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Abstract

Dynamic benchmarks interweave model fitting and data collection in an attempt to
mitigate the limitations of static benchmarks. In contrast to an extensive theoretical
and empirical study of the static setting, the dynamic counterpart lags behind due to
limited empirical studies and no apparent theoretical foundation to date. Responding
to this deficit, we initiate a theoretical study of dynamic benchmarking. We examine
two realizations, one capturing current practice and the other modeling more complex
settings. In the first model, where data collection and model fitting alternate sequen-
tially, we prove that model performance improves initially but can stall after only three
rounds. Label noise arising from, for instance, annotator disagreement leads to even
stronger negative results. Our second model generalizes the first to the case where
data collection and model fitting have a hierarchical dependency structure. We show
that this design guarantees strictly more progress than the first, albeit at a significant
increase in complexity. We support our theoretical analysis by simulating dynamic
benchmarks on two popular datasets. These results illuminate the benefits and practi-
cal limitations of dynamic benchmarking, providing both a theoretical foundation and
a causal explanation for observed bottlenecks in empirical work.

1 Introduction

In response to concerns around the limitations of static datasets as benchmarks, researchers
have proposed dynamic benchmarking—a setting where data collection and model build-
ing happen iteratively in tandem—as an alternative (Nie et al., 2020; Potts et al., 2021;
Kiela et al., 2021; Ma et al., 2021; Gehrmann et al., 2021). In dynamic benchmarking,
model builders fit models against the current dataset, while annotators contribute new data
points selected to challenge previously built models. In doing so, the hope is that the iter-
ative process results in a more diverse set of test cases that can help induce better model
performance.

Though proponents argue “dynamic adversarial data collection, where annotators craft
examples that challenge continually improving models, holds promise as an approach for
generating such diverse training sets,” there is also a recognition that “the long-term bene-
fits or drawbacks of adopting it as a core dataset creation paradigm remain poorly under-
stood.” (Wallace et al., 2022) A major concern is that adversarial data collection proliferates
idiosyncratic examples that do well in fooling models but eliminate coverage of necessary



yet easier test cases. This can, in turn, reduce dataset diversity and limit external valid-
ity (Bowman & Dahl, 2021).

A growing line of theoretical and empirical research on static benchmarks has improved
our understanding of the strengths and limitations of this setting. In contrast, similar re-
search on dynamic benchmarks has been limited. The high complexity and cost of studying
live benchmarks impede experimental work. A stronger theoretical foundation for dynamic
benchmarks could help guide empirical explorations of the vast design space, avoiding costly
trial-and-error experiments. However there has been no apparent theory of dynamic bench-
marking that could offer provable guarantees about their performance and clarify how issues
such as label noise interact with this setting.

1.1 Owur contributions

In this work, we initiate a theoretical study of dynamic benchmarks. We contribute a
versatile formal model of dynamic benchmarks that serve as the basis for our investigation.
We start with a fundamental question:

Question 1: Can we design dynamic benchmarks in such a way that models continue to
improve as the number of rounds of data collection grows?

We start from a theoretical model capturing existing implementations of dynamic bench-
marking. This model proceeds in multiple rounds interweaving data collection and model
building sequentially. In round ¢, model builders face a distribution D; and are tasked with
finding a classifier h; that performs well on D;. We assume that model fitting succeeds in
minimizing risk up to a positive classification error ¢ > 0. We further assume that anno-
tators succeed in identifying the failure cases of the current model h;, giving us access to
the uniform distribution D; over the error cases of the model h;. We determine the new
distribution D;y; by mixing D; and D; in some proportion.

We assume a starting distribution Dy on the instances of interest. We can think of Dy
as the distribution corresponding to standard data collection. Mirroring the motivation
for dynamic benchmarking, this distribution might assign little to no weight to important
families of instances. In particular, an error set of measure ¢, which we assume we can
achieve from the get-go, might contain many relevant instances. The goal is therefore to
converge to well below the e-error level guaranteed by the above assumption. We assume
the distribution admits a perfect classifier so that process could, in principle, converge to
0 error.

In this setting, we show that three rounds are guaranteed to converge to O(e?) error.
Unfortunately, this is where it ends. In general, there is no reason to expect this dynamic
benchmark to progress below (e?) error. Put differently, there is no provable benefit to
dynamic data collection beyond three rounds. The cause of our negative result is a form of
catastrophic forgetting that mirrors the concerns quoted earlier. As the benchmark moves
beyond three rounds, there is provably no way to retain knowledge of instances correctly
classified at earlier stages.

Furthermore, we show through experiments that this lower bound may also be encoun-
tered in practice, preventing dynamic benchmarks from progressing beyond a small number
of rounds. In doing so, we propose a concrete way to simulate the performance of a dy-
namic benchmark that may be of independent interest in the empirical study of dynamic
benchmarks.



There is yet another impediment to successful dynamic benchmarking: Above we con-
sidered the case where the underlying learning problem is realizable, meaning that there
exists a model that achieves 0 error on the distribution. In practice, unrealizable settings
where we have label noise are commonplace. Unrealizability can result from, for instance,
annotator disagreement where there is an emerging line of work aiming to understand their
impact on data diversity, label noise, and model performance. We show that in this un-
realizable setting, dynamic benchmarks concentrate on mislabeled instances, losing their
representativeness of the underlying distribution.

Though pessimistic, the above negative results may be inherent to the simple sequential
design of dynamic benchmarks currently used in practice. To further probe this issue, we
ask:

Question 2: Are there more sophisticated dynamic benchmark designs that can guarantee
convergence below the error barrier of the standard setting?

We answer this question in the affirmative by considering a hierarchical model, which
recursively uses the above sequential setting as a building block. In this setting, the organizer
of a benchmark creates multiple instances of dynamic data collection and combines the
outcomes in a particular way, e.g., by ensembling the resulting models and feeding the output
into a new instance. We study the setting where the hierarchy has depth two and show that
this setting guarantees convergence to error O(e®), providing a strict separation with the
standard model. Despite the improved performance, this depth-two setting significantly
complicates the benchmarking process, and executing a design with further depth may be
prohibitive in practice.

In search of alternative designs that can consistently improve the model’s performance,
we study a complementary design to dynamic benchmarks in Section A of Appendix. In-
stead of accumulating adversarial examples in a dynamic benchmark, here the model-in-the-
loop carries the information by directly using new examples and becoming more complex
throughout the process. We also make a natural connection to boosting methods. Despite
achieving zero risk theoretically, this alternative has limited applicability due to either slow
convergence or computational infeasibility.

In sum, our results indicate that current bottlenecks observed in empirical settings under
the sequential model are inherent to the set-up. This can alert practitioners to the limitations
of current practice before many rounds of data are collected. Further, more complex designs
such as the hierarchical setting can result in improved performance but may suffer from
the organizational complexity of data collection. Combined, these results highlight stark
tradeoffs in switching from static to dynamic settings and suggest that exploration of the
design space for modeling dynamic benchmarks can play an important role.

1.2 Related works

For an introduction to datasets as benchmarks, see Chapter 8 in Hardt & Recht (2022).
Concerns around static benchmarks are summarized in recent works, including adaptiv-
ity (Dwork et al., 2015), violation of sample independence in sequentially generated data (Shi-
rali, 2022), and issues of annotator disagreement (Pavlick & Kwiatkowski, 2019; Prab-
hakaran et al., 2021; Davani et al., 2022).

