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Abstract. We introduce a technique to automatically convert local boundary conditions into
nonlocal volume constraints for nonlocal Poisson’s and peridynamic models. The proposed strategy
is based on the approximation of nonlocal Dirichlet or Neumann data with a local solution obtained
by using available boundary, local data. The corresponding nonlocal solution converges quadratically
to the local solution as the nonlocal horizon vanishes, making the proposed technique asymptotically
compatible. The proposed conversion method does not have any geometry or dimensionality con-
straints and its computational cost is negligible, compared to the numerical solution of the nonlocal
equation. The consistency of the method and its quadratic convergence with respect to the horizon
is illustrated by several two-dimensional numerical experiments conducted by meshfree discretization
for both the Poisson’s problem and the linear peridynamic solid model.
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1. Introduction and motivation. Nonlocal, integral models are valid alterna-
tives to classical partial differential equations (PDEs) to describe systems where small
scale effects or interactions affect the global behavior. In particular, nonlocal models
are characterized by integral operators that embed length scales in their definitions,
allowing to capture long-range space interactions. Furthermore, the integral nature of
such operators reduces the regularity requirements on the solutions that are allowed
to feature discontinuous or singular behavior. Applications of interest span a large
spectrum of scientific and engineering fields, including fracture mechanics [33, 47],
anomalous subsurface transport [4, 19, 44, 45], phase transitions [9, 14, 30], image
processing [1, 24, 32], magnetohydrodynamics [43], stochastic processes [7, 17, 35, 39],
and turbulence [12, 40, 41].

Despite their improved accuracy, the usability of nonlocal equations is hindered
by several modeling and computational challenges that are the subject of very active
research. Modeling challenges include the lack of a unified and complete nonlocal
theory [13, 18, 20], the nontrivial treatment of nonlocal interfaces [2, 10, 46, 29, 55, 58]
and the non-intuitive prescription of nonlocal boundary conditions [25, 54, 50, 59, 31].
Computational challenges are due to the integral nature of nonlocal operators that
yields discretization matrices that feature a much larger bandwidth compared to the
sparse matrices associated with PDEs. For both variational methods [3, 11, 16, 22]
and meshfree methods [42, 48, 51, 53, 50, 54, 55, 29, 59] a lot of progress has been
made during the last decade, resulting in improved numerical techniques that facilitate
wider adoption, even at the engineering level.

In its simplest form, the action of a nonlocal (spatial) operator on a scalar function
u : Rd → R is defined as

Lu(x) =

∫
Hδ(x)

I(x,y, u) dy,

where Hδ(x) defines a nonlocal neighborhood of size δ surrounding a point x ∈ Rd,
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d being the spatial dimension and δ the so-called horizon or interaction radius. The
latter defines the extent of the nonlocal interactions and embeds the nonlocal operator
with a characteristic length scale. The integrand function I is application dependent
and plays the role of a constitutive law. Its definition is not straightforward and
represents one of the most investigated problems in nonlocal research [8, 21, 52, 56, 57].

In this work we focus on the prescription of nonlocal boundary conditions, or
volume constraints, when solving nonlocal equations in bounded domains. The chal-
lenge stems from the presence of nonlocal interactions, for which a point x in a domain
interacts with points outside of the domain that are contained in the point’s neigh-
borhood Hδ(x). This fact generates an interaction region of nonzero measure where
volume constraints need to be prescribed to guarantee the uniqueness of a nonlocal
solution [27]. However, often times, input data to a problem are not available (due
to measurement cost or physical impediments) in volumetric regions, whereas they
are only available on the surfaces surrounding the domain. In other words, the only
available data are local. Thus, the question arises of how to convert local boundary
information into a nonlocal volume constraint.

In the nonlocal literature, this issue has been addressed in several works, most
of which propose conversion approaches that are either too restrictive (in terms of
geometry or dimensionality constraints), too computationally expensive (requiring the
solution of an optimization problem), or are not prone to wide usability (requiring a
modification of available codes). Among these works we mention [15, 23, 54, 59, 31].

The method we propose is inspired by the recent work [25] where the authors
propose to first approximate the nonlocal solution with its local counterpart and then
correct it by solving the nonlocal problem using the local solution to generate volume
constraints. In [25] Neumann local boundary conditions are converted into Dirichlet
or Neumann volume constraints in the context of nonlocal Poisson’s problems and
numerical tests are performed in one dimension. Based on this work we propose
to convert Dirichlet local boundary conditions into Dirichlet or Neumann volume
constraints in the context of both nonlocal Poisson’s and peridynamics equations.
Furthermore, we show applicability of our strategy in a two-dimensional setting using
nontrivial geometries.

The main idea of the proposed method can be summarized in three simple steps.
1. Using available local data, we solve the local counterpart of the nonlocal

problem. This step assumes that the local limit (the limit as δ → 0) of the
nonlocal operator is known1, that the local data and the domain are smooth
enough to guarantee well-posedness, and that a solver for the corresponding
local equation is available.

2. We use the local solution to define either the nonlocal Dirichlet data in the
nonlocal interaction domain or to obtain the nonlocal Neumann data by com-
puting the corresponding nonlocal flux. This step numerically corresponds to
a matrix-vector multiplication and does not require the implementation of a
new nonlocal (flux) operator; in fact, as we will explain later, the nonlocal
Neumann operator is the nonlocal operator itself evaluated at points in the
nonlocal interaction domain.

