f .  We use m to construct the signal and side-
band regions, D S R ; D S B   D  where D S R  =  D  \ S R  and D S B  =  D  \ S B ,  with distributions p S R

and p S B  respectively. With the intuition that there are more anomalies in the signal region,
we express each distribution as a mixture of signal and background components with
weight 0  S R ; S B   1:

p S R (x )  =  S R p(xjy =  1) +  (1      S R )p(xjy =  0)                                 (3.1)

p S B (x )  =  S B p(xjy =  1) +  (1      S B )p(xjy =  0)                                 (3.2)
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Under this construction, the density ratio of the mixtures p
S R

( x )  can be written in
terms of the ratio of the signal and background components, r (x)  =  p(xjy =0) , as p S B ( x )  =

S R r ( x ) + 1  S R  . Assuming S R  >  S B  (e.g. more signal in the signal region), the mixture

ratio is monotonically increasing in r (x). Therefore, we train a classier f  to learn p
S R

( x )
by distinguishing between D S R  and D S B ,  and this f  provides information about r (x)  and
can be used for anomaly detection.

3.1 M u l t i - C Wo L a  Metho d

Intuitively, C W o L a  uses the resonant feature m as a noisy label that identies the signal
versus sideband region and then trains a classier using these. This idea leads to a simple
question|if more than one such feature is available (k >  1), how can the multiple noisy
labels best be utilized? We tackle this question using principles from weak supervision [30{
33].

3.1.1 Mo del

In our approach, we split D  along each resonant feature mi to produce pairs of datasets
D S B i  and D S R i  for each i  2  [k] based on membership in Im i . A  straightforward way to use
all datasets (DS B 1 ; DS R 1 ) ; : : : ; (DS B k  ; D S R k  )  is to apply standard C W o L a  k times by
training k classiers that we can then ensemble or average. Instead, in Mu lt i - C Wo L a ,  we
construct a binary vector per x  consisting of k noisy membership labels, M(m) =
fM1(m); : : : ; Mk(m)g 2  f0; 1gk , where Mi(m) =  1 if (x; m) 2  D S R i      and Mi(m) =  0 if
(x; m) 2  D S B i .  We propose to directly aggregate these labels M(m) into an estimate of y, ŷ,
and train a classier on the aggregated ŷ along with the discriminative features x. Since each
Mi(m)’s \vote" can have dierent correlation with the true y, we aim to combine the votes in a
weighted fashion. We cannot directly measure each membership label’s accuracy since the
true y is unknown, so we draw on methods from weak supervision.

We model the distribution p(y; M(m)) as a probabilistic graphical model with the
following parametrization:

p(y; M(m); ) =  
1 

exp y ye + 
X

i M i ( m ) ye; (3.3)
i = 1

where  =  fy ; i  8i 2  [k]g are the canonical parameters of the distribution, Z  is for
normalization, and ye and Mi(m) are y and Mi(m) scaled from f0; 1g to f  1; 1g. Intuitively, i
represents the (unobserved) strength of the correlation between Mi(m) and y and thus
captures a notion of Mi’s accuracy. This model also implies, for simplicity, that Mi(m) ?
Mj (m)jy; that is, the resonant features are conditionally independent given y.1

Our goal is to estimate the parameters of the graphical model and use them to perform
inference, producing aggregated weak labels ŷ  from the distribution p(y =  1jM(m); ) given a
vector of noisy labels M(m).

1We can model some dependencies among resonant features if desired (see [31] for a method and see [34] for
how to learn if resonant features are not conditionally independent). However, we need at least three
conditionally independent subsets of resonant features in M(m)  in order for the estimation method from [31] to
recover the correct parameters.
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3.1.2 Parameter Estimation

We rst learn the parameters of p(y; M(m); ) as dened in (3.3). Of key interest is
the accuracy parameter i  =  p(Mi(m) =  1jy =  1) =  p(Mi(m) =  0jy =  0) of the ith
resonant feature, which corresponds to the canonical parameter i  (see [35] for more back-
ground on probabilistic graphical models). We estimate the accuracy parameters by adapt-
ing the triplet approach from [31]. First, we draw triplets of resonant features a; b; c 2
[k].2     If the distribution on y; M(m) follows the graphical model in (3.3), it holds that
yMa(m) ?  yMb(m) if Ma(m) ?  Mb(m)jy. Then, we have that E[yeMa(m)]E[yeMb(m)] =
E[Ma(m)Mb(m)] since ye2 =  1. Writing one such equation for each pair in the triplet
(a; b; c), we have that

E[yeMa(m)]E[yeMb(m)] =  E[Ma(m)Mb(m)]

E[yeMa(m)]E[yeMc(m)] =  E[Ma(m)Mc(m)]

E[yeMb(m)]E[yeMc(m)] =  E[Mb(m)Mc(m)]:

Solving this system, we obtain

jE[yeMa(m)]j =  
uE[Ma(m)Mb (m)]E[Ma(m)Mc(m)]

; 
b

c

and similarly for b and c. We assume that each signal region is positively correlated with the
true signal, which allows for us to ignore the absolute value and uniquely recover
E[yeMa(m)]. Next, we can use E[yeMa(m)] =  2p(ye =  Ma(m))   1 to obtain i  using
properties of the graphical model in (3.3). Note that in practice, all of these quantities are
empirical estimates, with terms such as E[Ma(m)Mb(m)] =  n i = 1  Ma(mi)Mb(mi).

3.1.3 Inference and Tra in ing

After we learn the accuracy parameters, we use them to estimate p(y =  1jM(m)) for a
given M(m). We use Bayes’ rule and the conditional independence among M(m) to write
p(yjM(m)) =      i = 1  p(Mi (m)jy=1)p(y=1) . We assume that the class balance p(y =  1) is known;
otherwise, it can be estimated via tensor decomposition [33]. p(Mi(m)jy =  1) is either equal to
i  if Mi(m) =  1 or 1   i  if Mi(m) =  0, and the denominator p(M(m)) can be either directly
estimated since all quantities are observable or computed as i = 1  p(Mi(m)jy =
1)p(y =  1) + i = 1  p(Mi(m)jy =  0)p(y =  1) using the estimated accuracies and class
balance.

