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Abstract 

Deepfakes, or synthetic audiovisual media developed with the intent to deceive, are 

growing increasingly prevalent. Existing methods, employed independently as 

images/patches or jointly as tubelets, have, up to this point, typically focused on 

spatial or spatiotemporal inconsistencies. However, the evolving nature of 

deepfakes demands a holistic approach. Inspection of a given multimedia sample 

with the intent to validate its authenticity, without adding significant 

computational overhead has, to date, not been fully explored in the literature. In 

addition, no work has been done on the impact of different inconsistency 

dimensions in a single frame work. This paper tackles the deepfake detection 

problem holistically. HolisticDFD, a novel, transformer-based, deepfake detection 

method which is both lightweight and compact, intelligently combines 

embeddings from the spatial, temporal and spatiotemporal dimensions to 

separate deepfakes from bonafide videos. The proposed system achieves 0.926 

AUC on the DFDC dataset using just 3% of the parameters used by state-of-

the-art detectors. An evaluation against other datasets shows the efficacy of the 

proposed framework, and an ablation study shows that the performance of the 

system gradually improves as embeddings with different data representations are 

combined. An implementation of the proposed model is available at: 

https://github.com/smileslab/deepfake-detection/. 

Keywords: Deepfake Detection, Intermediate Fusion, Multimedia Forensics, 

Transformers 

1. Introduction 

The rapid evolution of generative AI algorithms has led directly to an increase 

in cyber threats in the form of synthetic media, which may take various forms, 

including deepfakes, as shown in Figure 1, Javed et al. (2021). Deepfake videos, 

created to spread outright lies, may damage public perception of the target of  
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such an attack, e.g., a political leader. Taken to its logical extent, they may be used 

to undermine and destabilize governments. Moreover, malicious actors have been 

known to use deepfakes, distributed under false profiles, to disseminate 

disinformation on social media. Belief in convincing deepfake-created content, 

fostered by the development of easily available deepfake generation tools, has 

jeopardized the reputations of celebrities and world leaders, who are often the 

targets of such attacks. Deepfakes have also been used to finance phishing 

schemes, fund fake charities, and foment credit card fraud. More recently, bad-

actors have combined deepfakes and shallow-fakes into complex forgeries to 

evade existing tools. A marked increase in the availability of open-source 

implementations for deepfake creation and tremendous improvements to 

generative algorithms, e.g., autocoders (AE), generative adversarial networks 

(GAN), and diffusion models, for deepfake generation, has made it possible for users 

with no knowledge of machine learning to generate exceptionally believable 

deepfakes. These are growing increasingly difficult for an average person to spot 

on social media because modern-day, sophisticated techniques are good enough 

to fool an uninformed public. It is therefore imperative that the potential damage 

caused by this new generation of deepfakes be curbed. 

The research community is in active pursuit of tools and techniques to 

counteract the threat of media falsification and the mass spread of disinformation 

Khan et al. (2022); Khalid et al. (2023). However, detecting whether a video, audio 

or image is original or forged is a continuously evolving task. Initial efforts used 

hand-crafted features which effectively detected early versions of deepfakes and 

used discrepancies in head pose, eye-blinking, and face-warping artifacts. 

Generative algorithms, including recent developments such as the advent of 

image/video diffusion models, have greatly improved image/video synthesis 

Dhariwal and Nichol (2021). The resultant advances have increased the quality of 

deepfakes over time, and have rendered previously effective methods useless. 

Performant algorithms for video deepfake detection may be classified into two 

categories, defined by the irregularities they focus on: spatial, or image-based 

feature exploitation; and spatiotemporal, or video-based features. Image-based 

methods focus only on spatial cues in individual frames and ignore temporal 

oddities. Detectors based on spatial anomalies analyze each frame in order to 

classify real and fake images. However, recent generative approaches are capable 

of synthesizing highly photo-realistic frames that do not have spatial 

inconsistencies. This causes image-based detection approaches, though 

previously effective, to perform poorly on modern deepfakes. In contrast, video-

based feature extraction methods focus on sequence patterns and explore 

spatiotemporal   inconsistencies to detect deepfakes. These techniques, however, 

do not detect inconsistencies that are distributed dynamically in multiple local 

regions within frames. Though both approaches have had some success, a 

deepfake detection technique that dynamically learns and automatically adjusts  
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Figure 1: Samples from the FaceForensics++ (top row), DFDC (middle row), and Celeb-Df 

(Bottom row) datasets. Forgery techniques in each dataset are different i.e., FaceForensics++ 

has DeepFakes, Face2Face, FaceSwap and NeuralTextures. DFDC and Celeb-DF chiefly uti- 

lizes Faceswap. As evident in the samples, these forgeries introduce spatial (incomplete glasses,  

beard) and temporal artifacts (missing beard between consecutive frames). 

the weights of spatial or temporal features, while analyzing the inconsistency 

patterns in synthetic video, has not been attempted. We argue that variation in 

deepfake generation methods has a key impact on the performance of detection 

algorithms. In Figure 1, the artifacts in the deepfake samples generated with 

various forgery techniques can be grouped into those with spatial and temporal 

anomalies. These can then be exploited for detecting suspected deepfakes. As 

generative algorithms evolve to produce more realistic results, it is imperative to 

define a holistic approach that exploits spatial, spatiotemporal, and temporal 

features to detect deepfakes. 