3. Use either the Dirichlet or Neumann data obtained in Step 2. to solve the
nonlocal problem, for which volume constraints are now available.

1Local limits of nonlocal operators can be obtained by using Taylor’s expansion; both the nonlocal
Poisson’s problem and the peridynamic model considered in this work have well-known local limits,
namely, the (local) Poisson’s equation and the Navier equation of linear elasticity, respectively.



PRESCRIPTION OF BOUNDARY CONDITIONS FOR NONLOCAL PROBLEMS 3

The choice between converting into a Dirichlet or Neumann condition depends on
the expected behavior close to the boundary. When nonlocal effects are more likely
to happen far from the boundary (because of, e.g., a pre-crack in the middle of the
domain) the Dirichlet approach, characterized by a smooth behavior of the solution,
can be considered appropriate. On the other hand, when nonlocal effects are expected
close to the boundary, the Neumann approach might be preferable, as it returns a
solution that matches the nonlocal flux associated with the local solution, rather than
matching the local solution itself. We summarize the main properties of the proposed
approach below.

• This strategy delivers a nonlocal solution that is physically consistent with
PDEs in the limit of vanishing nonlocality. Numerically, when employing
proper numerical discretization methods, e.g., the optimization-based mesh-
free quadrature rule [50, 59], this property guarantees asymptotic compatibility
[49], i.e. the nonlocal numerical solution converges to its local limit as δ and
the discretization size h approach 0.

• This technique has no geometry or dimensionality constraints. It can be
utilized with any domain shape and in all dimensions d = 1, 2, 3.

• The conversion of local data into nonlocal volume constraints is inexpensive.
In fact, it corresponds to a matrix-vector product where the matrix is either
a selection matrix (in the Dirichlet case) or a nonlocal flux matrix (in the
Neumann case).

• This strategy does not require the implementation of new software. In fact,
available local and nonlocal solvers can be used as black boxes.

Consequently, this strategy has the potential of dramatically increasing the usability
of nonlocal models at the engineering and industry level thanks to its flexibility,
intuitiveness, and ease of implementation.

Paper outline This paper is organized as follows. In the following section we de-
scribe the nonlocal Poisson’s and linear peridynamic solid (LPS) models. For each of
them, we introduce the strong and weak formulations and discuss conditions for their
well-posedness. In Section 3 we illustrate the proposed strategies for the conversion of
a local, Dirichlet boundary condition into a nonlocal Dirichlet (DtD strategy) or Neu-
mann (DtN strategy) volume constraint. In Section 4 we prove that both approaches
deliver nonlocal solutions that are asymptotically compatible with the corresponding
local solution of both the Poisson’s and LPS problems. Specifically we prove that the
nonlocal solution converges to the local one with quadratic rate. In Section 5 we illus-
trate the properties of our methods with several two-dimensional numerical tests. In
particular, we show that when the solutions are such that local and nonlocal operators
are equivalent our procedure satisfies the consistency property (the nonlocal solution
coincides with the local one). Furthermore, for both models and both approaches we
confirm the quadratic convergence rate of the L2-norm difference between local and
nonlocal solutions. Finally, in Section 6 we summarize our achievements.

2. Preliminaries. In this section we introduce the mathematical models used
in this paper and recall relevant results. In what follows, scalar fields are indicated by
italic symbols and vector fields by bold symbols. Let Ω be a bounded open domain
in Rd, d = 1, 2, 3, with Lipschitz-continuous boundary ∂Ω.
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Fig. 1. The domain Ω, the support of γ at a point x ∈ Ω, Bδ(x), and the induced interaction
domain ΩI for the nonlocal Poisson’s problem (left) and the LPS model (right).

2.1. The nonlocal Poisson’s problem. For the function u(x) : Rd → R we
define the nonlocal Laplacian LNL : Rd → R of u(x) as

(2.1) LNLu(x) := 2

∫
Rd

(
u(y)− u(x)

)
γ(x,y) dy x ∈ Rd,

where γ(x,y) is a nonnegative symmetric kernel2 such that, for x ∈ Ω

(2.2)

{
γ(x,y) > 0 ∀y ∈ Bδ(x)

γ(x,y) = 0 ∀y ∈ Rd \Bδ(x),

where Bδ(x) = {y ∈ Rd : ‖x − y‖ < δ, x ∈ Ω} and δ is the interaction radius
or horizon. For the Laplacian operator LNL, we define the interaction domain of Ω
associated with kernels like in (2.2) as follows

(2.3) ΩI = {y ∈ Rd \ Ω : ‖y − x‖ < δ, for some x ∈ Ω},

and set Ω = Ω∪ΩI . The domain ΩI contains all points outside of Ω that interact with
points inside of Ω; as such, ΩI is the volume where nonlocal boundary conditions, or
volume constraints, must be prescribed to guarantee the well-posedness of the nonlocal
equation associated with LNL [27]. We refer to Figure 1 (left) for an illustration of a
two-dimensional domain, the support of γ and the induced interaction domain. Here,
the interaction domain is divided into the nonoverlapping partition ΩI = Ωnloc∪Ωloc.
In what follows we assume that nonlocal data is available on Ωnloc whereas only local
information is available on the physical boundary of Ωloc, i.e. on Γloc = ∂Ωloc ∩ ∂Ω.

An important property of the Laplacian operator in (2.1) is its δ-convergence, i.e.
as δ → 0 to the classical, local Laplacian ∆. In fact, when the kernel γ is properly
scaled and when the fourth-order derivatives of u are bounded, we have the following
pointwise relationship:

(2.4) Lu(x) = ∆u(x) +O(δ2).

