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Abstract—Intersection movement assist (IMA) is a connected
vehicle (CV) application to improve vehicle safety. GPS spoofing
attack is one major threat to the IMA application since inaccurate
localization results may generate fake warnings that increase
rear-end crashes, or cancel real warnings that may lead to angle
or swipe crashes. In this work, we first develop a GPS spoofing
attack model to trigger the IMA warning of entry vehicles at
a roundabout driving scenario. The attack model can generate
realistic trajectories while achieving the attack goal. To defend
against such attacks, we further design a one-class classifier to
distinguish the normal vehicle trajectories from the trajectories
under attack. The proposed model is validated with a real-world
data set collected from Ann Arbor, Michigan. Results show that
although the attack model triggers the IMA warning in a short
time (i.e., in a few seconds), the detection model can still identify
the abnormal trajectories before the attack succeeds with low
false positive and false negative rates.

Index Terms—Anomaly detection, GPS spoofing attack, Inter-
section movement assist, Connected vehicles, One class classifi-
cation

I. INTRODUCTION

Connected vehicle (CV) technology has great potential to
benefit the transportation system in terms of improving system
efficiency, sustainability, and safety. Vehicle-to-vehicle (V2V)
communication enables the CVs to send and receive real-time
information from other nearby vehicles, for example, Basic
Safety Messages (BSMs) to avoid collisions. BSMs play an
important role in multiple CV applications, such as intersection
movement assist (IMA), a widely implemented CV application
to improve vehicle safety [12]. The IMA system can be
applied when vehicles pass through unsignalized intersections.
It receives other approaching vehicles’ information such as
location and speed to determine whether it is safe to enter
the intersection. If a potential collision is detected, a warning
message will be generated and sent to the driver (e.g., through
an in-vehicle display or an audio warning). Among all infor-
mation that is shared through V2V communication, vehicle
position is critical in deciding whether to generate warnings to
drivers. To obtain a vehicle’s real-time position, a GPS receiver

is commonly used for vehicle localization and navigation [1],
[14]. Commercial-grade GPS receivers can get vehicle position
within a meter accuracy [1] while AV-grade GPS receiver has
centimeter-level positioning accuracy [13]. It is important to
guarantee that the vehicle’s localization module is accurate and
reliable.

Existing studies show that GPS receivers are vulnerable to
multiple cyber attacks. One major threat is the spoofing attack,
which has been proved feasible both theoretically [15] and
practically on various systems [3], including in autonomous
vehicles [13]. To defend against GPS spoofing attacks, mul-
tiple detection methods have been proposed, including filter-
based methods and observer-based methods [4] [17]. However,
the proposed methods either rely on other onboard sensors or
V2V information from surrounding vehicles, which may not
be available in the CV environment with a low penetration rate.
Our previous work [18] proposed a GPS spoofing attack de-
tection method, which combines learning from demonstration
and a decision tree classifier. The decision tree classifier needs
to be trained using both ground truth trajectory and known
attack trajectory. As a result, the proposed detection framework
can be only applied to detect known attacks. However, in
reality, new attacks are usually unknown to the detector, where
the attack trajectories can not be obtained for training the
classifier.

In this paper, we first propose a GPS spoofing attack model
which aims to trigger the IMA warning of entry vehicles in a
roundabout scenario. We further design a one-class classifier
to distinguish the normal trajectories from the trajectories
under attack, where only the normal trajectories are needed
for training. Our work can be briefly summarized as follows.
The attack model is formulated as an optimization problem,
with specifically designed features to trigger the IMA warning
while generating as normal driving behaviors as possible. The
detection framework includes a feature extractor and a one-
class neural network classifier. In the case study, a real-world
data set, which is collected from a two-lane roundabout in
Ann Arbor, Michigan [20] is applied to test both the CV
threat model and the detection model. Results show that the
proposed threat model can trigger the IMA warning in a short
time (less than 1.7s) which poses great challenges to the
detection. The online detection results denote that the proposed
detection framework can differentiate the normal and abnormal
trajectories before the attack succeeds time, with both low false
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positive rates and low false negative rates.
The main contributions of the paper are listed as follows:
1. We formulate the GPS spoofing attack as an optimization

model, with the goal to trigger an IMA warning as well
as generating smooth and realistic trajectories. The proposed
threat model takes vehicle’s initial state and road geometry
into consideration and can be applied to different scenarios,
not limited to the roundabout.