Numerous new benchmarks and benchmarking systems have recently been proposed that
integrate some aspects of dynamic data collection. Adversarial data collection continually
adds challenging examples found by annotators for an existing model (Dinan et al., 2019;



Nie et al., 2020; Kiela et al., 2021; Potts et al., 2021; Wallace et al., 2022). Empirical studies
show this does not necessarily lead to better performance or robustness (Kaushik et al.,
2021; Wallace et al., 2022). A dynamic leaderboard periodically renews the test set (Zellers
et al., 2021). In response to the fast growth of dynamic benchmarking, various tools and
platforms are also developed. For example, platforms for adversarial data collection (Kiela
et al., 2021), assistance of annotators to find challenging examples (Bartolo et al., 2021),
personalized benchmarking (Narayan et al., 2021), and automatic crowdsourcing of leader-
board submissions (Khashabi et al., 2021). Adversarial filtering, which filters out examples
from a static dataset that are identified to be easy for a given model, is another related
technique (Paperno et al., 2016; Zellers et al., 2018; Le Bras et al., 2020). Such datasets are
susceptible to being biased (Phang et al., 2022) or saturate faster than static datasets (Taori
et al., 2020). Le Bras et al. (2020) include theoretical considerations on eliminating bias.
The flurry of newly minted benchmarks stands in stark contrast with the scarcity of the-
ory on the topic. Our work was inspired by the thought-provoking discussion of dynamic
benchmarks by Bowman & Dahl (2021).

2 Problem formulation

Our primary goal in this work is to understand the population-level dynamics that a bench-
mark design induces. We are centrally interested in capturing what the iterative process
of model building and data collection converges to. Consequently, we ignore finite sam-
ple issues in our formulation and focus on distributions rather than samples. We assume
that model builders successfully minimize risk approximately. While risk minimization may
be computationally hard in the worst case, this assumption reflects the empirical reality
that machine learning practitioners seem to be able to make consistent progress on fixed
benchmarks. While we focus on population-level dynamics in the design of benchmarks, we
restrict ourselves to operations with standard finite sample counterparts.

A dynamic benchmark design can be represented as a directed acyclic graph where the
nodes and edges correspond to classifiers, distributions, and the operations defined below:

1. Model building: Given a distribution, find an approximate risk minimizer.
2. Data collection: Given a model, find a new distribution.

3. Model combination: Combine a set of models into a single model.

4. Data combination: Combine a set of distributions into a single distribution.

We describe these operations in turn. First, we explain model building by defining the
notion of risk and risk minimization. The risk of a classifier h: X — )Y on a distribution P
supported on the data universe X x ) with respect to the zero-one loss is defined as

Rp(h) =E@y~p []1 {h(z) # y}} .

An e-approzimate risk minimizer A is an algorithm that takes a distribution P as input
and returns a classifier h: X — Y such that

h) < mi
Rp(h) < min Rp(h) +e,
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Figure 1: Example of a path dynamic benchmark. Symbol A represents risk minimization,
H represents human data collection, and & shows distribution mixing.

where H is a family of classifiers. In the benchmark setting, risk minimization is a collective
effort of numerous participants. The algorithm A represents these collective model-building
efforts.

We abstract data collection as an operation that takes a classifier h and, for an underlying
distribution D, returns a new distribution D. In the context of adversarial data collection,
we assume that annotators can find the conditional distribution over instances on which h
errs D = D| h(z)#y- Lhis is an idealized representation of data collection, that ignores
numerous real-world issues. Nonetheless, this idealized assumption will make our negative
results even stronger.

Model combination happens via a weighted majority vote among multiple classifiers.
Distribution combination takes a mixture of multiple given distributions according to some
proportions.

The final piece in our problem formulation is the ultimate success criterion for a bench-
mark design. One natural goal of a dynamic benchmark is to output a classifier that
minimizes risk on a fixed underlying distribution D. We envision that this distribution
represents all instances of interest. There is a subtle aspect to this choice of a success crite-
rion. If we already assume we have an e-approximate risk minimizer on D, why are we not
done from the get-go? The reason is that the e-error term might cover instances crucially
important for the success of a classifier in real tasks. After all, a 95% accurate classifier can
still perform poorly in practice if real-world instances concentrate on a set of small measure
in D. The goal is therefore to find classifiers achieving risk significantly below the error level
guaranteed by assumption. By asking for successively higher accuracy, we can ensure that
the benchmark continues to elicit better-performing models as time goes on.

Notation. We define error set of a classifier h as Ej, = {(z,y) € X x Y | h(x) # y}. Note
that Rp(h) = Prp(Ep). We drop P from Prp(-) when this is clear from the context. We
say a classification problem is realizable on distribution P if there is a classifier f € H such
that Rp(f) = 0. Here, H is the hypothesis class and f is called the true classifier. For
realizable problems, no uncertainty will be left over ) when =z € X" is drawn, so we use P
referring to the distribution over X’ and define error sets as a subset of X'. Let pp be the
probability density function associated with P. We say P is conditioned on E C X and
denote it by P|g if for any x € X we have pp|, (v) = pp(z|E). For notational convenience,
we sometimes use P(z) in place of pp(x). The support supp(P) of a distribution P is the
largest subset of X such that P(z) > 0 for all x € supp(P). Given probability distribu-

tions P1,Ps, ..., Pr, we denote the mixture distribution with weights w; > 0 such that
Yoy we =1 by mix(Py, Pa, -+, Pr), where pnix(z) = Ethl w Pe(x). For a set of classifiers
hi,ha, ..., hr, we denote the weighted majority vote classifier by maj(hy, ha, -, hr).



3 Path dynamic benchmarks

The simplest case of a dynamic benchmark corresponds to the design of a directed path
interleaving model building and data collection as illustrated in Figure 1. This is the de-
sign most similar to current proposals of dynamic benchmarks and adversarial data collec-
tion (Nie et al., 2020; Kiela et al., 2021). Starting from an initial distribution, at each round,
a new classifier is obtained from the latest distribution. The annotators are then asked to
find the vulnerabilities of this model. This new insight will be leveraged towards updating
the latest distribution. We call this procedure path dynamic benchmarking.

Path dynamic benchmarking: For an underlying distribution D with true classifier f,
given initial distribution Dy and an approximate risk minimizer A, at each round ¢:

1. ht = A(Dt)
2. Dt = Dln,(@)#f()
3. Dt+1 :miX(Do,ﬁo,ﬁhﬁ%"' 750

We first formalize the rationale behind path dynamic benchmarks. Ideally, given a
perfect, i.e. O-approximate, risk minimizer, every time the current classifier misclassifies
some part of the underlying distribution, annotators reveal that part and the updated
classifier will avoid repeated mistakes. Since errors will not be repeated across the sequence,
there can be a limited number of very bad classifiers. The following simple lemma formalizes
this intuition for a target error level a > 0.

Lemma 3.1. For any hypothesis class H, true classifier f € H, perfect risk minimizer A,
underlying distribution D, and initial distribution Do such that supp(Dy) C supp(D), let
(ht)tT;Ol be any sequence of classifiers obtained in a path dynamic benchmark with equally
weighted mix(-). Then, for any o > 0, there are at most i classifiers of risk more than «.
In other words, |{t <T | Rp(hs) > a}| < L.

See proof on page 19.

The lemma does not guarantee the latest classifier’s risk, but it is straightforward to see a
random selection of the classifiers after many rounds are accurate with high probability (see
Corollary C.1). A more effective way to construct an accurate classifier from the sequence of
classifiers is to take their majority vote. In this case, three rounds of model building suffice
to find a perfect classifier.

Proposition 3.2. Under the conditions of Lemma 3.1, let (hy)[_;' be any sequence of
classifiers obtained in a path dynamic benchmark with uniform mixture weights. If T > 3,
Rp(maj(ho, hl, ey hTfl)) = 0

Proof. From the proof of Lemma 3.1 we know E; Nsupp(D;) = 0. So, E; N Ey = 0 for every
t" < t. The majority vote of hys will misclassify z if half or more of h;s misclassify z. But
no two distinct hts make a common mistake. So, for three or more classifiers, the majority
vote classifier is always correct. O

So far, path dynamic benchmarking seems to be a promising choice when a perfect risk
minimizer is available and the problem is realizable. The situation changes significantly
when we go to approximate risk minimizers.