Once p(y =  1jM(m)) is estimated for all M(m) 2  f0; 1gk, the aggregated weak label ŷ
is drawn from such distribution. With labels ŷ  for each (x; m) 2  D, we train a classier f
on the weakly labeled dataset f(x; ŷ )gi=1 . This procedure is summarized in Algorithm 1.

2We assume that k  3. In Lemma 1, we discuss why having k =  1 or k =  2 resonant features does not
recover a unique model.
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Algor i thm 1 M u lt i - C Wo L a
1: Input:  Dataset D  =  f(x i ; mi )gi=1 ; thresholds I m i  that split D  into signal and sideband

regions, D S R i  and D S B i  respectively, for each mi; class balance probability of anomaly
p(y =  1) (

2: Construct noisy label Mi(m) =
0 (x; m) 2  D

S R i      for each resonant feature mi.

3: for each triplet a; b; c 2  [k] do
4:

q

a : =  
q

E[Ma(m)Mb (m)]E[Ma(m)Mc(m)]=E[Mb(m)Mc(m)] (3.4)

b : =       E[Ma(m)Mb(m)]E[Mb(m)Mc(m)]=E[Ma(m)Mc(m)]              (3.5) c
: =       E[Ma(m)Mc(m)]E[Mb(m)Mc(m)]=E[Ma(m)Mb(m)];             (3.6)

where E  is an empirical estimate of the expectation over D, and M (m) indicates
M (m) scaled to f  1; 1g.

5: end for
6: Set accuracy parameter i  =  p̂ (Mi(m) =  1jy =  1) =  p̂ (Mi(m) =  0jy =  0) =  p̂ (Mi(m) =

y) =  i + 1 .
7: Compute estimate p̂(y =  1jM(m)) / i = 1  p̂(Mi(m)jy =  1)p(y =  1).
8: Construct ŷ  p̂(y =  1jM(m)) for each (x; m) 2  D.
9: Output:  Classier f  for anomaly detection trained on f(xi ; mi ; ŷ  )gi=1 .

3.2 Theoretical Results

Under (3.3), M u lt i - C Wo L a  oers nite-sample generalization guarantees. Suppose the
downstream model f  trained on ŷ belongs to class F .  Dene a loss function ‘ C  : Y Y  !  R  and
let the expected loss of f  be L C ( f )  : =  E  [ ‘C (f (x); y )] on true labels. Then, the optimal
classier is f ?  =  argminf 2F L C ( f ) ,  which is achieved with unlimited labeled data. Let the
empirical loss of f  on ŷ be L C ( f )  : =  1

i = 1  ‘C (f (x i ) ; ŷ  ). Then, the f  we learn
is constructed from f  =  argminf 2F L C ( f ) ,  which is learned on nite and noisily labeled
data. Note that this construction is dierent from the standard empirical risk minimization
(ERM)  loss on labeled data, and thus L C ( f )  does not asymptotically equal L C ( f ) .  We
aim to minimize the generalization error L C ( f )  L C ( f ? ) .

We now present our result on an upper bound for L C ( f )    L C ( f ? ) . Dene the
Rademacher complexity of F  as R n ( ‘   F )  =  E  supf 2F  n i = 1  " i ‘(f (x i ); yi )  with ran-
dom variables Pr(" =  1) =  Pr(" =   1) =  2 . Dene emin as the minimum eigenvalue of the
covariance matrix on [y; M1(m); : : : ; Mk(m)], and let amin be the minimum value of
E[Mi(m)y] over all i.

Theorem 1. Assume that p(y; M(m)) can be parametrized according to (3.3) and that ‘  is
scaled to be bounded in [0; 1]. Assume that the class balance p(y) is known (if not, there are
ways to estimate it [33]), and that k  3. Then, with probability at least 1   , the
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generalization error of M u lt i - C Wo L a  on D  is at most

L C ( f )  L C ( f ? )   4 R n ( ‘   F )  +  

r
l o g  2= 

+
c1

r
k  

+  
c2k

;
min min

where c1; c2 are positive constants.

We observe that there are three quantities controlling the above bound:

• The Rademacher complexity of F :  this term describes the model’s expressivity. Smaller
Rademacher complexity means that the model is easier to learn and that our f  will be
closer to the best model in F .  This quantity can be readily computed for a variety of
function classes F ,  such as decision trees, linear models, and two-layer feedforward
networks, which makes our bound in Theorem 1 tractable. See Appendix C.2 for exact
values.

• Using n nite samples: as the amount of data increases, the error decreases in O(n 1=2).

• Using noisy labels ŷ  instead of y: for our weak supervision algorithm and graphical
model, using ŷ rather than y contributes an additional O(n 1=2) error. Asymptotically,
our approach thus does no worse than training with labeled data.

By contrast, the standard C W o L a  approach with k =  1 does not utilize any aggrega-
tion or weak supervision, which requires k  3. For standard C Wo L a ,  the second term in
the generalization error is irreducible due to the fact that using any single resonant feature
in place of y is biased. On the other hand, M u lt i - C Wo L a  corrects for some of this bias;
the second term asymptotically approaches 0 with more data.

3.3 Empir ical  Results

In Figure 1, we compare M u lt i - C Wo L a  with standard C W o L a  as well as two other
baselines. We use simulation data from the L H C  Olympics Dataset [3]; in particular from
Pythia 8 [25], where the signal is boson decay and the background is generic 2 !  2 parton
scattering. This dataset contains 5 features; in the standard C W o L a  setup, we use one
thresholded resonant feature (k =  1) and use 4 discriminative features as x. For Mu lt i -
C Wo L a ,  we have generated k =  3 mixtures by varying how the 3 resonant features (the jet
masses in addition to the dijet mass) are thresholded and use 2 discriminative features as x.
We have three other baselines that utilize 3 resonant features:

• C W o L a  +  intersect denes the signal region as the intersection of the resonant fea-
tures’ signal regions, e.g. S R  =  S R 1  \ S R 2  \ S R 3 ,  but this can be overly conservative.