2. A generic detection framework is proposed. The detection
framework combines a feature extractor with a one-class
classifier. The feature extractor can be adjusted according to
different driving scenarios. Besides, the proposed framework
only requires normal trajectories for training, which enables it
to detect unknown attacks.

The remainder of the paper is arranged as follows. Section II
reviews related literature on GPS spoofing attacks and related
detection methods. Section III introduces the threat model,
including the problem statement, objective function, and im-
plementation framework. Section IV presents the detection
methodology. Numerical experiments from the roundabout
scenario are introduced in section V. Section VI concludes
the work and lays out future research directions.

II. LITERATURE REVIEW

In this section, we reviewed literature related to GPS
spoofing attacks and related detection models.

A. GPS Spoofing Attack

GPS spoofing attack has been a long-existing problem. The
attack broadcasts incorrect but valid GPS signals to mislead
GPS receivers [11]. By providing falsified information, GPS
spoofing attacks can deviate vehicles to random positions [3]
or guide the vehicles to the wrong destinations. Zeng et al. [19]
proposed a stealthy attack against the road navigation system.
GPS locations were spoofed slightly to trigger the turn-by-turn
navigation and guided the vehicle to the wrong destination
without recognizing the attack. To prove the feasibility, the
proposed GPS spoofing model was tested on real vehicles.
Narain et al. [8] evaluated the INS-aided GPS system and
developed algorithms to deviate the vehicle to alternative
locations without being detected. The result showed that the
proposed algorithm could deviate vehicles as far as 30km from
the origin without raising alarms. Multi-Sensor Fusion (MSF)
is usually considered one approach to defending GPS spoof-
ing attacks. An MSF system combines inputs from multiple
sensors for vehicle localization. It is highly unlikely that all
sensors can be compromised at the same time. For example,
Liu et al. [6] proposed an Extended Kalman filter (EKF) based
algorithm to fuse the measurements from multiple sensors.
The proposed algorithm performed well under GPS spoofing
attacks where the GPS signal was deviated by a fixed bias.
However, Shen at al. [13] proposed a GPS spoofing attack
algorithm that penetrated the MSF based localization system
with GPS, IMU and Lidar. The proposed algorithm only
spoofed GPS to cause large deviations in the MSF output.
It could deviate the vehicle from the original lane, or cross

the road boundary, which may lead to collisions with other
vehicles.

B. GPS Spoofing Attack Detection

To defend against GPS spoofing attacks, anomaly detec-
tion methods have been proposed. The detection methods
can be divided into filter-based methods and observer-based
methods [4]. Filter-based methods consider uncertainties and
measurement noises and apply filters such as Kalman Filter to
detect attacks on sensors. Van et al. [16] proposed an anomaly
detection approach that combines convolutional neural net-
work (CNN) and Kalman filtering with χ2 detector. CNN
was used for detecting anomalies in time-series sensor data
and KF-based χ2 detector is applied to detect the abnormal
data which are undetected by CNN. Ju et al. [5] proposed a
simple distributed Kalman filter based on neighboring vehicle
measurement exchange. A Generalized likelihood ratio (GLR)
detector was proposed to detect position sensor attacks based
on the Kalman filter’s result.

Compared with filter-based methods, observer-Based meth-
ods are usually applied to deterministic vehicle models. Wang
et al. [17] proposed an observer-based method. An adap-
tive extended Kalman filter was applied to smooth vehicle
sensor data based on a nonlinear car-following model. One
Class Support Vector Machine (OCSVM) is applied to detect
anomalies on sensors. He et al. [2] proposed an observer-based
detection framework. A detector was developed according to
the potentially compromised sensor measurements and the
observer’s estimation. Measurement data was discarded if it
was larger than a threshold.

The existing methods either need input from multiple sen-
sors [6], input from known attacks [18], or only detect the
anomaly in the longitudinal vehicle dynamics [16]. Besides,
surrounding vehicle states such as leading vehicles or infor-
mation from other vehicles in the platoon are needed [2]. They
may not be applicable to our case because 1) in the CV envi-
ronment, there may not exist other onboard sensors to perform
multi-sensor fusion or cross-validate the results from the GPS,
especially if a vehicle is equipped with aftermearket safety
devices (ASDs). 2) in the roundabout scenario, vehicles have
lateral movement due to road curvature, which significantly
increases the detection difficulty.