We first study a three-round path dynamic benchmark. We then show how results would
generalize for an arbitrary number of rounds. Our results apply to the case where the initial
and underlying distributions Dy do not need to be identical to the target distribution D. To
measure the distance between distributions with respect to a hypothesis class, we use the
following notion.

Definition 3.3 (See Ben-David et al. (2010)). For a hypothesis class H and distributions Py
and P, the HAH-distance between Py and Ps is defined as

dyan(P1, Pa) = s Eunp, [L{h(2) # K (2)}] = Eoup, [L{h(z) # ' (2)}]|. (1)

The next theorem discusses how path dynamic benchmarking with three rounds performs
in the case of an e-approximate risk minimizer.

Theorem 3.4. For any hypothesis class H, true classifier f € H, underlying distribution D,
initial distribution Dy with supp(Dg) C supp(D), and any e-approzimate risk minimizer A,
let hg, h1, and ho be the three classifiers obtained after three model building rounds in a
path dynamic benchmark with uniform mizture weights. Then, the risk of the majority vote
classifier is bounded by

Rop (maj(ho, b1, h3)) < O (€ + ednarn(Do, D)) . (2)

Note that for sufficiently similar Dy and D, i.e., dyaw (Do, D) = O(e), risk is bounded by
O(€?).

See proof on page 20.

The obtained O(e?) error with only three rounds of model building is a significant
improvement to the O(e) error that could be achieved with static benchmarks and an
e-approximate risk minimizer. We then consider what happens if we continue dynamic
benchmarking for many rounds.

Theorem 3.5. For any e-approximate risk minimizer A with % € N, hypothesis class ‘H
with VCdim(H) > e%, and any path dynamic benchmark with L > 3 rounds of model building
and arbitrary mixture weights, there exists an underlying distribution D such that for any
true classifier f € H and initial distribution Dy with supp(Dy) C supp(D), there exists a
sequence (ht)th_Ol of classifiers consistent with path dynamic benchmark where the risk of
their weighted magjority vote is lowerbounded by

€2

RD(maj(hU;hla"' 7hL71)) > g (3)
for any weighting of maj(-). Further, Theorem C.2 shows for any path dynamic benchmark,
there exists H with constant VC dimension such that a similar lower-bound holds.

See proof on page 20.

Theorem 3.5 shows that ((e?) error serves as a lower bound in the approximate risk
minimizer setting for any path design (any mixture weighting and weighted majority). Then
Theorem 3.4 shows three rounds of model building with uniform weights can achieve the
lower bound, so it is optimal, and continuing dynamic benchmarking for more rounds might
not be helpful.
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Figure 2: Depth-2 width-3 hierarchical dynamic benchmark. Symbols as in Figure 1 with
M representing majority vote.

3.1 Challenges in non-realizable settings

For many reasons, our problem may not be realizable. For example, a class of functions that
is not complex enough to explain the true model constitutes an unrealizable setting. Even
for a complex enough class, annotators might fail to label instances correctly. In a simplified
model for unrealizable problems, we assign random labels to a small part of the distribution
and let the rest of the distribution be realizable. Formally, let X° be the randomly labeled
subset of X and X° = X'\ X% be the rest of the domain labeled with f. Since no classifier
can do well on X%, dynamic benchmarks are prone to overrepresent X°. This intuition is
formalized in Theorem 3.6 where we show a significant portion of D, will be concentrated
on X°.

Theorem 3.6. For any hypothesis class H, true classifier f, e-approrimate risk mini-
mizer A, and any underlying distribution D such that §-proportion of D is labeled randomly
and the rest is labeled by f, if 0 > €, as long as t = O(g), at least Q(1)-proportion of Dy
obtained through a path dynamic benchmark will be concentrated around the unrealizable
instances, i.e., Prp,(x € X%) = Q(1).

See proof on page 23.

As a direct consequence, classifiers trained on a path dynamic benchmark lose their
sensitivity to realizable instances and might show an unexpectedly bad performance on the
rest of the distribution.

4 Hierarchical dynamic benchmarks

Thus far, we have observed that given an e-approximate risk minimizer, the smallest achiev-
able risk through path dynamic benchmarks is Q(e?). This observation evokes the idea of
possibly achieving a squared risk by adding a new layer to the benchmarking routine, which
calls path dynamic benchmarking as a subroutine. Figure 2 shows such a structure with
three steps. At each step, path dynamic benchmarks are obtained starting from a mixture
of the initial distribution and error distributions of all previous steps. In the second layer,
models found in different steps are aggregated. We call the dynamic benchmark of Figure 2
a depth-2 hierarchical dynamic benchmark. In an extended form, a depth-k hierarchical
dynamic benchmark can be designed by adding a new layer on top of the models obtained
from some depth-(k — 1) benchmarks.



Hierarchical dynamic benchmarking: For an underlying distribution D and true
classifier f, given an initial distribution Dy and an approximate risk minimizer A,
depth-k width-w hierarchical dynamic benchmarks are constructed recursively:

def. A®)(Dy):
1. hog = A®=D(Dy)
2. Fort=1,--- jw—1:
(a) Di—1 = Dln,_y (0)21 ()
(b) Dy = mix(Dy, Do, D1, ,Di_1)
(c) hy = A=D(D,)

3. return maj(hg, b1, hy—1)

where A©) = A.

Note that this setting does not mean that different steps of path dynamic benchmarking
can be done in isolation. Running two benchmarking tasks independently does not yield
benefits since humans in the loop might return similar vulnerabilities. In the depth-2 hier-
archy of Figure 2, we have bold-faced arrows corresponding to the sequence of steps that
should be taken. So, any reasonable dynamic benchmarking based on our model is a sequen-
tial process, and the name hierarchy is meant to carry the intuition on how the aggregation
of classifiers is happening.

Also note that A®) calls annotators for w* rounds. Since no known empirical dynamic
benchmarking study has ever had more than 20 rounds (as studied in Wallace et al. (2022)),
we limit our analysis to a depth-2 width-3 structure (Figure 2). Here w > 3 is the necessary
and sufficient number of rounds for path dynamic benchmarks to ensure O(e?) risk when A
is e-approximate risk minimizer and Dy is sufficiently similar to D.

The next theorem provides an upper bound on the risk of any classifier obtained through
hierarchical data dynamic benchmarks of Figure 2.

k

Theorem 4.1. For any hypothesis class H, true classifier f € H, underlying distribution D,
initial distribution Dy with supp(Dg) C supp(D), and any e-approzimate risk minimizer A,
the risk of any classifier obtained from a hierarchical dynamic benchmark with depth-2 and
width-3 (Figure 2) where mix(-) and maj(-) uniformly weight the inputs, is bounded by

Rp(maj(gmgl,gg)) < 0(63 + 62d7.[A7.[(’D0,'D)) . (4)

Note that for sufficiently similar Dy and D, i.e., dyaw (Do, D) = O(e), risk is bounded by
O(e?).

See proof on page 24.

The hope in adding a new layer to dynamic benchmarking was to obtain a squared risk
of the previous layer’s risk. So, ideally, a depth-2 hierarchical dynamic benchmark could
achieve O(e*) error. But this is not the case; next, we show that the upper bound of
Theorem 4.1 is tight up to a constant, and the conjecture of squared risk per layer does not
hold.



Theorem 4.2. For any e-approximate risk minimizer A with % € N, hypothesis class H with
VCdim(H) > %, and any hierarchical dynamic benchmark with depth-2 and width-3 (Fig-
ure 2) with arbitrary mizture and majority weights, there exists an underlying distribution D
such that for any true classifier f € H and initial distribution Dy with supp(Dy) C supp(D),
there exists classifiers consistent with hierarchical dynamic benchmark for which

w

. €

Rp(maj(go, 91,92)) > 5 (5)

Further, Theorem C.8 shows for any hierarchical dynamic benchmark, there exists H with
constant VC dimension such that a similar lower-bound holds.

See proof on page 25.