• C W o L a  + x  thresholding has one resonant feature as the noisy label ŷ  =  M1(m), and
includes the remaining thresholded features as discriminative fM2(m); M3(m); xg.

• C W o L a  +  average runs standard C W o L a  three times, once per resonant feature and
with the 2 discriminative features. The three model scores are averaged to produce
the nal output.
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F igure  1. Comparison between C W o L a  and M u lt i - C W o L a .  Using multiple mixed samples
helps performance across a range of dataset sizes. Access to multiple weak sources enables better
AUC  and lower variance compared to the single-feature version.

We vary the number of samples available on a logarithmic scale from n =  59 to 6003
and plot the AUC averaged over 5 runs per sample size in 1. We nd that M u lt i - C Wo L a
oers a higher AUC and lower variance, especially when there is limited data. We also plot
the S I  curves averaged over 5 runs for n =  59; 530; 6003 in 2.

4 M u l t i - S A L A D :  Learning from Multiple Simulations

We often have access to a(n approximate) simulation of the background process. We rst
provide an overview of S A L A D ,  which reweighs samples from the simulation to better
assist with classication on the real dataset. Then, we present M u lt i - S A L A D ,  a variant of
S A L A D  that uses multiple simulations.

Standard S A L A D  We have a background simulation dataset Dsim =  f(x i ; mi )gi=1
with yi =  0 for all i  in addition to one true dataset D  =  f(xi ; mi )gn 

1. Dsim is drawn from
some distribution Psim with density psim. While CWoLA learns the likelihood ratio between
the signal and sideband regions of D  alone, S A L A D  utilizes Dsim as well. Note
that if psim is equal to p(jy =  0), we could directly train a model to distinguish between D  and
Dsim in the signal region to get a classier that could detect anomalies. However, since Dsim

may not match the true background data, we instead rst need to learn a reweighting function
that captures the dierences between Dsim and D’s background data, and then we train a
model to distinguish between D  and the reweighted Dsim in the signal region. Formally,
given xed S R  and S B  for both datasets, the method can be broken into two steps:
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S B
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^

S R

p(x)

1 k
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F igure  2. Signicance Improvement (SI)  curve for M u lt i - C W o L a  at sizes n =  59; 530; and 6003.

1. Reweighting: a classier ĝ is trained to distinguish between Dsim =  Dsim \ S B  and
D S B .  Assuming that the sideband region has no anomalies, this ĝ is able to produce an
estimate of the weight ratio3 w(x; m) =  p 

p( 
(x;mjy=0)  1 g

^
(x;m) , assuming that the

datasets are the same size (jDsimj =  jDS B j).

2. Detection: Using a loss function L S  with estimated ŵ (x; m) applied to Dsim =
Dsim \  S R ,  a classier h is trained to distinguish between D S R  and Dsim.

If the estimate ŵ (x; m) is exactly equal to w(x; m) (e.g. ĝ is Bayes-optimal), then the
second step will be equivalent in expectation to learning the ratio p(xjy =0) (see Lemma 2
in Appendix C.3), from which one can detect anomalies.

4.1 M u l t i - S A L A D  Metho d

Now, we have multiple simulation datasets Dsim; : : : ; Dsim. One approach would be to
maintain distinctions among simulations by reweighing each pair to learn k weight func-
tions wi(x; m), and then using one overall loss function that weights points from each D S R ; i

with wi. However, it has been shown that importance reweighting, despite working in ex-
pectation, can be highly unstable and result in poor performance of tasks on the target data
D  [40]. To  understand why, Ref. [41] showed that the generalization error of an empirical
loss function with importance weights w depends on the magnitude of w. Applied to our

3 This is with the binary cross entropy loss function (also works for other functions [36]). This likelihood-
ratio trick is well-known (see e.g. Ref. [37, 38]), also in high-energy physics (see e.g. Ref. [39]).
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setting, it suggests that the more inaccurate the simulation is, the less the reweighted loss
recovers the true p(xjy =0) , and the model may instead pick up on dierences between D S R

and the reweighted Dsim that are noise rather than the anomaly. As a result, aggregating
individual S A L A D  outputs can be equivalent to ensembling many poor classiers.

Given these observations, M u lt i - S A L A D  uses multiple simulation datasets in a very
simple yet theoretically principled way: control the magnitude of the overall w by com-
bining all the Dsim to produce one large simulation dataset Dsim whose distribution best
approximates the true background p(xjy =  0), and then use standard S A L A D  with Dsim

and D. Note that this approach both improves sample complexity and can \suppress" a
simulation that on its own has high w, while the approach of learning k weight functions
would not oer such improvements. In Algorithm 2 and Appendix B.1, we write this proce-
dure out where we simply concatenate all Dsim together. However, with domain knowledge on
the strengths and weaknesses of each simulation across features, one could produce Dsim by
sampling accordingly from each. We leave this direction for future work.

4.2 Theoretical Results

We now present a nite sample generalization error bound on M u lt i - S A L A D  that also
applies to S A L A D .  To  measure the generalization error, recall w(x; m) =  p 

p( 
(x;mjy =0) and

let ŵ be the classier g’s estimate. We denote h as the reweighted classier. Let
h? =  argminh2H LS (h; w) and let h =  argminh2H LS (h; ŵ ). We aim to bound LS (h; ŵ )
LS (h? ; w).

We rst set up some denitions. Dene nS R  as the number of points from D  and Dsim

belonging to the signal region, and nS B  as the number of points belonging to the sideband.
Let nS R  be the number of points in Dsim belonging to the signal region. Let ĝ (x) 2
[ĝmin; ĝmax] and g? (x) 2  [g? 

in; g? 
ax], where g? is the optimal classier. Let R n S R ( ‘ S   fH ; Gg)  be

the Rademacher complexity of the overall loss LS (h; w) across function classes
h 2  H; g 2  G. Dene W =  maxx;m w(x; m) as the maximum ratio between the simulation and
true background. Let B 1  =  maxf log h?(x; m); log(1   h?(x; m))g be based on
the most extreme value of h? (i.e. how far apart p and p(jy =  0) can be). Let  =  max(

log(1 h?(x; m))) for x; m 2  Dsim. Let R n S B  ( ‘   G) is the Rademacher complexity of
the loss function class used for learning the reweighting, where ‘  is point-wise cross-
entropy. Finally, let B 2  =  log(minfĝmin; gming).