With the purpose of prescribing Neumann volume constraints, we introduce the
nonlocal flux operator:

NNDu(x) = −
∫

Ω

(u(y)− u(x))γ(x,y) dy x ∈ ΩI .

2For more general, sign-changing and nonsymmetric kernels we refer the reader to [36] and [17],
respectively.
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To provide an interpretation of the interaction operator, we note that the integral∫
ΩI
NND(ν) dx generalizes the concept of a local flux

∫
∂Ω

q ·n dA through the bound-

ary of a domain, with N (ν) being the nonlocal counterpart of the local flux density
q ·n. We refer to [27] for additional details regarding the nonlocal vector calculus and
results such as integration by parts and nonlocal Green’s identities.

We introduce the nonlocal energy semi-norm, nonlocal energy space, and nonlocal
volume-constrained energy space

(2.5)

|||v|||2 :=

∫
Ω

∫
Ω

(u(y)− u(x))2γ(x,y) dy dx

V (Ω) :=
{
v ∈ L2(Ω) : |||v|||

Ω
<∞

}
VΛ(Ω) :=

{
v ∈ V (Ω) : v = 0 on Λ ⊂ ΩI

}
.

We also define the volume-trace space ṼΛ(Ω) := {v|Λ : v ∈ V (Ω)}, for Λ ⊂ ΩI , and

the dual spaces V ′(Ω) and V ′Λ(Ω) with respect to L2-duality pairings.
We consider kernels such that the corresponding energy norm satisfies a Poincaré-

like inequality, i.e. ‖v‖
0,Ω
≤ Cpn|||v||| for all v ∈ VΛ(Ω), where Cpn is the nonlocal

Poincaré constant. For such kernels, the paper [37] shows that Cpn is independent
of δ if δ ∈ (0, δ0] for a given δ0. In this paper we consider a specific class of kernels,
namely, integrable kernels such that there exist positive constants γ1 and γ2 for which

γ1 ≤
∫

Ω
γ(x,y) dy and

∫
Ω
γ2(x,y) dy ≤ γ2

2 for all x ∈ Ω. In this setting V (Ω) and

VΛ(Ω) are equivalent to L2(Ω) and L2
c(Ω) and the operator L is such that L : L2(Ω)→

L2(Ω) [26].

Strong form We introduce the strong form of a nonlocal Poisson’s problem with
Dirichlet or mixed volume constraints. We refer, again, to the configuration in Figure

1 (left) and recall that ΩI = Ωnloc ∪ Ωloc such that Ωnloc ∩ Ωloc = ∅. For s ∈ V ′(Ω),

vn ∈ ṼΩnloc(Ω), and wn ∈ ṼΩloc(Ω) we define the Dirichlet Poisson’s problem as: find

un ∈ V (Ω) such that

(2.6)


−LNLun = s x ∈ Ω

un = wn x ∈ Ωloc

un = vn x ∈ Ωnloc,

where (2.6)2 and (2.6)3 are two distinct Dirichlet volume constraints. Similarly, given

s ∈ V ′(Ω), vn ∈ ṼΩnloc(Ω), and gn ∈ V ′(Ωloc), we define the mixed Poisson’s problem

as follows: find un ∈ V (Ω) such that

(2.7)


−LNLun = s x ∈ Ω

−Nun = gn x ∈ Ωloc

un = vn x ∈ Ωnloc,

where (2.7)2 is the nonlocal counterpart of a flux condition, i.e. a Neumann boundary
condition. As such, we refer to it as Neumann volume constraint.
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Weak form With the purpose of analyzing the δ-convergence of our strategies, we also
introduce the weak form of problems (2.6) and (2.7). By multiplying both equations
by a test function and using nonlocal integration by parts [26], we obtain the following
weak formulations.

For s ∈ V ′(Ω), vn ∈ ṼΩnloc(Ω), and wn ∈ ṼΩloc(Ω) we define the Dirichlet Pois-

son’s problem as: find un ∈ Vc(Ω) such that un = wn in Ωloc, un = vn in Ωnloc and,

for all z ∈ V (Ω),

(2.8)

∫
Ω

∫
Ω

(un(x)− un(y))(z(x)− z(y))γ(x,y) dy dx =

∫
Ω

sz dx,

or, equivalently, a(u, z) = F (z), where the bilinear form is given by a(u, z) = 〈u, z〉VΩI
.

It can be shown [26] that for every γ(·, ·) satisfying the Poincaré inequality a(·, ·) is

coercive and continuous in VΩI (Ω) × VΩI (Ω) and that F (·) is continuous in VΩI (Ω).
Thus, by the Lax-Milgram theorem problem (2.8) is well-posed.

Similarly, given s ∈ V ′(Ω), vn ∈ ṼΩnloc(Ω), and gn ∈ V ′(Ωloc), one can define the

mixed Poisson’s problem as follows: find un ∈ V (Ω) such that un = vn in Ωnloc and

for all z ∈ VΩnloc(Ω),

(2.9)

∫
Ω

∫
Ω

(un(x)− un(y))(z(x)− z(y))γ(x,y) dy dx =

∫
Ωloc

gnz dx+

∫
Ω

sz dx,

or, equivalently, a(u, z) = Fgn(z). Also in this case, it can be shown that a(·, ·)
is coercive and continuous in VΩnloc(Ω), provided the kernel induces a Poincaré in-

equality. Furthermore, the functional Fgn is continuous on VΩnloc(Ω). Thus, by the
Lax-Milgram theorem problem (2.9) is also well-posed.