Combined, these results show that design structures that are more intricate than the
current practice, as captured by the path dynamic benchmark, can yield improved results
but also have strong limitations and are challenging to implement in practice.

5 Experiments

Theorem 3.5, provides an Q(e2) lower bound on the risk achievable with an e-approximate
risk minimizer. The proof of this theorem is constructive, introducing a bad sequence
of distributions and classifiers consistent with the path design with ©(e?) error. But the
theorem does not rule out the existence of a good sequence achieving arbitrarily small risk.
An important question is how frequently bad sequences appear in practice, retaining the
error above zero even after many rounds.

We study this question by simulating path dynamic benchmarks on two popular static
benchmarks, CIFAR-10 (Krizhevsky et al., 2009) and SNLI (Bowman et al., 2015). The
details of the data and models are reported in Section B.1 of Appendix. Our aim in these
experiments is not to obtain a state-of-the-art model. Instead, we want to study the effec-
tiveness of path dynamic benchmarks in a controlled experimental setting with light models.
Our simulation design is similar for both datasets:

1. Train a base classifier on the whole dataset and fix it for the next steps.

2. Construct a new dataset from samples correctly classified by the base model and define the
true and initial distributions as a uniform (point mass) distribution over these samples.
Note that in this case empirical risk on samples weighted according to a point mass
distribution is equivalent to risk on that distribution. Since the base model correctly
labels all selected samples, the problem is also realizable.

3. Draw multiple rollouts of path dynamic benchmarks. A rollout from path dynamic
benchmark is a sequence of distributions and models obtained by alternatingly training
a new classifier on the weighted extracted dataset and up-weighting (down-weighting)
the distribution over misclassified (correctly classified) samples according to a mixture
rule with uniform weights. Note that the base model is fixed, and the randomness
across rollouts solely comes from different initializations of new classifiers and possible
randomness in optimization methods.

There are two deviations from our theoretical study in this design: First, we studied
binary classification, but both CIFAR-10 and SNLI define multi-label problems. We believe
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Figure 3: Path dynamic benchmark is simulated. The base model is kept fixed for all
rollouts. The y-axis shows the risk of the majority vote of all classifiers obtained until that
round.

our main arguments hold for multi-label tasks as well. Second, although the problem is
realizable, the solution is unlikely to have zero risk as training a new classifier at each
round of a rollout typically consists of non-convex optimization. This is addressed in our
theoretical framework as e-approximate risk minimization. Our analysis requires a fixed €
across all rounds which approximately holds in practice.

Figure 3a shows results from 100 rollouts of path dynamic benchmarks simulated on
CIFAR-10. At each round, the value on the vertical axis shows the risk of the majority vote
of all the classifiers obtained in a rollout so far. The solid line is the average of the majority
vote’s risk of all rollouts, and the shaded area shows the standard deviation. There are a
few observations: First, although zero risk is attainable, path dynamic benchmarks fail to
reach it. Second, the variance across rollouts is quite consistent at each round. This shows
a good rollout keeps being a good, and likewise with a bad rollout, so continuing dynamic
benchmarking does not help. We further discuss why a rollout turns out to be a good or
bad one and how this is related to our theoretical negative example in Section B.2 of the
Appendix.

Figure 3b shows the results from 50 rollouts of path dynamic benchmarks simulated on
SNLI. A similar observation regarding non-zero risk in limit can be made here. Compared
to the image classification task, path dynamic benchmarks in the NLI task show more
fluctuation through rounds which might be due to the harder nature of the problem or a
more complex model.

Summarizing these observations, path dynamic benchmarks, no matter how long we run
them for, confront a lower bound even in simple realizable settings. This provides empirical
evidence that our negative results are not contrived, but point at what may be inherent
limitations to dynamic benchmarking.
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6 Discussion

The scientific foundation of traditional benchmarks is the holdout method, whereby we
split the dataset into a training and testing component. Although the machine learning
community routinely operates well outside the statistical guarantees of the holdout method,
at least there is some cognizable theoretical framework for static datasets as benchmarks.
Moreover, more recent works have found new support for static benchmarks (Blum & Hardst,
2015; Recht et al., 2019).

Dynamic benchmarks provide an intriguing proposal aimed at mitigating known issues
with static benchmarks. Platforms for dynamic benchmarks are already up and running.
However, machine learning theory has little to offer in the way of guiding the principled
design of valid dynamic benchmarks. Responding to this lack of theoretical foundations,
we propose a formal model of dynamic benchmarks that allows to combine model building
and data collection steps in a flexible manner. We focus on what we think is the first-order
concern in the design of a benchmark: Does the benchmark, in principle, induce the creation
of better models?

While our results show a provable benefit to dynamic benchmarking, it is arguably
more subtle than hoped and comes at a significant increase in complexity. Our negative
results are particularly concerning given that we optimistically assume that both model
builders and annotators have significant competence. In practice, dynamic benchmarks
likely face additional obstacles neglected by our idealized assumptions. As a result, it is less
clear to what extent our positive results have prescriptive value. On the other hand, our
positive results make it clear that the design space for dynamic benchmarks is larger than
currently utilized, thus pointing at a range of interesting open problems. Finally, lowering
risk or improving the accuracy of the induced models is the ultimate success criterion of a
benchmark, however, there are other concerns including the robustness of the models that
can be the topic of future works based on our proposed framework.
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A Dynamic gradient-based update

The current practice of dynamic benchmarking aims at diversifying the benchmark by dy-
namically adding new hard examples to it. The hope is to obtain better models from the
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benchmark every time new samples are added. As we observed, despite the initial bene-
fit this method has, there exist arbitrarily long dynamic benchmarks with no significant
improvement after the first few steps.

But if the ultimate goal is to obtain improved models, there is a more direct way to do
it. Instead of keeping all the adversarial feedback in the form of a dynamic benchmark, the
model-in-the-loop itself can carry all the information by becoming more and more complex
throughout the process. In other words, rather than updating the benchmark by adversarial
examples, these examples can be collected in a way that can be directly used to update the
model. Dynamic adversarial feedback from annotators is helpful here by providing fresh
examples at each round that prevent overfitting. This phenomenon is also close to the
boosting technique in machine learning.

In this section, we discuss how directly updating the model using adversarial data can
be formulated within our framework and why they are not practical. Since we use gradient-
based techniques to update the model, we call these methods dynamic gradient-based up-
dating. We first formally introduce a vector notation for functions and distributions, which
makes our arguments easier to follow. Then we discuss how a classifier’s risk with respect
to the zero-one loss would be represented with this notation. In search of a classifier that
minimizes this risk, we minimize surrogate convex losses rather than directly optimizing
for zero-one risk. Here we discuss two popular choices, to be named hinge and exponential
losses, and for each, discuss the corresponding method with its strengths and limitations.

Notation. Let h: X — {—1,1} be a binary classifier defined on the finite set X'. The vec-
tor representation of h in X is h = (h(x)),ecx. Similarly, let P be a probability distribution
over X. The vector representation of P in X is P = (P(z))zex. The entrywise product of
two vectors hy and hs is denoted by hy o ho. For an underlying distribution D and true
classifier f, we can use vector representations to write the risk with respect to the zero-one
loss. Risk of a binary classifier h on D is Rp(h) = 2(1—ho f, D). For a general h : X — R,
still we can define the risk with respect to the zero-one loss as Rp(h) = (1 —sign(ho f), D),
where sign(+) is an entrywise operator.