Theorem 2. With probability at least 1   , there exists a constant c >  0 such that the
generalization error of M u lt i - S A L A D  on Dsim and D  is at most

LS (h; ŵ ) LS (h? ; w)  2 R  S R ( ‘ S   fH; G g) +  (1 +  W B 1 )

r
l o g  8=

(4.1)
s

+  
(1

 
 

 
ĝmax)(1

s
 

 
g?

 

ax )nS R      4 c R n S B  ( ‘   G) +  2c
l
2n

4= 
+  B 2

log 8= 
:

We make several observations about this bound:
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sim

1 2

1 11 2 1 2

1

w(x; m) =

=

=1 1

+      p       pexp  exp

 p exp

11 1 + 1 2
2 2 2

• The bound scales in (nS B )  1=2 and (nS R )  1=2, where the former comes from the
initial reweighting step while the latter comes from the weighted classication step.

• The bound is also dependent on the Rademacher complexities of both classiers g
and h used.

• The bound depends on the dierence between the simulation and data distributions
through quantities W , B1; B2; ; ĝmax; gmax. If the distributions have very dierent
densities, these quantities will all be large, increasing the generalization error.

We comment how this bound is dierent when instantiated for S A L A D  versus M u lt i -
S A L A D .  The following example shows how S A L A D  with one simulation can result in a
large W (and other large constants), while M u lt i - S A L A D  with two simulations combined
can reduce W in the bound.

Example 1. Let Psim(xjy =  0) =  N (; 2 ), Psim(xjy =  0) =  N (  ; 2) be Gaussian
distributions on x  with ; 2 2  R ,  and let the true background distribution P (jy =  0) be a

mixture of the Gaussians on x,  P (xjy =  0) =  2 Psim +  2 Psim. Let Psim; Psim; and P  have
the same marginal distribution over m with x  ?  mjy. Then, if we only use one simulation
Psim,

p(x; mjy =  0) p(xjy =  0)
psim(x; mjy =  0)       psim(xjy =  0)

1                         ( x  )2 1                         ( x + ) 2

2     2 22 2     2 22

1     ( x  )2

     2 22

=  
2 

+  
2 

exp
(x

2
)2 

  
(x

2
)2

=  
2 

+  
2 

exp
 x  

:

Therefore, as x  !   1 ,  W !  1 .  However, if we dene Psim as the distribution of
the two simulation datasets concatenated, we have that psim(xjy =  0) =  p(xjy =  0), and as
a result, W !  1, making the generalization error bound smaller.

From this example, we can see that signicantly diering simulation and data dis-
tributions can result in large, unbounded weight ratios, which are correlated with poor
performance.4     This concretely motivates our algorithmic objective to combine multiple
simulation datasets as to closely approximate the true data.

4.3 Empir ical  Results

To  demonstrate how M u lt i - S A L A D  can improve over using only one simulation and
over using simulations separately, we consider a synthetic experiment with two simulation

4 The bound in Theorem 2 is meant to provide a general understanding of S A L A D ’ s  performance. It can
be made tighter by replacing terms that are maxima like M and B 2  with terms that are based on the
overall data distributions (e.g. variance, as in Ref. [41]). Variance-based bounds are less likely to be
vacuous, but will still demonstrate how performance is dependent on the intrinsic dierences between the two
distributions.
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F igure  3. Synthetic data for evaluating Multi-SALAD.

datasets5. The true background is P (jy =  0) =  2 N ( 1; 0:2)+ 2 N (1; 0:2), and the anomaly is
P (jy =  1) =  2 N ( 2; 0:2) +  2 N (2; 0:2). Simulation 1 is Psim =  2 N (1; 0:2) +  2 N (0; 1), and
simulation 2 is Psim =  2 N ( 1; 0:2) + 2 N (0; 1). We generate 2000 points from the true
background and 100 points that are anomalies to form D, and 2000 points each from Psim
and P 2

m to form Dsim and Dsim. We construct signal and sideband regions from these by
splitting datasets in half randomly, assuming they follow the same distribution over x
(i.e., m is independent of x )  except that there is no anomaly in the sideband regions. A
visualization is shown in Figure 3.

Intuitively, the anomaly is only slightly dierent from the background data, which
makes it important to learn a good reweighting function from the simulations. Because each
simulation alone diverges greatly from the data for one mode, each individual reweighting
may not approximate the true P (jy =  1) well. On the other hand, if we combine both
simulation datasets together, the aggregate distribution has smaller weights with lower
variance, which can allow for more accurate reweighting. This is demonstrated in Figure 4,
which depicts the reweighting in the sideband region. Figure 5 depicts the reweighting’s
interpolation into the signal region, where we introduce an additional baseline S A L A D -
S w i t c h ,  which uses k separate weight functions wi (x; m) and switches among them in the
reweighted loss function L S .  In all but the bottom right subgure in both gures, the
reweighted simulation data poorly approximates the true background data. As a result, a
classier trained to distinguish between the high-variance reweighted simulation and the
true background data plus some small anomaly will more likely learn the distinctions
coming from poor approximation, rather than anomaly. In particular, note that S A L A D -

5We nd that the dierences between the simulations in the L H C  Olympics are not enough to see a
noticeable gain from M u lt i - S A L A D  over S A L A D .
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F igure  4. Top left: S A L A D  reweighting using simulation 1 on sideband region. Top right: reweight-
ing using simulation 2. Bottom: reweighting using simulation 1 and 2 combined.

Switch results in signicant overweighting in Figure 5.
With these observations, we present the signal eciency to rejection rate of each

method in Figure 6, where we compare M u lt i - S A L A D  against S A L A D  using simula-
tion 1 only, S A L A D  using simulation 2 only, and S A L A D - S w i t c h .  Table 1 contains the
accuracy and AUC scores for each method. Averaged over 10 random seeds, M u lt i -
S A L A D  outperforms other methods. The signal eciency to rejection rate for each of the 10
runs is available in Appendix E.