III. THREAT MODEL

In this section, the threat model towards the IMA application
on the CV is presented. IMA is an important CV safety
application [12] [7]. When approaching an intersection, the
IMA system first receives information (i.e., BSMs) from other
vehicles. According to the received data, the IMA system
determines whether it is unsafe to enter an unsignalized
intersection due to potential collision with other vehicles and
sends warnings to drivers. Drivers receiving collision warning
information from the IMA system should perform actions to
avoid crashes at the intersection. In this work, it is assumed
that the IMA warnings are triggered only based on received
BSMs from other vehicles at the intersection. We propose
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a threat model towards the IMA system at the roundabout
scenario, which is a common type of unsignalized intersection.

A. Problem Statement

The proposed CV threat model generates falsified BSMs to
trigger the IMA warning of CV at the entry of the roundabout.
Figure 1 demonstrates the attack concept. The figure contains
two vehicles, the vehicle under attack and the victim vehicle
and both vehicles are CVs. The attack vehicle is the vehicle
located in the inner lane of the roundabout. The victim vehicle
is the vehicle located at the entry of the roundabout. The
blue rectangles denote the real vehicle trajectory in the inner
lane of the roundabout. The red rectangles denote the falsified
BSM trajectory when the vehicle is under attack, changing
lanes from the inner lane to the outer lane. The yellow
rectangles denote the victim vehicle trajectory. A conflict point
is defined as the intersection between the center line of the
outer lane of the roundabout and the entry path. Note that lane
changing is forbidden within the multi-lane roundabout. When
the vehicle is not under attack, the BSM sent from the CV in
the roundabout should be consistent with the real trajectory
(the blue rectangles). There is no conflict between the real CV
trajectory and the victim vehicle trajectory. The IMA warning
will not be triggered for the entry vehicle. When the vehicle
is under attack, the CV in the roundabout sends out falsified
BSMs (the red rectangles) to trigger the IMA warning of the
victim vehicle, without really controlling vehicle movement.
The values within the rectangles denote the timestamps. The
attack starts at time t0 and the attack successfully triggers the
IMA warning of the victim vehicle at time t2.

Fig. 1. Threat model on intersection movement assist system

To generate the falsified trajectory (the red rectangles), an
optimization problem is formulated, as shown in Equation
1. The objective function is presented as θT f(s, u). θ is the
weight vector and f(s, u) is a function mapping a trajectory
to feature vectors. s is the variable of the optimization model.
s = (s1, s2, ..., sN ) denotes the set of trajectory points, where
si is the trajectory point at time step i. Each trajectory point
si consists of (xi, yi, vi, ai, ψi), where xi,yi denotes vehicle’s
longitudinal and lateral coordinate at time step i. vi and ai

represent vehicle speed and acceleration at time step i. ψi is
the vehicle’s heading angle. N is the planning horizon for
the attack trajectory, which is determined by the estimated
arrival time for the victim vehicle to reach the conflict point.
u denotes the vehicle’s initial state and road geometry. The
vehicle’s initial state includes its initial position and status
(speed, heading, acceleration). Road geometry includes the
radius of the inner and outer lanes of the roundabout and the
coordinate of the conflict point. The feature selection for the
objective function and the constraints are introduced in the
following section.

min
s

θT f(s, u)

s.t. vehicle dynamic constraints
(1)

B. Objective Function

1) Feature Vectors: The objective function contains two
parts: 1) trigger the IMA warning of the victim vehicle. 2)
generate a trajectory close to the normal driving behavior con-
sidering smoothness and comfort. A realistic attack trajectory
will increase the difficulty in detection. To achieve the attack
goal, five features are selected and elaborated as follows:

(1) Acceleration: f1 = 1
N

∑
i a

2
i . f1 sums up the a2i for the

entire trajectory. Uncomfortable driving behavior such as large
accelerations are penalized by minimizing f1.

(2) Heading rate: f2 = 1
N

∑
i(ψ̇i)

2. ψi denotes the heading
angle change rate at time step i. f2 minimizes the difference
of heading rate for two consecutive time steps.