Upper-bounded risk. There are many ways to upper-bound Rp(h). For example, for

any entrywise function [(-) such that [(z) > 1{z < 0} = 1 — 1 sign(z) for all z € R, the risk

of h with respect to the zero-one loss can be upper-bounded by

Rp(h) < Rp(h) = (i(h o £), D). (6)

A.1 Minimizing hinge Loss

A popular function to upper-bound the zero-one risk is the hinge loss: I(z) = max(1 —x,0).
Plugging I(-) into Equation 6 gives:

Rp(h) < Rp™°(h) = (max(1 — ho f,0), D), (7)
where max(-) is element-wise maximization. Let g = V;, Rm"°. Looking for an update of
the form h := h 4+ Ah to reduce Ri"#(h), any direction such that (g, Ah) < 0 will be a
descent direction and a small step size guarantees consistent decrease of R%mge. As we will
show in the proof of Lemma A.1, directly applying gradient descent, i.e., Ah = —ng, is

not practical, as it incorporates summation of a distribution and a classifier vector. Unlike
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Figure 4: Dynamic gradient-based update: hinge loss minimization.

classifiers which are known for every point in the domain, in practice, distributions are
limited to the available samples and this summation is not implementable. Alternatively,
let B, = {z € X | h(z)f(z) < 1} be the set of margin errors of classifier h. We task

annotators to return D, = D|g, given h. Let h = A(D}) be the model built on the
vulnerabilities of h. Next lemma shows h is a descent direction for the hinge loss.

Lemma A.1. For any hypothesis class H, true classifier f € H, current classifier h € H,
e-approzimate risk minimizer A, and any underlying distribution D, the vector representa-
tion h of the classifier h = A(D|n(z)f(z)<1) 5 a descent direction for RImEe ().

See proof on page 28. _

This lemma lets us write the updating rule h :== h + 17 R%nge(h) h, depicted graphically
in Figure 4. Since gradient dominance condition holds for this update and hinge loss is
1-Lipschitz, h will converge to f with the rate of O(%) Although this method guarantees
convergence, the dependence on the domain size makes the bound useless for continuous or
very large domains.

A.2 Minimizing exponential loss

Another candidate function to upper-bound the zero-one risk is the exponential loss: I(z) =
exp(—x). This leads to a similar analysis as the AdaBoost algorithm (Schapire & Singer,
1999). Plugging () into Equation 6 gives:

Rp(h) < Rp®(h) = (exp(=ho f), D), (8)

where exp(-) is element-wise exponential function. Similar to the hinge loss minimization,
we show in the proof of Lemma A.2 that directly updating h with a gradient term is not
implementable. So, we search in the hypothesis class for a classifier h such that h minimizes
(h,g), where g = V,RZP. Next lemma finds such a classifier along with the optimal step
size.

Lemma A.2. For any hypothesis class H, true classifier f € H, current classifier h € H,
e-approzimate risk minimizer A, and any underlying distribution D, h = A(Dy) is the
solution of ming _,, (h,g). Here Dy,(z) o< D(x) exp(—h(z)f(x)) and g = VL RSP, Further,
n= %log(m — 1) is the best step size for the update rule h == h + nh.

See proof on page 28.

Let h; be the final classifier obtained after ¢ updates according to the updating rule of
Lemma A.2. An analysis similar to the analysis of AdaBoost shows Rp(h:) < exp(f(lfgié)zt).
This method, despite the exponential convergence rate, is not practical for two reasons.
First, it is computationally hard as reweighting a distribution requires the calculation of a
normalization factor which is a sum over the whole domain. Second, it requires sampling
from D which might not be possible.
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In summary, gradient-based updates guarantee convergence of the updated classifier
to the true classifier; however, they either suffer from slow convergence or computational
hardness.

B More on experiments

We elaborate on the details of datasets, models, and further observations from the simulation
of path dynamic benchmarks in this section.

B.1 Data and models

The CIFAR-10 dataset contains 60,000 of 32 x 32 color images in 10 different classes,
commonly used as a static benchmark for image classification. We use a shallow feed-
forward Convolutional Neural Network (CNN) consisting of two convolution layers (with 32
and 64 filters), interleaved with two max-pooling layers, followed by a dropout layer and a
dense layer with 10 units at the output, increasing total number of trainable parameters to
40k. We use the same architecture to train a base model and train classifiers in drawing
rollouts. The base classifier achieves 73% accuracy after 30 epochs on the training data,
reasonably above the chance level of about 10%.

The Stanford Natural Language Inference (SNLI) corpus (version 1.0) is a popular NLI
benchmark consisting of 570k human-written English sentence pairs manually labeled for
balanced classification with the labels entailment, contradiction, and neutral. We restrict
our simulation to a 50k random subset of this data. Our model is a slightly modified
model of Bowman et al. (2015) where words are represented with pre-trained 100d GloVe!
vectors, and two parallel Bidirectional Long Short-Term Memory layers (BiLSTM) are used
to extract sentence embeddings. The concatenated embeddings are then fed into three more
hidden dense layers (each has 128 units) before going to the last dense layer with 3 units.
The model has a total number of 120k trainable parameters, and the base model achieved
an accuracy of 68% on the training data and 61% on the test data, consistent with the
original study when the number of samples was limited.

B.2 Further observations

The observations we had in Section 5 raise another question: what makes a rollout a bad
rollout? Do bad rollouts share a common characteristic? We hypothesize the more similar a
rollout to the bad sequence constructed in the proof of Theorem 3.5, the worse its final risk.
A unique feature of the negative example in Theorem 3.5 is that initial classifiers in the
sequence cleverly choose their error sets to only overlap on a fixed part of the distribution,
which will turn out to be the error set of the majority. We define a score that captures this
behavior without being directly related to the accuracy of the final majority vote model.
Let E,, be the error set for the majority vote classifier and E}, be the error set of the

round t classifier. Then for every pair of distinct rounds ¢1,t5 < T of a rollout, define

|Enyy NEny, NEm| 1 T—1 —T—1 cp e
— 1 2 — S
Rty = [Ery, 0En,, | We use zp = T(T-1) Ztlzo ta=0 a5ty Pt1,tz 1O quantify similarity

of a rollout to the theoretical negative example. The proof of Theorem 3.5 shows that as
long as T' < %, the theoretical negative example gives zp = 1.

Ihttp://nlp.stanford.edu/data/glove.6B.zip
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Figure 5: Similarity to the theoretical negative example measured by zp can partially explain
the risk of the majority vote classifier of all rounds. The blue dashed line is the minimum
squared error fit.

Figure 5a depicts the risk of the majority vote at the end of the rollout (round 25) vs. 24
score. The correlation is positive and statistically significant (Pearson r = 0.46, p < 0.001).
So, the more similar a rollout to the theoretical bad example in terms of the defined score,
the more likely it will be a bad rollout. Interestingly, at round 4, the risk of the majority
vote classifier can barely explain the risk after 25 rounds (Pearson r» = 0.18, p > 0.05). This
shows our negative example construction has not only introduced a worst-case example
but might have identified an important characteristic that naturally appears in dynamic
benchmarks and limits their effectiveness.

Figure 5b also shows a significant positive correlation (Pearson r = 0.68, p < 0.001)
between the final risk of a rollout and its similarity to the theoretical negative example
measured early at round 6. At this round, the risk of the current majority vote classifier
is barely informative about the risk after 20 rounds (Pearson r = —0.27, p > 0.05). Once
more, it shows the negative example constructed theoretically can explain the natural failure
of dynamic benchmarking in different contexts.

C Additional statements and proofs

Corollary C.1. Under conditions of Lemma 3.1, let h be one of the hs selected uniformly
at random. For any & > 0 and o > 0, if T > %w with probability at least 1 — 0, h is

5
«-accurate.
Proof. From Lemma 3.1, the probability that h is a-bad is less than UTO[ <. O

Proof of Lemma 8.1. As supp(Dy) C supp(D), running the path dynamic benchmarking
will preserve supp(D;) C supp(D) for any t. On the other hand, we know Rp(f) = 0.