Simulation 1 Simulation 2 Simulation 1 and 2
Method

Accuracy
A U C

None
43:82:2

28:54:2

S A L A D
62:58:8

80:714:5

None
42:73:6

27:44:5

S A L A D
64:312:3

78:718:2

None
50:00:0

15:45:3

S A L A D - S w i t c h
54:36:2 74:717:0

M u lt i - S A L A D
64:89:3  90:810:2

Table 1. Accuracy and AUC  scores (%) for M u lt i - S A L A D  on two simulation datasets. We
compare to S A L A D - S w i t c h  (dierent reweighting), as well as standard S A L A D  on individual
simulations and no reweighting. Performance is averaged over 10 random runs with one standard
deviation reported.

5 Conclusions and Outlook

We extend two resonant A D  approaches to incorporate multiple reference datasets. For
Mu lt i - C Wo L a ,  we draw from weak supervision models to handle multiple resonant fea-
tures. For M u lt i - S A L A D ,  we combine multiple simulation datasets to best approximate
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F igure  5. Top left: S A L A D  reweighting using simulation 1 on signal region. Top right: reweighting
using simulation 2. Bottom left: using both simulation 1 and 2 weights separately. Bottom right:
reweighting using simulation 1 and 2 combined.

105

104

Sim 1 SALAD

Sim 2 SALAD

Multi-SALAD

SALAD-Switch

103

102

101

100

0.0 0.2 0.4 0.6 0.8 1.0
Signal Efficiency (True Positive Rate)

F igure  6. Signal eciency to rejection of Multi-SALAD versus other baselines (weighted and
unweighted).

the background process. Future work includes 1) exploring M u lt i - S A L A D ’ s  applicability
on real data and algorithms for sampling from simulation datasets 2) extending Mult i -
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p

C W o L a  to model more complex relationships among resonant features and 3) using such
approaches together over multiple simulations and resonant features, eectively utilizing as
much information as possible.
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Appendix

We provide a glossary of notation in A. We provide algorithmic details for M u lt i - S A L A D  in
Section B. We present additional theoretical results on Rademacher complexities and the
asymptotic behavior of S A L A D  in Section C.  In section D, we provide proofs for our
theoretical results. In section E,  we provide additional experimental details.

A Glossary

The glossary is given in Table 2.

B Additional Algorithmic Details

B .1 M u l t i - S A L A D  Algor i thm

M u lt i - S A L A D  is described in Algorithm 2. We have simulation datasets Dsim; : : : Dsim,
where Dsim =  f(x j ; mj )g j  

s i m  and all points belong to the background (y =  0). As discussed in
Section 4, we propose using these simulation datasets by aggregating them into a single
simulation dataset Dsim (whether it be with uniform or stratied sampling, etc.) Then the
rest of this section proceeds as follows and is a review of the standard S A L A D  method.

Reweighting First, we learn weights to correct for the bias of the simulated background
data. We split the both simulation and true data along m to produce sets Dsim; Dsim and
D S R  and D S B .  We train a classier over Dsim and D S B  to distinguish between simulation and
real data in the sideband region. That is, we train a binary classier ĝ over points (x; m; z)
in the sideband where x; m is either from psim(jy =  0) (z =  0) or p(jy =  0) (z =  1), where
we recall that simulation data only contains y =  0, and no anomalies are present in the
sideband. Denote q as the joint density of (x; m; z). We dene the weight as the estimated
likelihood ratio

ĝ (x; m) q(z =  1jx; m) q(x; mjz =  1) q(z =  1)
1 ĝ (x; m) q(z =  0jx; m) q(x; mjz =  0) q(z =  0)
q(x; mjz =  1)          p(x; mjy =  0)
q(x; mjz =  0) psim(x; mjy =  0)

Here, we assume that q(z =  1) =  q(z =  0) (i.e. balanced simulation and real dataset,
which we can always ensure by generating more or less simulation data). Equality is
obtained in the expression above when ĝ is Bayes-optimal.

Tra in ing      The above ŵ (x; m) is dened on the sideband region. Next, we interpolate and
correct the bias of the simulation in the signal region. Let Dsim be the set of simulation
data in the signal region of size nsim, and let D S R  be the set of true data in the signal
region of size ndata, for a total of nS R  points. We train a classier h to distinguish between the
reweighted simulated data, which approximates true background data, and the true
data. In particular, the loss function used is

LS (h; ŵ ) =    S R log h(x; m) + ŵ(x; m) log(1 h(x; m)) : (B.1)
x 2 D S R                                                   x 2 D sim
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Algor i thm 2 M u lt i - S A L A D
1: Input:  Simulation datasets Dsim; : : : ; Dsim and real dataset D.
2: Construct overall simulation dataset Dsim = i = 1  Dsim.
3: Split each dataset into signal region and sideband region using resonant feature m to

get fDsim; Dsimg and fD S R ; D S B g .
4: Learn weight ŵ (x; m) =  1 g

^
(x;m) , where ĝ is a classier that distinguishes data D S B

from simulation Dsim in the sideband region.
5: Train a new classier h on the signal region to distinguish between points in D S R  and

points in Dsim reweighted by ŵ, using the following loss:
LS (h; ŵ ) =    S R  

 
X

 
log h(x; m) +  X

 
ŵ (x; m) log(1 h(x; m)): (B.2)

x 2 D S R x 2 D sim

6: Output:  Classier output h(x; m), which yields a score that is thresholded for anomaly
detection.

In expectation with an optimal w, we can see that minimizing this loss is equivalent
to minimizing the cross-entropy loss on a task that distinguishes between points drawn
from p and points drawn from p(jy =  0) in the signal region. Therefore, h can be used for
anomaly detection. The procedure is summarized in Algorithm 2.

C Additional Theoretical Results

C .1 T h e  Need for 3 Resonant Features

We show that to identify the model (3.3), we need at least k =  3 resonant features.

Lemma 1. If k =  1 or k =  2 in model (3.3), the parameters 1 and 2 cannot be recovered
from the observable quantities.