(3) Curvature: f3 = 1
N

∑
i(
√
(xi − xc)2 + (yi − yc)2 −

rc)2. xc and yc denote the coordinate of the center of the
roundabout. rc denotes the radius of the roundabout. f3
calculates the difference between the vehicle’s distance to the
center of the roundabout and the roundabout radius at time
step i. f3 guarantees the vehicle stays in the roundabout.

(4) Lateral terminal position: f4 = (xN−xcon)2 xN denotes
the vehicle’s lateral coordinate at the end of the planning
horizon. xcon represents the conflict point’s lateral coordinate.

(5) Longitudinal terminal position: f5 = (yN−ycon)2 yN is
the vehicle’s longitudinal coordinate at the end of the planning
horizon. ycon is the conflict point’s longitudinal coordinate. f4
and f5 push the vehicle to reach the conflict point at the end
of the planning horizon and trigger the IMA warning of the
victim vehicle.

2) Vehicle Dynamic Constraints: In this section, vehicle
dynamic constraints are introduced. Constraint 2-5 denotes the
evolution of vehicle state, including vehicle position, speed,
acceleration, and heading angle. Equation 6-8 limits vehicle
kinematic parameters within boundaries. Equation 6 bounds
the vehicle’s maximum acceleration and deceleration to be less
than 8m/s2. Equation 7 limits vehicle’s heading rate within
range (−π

3 ,
π
3 ). Equation 8 limits the vehicle’s maximum

speed.
x(i+ 1) = x(i) + v(i)cos(ψ(i))τ (2)

y(i+ 1) = y(i) + v(i)sin(ψ(i))τ (3)

ψ̇(i) =
(ψ(i+ 1)− ψ(i))

τ
(4)
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v(i+ 1) = v(i) + a(i)τ (5)

−8 ≤ a(i) ≤ 8 (6)

−π
3
≤ ψ̇(i) ≤ π

3
(7)

v(i) ≤ 16.7 (8)

C. Implementation Framework

The implementation framework of the attack model is
described in this section. Details of the attack trajectory
generation procedure is described in the following steps and
shown in Figure 2.

Step 1: Collect vehicle state. The vehicle under attack
(roundabout vehicle) collects its own state and the entry
vehicle state, including vehicle speed and position.

Step 2: Calculate estimated arrival times to the conflict point
for the roundabout vehicle and the entry vehicle, denote as testr

and teste . D is vehicle’s distance to conflict point. v denotes
vehicle’s current speed. The estimated arrival time is calculated
using Equation 9, assuming the vehicle keeps current speed to
reach the conflict point.

test =
D

v
(9)

Step 3: Determine the attack start time. The attack starts
when |testr − teste | is less than 4s. If the criterion to start
attack is satisfied, go to Step 4. Otherwise, go to Step 1.
The threshold of launching attack is a hyper-parameter and
needs to calibrated based on real-world data.

Step 4: Update entry vehicle state.
Step 5: Generate attack trajectory. The attack trajectory is

generated according to Equation 1, assuming victim vehicle
(entry vehicle) keeps a constant speed. The length of the attack
trajectory (i.e., planning horizon) is set to be the same as the
estimated arrival time of the roundabout vehicle to the conflict
point, calculated in Equation 9.

Step 6: Determine whether the attack success criterion is
satisfied. If the attack success criterion is satisfied, the attack
ends. Otherwise, go to Step 7. Equation 10 and 11 denote the
attack success criterion. Datk is the attack vehicle distance
to the conflict point. vatk is the attack vehicle speed. ratk is
the distance between the attack vehicle trajectory point and
the center of the roundabout. rl denotes the lane boundary
radius between the inner and outer lanes. The attack succeeds
when the post encroachment time (PET) to the conflict point
between the attack trajectory and the victim vehicle is less
than Tg and the attack trajectory is deviated from the inner
lane and crosses the road boundary. In this work, Tg is equal
to 2s. Both attack success criteria guarantee the two vehicles
have a potential collision at the conflict point.

Datk

vatk
≤ Tg (10)

ratk ≥ rl (11)

Step 7: Determine when to stop generating attack trajectory.
When the entry vehicle has reached the conflict point and the

attack success criterion is not satisfied, continue attacking the
vehicle will no longer trigger the IMA warning of the entry
vehicle. Therefore, the attack should end. Otherwise, go to
Step 4.