 On the algorithmic side, transformers, well-known for their dominance in 

natural language processing, are increasingly being applied to vision tasks, and 

deepfake detection is no exception. For instance, Coccomini et al. (2022); Heo et 

al. (2021) use a transformer architecture for this problem. Similar approaches use 

large complex structures and a multitude of parameters. They focus either on the 

spatial or temporal inconsistencies extant in deepfakes. A deepfake may have all 

spatial artifacts, e.g., in one frame there may be a discrepancy in eye color, 

temporal artifacts, e.g., an unnatural transition between frames, or a joint 

spatiotemporal anomaly between frames, and any of these may be used to 

classify the sample as fake. However, a synthesis of spatial and spatiotemporal 

pattern mining for deepfake detection has not been extensively explored. In 
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addition, existing methods use models pre-trained for other tasks, or a 

computationally expensive, pure transformer-based architecture which requires 

a large dataset. In Hassani et al. (2021), the authors suggest that combining the 

benefits of convolution and transformers in a single network architecture may 

result in a more robust application. To address the challenges discussed above, 

this work proposes a novel framework that combines spatial, temporal, and 

spatiotemporal features. It accomplishes detection using a smaller parameter set 

than existing methods, and offers the following major contributions: 

1. A novel multi-dimensional Model Infused Deepfake Detection method 

(HolisticDFD) is proposed that fuse embeddings independently as well as jointly 

from frozen models on the spatial and temporal dimensions of a video sample. 

The individual models are pre-trained to independently learn a single deepfake 

inconsistency dimension, and the proposed method combines different views of 

the same video sequence in a joint space. 

2. Unlike existing methods that analyze a specific region of the subject (e.g., 

eyebrow movement), the proposed framework takes a holistic view, using 

sequence pooling technique to fuse the embeddings from spatial, temporal, 

and spatiotemporal data representations of a suspected deepfake. This 

method focuses on patterns extracted from potential forgery regions 

compared to other areas and weights them accordingly. 

3. Unlike existing methods which either employ transfer learning or knowledge 

distillation, a compact transformer-based deepfake detection method is 

proposed which uses just 3% of the parameters required by state-of-the-art 

(SoTA) models. 

The rest of the paper is organized as follows: Current deepfake generation 

and detection methods are reviewed in Section 2. Section 3 describes the 

research questions we attempt to answer and formalizes the problem of 

deepfake detection. The technical details of the proposed deepfake detection 

framework are described in Section 4. Section 5 is dedicated to the experimental 

results and analysis, followed by conclusions and future work in Section 6. 

2. Related Work 

A number of algorithms have been developed for deepfake generation and 

detection. This section provides a brief overview of the techniques currently in 

use for deepfake video. 

2.1. Deepfake Generation 

Deepfakes have a long history, dating to 1997 when a program was developed 

that could alter video footage. It could create new content, making it appear as if 

the individual in the video said words that were in the source clip. However, the 
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first “well-known ‘deepfake’” appeared in September 2017 when a forged 

pornographic content of known actresses was released. In the following years, 

two approaches to create genuine faces in a deepfake: Variational Auto Encoders, 

commonly called VAEs, and Generative Adversarial trained Networks (GANs) 

gained popularity for deepfake generation. VAEs employ two encoder- decoder 

sets, individually trained to encode and decode the faces to be exchanged. Faces 

are then encoded in a latent distribution by the encoder. In the last step, the 

decoder synthesizes the target face. 

 In contrast, GANs utilize a different technique, also composed of two steps. 

The first, a discriminator, which distinguishes real and synthetic data. The other 

component, the generator, modifies the input sample in an attempt to deceive 

the discriminator. Convincing output requires multiple iterations of this process, 

but very realistic forgeries have been attained with GANs. Several GAN-based 

methods have been invented, e.g., StarGAN Choi et al. (2018), and top results 

have been achieved through StyleGAN-V2 Karras et al. (2020). GANs support 

manipulation, such as image restoration and style transfer. Neither of these can 

be achieved by classical forgery generation methods. The next generation of 

diffusion models are being developed which outperform these individual 

approaches. GANs have significant computational requirements and require large 

datasets for training, which has limited their availability to the general public. 

 Regardless of the technique used to carry out the manipulation, deepfake 

generation approaches may be categorized by the specific way in which the image 

is modified Masood et al. (2022). Deepfakes may be loosely grouped into the 

following categories: 

• Facial Synthesis uses latent representations of the facial datasets for generating 
a hyper-realistic “person.” The resulting image is not a representation of a real 
person, in whole or in part, as it is synthesized without a target subject. 