Proof. The strategy we use to show that the model cannot be identied for k =  1 or k =  2 is to
prove that the observable distributions P (M1(m); : : : ; Mk (m)) are consistent with
multiple values of . We do so by direct calculation.

First, consider the case of k =  1. Set y =  0 for simplicity. Then, the model is Z
exp(M1(m)ye). Then Z  =  2 exp() +  2 exp( ), and

exp() +  exp( ) 1
1 2 exp() +  2 exp( ) 2

Thus, any  value produces the same observable distribution, so that we cannot identify .
Next, we consider k =  2. Again, set y =  0. The model is now Z  exp(1M1(m)ye +

2M2(m)ye). We similarly compute

Z  =  2(exp(1 +  2) +  exp( 1 +  2) +  exp(1 2) +  exp( 1 2)):
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The observable distribution is now P (M1(m); M2(m)). We have that

P (M1(m) =  1; M2(m) =  1) =  
Z  

(exp(1 +  2) +  exp( 1 2));

and
P (M1(m) =  1; M2(m) =   1) =  

Z  
(exp(1 2) +  exp( 1 +  2)):

Note that we have P (M1(m) =   1; M2(m) =   1) =  P (M1(m) =  1; M2(m) =  1) and
P (M1(m) =   1; M2(m) =  1) =  P (M1(m) =  1; M2(m) =   1).

As a result, we have the same distribution P (M1(m); M2(m)) for the parameters 1; 2

=  a; b and for 1; 2 =  b; a, where a; b are some non-negative values. If a =  b, we end up with
at least two solutions that cannot be distinguished, completing the proof.

C .2 Rademacher Complexity  Bounds

We present bounds on the Rademacher complexity R n ( F )  of various models F .  For all of
the F  below, we obtain R n ( ‘   F )  by computing R n ( F ) .  These two Rademacher complex-ities
are equal when we assume that ‘  is 1-Lipschitz and apply Talagrand’s lemma.

• L inear  models: We dene f ( x )  =  > x  with kk2  B  and E [kxk2 ]  C 2 , R n ( F )   B C  [42,
Theorem 5.5].

• Two-layer feed-forward neural networks ( M L P s ) :  We dene f ( x )  where  =
(U; w) are the parameters for the weights for the two layers of an MLP. Here U 2  Rmd and
w 2  Rm. Suppose ReLU is the activation function, kwk2  Bw , kuik2  B u  for all 1  i
m, and that E[kxk2  C 2 . Then, R n ( F )   2Bw Bu C m [42, Theorem
5.9].

• Kernels: Let k : X   X  !  R  be a continuous symmetric function so that for
x1; : : : ; xn, the matrix given by K i j  =  k (xi ; x j )  is positive semidenite. The class of
kernel estimators consists of functions f ( x )  = i = 1  i k (X i ; x).  Suppose that

i ; j  i j k ( X i ; X j )   B 2 ; then, from [43], R n ( F )   2B E [ k ( X ; X ) ] .  For particular
kernels it is easy to bound the term in the numerator above. For example, we consider
the R B F  kernel which has maximum one, yielding R n ( F )   2 B  .

C .3 Asymptotic  behavior of S A L A D ’ s  LS (h; w)

Lemma 2. Assume that the reweighting function is Bayes-optimal, meaning that ŵ (x; m) =
w(x; m). Then,

lim L(h; ŵ ) /  L (h);
n S R ! 1

where L C E ( h )  =  Ex;m;z 0 =1 [ log h(x; m)] +  Ex;m;z 0 =0 [ log(1 h(x; m))] is the cross en-

tropy loss on label z0
 =

0 x; m  p(jy =  0)
.
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Proof. Let ndata be the number of points from D  that belong to the signal region. Under
our assumptions, the empirical loss function can be written as

L(h; ŵ ) /     data  
1 X

l o g  h(x; m)
data          x 2 D S R

  
n

sim  
nsim x 2 D s i m

p
p( 

(x; mjy =  0) 
log(1 h(x; m)):

As nS R  !  1 ,  the rst term approaches Pr(z0 =  1) Ex;mP [log h(x; m)] =  Pr(z0 =
1) Ex;mjz 0 =1 [log h(x; m)]. For the second term, we can construct nS R;0 , the amount of data
where x  is from p(jy =  0), to be equal to nsim such that the expression asymptotically

approaches Pr(z0 =  0)  Ex ;mP s i m        p
 p(x;mjy=0) 

)  log(1 h(x; m)) . Performing a change
of expectation, this is equal to Pr(z0 =  0)  Ex;mjz 0 =0 [log(1 h(x; m))]. Putting this
together, we have that

n 
lim L(h; ŵ ) /  Pr(z0 =  1)Ex;mjz 0 =1 [log h(x; m)] Pr(z0 =  0)Ex;mjz 0 =0 [log(1 h(x; m))]

=  L C E (h ) :

D Proofs

D.1 Proof of Theorem 1

Proof. From Theorem 3 of [31], we have that L C ( f )  L C ( f ? )  is bounded by the traditional
E R M  generalization gap of L C ( f )       L C ( f ? ) ,  where f  =  argminf 2F n         

 
i = 1  ‘(f (xi ; mi ); yi )

is the classier learned on labeled data, plus the term c1                k  +  c2 k     .
m i n

We can apply standard learning theory bounds on L C f )  L C ( f  ). In particular, this
quantity is equal to

L C ( f )  L C ( f ? )  =  ( L C ( f )  L C ( f ) )  +  ( L C ( f )  L C ( f ? ) )  +  ( L C ( f ? )  L C ( f ? ) )

L C ( f )       L C ( f )  +  L C ( f ? )       L C ( f ? )

 2 sup j L C ( f )  L C ( f ) j ;
f 2 F

where we have used the fact that L C ( f )   L C ( f ? ) .  Then, using uniform convergence
bounds, such as Theorem 3.3 of [44], we have

L C ( f )  L C ( f ? )   22R n ( ‘   F )  +  

r
l o g  2=

:

This gives us our desired result.
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D .2 Proof of Theorem 2