In order to minimize the prediction error, a rolling horizon
framework is applied to update the entry vehicle information
(speed and position) and calculate the planning horizon once
the attack starts (Step 4-Step 7). The attack trajectory is
generated for the whole planning horizon, but only the first
0.4s will be used.

Fig. 2. Threat model implementation framework

IV. DETECTION METHODOLOGY

In this section, we introduce a one-class classifier that is
designed to detection the GPS spoofing attack toward the IMA
application.

A. Detection Framework

Figure 3 demonstrates the detection framework. It consists
of two parts, an offline training step and an online detection
step. First, a training data set that includes historical normal
trajectories is collected. A feature extractor is applied that
maps trajectories to feature vectors, which represent different
aspects of driving behaviors. A one-class neural network
classifier is trained with extracted features from normal tra-
jectories. The trained classifier is then applied to the online
detection, as shown at the bottom of Figure 3. Given the
observed trajectory, the same feature extractor is applied to
extract driving related features. The extracted features are sent
to the trained anomaly classifier, to determine if the vehicle is
under attack or not.
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Fig. 3. Anomaly detection framework

B. One class classification

Figure 4 demonstrates the structure of the one-class clas-
sifier, which contains a feature extractor and a classifier
network. The feature extractor is predefined and maps the
input trajectory into a feature vector. Pseudo-positive data
are generated from a Gaussian distribution N(µ, σ2). σ and
µ are parameters of the Gaussian distribution. Denote N is
the number of input data and D is the dimension of the
feature vector. The generated pseudo-positive data has the
same dimension as the feature data set. The generated data
are then combined with the extracted feature data set and fed
into a classifier, following the method shown in [10]. The
classification network is composed of three fully connected
layers, followed by a sigmoid function. The output of the
classifier is 0 or 1. 0 denotes that the data sample belongs
to normal and 1 denotes that the data sample is abnormal.
The binary cross entropy loss is applied as the loss function
to train the classification network.

Fig. 4. One Class Classifier Framework

The classification network is optimized using the SGD
optimizer, with the learning rate equals to 10−3 and the batch
size equals to 64. µ equals 0 and σ equals 3 for the Gaussian
distribution to generate pseudo-positive data.

C. Feature extractor

In the proposed anomaly detection model, ten features are
designed to describe normal driving behavior, including both
longitudinal and lateral behaviors. The designed features are
elaborated as follows:

(1) Average lateral acceleration: f1 = 1
N

∑N
i |ai sinψi|. N

is the trajectory length. ψi is the vehicle heading at time step
i. f1 calculates the average of lateral acceleration at each time
step.

(2) Maximum lateral acceleration: f2 =
maxi=1,...N |ai sinψi|. f2 is the max value of the lateral
acceleration for the entire trajectory. f1 and f2 measure the
smoothness of the lateral driving behavior.

(3) Average lateral speed: f3 = 1
N

∑N
i |vi sinψi|. f3 calcu-

lates the average lateral speed.
(4) Maximum lateral speed: f4 = maxi=1,...N |ai sinψi|. f4

is the maximum lateral speed. f3 and f4 denotes the vehicle’s
lateral driving behavior.

(5) Average longitudinal acceleration: f5 =
1
N

∑N
i |ai cosψi|. f5 calculates the average longitudinal

acceleration.
(6) Maximum longitudinal acceleration: f6 =

maxi=1,...N |ai sinψi|. f6 calculates the maximum
longitudinal acceleration. f5 and f6 represent the smoothness
of the longitudinal driving behavior.

(7) Average longitudinal speed: f7 = 1
N

∑N
i |vi cosψi|. f7

is the average longitudinal speed.
(8) Maximum longitudinal speed: f8 =

maxi=1,...N |ai cosψi|. f7 and f8 denote the driver’s
longitudinal driving efficiency at the roundabout.

(9) Maximum heading rate: f9 = maxi=1,...N

∣∣∣ψ̇i

∣∣∣. ψ̇i

denotes vehicle heading change rate at time step i.
(10) Average heading rate: f10 = 1

N

∑N
i

∣∣∣ψ̇i

∣∣∣. f9 and f10
demonstrates vehicle’s driving smoothness at the roundabout.

Note that for different driving scenarios, the features may be
designed differently. A Greedy Algorithm is applied to select
critical features from the designed feature list.