2.2. The linear peridynamic solid model. For the displacement function
u(x) : Rd → Rd, we define the linear peridynamic solid (LPS) [28] operator3 LLPS : Rd →
Rd as

(2.10)

LLPSu(x) :=
C1

m(δ)

∫
Ω

(λ− µ) γ(|y − x|) (y − x) (θ(x) + θ(y)) dy

+
C2

m(δ)

∫
Ω

µγ(|y − x|) (y − x)⊗ (y − x)

|y − x|2
(u(y)− u(x)) dy,

where the dilatation θ : Rd → R is defined as

θ(x) :=
2

m(δ)

∫
Ω

γ(|y − x|)(y − x) · (u(y)− u(x)) dy.

Here, for d = 2, C1 = 2 and C2 = 16. The kernel function γ is nonnegative and radial
and satisfies the same assumptions as in (2.2). Furthermore, we consider kernels γ
such that m, defined as

m(δ) :=

∫
Bδ(x)

γ(|y − x|) |y − x|2 dy,

is bounded. This guarantees well-posedness of the volume constrained problem as-
sociated with LLPS [38]. The constants µ, λ are the shear and Lamé modulus, that,

3Note that this model holds in the assumption of small displacements [28].
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under the plane strain assumption [6], are related to the Young’s modulus E and the
Poisson ratio ν of a material, i.e. λ = Eν

(1+ν)(1−2ν) , µ = E
2(1+ν) . It can be shown [38]

that the LPS operator LLPS converges to the Navier operator below

(2.11) Llu := −∇ · (λtr(E)I + 2µE) = −(λ− µ)∇[tr(E)]− µ∇ · (2E + tr(E)I),

where E :=
1

2
(∇u + (∇u)T ) and tr(E) = ∇ · u. In particular, when the fourth-order

derivatives of u are bounded, we have the following pointwise relationship

(2.12) LLPSu(x) = Llu(x) +O(δ2).

For the LPS operator LLPS , we define the interaction domain of Ω as

(2.13) ΩI = {y ∈ Rd \ Ω : ‖y − x‖ < 2δ, x ∈ Ω}.

and set Ω = Ω ∪ΩI . Note that in this case, ΩI is a layer of thickness 2δ surrounding
Ω; this is due to the presence of a double integral in the definition of the operator.
As before, ΩI is the volume where nonlocal boundary conditions must be prescribed
to guarantee the well-posedness of the nonlocal equation associated with LLPS . We
refer to Figure 1 (right) for an illustration of a two-dimensional domain, the support
of γ and the induced interaction domain. The same division as in Section 2.1 into a
nonoverlapping partition is performed.

For the prescription of nonlocal flux conditions, we consider the following nonlocal
flux operator for the LPS model. Let x ∈ Λ ⊂ ΩI , we have

(2.14)

NLPSu(x) :=
C1

m(δ)

∫
Ω

(λ− µ) γ(|y − x|) (y − x) (θ(x) + θ(y)) dy

+
C2

m(δ)

∫
Ω

µγ(|y − x|) (y − x)⊗ (y − x)

|y − x|2
(u(y)− u(x)) dy,

where θ and m are defined as above. For more details on nonlocal flux conditions for
nonlocal mechanics problems we refer the interested reader to [34].

As for the Laplacian operator, we introduce the energy norm and the correspond-
ing spaces [38].

(2.15)

|||u|||2LPS =
1

m(δ)

∫
Ω

∫
Ω∩Bδ(x)

γ(|y − x|)
|y − x|2

[(u(y)− u(x)) · (y − x)]
2
dy dx,

V LPS(Ω) :=
{
u ∈ [L2(Ω)]d : |||u|||LPS <∞

}
V LPSΛ (Ω) :=

{
u ∈ V LPS(Ω) : u = 0 on Λ ⊂ ΩI

}
Note that |||u|||LPS = 0 if and only if u represents an infinitesimally rigid displacement,
i.e.:

u(x) ∈ {Qx+ b,Q ∈ Rd×d,QT = −Q,b ∈ Rd}.

We also define the volume-trace space Ṽ LPSΛ (Ω) := {v|Λ : v ∈ V LPS(Ω)}, for Λ ⊂ ΩI ,

and the dual spaces (V LPS)′(Ω) and (V LPS)′Λ(Ω) with respect to L2-duality pairings.
Note that when γ is an integrable function, similarly to the nonlocal Laplacian oper-

ator, the LPS operator acts as a map from [L2(Ω)]d to [L2(Ω)]d.
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Strong form We introduce the strong form of the LPS problem with Dirichlet or
mixed volume constraints. We refer, again, to the configuration in Figure 1 (right).

For s ∈ (V LPS)′(Ω), vn ∈ Ṽ LPSΩnloc
(Ω), and wn ∈ Ṽ LPSΩloc

(Ω) we define the Dirichlet LPS

problem as: find un ∈ V LPS(Ω) such that

(2.16)


−LLPSun = s x ∈ Ω

un = wn x ∈ Ωloc

un = vn x ∈ Ωnloc,

where (2.16)2 and (2.16)3 are distinct Dirichlet volume constraints. Similarly, given

s ∈ (V LPS)′(Ω), vn ∈ Ṽ LPSΩnloc
(Ω), and gn ∈ (V LPS)′(Ωloc), we define the mixed LPS

problem as follows: find un ∈ V LPS(Ω) such that

(2.17)


−LLPSun = s x ∈ Ω

−NLPSun = gn x ∈ Ωloc

un = vn x ∈ Ωnloc.