Proof. We dene the true (cross-entropy) loss as

LS (h; w)= Pr(z0 =  1)Ez 0 =1 [log h(x; m)] Pr(z0 =  0)Ex;m2P s i m  
[w(x; m) log(1 h(x; m))] ;

where z0
 =  1 for x; m  P  and 0 for x; m  P (jy =  0). Next, dene w(x; m) =

q (x;mjz =0) and let ŵ be the weight ratio learned by our model. Let h =  argminh2H LS (h; ŵ ),
and let h =  argminh2H L(h; w ). Intuitively, h corresponds to the true dierence between
Pdata and Pdata(jy =  0). We can rst decompose the generalization error as

LS (h; ŵ )      LS (h? ; w) =  [LS (h; ŵ )      LS (h; ŵ )] +  [LS (h; ŵ )      LS (h?; ŵ )]                 (D.1)

+  [LS (h?; ŵ )      LS (h? ; w)] +  [LS (h? ; w)      LS (h? ; w)]:           (D.2)

We know that LS (h; ŵ )  LS (h? ; ŵ ), so

LS (h; ŵ ) LS (h? ; w)  jLS (h; ŵ ) LS (h; ŵ )j +  jLS (h? ; w) LS (h? ; w)j

+  LS (h? ; ŵ ) LS (h? ; w)

 sup jLS (h; w) LS (h; w)j +  jLS (h? ; w) LS (h? ; w)j +  LS (h? ; ŵ ) LS (h? ; w):
h;w

We rst bound suph;w jLS (h; w)   LS (h; w)j. For notation, we rewrite LS (h; w) as
LS (h; g), where w(x; m) =  1 g(x;m) and g belongs to some function class G.     Then,

using Theorem 3.3 from [44], we get that suph;w jLS (h; w)   LS (h; w)j  2 R n S R ( ‘ S

fH ; G g) +       log 1= with probability at least 1      , where ‘ S  fH; G g is dened as satisfying

‘S (h(x; m); g(x; m); y) =   y log h(x; m)      (1      y) 1 g(x;m) log(1      h(x; m)) for h 2  H; g 2  G.
Next, we bound jLS (h? ; w)  LS (h?; w)j. Let W =  max w(x; m) <  1  be the maximum

density ratio, and let B 1  =  maxx;mf     log h?(x; m);      log(1   h?(x; m))g. Assume that
B 1  <  1 .  We can apply standard concentration inequalities here (Hoeding) to get that

jLS (h? ; w) LS (h? ; w)j  W B1
log 2= with probability at least 1 .

Finally, we bound LS (h? ; ŵ ) LS (h? ; w). We can write LS (h?; ŵ ) LS (h? ; w) as

LS (h? ; ŵ ) LS (h? ; w) = S R  X
 

(ŵ (x; m) w(x; m))  ( log(1 h?(x; m))): (D.3)
x 2 D sim

Dene  =  max( log(1   h?(x; m)))  0 for x; m 2  Dsim, which is small as long as
h?(x; m) suciently classies x  and is hence a property of how separated the reweighted
simulation and true data is. Then,

jLS (h?; ŵ ) LS (h? ; w)j S R X jŵ(x; m) w(x; m)j: (D.4)
x;m2D sim

Recall that ŵ (x; m) =  1 ĝ (x;m) and w(x; m) =  1 g ? (x;m) where g?(x; m) =  Pr(z =

1jx; m), so jŵ (x; m)   w(x; m)j =  (1 g
^

(x;m))(1 g 
;
(x;m)) . This denominator is greater than
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(1 ĝmax)(1 gmax). Then,

jLS (h?; ŵ ) LS (h? ; w)j  
(1 ĝmax)(1 gmax )nS R 

x ;m2D s i m  

jĝ (x; m) g?(x; m)j: (D.5)

We now look at the classier for training g. The per-point cross entropy loss for
(x; m; z) is ‘(g(x; m); z) =       log g(x; m) for z =  1 and      log(1  g(x; m)) for z =  0. WLOG,
assume for some x  and m, g?(x; m) >  ĝ (x; m). Then j‘(g?(x; m); 1)   ‘(ĝ (x; m); 1)j =

g? (x;m) g? (x;m) g? (x;m)=ĝ (x;m) 1 g? (x;m) ĝ (x;m)
ĝ (x;m) ĝ (x;m) g? (x;m)=ĝ (x;m) g? (x;m)

ĝ (x; m)j and j‘(g?(x; m); 0)   ‘(ĝ (x; m); 0)j =  log 1 g ? (x;m) =  log 1 + 1 g? (x;m)   1  (

(1 g
^

(x;m))=(1 g? (x;m))
1 =  g? (

1 g
^

(x;m)
;m)  jg?(x; m)  ĝ (x; m)j, where we use the inequality log(1

+  x )   1 + x  for x  >   1. Therefore, with probability 1 ,

jLS (h?; ŵ ) LS (h? ; w)j  
(1 ĝmax)(1 gmax

)
nS 

x;m2S

j‘(ĝ (x; m); z) ‘(g?(x; m); z)j

 
(1

 
 

 
ĝ )(1

s
 

 
g? )nS

R
 E  [j‘(ĝ (x; m); z) ‘(g?(x; m); z)j] +  B 2

log 2=
;

where B 2  =  maxx;y f‘(ĝ (x; m); z); ‘(g?(x; m); z)g =  log(minfĝmin; gming). We assume
that B 2  is nite, so there exists a constant c such that

jLS (h?; ŵ ) LS (h? ; w)j  
(1

 
 

 
ĝ )(1

s
 

 
g )n

cjL(ĝ ) L(g ? )j +  B 2

s
l o g

 
2=

;

where L (g )  =  E x ; m 2 S R  [‘(g(x; m); z)]. Since g?(x; m) is Bayes optimal, jL(ĝ )  L(g ? )j =

L(ĝ ) L(g ? ) =  L(ĝ ) L ( ĝ ) + L( ĝ ) L(g ? ) + L(g ? ) L(g ? )  2 supg2G jL(g ) L(g)j. From
Theorem 3.3 in [44], this is bounded by 2 R n S B  ( ‘   G) + log 1= with probability at least
1 . Then, applying a union bound, with probability 1      , we have

jLS (h?; ŵ ) LS (h? ; w)j

 
(1

 
 

 
ĝ )(1

s
 

 
g? )nS

R
 4 c R n S B  ( ‘   G) +  2c

log 2= 
+  B 2

log 4=
:

Putting everything together with another union bound, with probability 1   , the
generalization error is at most

LS (h; ŵ ) LS (h? ; w)  2 R  S R ( ‘ S   fH; G g) +  (1 +  W B 1 )

r
l o g  8=

(D.6)

+  
(1

 
 

 
ĝmax)(1

s
 

 
g?