Algorithm 1 Greedy Algorithm
1: S ← ∅
2: NS ← {f1, f2, ...f10}
3: A∗ = 0
4: while NS ̸= ∅ do
5: for fi ∈ NS do
6: Calculate the One class classifier accuracy using

features S∪fi, the accuracy on testing set is denoted
as A(fi)

7: end for
8: f∗ = argmaxfiA(fi)
9: a∗ = A(f∗)

10: if a∗ > A∗ then
11: S = S ∪ f∗
12: A∗ = a∗

13: NS = NS \ f∗
14: else
15: Break
16: end if
17: end while
18: return S
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Algorithm 1 denotes the greedy algorithm that selects the
critical features used for the one-class classification neural
network. S denotes the selected feature set. S is initiated as
an empty set at the beginning of the algorithm. NS denotes
the feature set which is not selected. A∗ denotes the highest
accuracy, A∗ is initiated with 0. While NS is not an empty
set, the one class classifier is trained with S ∪ fi, where
fi ∈ NS. Testing accuracy is calculated and denoted as Ai.
The algorithm loops through all features in NS and selects
the feature that maximizes testing accuracy denoted as f∗ and
the relative testing accuracy is denoted as a∗. If a∗ > A∗,
then S will be updated by adding f∗ into it, and f∗ will
be extracted from NS and A∗ will be updated as a∗. If no
improvement is made by adding feature fi ∈ NS, the iteration
stops and returns with S, which is the feature set that achieves
the highest testing accuracy. f1, f2, f3, f5, f9 are selected
and used as feature extractor according to Algorithm 1. The
selected features can describe both longitudinal and lateral
driving behaviors.

V. EXPERIMENTS

To validate the proposed anomaly detection framework,
a roundabout data set collected at Ann Arbor, Michigan is
applied. The data set is collected at a two-lane roundabout.
The roundabout is equipped with infrastructure sensors such
as radars and cameras are installed at the four corners of the
roundabout. Vehicle trajectories approaching and within the
roundabout are extracted from the video data with a time step
equal to 0.4s [20].

This roundabout is of high-interest because of its high
crash rates. 69 crashes happened at the intersection in year
2021. Among them, 66 crashes happened between the vehicle
travelling inside the roundabout and the vehicle at the entry
[9]. One possible solution to reduce the crash counts is to
apply the IMA. However, if the IMA application is under
cyber attack, generating fake warnings and/or canceling true
warnings may even aggravate the crash risks.

In this section, we first show the results of the attack model
and then evaluate the anomaly detection framework with the
threat model.

A. Attack model results

In the experiment, qualified vehicle trajectory pairs in the
roundabout data set are extracted and used to generate attack
trajectories. Each trajectory pair consists of the vehicle trav-
eling within the roundabout and an entry vehicle. A qualified
vehicle pair must have a similar arrival time to the defined
conflict point so that the driver of the entry vehicle would
actually observe a real approaching vehicle in the roundabout.
In this way, when the IMA warning is triggered, the driver
of the entry vehicle may take real actions to avoid the (fake)
conflict. Based on this criteria, a total number of 927 vehicle
pairs are selected.

Using the attack model illustrated in section III, 744 attack
trajectories are generated. Figure 5 shows an example of the
attack trajectory. The red line represents the original vehicle

trajectory. The green line represents the vehicle trajectory
generated by the attack model. The black line denotes the
victim vehicle trajectory. In this case, the average vehicle
speed at the roundabout is around 7m/s, which is consistent
with the speed limit in the round about (15mph). At the end of
the green vehicle trajectory, the IMA warning is triggered. The
result shows that the proposed algorithm can generate falsified
lane changing trajectory that follows roundabout’s geometry to
trigger the IMA warning of the entry vehicle.

Fig. 5. Attack Trajectory at the Roundabout

The overall attack success rate is 77.970% with the average
attack success time of 2.096s. The attack success time is
calculated as the difference between the attack start time and
the time when the IMA warning of the victim vehicle is
triggered. Given that the frequency of the trajectory data is
2.5HZ, the average attack succeeds at around the fifth time
step.

One explanation for the attack failure is the vehicle speed
variation before entering the roundabout. Figure 6 shows an
example of the speed profile of an entry vehicle (victim
vehicle). The proposed model fails to generate an attack
trajectory to trigger the IMA warning in this case. The entry
vehicle accelerates from 2m/s to 7m/s in two seconds and
the estimated arrival time changes from 6.23s to 0.33s. Even
though the estimated arrival time is updated every 0.4s, the
large variation makes it impossible for the attack trajectory
to reach the conflict point in time, without violating vehicle
dynamic constraints.