Weak form With the purpose of analyzing the δ-convergence of our strategies, we
also introduce the weak form of problems (2.16) and (2.17). For clarity, and to
avoid heavy notation, we present the formulations in the scalar setting. We first

introduce the following integration by parts result [20, 26]: for every u ∈ V LPS(Ω)

and z ∈ V LPSΩnloc
(Ω), we have

(2.18)

∫
Ω

−LLPSu(x)z(x) dx

=
C1d (λ− µ)

(m(δ))2

∫
Ω

[∫
Ω

γ(|y − x|)(y − x) · (u(y)− u(x)) dy

]
×[∫

Ω

γ(|y − x|)(y − x) · (z(y)− z(x)) dy

]
dx

+
C2µ

2m(δ)

∫
Ω

∫
Ω

γ(|y − x|)(u(y)− u(x))(z(y)− z(x))dydx

+

∫
ΩI

NLPSu(x)z(x) dx

:=aLPS(u, z) +

∫
Ωloc

NLPSu(x)z(x) dx.

It is important to note that the bilinear form a(·, ·) induces a norm in the space

V LPSΛ (Ω), for all Λ ⊂ ΩI , or, in other words, a(u, u) is equivalent to |||u|||2LPS for all

u ∈ V LPSΛ (Ω). Thus, a(·, ·) is continuous and coercive.

By multiplying both equations (2.16) and (2.17) by a test function and using
nonlocal integration by parts, we obtain the following weak formulations. For s ∈
(V LPS)′(Ω), vn ∈ Ṽ LPSΩnloc

(Ω), and wn ∈ Ṽ LPSΩloc
(Ω), un ∈ V LPS(Ω) is a weak solution of

the Dirichlet LPS problem if un = wn in Ωloc, un = vn in Ωnloc and

(2.19) aLPS(u, z) =

∫
Ω

sz dx, ∀ z ∈ V LPSΩI (Ω).
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Similarly, given s ∈ (V LPS)′(Ω), vn ∈ Ṽ LPSΩnloc
(Ω), and gn ∈ (V LPS)′(Ωloc), un ∈

V LPS(Ω) is a weak solution of the mixed LPS problem if un = vn in Ωnloc and

(2.20) aLPS(u, z) =

∫
Ωloc

gnz dx+

∫
Ω

sz dx, ∀ z ∈ V LPSΩnloc
(Ω).

The well-posedness of (2.19) and (2.20) follows from the fact that aLPS(·, ·) is

continuous and coercive in V LPS(Ω) and from the continuity of the right-hand sides.
In fact, these properties allow us to apply the Lax-Milgram theorem that guarantees
existence and uniqueness of solutions.

3. Proposed strategies. In practice data may only available on the boundary

∂Ω and not in ΩI ; in particular, values of the diffusive quantity, for the nonlocal
Poisson’s equation, and of the displacement, for the LPS model, may be available on

parts of ∂Ω, while nonlocal volume constraints may be available on the remaining part
of ΩI . Thus, as indicated in Figure 1, we split the interaction domain in two parts: a
“nonlocal part”, Ωnloc, where nonlocal volume constraints are available, and a “local
part”, Ωloc, where only local, boundary data are available. As this is not enough for
the well-posedness of the problem, we now introduce a strategy that, starting from
this incomplete data set, delivers volume constraints on Ωloc, hence allowing for the
solution of the nonlocal problems. We present our strategies for the nonlocal Poisson
equation, as the approach is identical for the LPS model (the properties of the method
are analyzed for both models).

Assumption 1 Only the following data are available:

1. wl ∈ H
1
2 (Γloc): local Dirichlet boundary data on Γloc = ∂Ωloc ∩ ∂Ω;

2. vn ∈ ṼΩnloc(Ω): nonlocal Dirichlet data in Ωnloc;

3. s ∈ V ′(Ω): forcing term over Ω.

We design two strategies to automatically convert wl into a nonlocal volume
constraint (either of Dirichlet or Neumann type) on Ωloc. As we show in the following
section, the most important property of our strategies is their asymptotic compatibility,
i.e.

(3.1) un → ul as δ → 0 in V (Ω) and L2(Ω).

Here, un is the nonlocal solution corresponding to the proposed nonlocal volume
constraints and ul is the solution of the following Poisson’s equation

(3.2)


−∆ul = s x ∈ Ω

ul = wl x ∈ Γloc

ul = vn x ∈ Γnloc,

i.e. the solution of the local problem with boundary data as in Assumption 1 on Ωloc
and with boundary data vn|Γnloc , with Γnloc = ∂Ωnloc∩∂Ω. Note that, by prescribing
the Dirichlet condition on Γnloc we are assuming that vn|Γnloc exists and is such that

vn|Γnloc ∈ H
1
2 (ΓD). We emphasize that we are not assuming vn ∈ H1(Ωnloc), but

only that vn has a well-defined trace on Γnloc.
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3.1. Dirichlet-to-Dirichlet strategy. The first proposed strategy, referred to
as Dirichlet-to-Dirichlet (DtD) strategy, consists in using the local solution ul of prob-
lem (3.2) as Dirichlet volume constraint for the nonlocal problem in Ωloc. We sum-
marize the procedure below.