So, we have Rp,(f) = 0. As A is a perfect risk minimizer and f € H, we should have
Rp,(ht) = 0. Therefore, errors of h; should happen outside of supp(D;):

E, Nsupp(Dy) =0, 9)
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where FEj is the error set of h;. Now assume t is one of the indices where h; is a-bad, i.e.,
Prp(E;) > a. Then we have

l;’jr(w € supp(Di41)) = I%r(x € supp(Dy)) + I;r(:c e E) > PDr(J: € supp(Dy)) + . (10)

This cannot happen more than i times. O

Proof of Theorem 3.4. Starting from Dy where supp(Dp) C supp(D), path dynamic bench-
marks will preserve supp(D;) C supp(D) for any ¢. Since the problem is realizable and A is e-
approximate risk minimizer, for any consistent h; we should have Rp, (h;) < e. The distribu-
tion D; itself is a mixture of the initial and error distributions: D; = mix(Dy, Dy, - - - ,5t,1).
So, we can expand Rp,(-) as a linear combination of the risks under mixture components.
Note that the risk of h; under an error distribution D,/, where t’ < t, can equivalently be
written as Ry (h:) = Prp(E¢|Ey). For t = 0,1,2 we have:

!

RDO (h()) S €

1 1

3By (h1) + 5 Pr(Ep, |Eno) < €

1

3
The above constraints impose Rp,(h:) = Prp,(E:) < (t + 1)e and Prp(E|Eyv) < (t + 1)e.

However, to limit the joint error probability of two classifiers we need to bound Prp(Ey):

%Y(Et) = Rp(h) S R’Do (h) + dHAH(Do,D). (11)

1 1
RDD (h2) + § %T(Ehz‘Eho) + g %I(Eh2|Eh1) <e

Finally, by a union bound, the error probability of maj(hg, k1, he) is less than the sum of
all pairwise joint error probabilities. Putting these all together:

Rp(maj(ho, h1, hg)) < %I‘(Eho n Ehl) + 1;1‘(E’h0 N Eh2) + %I‘(Ehl N Eh2)
< 11€? + 8edyap (Do, D). (12)
O

Proof of Theorem 3.5. For a given domain X, we define a new finite domain X; € X¢ such
that X; can be shattered by H. For an arbitrary but fixed order on X, we can define
equivalent vector representations of functions and distributions in the new domain. Partic-
ularly, let h : X — {—1,1} be a binary classifier defined on X. The vector representation
of hin Xy is h = (h(x))zex, € {—1,1}¢. Similarly, let P be a probability distribution over
X. The vector representation of P in Xy is P = (P(z))zex, € A(Xg). Throughout the
proof, we use K to show a subset of Xy with k elements. We also use P(K) as a shorthand
for 3 cx P(x). Throughout the proof we use interval notation for discrete intervals. For
example, [a,b) denotes {a,a+1,...,b—1}. Finally, h; o hy denotes the entrywise product
of hl and hQ.

The four allowed operations on classifiers and distributions have new interpretations in
the new domain:

1. D, A hy: The fact that A is an e-approximate risk minimizer imposes the following
constraint:

(hiof. D)= > Dyx)— > Dix)=1-2Rp,(h)>1-2e (13)
he(z) f(z)=1 hi(z) f(z)=-1
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2. hy A, D;: Let K, be the set of indices that h; and f disagree. Then, it is straightfor-
ward to see

D, = D(}Ct)(D—htofoD). (14)
3. (ho,hi, -+, hy) 093, fy: This is equivalent to per dimension voting: h(z) = maj(ho(x), hi(z), - - -
for x € Xy.
4. (Do, Do, D1, ,Dy_1) obx, D;: This is simply equivalent to the weighted sum of
D; = w; oDy + Z Wy Dy, (15)
i<t

where ws are the weights of the mixture components, summing up to 1.

Note that in all of the operations h; and f have appeared only as h; o f. Since Xy can
be shattered by H, without loss of generality, we assume f is all one and use h; instead of
hi o f in the following.

Next, we start from the initial distribution Dy as the input to the path dynamic bench-
marks and find the constraints imposed over variables throughout the process:

e Dy A, ho: In this case (hg, Do) =1 — 2Dy(K¢) and Equation 13 requires:

DQ(’Co) S €. (16)

e D, i> hi: For D, defined in Equation 15, we have:

(hi, D) = wi,o(ht, Do) + Zwt,t’ (ht, Dyr), (17)

t'<t

where (h;, Do) =1 — 2Dy (Ky) and

(ht, Dy) = %((ht,D) — (hy Oht/,D>)
_ %(1 —2D(Ky) — (1 - 2D(K, UKy — Ky 1K)
_D(KinKy)

18
D(Ky) (18)
Here we used D(K; UKy — K¢ N Ky) = D(Ky) + D(Kw) — 2D(Ky N Kyr). Plugging
(h¢, D) into Equation 17 and requiring (h;, D;) > 1 — 2¢ from Equation 13, impose

DK, NKy)

’LUt70D0(’Ct) + wa D(IC ) <e.
t/

t'<t

(19)

In the following, we propose K;s such that constraints of Equations 16 and 19 are sat-
isfied. These are the necessary and sufficient conditions to have h;s consistent with path
dynamic benchmarks.
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For0<t<T-= %: Consider K;s such that K; N Ky = K for any ¢ < t. Sufficient
conditions to satisfy Equations 16 and 19 are

KenkKy =K (20)
DIK) k _ ¢

D) k2 1)

Dy(Ky) < % (22)

at every time step. Let’s reorder axes in an ascending order of Dy and name them from 1 to
d. Also assume this results in an ascending order of D as well. For example, D = unif (X})
always satisfies this. We set K = [1,k] and Ko = [1, k'] where k' = 2%, Then for 1 < t <
T=2 weset Ko =KUK + (t—1)(K —k),k +t(k' —k):

Pl

I??‘

K:
K'=2k
Ko: "=

k' —k

K1 —

k' —k

k
g
k
M g —

Ko

It is straightforward to see that this assignment satisfies Equations 20 and 21. Since axes
are ordered ascendingly according to Dy, a sufficient condition to satisfy Equation 22 for
all rounds is

2K

Do(Kr_1) < Do(K + (T = 1)(K — k) K < Do(Tk )k = DO(T) K < (23)

€
3
Fory = %kl, the above condition is Dy(y) < % Again, since axes are ordered in an ascending
order of Dy, Dy(y) < ﬁ (otherwise, the sum of Dy elements will go above 1). Then
simple calculations show d > 2y = i—’; is sufficient to hold Equation 23. Since k is an integer,
this is possible for d > £ which requires VCdim(#) > £. For d = £, this gives % = %.

For t > T: We set hy = hgy) where ¢ @ [T,00) — [0,T — 1] is an assignment function
working as follows. We define updated weights for 0 < 7 < T

’l}t70 = wt,O (24)

Vo, =W, + »  Wrpl{g(t) =7} (25)

T<t'<t
Then ¢(-) assigns round ¢ according to

o(t) = argminy . (26)
o<r<T

The sum of the updated weights satisfies

N V=Y Wit Y W Yy, M) =1r= Y Wy <1, (27)

0<r<T 0<r<T T<t'<t 0<r<T o<t/ <t
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where we used the identity 3o, ., 1{¢(t') = 7} = 1. This guarantees

Plugging h;y = hg(;) into Equation 19 gives:

DK DK
w,0Do(Kgr)) + Z Wy, ®) + Z th/#

oser PR 5 PRewn)
_ _ — D(K) — DK
— w, oD (K ( ) . )
wnoPoRaw) (e * T<Zt’:<t o +0§;th7 D(K+) ' T<zt':<t o D(Kg(r))
$(t)=a(t) T#9() $(t)#0(t)
€

< (wt,0+ S W+ Y @t,t')i + Vo) < € (29)

0<7r<T T<t'<t

26 (0) 0

Here we used the following observations. Since h, satisfies Do (K,) < 5 for all T < t, hy also

; _ e PO (o) D(K) e
satisfies Do(K¢) = Do(Kg(r)) < §. Also all the ratios pcy and DK, Ate bounded by §
according to Equation 21. We finally applied Equation 28 to bound v 4(;). This completes
our argument that h; is consistent for ¢ > T'.