 

ax )nS R 4 c R n S B  ( ‘   G) +  2c

r
l
2n

4= 
+  B 2

s
l o g

 
8=

:

(D.7)
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E Experiment Details

E.1 M u l t i - C Wo L a  Exp eriments

For the M u lt i - C Wo L a  experiment, we used the anomaly and simulation data from the
Pythia 8 simulations in the L H C  Olympics Dataset to create an unlabeled dataset we
want to perform anomaly detection on [3]. We have k =  3, and construct Mi(m) based on
the thresholds [[3:3; 3:7]; [0:09; 0:13]; [0:3; 0:35]] on the rst three features. For standard
C Wo L a ,  only the third feature is regarded as the resonant feature, and it is thresholded
with the interval [0:3; 0:35]. We constructed training datasets of varying sizes with class
balance Pr(y =  1) =  0:149. We used one test dataset with 65755 randomly sampled
anomaly points and 161658 randomly sampled background points.

All  methods were trained using scikit-learn’s MLPClassier with max iter=5000. For
Mult i -CWoLa ’ s  weak supervision step, we learn the parameters of the graphical model
using S G D  and PyTorch [45] with class balance Pr(y =  1) =  0:25, 30000 epochs, and
learning rate =  1e 6.

E .2 M u l t i - S A L A D  Exp eriments

Setup We use MLPs from Keras [46], each with 3 hidden layers of dimension 32, ReLu
activation, and trained with cross-entropy loss and the Adam optimizer. We train for 50
epochs, batch size 200, and default parameters otherwise. Finally, we evaluate our approach
on a new test set containing 200000 background points and 200000 anomaly points. This
test set is used to produce the signal eciency to rejection rate. Al l  experiments were run on a
personal laptop.

Addit ional  Results In Figure 7, we show our results on individual runs. This is because
computing the condence intervals of these curves averaged across the 10 random runs is too
noisy due to the magnitude of the reciprocal 1/FPR.
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Symbol

x
m
y
P ; p
I m i

S R ; S B

f
D
D S R ; D S B

S R ; S B

Mi (m)

ŷ y ; i

Z
ye; M(m)
i

‘ C

L C ( f )
f ?

L  ( f )
^

Dsim

Dsim, Dsim

w(x; m)

ĝ

LS (h; w)
h
Dsim; : : : ; Dsim

Dsim

n S R

n S B

nsim

h?

W

Used for

Discriminative feature x  2  X .
Resonant feature vector of length k, m =  [m1; : : : ; mk] 2  Rk .
True unknown label y 2  Y  =  f0; +1g, where 0 is background and 1 is signal.
Distribution and density of data (x; m; y).
Interval along which ith resonant feature mi is thresholded to produce
signal region and sideband.
Signal region and sideband. For an interval I m i  , S R i  =  f(x; m) : mi 2  I m i  g
and S B i  =  f(x; m) : mi 2= I m i  g.
Classier f  : X  !  Y  used for anomaly detection.
Unlabeled dataset D  =  f(x i ; mi )g i = 1  of discriminative and resonant features.
Signal region and sideband of D, D S R  =  D  \  S R ,  D S B  =  D  \  S B .
Mixture weights corresponding to p(y =  1jx 2  S R )  and p(y =  1jx 2  S B ) .
It is assumed that S R  >  S B .
Noisy membership label for the ith resonant feature, equal to 0 if x  2  D S B i

and 1 if x  2  D S R i  . M(m) =  M1(m); : : : ; Mk(m).
Weak label drawn from estimated distribution on p(yjM(m)).
Canonical parameters of graphical model on y; M(m) in (3.3).
y  scales with the class balance of y and i  scales with the accuracy of Mi (m).
Partition function used for normalizing distribution p(y; M(m)) in (3.3).
y and M(m) scaled from f0; 1g to f  1; 1g.
Accuracy parameter i  =  p(Mi (m) =  1jy =  1) for the membership label
of the ith resonant feature.
Loss function ‘ C  : Y   Y  !  R  for training classier f .  Expected
loss on labeled data using f ,  L C ( f )  =  E  [ ‘C (f (x); y )].
Optimal classier trained on innite labeled data, f ?  =  argminf 2F  L C ( f ) .
Empirical loss on D  with weak labels using f ,  L C ( f )  =  n i = 1  ‘C (f (x i ) ; ŷ  ).
Classier learned using M u lt i - C W o L a ,  f  =  argminf 2F  L C ( f ) .
Simulation dataset used in standard S A L A D ,  Dsim =  f(x i ; mi )gi  

s i m  .
Has distribution Psim and density psim().
Dsim =  Dsim \  S B ,  Dsim =  Dsim \  S R .
Density ratio between Dsim and D S B  used for reweighting,

p ( x ; m j y = 0 )
p ( x ; m j y = 0 )

Classier trained to classify Dsim vs D S B ,  used for approximating w(x; m)
when jDsimj =  jDS B j.
Cross-entropy loss function used to classify Dsim reweighted with w vs D S R .
Classier trained using L S .
k multiple simulation datasets used in M u lt i - S A L A D .
Dataset aggregated from Dsim; : : : ; Dsim.
n S R  =  jDS R j.
n S B  =  jDS B j.
n S R  =  jDsimj.
The optimal classier h? =  argminh2H LS (h; w).
The maximum ratio between the simulation and true background,
W =  maxx;m w(x; m).

Table 2. Glossary of variables and symbols used in this paper.
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F igure  7. Results on individual runs.
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