1 Solve the local problem (3.2) to obtain ul. Note that ul ∈ Ṽ (Ωloc).

2 Solve the (well-posed) nonlocal problem:

(3.3)


−LNLun = s x ∈ Ω

un = ul x ∈ Ωloc

un = vn x ∈ Ωnloc.

3.2. Dirichlet-to-Neumann strategy. The second strategy, referred to as
Dirichlet-to-Neumann (DtN) strategy, consists in using the local solution ul of prob-
lem (3.2) to generate a Neumann volume constraint for the nonlocal problem in Ωloc.
We summarize the procedure below.

1 Solve the local problem (3.2) to obtain ul. Note that NNLul for x ∈ Ωloc is well-
defined and belongs to V ′(Ωloc).

2 Solve the (well-posed) nonlocal problem:

(3.4)


−LNLun = s x ∈ Ω

−NNLun = −NNLul x ∈ Ωloc

un = vn x ∈ Ωnloc.

4. Convergence to the local limit. In this section we study the limiting
behavior of the solution as the nonlocal interactions vanish, i.e. as δ → 0 and we show
that (3.1) holds true with a second order convergence rate for both the Poisson’s and
LPS models.

For both the Dirichlet-to-Dirichlet strategy and Dirichlet-to-Neumann, the fol-
lowing propositions provide bounds for the errors

(4.1)
eE,NL = |||un − ul|||, eE,LPS = |||un − ul|||LPS ,
e0,NL = ‖un − ul‖0,Ω, e0,LPS = ‖un − ul‖0,Ω.

Theorem 4.1. Let δ0 ∈ (0,∞) and Ul := {ul ∈ C4(Ω) : ul solves (3.2) for δ ∈
(0, δ0]} be solutions to (3.2). Then,

(4.2) eE,NL = O(δ2).

Proof. We only prove (4.2) for the DtD strategy and refer the reader to [25] for
the DtN strategy as the steps of the proof are the same. In fact, for DtN, the only
difference with the approach presented in that paper is step 1 (solution of a local
problem), where, instead of solving a mixed boundary condition Poisson’s problem,
we solve a fully Dirichlet problem.

By definition of un and ul, we have

(4.3)


−Lun = s = −∆ul x ∈ Ω

un = ul x ∈ Ωloc

un = vn x ∈ Ωnloc.
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We introduce a nonlocal auxiliary problem for the local solution ul, keeping in mind
that vn is compatible with the local solution.

(4.4)


−Lul = sl = −

∫
Ω

(ul(y)− ul(x))γ(x,y) dy x ∈ Ω

ul = ul x ∈ Ωloc

ul = vn x ∈ Ωnloc.

In order to estimate eE,NL we first consider the point-wise difference s(x)−sl(x).
Property (2.4) implies that

(4.5) |s(x)− sl(x)| =
∣∣∣∣∫

Ω

(ul(y)− ul(x))γ(x,y) dy −∆ul

∣∣∣∣ = O(δ2).

Next, we consider the weak forms of (4.3) and (4.4) and use, in both of them, the test

function z ∈ VΩI (Ω); we have

(4.6)

∫
Ω

∫
Ω

(un(x)− un(y))(z(x)− z(y))γ(x,y) dy dx =

∫
Ω

s z dx,

(4.7)

∫
Ω

∫
Ω

(ul(x)− ul(y))(z(x)− z(y))γ(x,y) dy dx =

∫
Ω

sl z dx.

Subtraction gives∫
Ω

∫
Ω

(un(x)− ul(x)− un(y) + ul(y))(z(x)− z(y))γ(x,y) dy dx =

∫
Ω

(s− sl) z dx.

To prove the error estimate we then choose z = un − ul ∈ VΩI (Ω). We have

|||un−ul|||2 ≤
∫

Ω

(s−sl) (un−ul) dx ≤ ‖s−sl‖0,Ω‖ũn−ul‖0,Ω ≤ O(δ2)Cpn|||un−ul|||.

By dividing both sides by |||un − ul|||, the error bound follows.
Before addressing the error bound for the LPS model, we introduce the local

problem corresponding to the operator Ll introduced in (2.11), i.e.

(4.8)


−Llul = s x ∈ Ω

ul = wl x ∈ Γloc

ul = vn x ∈ Γnloc,

where, wl is the available local Dirichlet data on Γloc, and vn is the available nonlocal

Dirichlet volume constraint on Γnloc = ∂Ωnloc ∩ ∂Ω. As for the local Poisson’s equa-
tion, we assume that the nonlocal Dirichlet data vn has a well-defined trace on Γnloc
and is compatible with the local solution. We can now state the the following theo-
rem, whose proof, based on (2.12), follows exactly the same steps used in Theorem
4.1 and is, hence, omitted.

Theorem 4.2. Let δ0 ∈ (0,∞) and ULPSl := {ul ∈ C4(Ω) : ul solves (4.8) for δ ∈
(0, δ0]} be solutions to (4.8). Then,

(4.9) eE,LPS = O(δ2).
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Remark 4.3. An immediate consequence of Theorem 4.1 implies that the conver-
gence rate of e0 is at least quadratic. This result can be obtained by applying the
Poincaré inequality, i.e.

e0,NL = ‖un − ul‖0,Ω ≤ Cpn|||un − ul||| = CpneE,NL = O(δ2).