So far, we have introduced a sequence of classifiers (h;); which are consistent with path

dynamic benchmarks and all misclassify L. We also showed for the selection of d = 6%,

we have % = %. The only required assumption is that the element of Dy and D are both
ascending. For the special case of D = unif(Xy), D(K) = %. Since elements of C are

misclassified by all the classifiers, no matter how the majority vote of them is calculated, K
will be in the error set:

no

=< (30)

Rp(maj(ho, hi,---)) > D(K) = S

ISHIES

This completes the theorem.
O

Proof of Theorem 3.6. Let D} = Dy|,cxs and DS = Dy|pgas. Also let 6, = Prp, (z € X°).

So, we can write D; as a mixture of its restricted distributions: D, = §; D + (1 — 5t)D§.
The classifier h; trained on D; should satisfy

B
Rp, (he) = 6:Rps (he) + (1 — 8¢) Rpys (he) = é + (1= 8¢)Rpys (he)
. Ot
< = —
< min Rp,(h) + € 5 +e, (31)

which requires (1—6;)R5(ht) < e. Here we used the fact that labels of X are equiprobable
to be 1 or —1. So, risk of any classifier under DY is % The inequality comes from A being

e-approximate risk minimizer and the last equality is due the realizability of Dtg. The error
distribution of h; is

(32)



where D(S D|$¢X6 D = D|z€.)(6 i (x) 2y D = D|z¢.)(6 he(x)#f(x)s and § = PI'D(LC S Xﬁ)
Note that again we used the fact that labels of X° are random. Since Dy = D has a weight

of t+71 in Dy:

Rops(he) < (8 + 1) Rpz(he) < (64 1) (33)

1-— 5t
So, the weight of 53 component in D; (Equation 32) will be greater than or equal to (1 +

2(t+1)%4 19 ) 1. Then the total weight given to X by distribution Dy, = t+2 Hlp, 4 t+2Dt
will be b1 ] 1
1) o + . 34
2 0 (t+2)1+2(t+1)§11:§ (34)
The first observation from the above equation is
6 1 1
5 24z
1*2+21+2§’ (35)

where we used 6y = 6. For sufficiently large 2 £, 01 goes above % which means more than
half of the benchmark will be focused on the unrealizable instances. Next, we show this is
not limited to the first round, and §; maintains a large proportion of D; as we progress.

Recursively expanding Equation 34 and assuming d; < 2:

P 1 < 1
oy >
t_t+1+t+1z 1+at

5  Wm(l+a(t+1) W(l+a) & W1+

T t+1 a(t+1) a(t+1) “ir1 a(t+1)
0 1 at/(1+a) | 6 t 1
= t+1 +a(t+1)(1+at/(1+a)>_t+l +(t+1)1+a(t+1)’

where a = 45(1 — &). We applied In(1 +z) > 7 to obtain the last inequality. This shows

(36)

the upperbound cannot decrease faster than Q(1 Ta t) For t > 1, we have
1 1
O > > . 37
"Z 201+ 2at) T 2(1+8%) (37)
So, for t < ﬂg, 0y > m. This completes the proof. O

Proof of Theorem 4.1. We use the same notation as Figure 2 and follow similar arguments
as the proof of Theorem 3.4. Also for notation convenience we use the shorthand Aq to
denote dya (Do, D).

Starting from the first path dynamic benchmarking step (hg — hy — hs), in Theorem 3.4
we observed: Now we can bound Rp(go) by

Rp(g0) < 11€ + 8eAy. (38)

For the second path dynamic benchmarking step (hs — hy — hs) we have:

2RD0(h3) + 3 2 Pr(Eh3|Eg ) < (39)
1

SRDO(M) +3 b Pf(Eh4|Eg )+ 3 %f(EhAEhe.) <e (40)
1 1 1 1

4RDO(h5) +1 B Pr(Ep,|Ey,) + 1 Pr(Eps | Eng) + 1 Pr(Epg|En,) < e (41)
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These equations let us bound Rp(g1) and Prp(Ey, |Ey,):

Rp(gl) I‘(Eh3 N Eh4) + %I‘(Ehg_ N Eh5) + PDr(Eh4 n Eh5)

<P

D
< 3e(2e + Ag) + 4e(2e + Ag) + 4e(3e + Ag) = 26€2 + 11eA, (42)
and

PDr(Egl |E90) < %r(Ehs |E90) + %I(EM |Ego) + %r(Ehs ‘Ego) < 2e + 3e + de = 9e. (43)

Finally, for the third path dynamic benchmarking step (hg — h7 — hg) we have:

1 1 1

3 Fpy(h) + 2 Pr(Eng| Eyy) + 5 Pr(Eng|By,) <€ (44)
1 1 1 1

ER/DO(h7) + 1 %r(Eh7‘Ego) + i PDr(Efw‘Egl) + Z PDI'(Eh7|Eh6) <e (45)
1 1 1 1 1

5RD0(h8) + g Dr(Ehs‘Ego) + 5 %T(EhS‘Egl) + 5 %r(Ehs|Eh6) + g %T(Eh8|Eh7) <e (46)

This lets us bound Prp(E,, |E,,) and Prp(Eg,|Ey, ):

%Y(Egz |Ego) < %Y(EhG |E90) + %r(Eh7‘Ego) + %Y(Ehs |E90) < 3e + de + He = 12, (47)

and a similar calculation shows Prp(E,,|E,, ) < 12e. Putting these all together, we can
bound the risk of maj(go, g1,92) by

RD(maj(govglvg2)) < I;I‘(Elgo n Egl) + %Y(Ego n Egz) + %T(Egl n Egz)
< RD(QO) %I(E!h |Ego) + RD(QU) %T(E!h |Ego) + RD(gl) I;r(Egz |E91)

< 9e(11€® + 8Ape) + 12¢(11€? + 8Age) + 12¢(26€* + 11A¢¢)
= 543¢> 4 30062 Ay, (48)

which completes the proof. O

Proof of Theorem 4.2. We follow the proof of Theorem 3.5 and define equivalent vector
representations of functions and distributions in a new finite domain X; € X 4 such that X}
can be shattered by H (so, d < %). We also name variables according to Figure 2. For a
true classifier f, KC; denotes the set of indices where h; and f disagree. Similarly, K4, is the
set of indices where f and g; disagree.

First of all, we reorder axes in an ascending order of Dy. Also assume this results in an
ascending order of D as well. For example, D = unif(X};) always satisfies this. Naming axes
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from 1 to d and showing them on the horizontal line, we assign K;s and K4, s according to:

ICOZ <
1 1 1
’C] . e 2«
e —
1 11
IC2 ce—° <E—E>
1
Kgp : ——
1
—1
1 =
Ks:
1 11 St
Ky Ey —
1 1 _ 1
1 e 1 2T
Ks: <> < —
11
Ko, : = >
/C6 : é %271
1 1 _ 1
1 -1 p
K7:e & —c
1 -1 4 -1
Ks: < < —
1
1 <1
Kg, 1 = —

Next, we discuss each path dynamic benchmarking step and find sufficient conditions
under which IC;s are consistent with the dynamic benchmarking routine.

1. For the first path dynamic benchmarking step (hg — h; — ha), let Ky = [1,6%],
Ki=[110(4, 2 -1, and Ko = [1, 2] U (24 — 1,35 — 21]. We have
1
ICQO:ICoﬁlClleoﬁnglelﬁngz[Lf] (49)
€

D(’Cgo) D(,Cgo)
D(Ky) = Do) ~ (50)

With a similar reasoning as the proof of Theorem 3.5, the only remaining condition to
ensure hg, hy, and he are consistent with path dynamic benchmarks, regardless of the
weightings, is Do(K2) < e. The output of this step has the error set of K, = [1, %] no
matter how the weighted majority vote is calculated.