Fig. 6. Attack Failure example at Roundabout
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B. Detection framework evaluation

To evaluate the detection framework, 2564 ground truth tra-
jectories from the data set are extracted. 490 attack trajectories
are generated with the proposed attack model. 40% of the
ground truth are used to train the one-class classifier and the
rest 60% are used for testing. All of the attack trajectories
are used for testing. Both offline and online detection are
conducted and the results are presented as follows.

In the offline mode, the detection is not performed until
the full trajectory is observed. 99.59% (488/490) of the attack
trajectory and 99.48% (1531/1539) of the ground truth tra-
jectory are identified correctly. A false positive means that a
ground truth trajectory is classified as an abnormal trajectory
while a false negative means that an abnormal trajectory is
identified as a normal trajectory. The false positive rate and
false negative rate for the offline detection is 0.52% and 0.40%
respectively. Figure 7 shows a false negative case in which
the attack succeeds within only one time step. The short
attack success time leads to little information can be used for
detection. Therefore, the trajectory is not identified correctly.

Fig. 7. Misclassification example (FN case)

The online detection is more important in real-world im-
plementations. The detection starts after sufficient number of
trajectory points (e.g., 3 data points) and is conducted every
time step until the trajectory is identified as abnormal or the
attack succeeds. The trajectory will be identified as abnormal
if it is classified as abnormal in two consecutive time steps.
Therefore, trajectories used for online detection should be
at least 5 time steps long. 314 attack trajectories and 1539
ground truth trajectories are used to test the online detection.
The online detection performance is shown in Table I. The
mean detection time is the elapsed time when the trajectory
is identified as abnormal. The time to attack succeed is the
difference between the attack success time and the detection
time. Results show that the anomaly classifier can identify
attack trajectories 0.49s before attack succeed in average, with
a standard deviation equals to 0.22s.

Figure 8 shows a false positive case in the online detection.
The attack trajectory speed profile shows that the vehicle’s
speed fluctuates between 1m/s to 7m/s in 1.2s. The average
speed of the vehicle is 5.8m/s. The large fluctuation under low
travel speed are rare in the roundabout data set. As a result, the

TABLE I
PERFORMANCE OF ONLINE DETECTION

FP FN

Mean
attack
success
time (s)

Mean
detection
time (s)

Mean
time to
attack
success (s)

14/1539 (0.91%) 0/314 (0%) 2.096 1.600 0.497

trajectory is classified as abnormal. A possible reason is due
to the error in the trajectory processing. Even this trajectory is
not under attack, its erroneous behavior indicates that it is not
a normal trajectory and further attention is needed to identify
the root cause.

Fig. 8. Misclassification example (FP case)

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, a GPS spoofing attack model towards the
CV IMA application and an anomaly detection framework to
detect such attacks using one class classification is introduced.
An optimization model is formulated and served as the threat
model which aims to trigger the IMA warning of the entry
vehicle at the roundabout. Both models are evaluated with
a real world data set and the results show that the threat
model can generate falsified trajectory and trigger the IMA
warning within a short time, which is very aggressive and
raises challenges to the detection model. However, the detec-
tion result shows satisfactory performance that most of the
abnormal trajectories can be identified correctly and in time.

Comparing with previous work on GPS spoofing attack, the
proposed attack model in this paper is much more aggressive.
For example, the average attack success time using algorithm
proposed by [13] is 28.7s. In our work, the attack success
time is only around 1.7s, which leaves little time for the
detection model. In addition, the proposed detection model is
more generic. Comparing with our previous work [18] which
uses both ground truth trajectories and attack trajectories in
the training process, the proposed detection framework based
on one class classification only need ground truth trajectories
for training, which makes it applicable to detect unknown
attacks. Besides, the proposed anomaly detection model can
be applied to multiple scenarios including IMA warning at
the roundabout and unsignalized intersection, as well as Red
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Light Violation Warning (RLVW) at signalized intersections,
since the proposed model focus on learning the normal driving
behaviors. As long as the normal driving behavior is affected,
the proposed method can be applied to detect the anomaly.
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