Following the same arguments, we can also show that the same bound holds for the
LPS model. In fact, paper [38] provides a Poincaré-type inequality associated with
the LPS operator LLPS with constant CLPSpn . Thus, as a consequence of Theorem 4.2,
we have

e0,LPS = ‖un − ul‖0,Ω ≤ C
LPS
pn |||un − ul||| = CLPSpn eE,LPS = O(δ2).

5. Numerical tests. We report the results of several two-dimensional numerical
tests that illustrate our theoretical results and highlight the efficacy of the proposed
methods.

In all tests we utilize a particle discretizations of the strong form of the nonlocal
Poisson’s problem and the LPS model introduced in Section 2.1 and 2.2 respectively.
The meshfree discretization method we use is based on an optimization-based quad-
rature rule developed and analyzed in [50, 55, 54, 59]. In this approach, we discretize

the union of the domain and interaction domain, Ω, by a collection of points

χh = {xi}{i=1,2,··· ,M} ⊂ Ω,

then solve for the solution u(i) ≈ un(xi) at xi ∈ χh using a one point quadrature
rule. Although the method can be applied to more general grids, in all numerical
tests below we require χh to be a uniform Cartesian grid:

χh := {(k(1)h, · · · , k(d)h)|k = (k(i), · · · , k(d)) ∈ Zd} ∩ Ω.

Here h is the spatial grid size. To maintain an easily scalable implementation, in our
δ-convergence studies [5] we assume h to be chosen such that the ratio δ

h is bounded
by a constant as δ → 0. This meshfree discretization method based on optimization-
based quadrature rules features simplicity in implementation and is asymptotically
compatible, i.e., it is such that the nonlocal solution converges to its local counterpart
as δ, h→ 0. For further implementation details, we refer interested reader to [29, 59].

5.1. Consistency tests for the nonlocal Poisson’s equation. Theorem 4.1
implies that when the data are smooth enough to have LNLul = ∆ul, then un =
ul. We use this observation to conduct a consistency test for the proposed method.
Indeed, we consider local solutions ul such that Lul = ∆ul and expect to observe that
the local and nonlocal solutions coincide (up to discretization error).

We refer to the two-dimensional configuration reported in Figure 2. Here, Ω =
(0, 1)2 and ΩI is a layer of thickness δ surrounding the domain. We use two different
configurations for the DtD and DtN strategy. For the former we refer to the config-
uration on the left of Figure 2 where ΩI = Ωloc; whereas for the latter we refer to
the configuration on the right where Ωloc only covers the right side of the interaction
domain, i.e. Ωloc = [1, 1 + δ]× [0, 1]. In all our consistency tests we use the constant
kernel

(5.1) γ(x,y) =
4

πδ4
XBδ(x)(y)

and the following set of solutions
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Fig. 2. Two dimensional configuration utilized in the nonlocal Poisson’s consistency and con-
vergence tests for the DtD strategy (left) and DtN strategy (rught).

• f(x) = 0, ul(x) = x1 + x2 on ∂Ω, un(x) = x1 + x2 on Ωnloc. Note that this
solution corresponds to ul = x1 + x1.

• f(x) = −6(x1 +x2), ul(x) = x3
1 +x3

2 on ∂Ω, un(x) = x3
1 +x3

2 on Ωnloc. Note
that this solution corresponds to ul = x3

1 + x3
2.

Consistently with our theory, in both cases and for both strategies (i.e. DtD and
DtN) the nonlocal solution coincides with the local solution up to machine precision.
In fact, we observe e0 ≈ O(10−17). Note that this is possible because our mesh free
discretization method can reproduce exactly both linear and cubic polynomials.

5.2. Convergence tests for the nonlocal Poisson’s equation. We test the
convergence of un to the local solution ul as δ → 0. For the same constant kernel
defined in (5.1) and for the same configurations illustrated in Figure 2, we consider
the following set of solutions

• f(x) = −2 sin(x1) cos(x2), ul(x) = sin(x1) cos(x2) on ∂Ω,
un(x) = sin(x1) cos(x2) for x ∈ Ωnloc; the corresponding local solution is
ul(x) = sin(x1) cos(x2).

• f(x) = −12(x2
1 + x2

2), ul(x) = x4
1 + x4

2 for x ∈ ∂Ω and un(x) = x4
1 + x4

2 for
x ∈ Ωnloc; the corresponding local solution is given by ul = x4

1 + x4
2.

Convergence results are reported in Table 1 for the DtD strategy and in Table 2 for
the DtN strategy. Here, we report, for decreasing values of δ, the L2 norm of the
difference between local and nonlocal solution, i.e. e0 and the corresponding rate of
convergence. We recall that in our discretization scheme δ and the node spacing h
are related, i.e. their ratio is constant and it is set to 2.5 for the sinusoidal solution
and to 3.1 for the polynomial one. In both cases, the smallest h is set to 0.1 and then
halved at every run. The observed quadratic rates are in alignment with our theory,
see Remark 4.3. We point out that the faster converge of the DtD strategy is due to
the fact that the nonlocal solution is closer (by construction) to the local one. In fact,
they coincide on the interaction domain.