2. For the second path dynamic benchmarking step (ks — ha — hs), let K3 = [1]U(L, S+
19, Ky=Mut,2-1u(F+21-1,23-1],and K5 = [1JU(2, 2-1Ju(Z -1, 5 -1-1].

€l e €l e ’
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We have
Ko =KsNKs=KsNKs =KaNKs =[1]U (=, — —1] (51)

D(Kgl) D(Kgl)
D(Ki) = D(Ks) = 52)
D(K3)  D(Ky)  D(Ks)

D(Ky)  DKgy) DKy — (53)

It is easy to check that for any weighting of mixture components, if Dy(K5) < €, hg,
h4, and hs will be consistent with path dynamic benchmarks and the output of this
step has the error set of K4, = [1] U (£,2 — 1]. Note that Dy(Ks5) < € guarantees
Do(K2) as well.

€

3. For the third path dynamic benchmarking step (hg — h
2
MuEZ1L,f-9u(2+1-2,3 -2 Wehave

-1, +2-9, Kr=[Uu-1,2-2qu(L+2-

1692:/cﬁm/@:/cﬁmcszicm/csz[1]u(§—1,§—2] (54)
D(Icgz) D(]ng)
DKr) = D) = (55)
DKs)  D(Ks)  D(Ks)
DKyy)  D(Ky)  D(Kyy) ~ (56)

D(Kgl) D(ICQI) D<K91) N

Again, it is straightforward to see that for any weighting, if Dy(Ks) < €, hg, hg, and
hg will be consistent with path dynamic benchmarks and the output of this step has
the error set of Ky, = [1]U (2 — 1,2 —2]. Note that Do(Ks) < e guarantees Dy(K5) as
well.

Putting these all together, to make the provided classifiers consistent with hierarchical
dynamic benchmarking, it suffices to show Dy (Ks) < e:

3 1 1
Do(Ks) < Do(? - 2)(?2 - E) <e (58)
Since axes are ordered in an ascending order of Dy, Do(z) < d_i_ —7- Otherwise, the sum of
the Dy elements would go above 1. So, we have:
1 1 1
(= -)< 59
df(e%)Jrl(eQ ;) =¢ (59)

which imposes d > e%, + 6% — 1. For any valid €, i.e. € > %, d= e% satisfies this condition.

It also satisfies the other limitation we had on VCdim(#). In this case

Rp(maj(go, g1, 92)) = D(Kg, N Ky, N Kyg,) = D([1]). (60)

&

For the choice of D = unif(X}), this risk is é =3

which completes the proof.
O
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Proof of Lemma A.1. The derivative of RA"(h) w.r.t h(z) is:

) S ) h(z)f(z) > 1
9(x) = Oh(z) {—f(x)D(x) o.w. ' (61
We can write g with vector representations as
9= —Pr(Ey) (f o Dy) = —Rp"*(h) (f o D). (62)

As mentioned earlier, updates of the form h := h—ng are infeasible as in practice Dy, is only
available at limited samples. To make it practical, let h = A(Dy,). As A is an e-approximate
risk minimizer,

Rp, (h) = %<1 —hof D)= (h,foDy) <e (63)

DO =
N =

So, we have (h, f o D},) > 1 — 2¢. For € < 0.5, h will be a descent direction. O
Proof of Lemma A.2. The derivative of Ry (h) w.r.t h(z) is

o1e) = AP =~ (2)D() exp(-h()] (o) (64
or in the vector space
g=—foDoexp(—ho f). (65)
To find a good descent direction, we solve for
min (h,g) = (—ho f, D oexp(—ho f)). (66)

heH

The solution to this problem is the minimizer of Rp, (h) where Dy, is the true distribution

weighted according to Dy, (z) = Z%L (z) exp(—h(x) f(x)) and Zj, is a normalization factor to

make sure D, will be a probability distribution. Let h = A(Dy,). Given A is e-approximate
risk minimizer,
- 1 - 1 1 -
Rp,(h)==(1L—ho f,Dy)==——(ho f,Doexp(—ho f)) <e. (67)
2 2 27,
So, we have (ho f, Doexp(—ho f)) > Z,(1—2¢). For € < 0.5, h will be a descent direction
and the updating rule is R
h:=h+nh. (68)

Finally, in order to find the optimum step size 7, we plug the updated h into Equation 8
and solve for

min Rp(h+nh) = (exp(~(h+nh)o f), D). (69)
Since the objective is a convex function of 7, it suffices to check the first order condition:
ORp(h+nh) - N
D(an”) = (ho f oexp(~(h+nh)o f), D)

= (ho foexp(—nho f),Doexp(~ho f))

= Znexp(=n)(1 = Rp, (h)) — Zy exp(n) Rp, (h) = 0. (70)
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Solving the last equation gives

1 1
n= 3 log(RDh (B) —-1). (71)

O

Theorem C.2. For any e-approximate risk minimizer A with % € N, and path dynamic
benchmark with L > 3 rounds of model building and arbitrary mixture weights, there exists a
hypothesis class H with VCdim(H) < 4 such that for any true classifier f € H, there exists
an underlying distribution D where for any initial distribution Dy with supp(Dg) C supp(D)
that satisfies D(xs) > D(x1) <= Dolxz) > Do(x1), there exists a sequence (hy)i g
of classifiers consistent with the path dynamic benchmark where a similar lower-bound as
Theorem 3.5 holds.

Proof. The proof is straightforward given the results obtained so far in the proof of The-
orem 3.5. The way we constructed K;s is equivalent to selecting two subsets of RT and
changing their predicted labels. So, let H' be the class of such functions, i.e., the class of
unions of two intervals (VCdim(#H’) = 4). For any f € H’, we select d points from the real
line such that f(z) is all 1 or all —1. Let X; € R? be the set of the selected points. Then
we induce a probability distribution D on Xy such that D(z) = 2 + a(x) where a(z) is an
ascending function of z and }_ . a(x) = 0. Then all of our arguments in the first part of
the proof will be true for any Dy which is ascending or descending w.r.t z. In the limit we
have

(72)

2
. . . €
clylgloRD(maJ(hO" .. ,hL—l)) > ilLI%)'D(IC) = g

This completes the proof. O

Theorem C.3. For any e-approzimate risk minimizer A with % € N, and hierarchical dy-
namic benchmark with depth-2 and width-3 (Figure 2) with arbitrary mixture and magjority
weights, there exists a hypothesis class H with VCdim(H) < 6 such that for any true clas-
sifier f € H, there exists an underlying distribution D where for any initial distribution Dy
with supp(Dy) C supp(D) that satisfies D(x2) > D(x1) <= Do(z2) > Do(x1), there
exists classifiers consistent with the hierarchical dynamic benchmark for which a similar
lower-bound as Theorem 4.2 holds.

Proof. Given the results obtained in the proof of Theorem 4.2, the proof of this theorem is
pretty straightforward. The way we chose K;s in the proof of Theorem 4.2 is equivalent to
choosing three intervals from the real line. So, let H’ be such class of function (VCdim(H') =
6). For any f € H', we select d points from the real line such that f(z) isall 1 or all —1. Let
X; € R? be the set of the selected points. Then we induce a probability distribution D on Xj
such that D(z) = & + a(z) where a(z) is an ascending function of z and Y wex, a(x) =0.
All of our arguments in the first part of the proof hold for any Dy which is ascending or

descending w.r.t x. In the limit we have
lim Rp(maj(go, g1,92)) > lim D([1]) = —, (73)
a—0 a—0 2

which completes the proof. O

29



	Introduction
	Our contributions
	Related works

	Problem formulation
	Path dynamic benchmarks
	Challenges in non-realizable settings

	Hierarchical dynamic benchmarks
	Experiments
	Discussion
	Dynamic gradient-based update
	Minimizing hinge Loss
	Minimizing exponential loss

	More on experiments
	Data and models
	Further observations

	Additional statements and proofs