5.3. Numerical tests for the LPS model. We consider the LPS model in-
troduced in Section 2.2 and we test consistency and convergence with respect to δ of
both strategies. In all our tests we consider the deformation of a hollow cylinder as il-
lustrated in Figure 3, and refer the two-dimensional configurations reported in Figure
4 for details on the domain parameters. Specifically, we set Ω = B1.5(0) \B1(0). The
interaction domain is then defined as a layer of thickness 2δ surrounding the disc, both
inside and outside. For the DtD strategy we use the configuration on the left where
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sinusoidal polynomial
δ e0 rate δ e0 rate

0.25 1.837e-4 – 0.31 9.571e-3 –
0.125 4.443e-5 2.0473 0.155 2.198e-3 2.1226
0.0625 1.098e-5 2.0174 0.0775 5.290e-3 2.0547
0.03125 2.730e-6 2.0071 0.0388 1.299e-4 2.0255

Table 1
For the nonlocal Poisson’s equation, L2-norm errors and convergence rates for the DtD strategy.

sinusoidal polynomial
δ e0 rate δ e0 rate

0.25 2.551e-4 – 0.31 1.094e-2 –
0.125 7.257e-5 1.8136 0.155 2.929e-3 1.9014
0.0625 1.953e-5 1.9455 0.0775 7.720e-4 1.9239
0.03125 5.069e-6 1.8941 0.0388 1.990e-4 1.9561

Table 2
For the nonlocal Poisson’s equation, L2-norm errors and convergence rates for the DtN strategy.

Ωloc = ΩI , i.e. we assume that only local boundary conditions are available. For the
DtN strategy we consider the configuration on the right where Ωloc only corresponds
to the inner portion of the interaction domain, i.e. Ωloc = B1(0) \B1−2δ(0).

To test the consistency of both procedures, we consider the linear function ul =
[10x1 + 2x2, 3x1 + 4x2]. This function is such that LLPSul = Llul, where LLPS
and Ll are defined as in (2.10) and (2.11), respectively. Thus, as for the nonlocal
Poisson’s model, we expect the nonlocal solution obtained with both the DtD and
DtN procedures to be such that un = ul. Our results indicate, once again, that the
two solutions are identical, up to machine precision, i.e. e0 = O(10−17).

To test the convergence with respect to δ we consider an analytic solution of
the local Navier equation (4.8). Under a plane strain assumption and subject to an
internal pressure p0 = 0.1, the classical, local displacement solution for the hollow
cylinder is given by

ul =

[
Ax1 +

Bx1

x2
1 + x2

2

, Ax2 +
Bx2

x2
1 + x2

2

]
where

A =
(1 + ν)(1− 2ν)p0R

2
0

K(R2
1 −R2

0)
, B =

(1 + ν)p0R
2
0R

2
1

K(R2
1 −R2

0)
.

R0 = 1 and R1 = 1.5 are the interior and exterior radius of the (undeformed) hollow
cylinder. We report the results of our tests in Table 3 for the DtD strategy and in
Table 4 for the DtN strategy. In both cases, we consider two values of Poisson’s ratio
ν = 0.3 and 0.49 respectively. Also in this case, the ratio between δ and h is fixed
and set to 3.2; the coarser computational domain is such that h = 0.0937. The node
spacing is then halved at each run of the convergence test. The L2-norm errors show
a quadratic convergence rate, confirming our theoretical predictions in Remark 4.3.

6. Conclusion. In this work we introduced a technique to automatically convert
local boundary conditions into nonlocal volume constraints. A first approximation to
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Fig. 3. Two dimensional hollow cylinder problem settings.

  

Fig. 4. Two dimensional configuration utilized in the LPS consistency and convergence tests
for the DtD strategy (left) and DtN strategy (right).

ν = 0.3 ν = 0.49
δ e0 rate δ e0 rate

0.3 4.547e-6 – 0.3 3.253e-5 –
0.15 7.698e-7 2.5625 0.15 4.836e-6 2.7498
0.075 1.714e-7 2.1673 0.075 1.002e-6 2.2711
0.0375 4.053e-8 2.0801 0.0375 2.291e-7 2.1291

Table 3
For the LPS model, L2-norm errors and convergence rates for the DtD strategy and different

values of Poisson’s ratio.

ν = 0.3 ν = 0.49
δ e0 rate δ e0 rate

0.3 7.651e-6 – 0.3 2.460e-4 –
0.15 2.025e-6 1.9179 0.15 7.133e-5 1.7863
0.075 4.900e-7 2.0470 0.075 1.694e-5 2.0737
0.0375 1.111e-7 2.1412 0.0375 3.824e-6 2.1478

Table 4
For the LPS model, L2-norm errors and convergence rates for the DtN strategy and different

values of Poisson’s ratio.
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the nonlocal solution is provided by the computation of the corresponding local solu-
tion, for which local boundary data are available. The local solution is then used to
define either a Dirichlet or Neumann nonlocal volume constraints. The latter guar-
antee that the nonlocal problem is well-posed and that its corresponding solution is
physically consistent, i.e. it converges quadratically to the local solution as the nonlo-
cality vanishes. Our conversion method does not have any geometry or dimensionality
constraints and is inexpensive compared to the computational cost incurred in when
solving nonlocal problems. The theoretical quadratic convergence with respect to the
horizon δ is illustrated by several two-dimensional numerical experiments conducted
by meshfree discretization. The consistency, convergence and effectiveness of our ap-
proach is demonstrated for both scalar nonlocal Poisson’s problems and for nonlocal
mechanics problems (namely for the linear peridynamic solid model).

This work sets the groundwork for the deployment of nonlocal models at the
engineering and industry level where the use of such models is often hindered by
the technical difficulties that arise when dealing with the lack of volume constraints
necessary for the well-posedness and numerical solution of nonlocal equations.
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