• Facial Transfer transfers both identity-aware and identity-agnostic content 
(e.g., expression and pose) from a source face to the target face. 

• Facial Swapping transfers the identity of the source face to the target face while 
preserving identity-agnostic content. 

• Facial Stacked Manipulation (FSM) is a set of methodologies that transfer both 
the identity and the attributes of the target to the source, while others alter the 
attributes of the swapped target after the transfer of the identity. 

• Facial Reenactment preserves the identity of the source subject but 
manipulates intrinsic attributes such as mouth or expression. 

• Facial Editing modifies external attributes such as age, gender, or ethnicity. 

Recently, audiovisual deepfake datasets, where the audio and images have 

both been manipulated, have been presented to the research community Khalid 

et al. (2021). Thus, it may be inferred that deepfake generation technologies are 

evolving faster than detection technologies and even more realistic content is 

expected to be seen in the future. 
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2.2. Deepfake Detection 

A deepfake detection method has recently gained widespread attention 

across the globe that finds traces of forgeries by exploiting the contextual and 

semantic understanding of the data. Researchers in the area of multimedia 

forensics have provided a wide range indicators to be used when spotting fake 

media, including but not limited to: face wobble, distortion and shimmer, 

waviness in movement, inconsistency in facial movement and speech, anomalies 

in the movement of an object between frames, inconsistency in lighting, shadows 

and reflections, blurred edges, abnormal facial angles and feature blurring, 

breathing patterns, eye direction inconsistencies, missing facial features, e.g., a 

known cheek mole, weight and softness of hair and clothing, over smoothness of 

skin, missing teeth and hair details, lack of alignment in facial symmetry, 

inconsistency in pixel contours, and strange or implausible behavior Masood et 

al. (2022). 

• Frame-based detection methods: Deepfake detection using frame-based 

models is less complex and focuses on blending defects. For instance, Jia et al. 

(2021) developed a two-branch multi-task learning framework based on within- 

image and between-frame inconsistencies for classifying single frame. Zhao et al. 

(2021) regarded deepfake detection as a fine-grained classification task, and 

constructed a multi-attentional network to focus on local discriminative features 

from multiple face attentive regions. The method in Coccomini et al. (2022) 

achieved competitive results by joining Transformers to a pre-trained 

convolutional network. Heo et al. (2021), improved the performance of the 

network by using distillation in Vision Transformer from a pre-trained 

EfficientNet-B7. Xia et al. (2022) leveraged textural disparities in facial images 

from multi-color channels for detecting forged multimedia. Tian et al. (2023) 

developed a frequency-aware contrastive approach to differentiate deepfakes 

from real, and Liang et al. (2023) used facial geometry analysis along with a CNN-

LSTM network for the same purpose. Lastly, Wang et al. (2022) developed a fast 

landmark-based method employing feature point defects. 

• Sequence-based detection: Sequence based methods use a stack of frames for 

detecting a suspected deepfake. Nguyen et al. (2021) propose a 3D CNN that 

learns spatiotemporal features from sequence of video. In Hu et al. (2021), a 

two-stream detector detects fakes by analyzing the frame-level and temporal 

artifacts of compressed videos. A more recent study, Gu et al. (2021), proposes 

spatial and temporal inconsistency learning using separate spatial and temporal 

modules for deepfake detection. Another method, Chen et al. (2022), uses 

spatiotemporal attention and a convolutional LSTM for tackling deepfakes. 

Yang et al. (2023) proposes a graph relation-based approach used for 

spatiotemporal deepfake detection, and finally, Zhao et al. (2023) uses a 

spatiotemporal video vision transformer for performant deepfake detection. 
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Patch-based solutions: The arrival of transformers in vision has seen increased 

use of patches for the task of recognizing fabricated faces. Li et al. (2020b) crop 

facial regions and no-face regions into different patches and use a dual-branch 

learning framework to distinguish between bonafide and forged facial patches. 

This method also detects inconsistencies in the facial and background regions. 

Similarly, Zhao et al. (2020) hypothesizes that source artifacts are still there after 

the original image is forged. Using real-video features and monitoring 

consistency, the forged images can be found. In Chai et al. (2020), a convolutional 

patch-based classifier is developed which gives predictions (bonafide or forged) 

over moving patches of a target image. Schwarcz and Chellappa (2021) employ 

facial parsing and develop separate patch-based detectors on truncated outputs, 

while Heo et al. (2023) use concatenated CNN features, along with patch-based 

positioning, to specifying the artifact regions in the face. 

Summarizing existing work, frame-, sequence-, and patch- based models each 

have pros and cons. Frame-based approaches for deepfake detection have received 

more attention in the literature compared to spatial and temporal artifact- based 

methods Gu et al. (2021); Zhao et al. (2023); Haiwei et al. (2022). However, 

a framework that combines the strengths of all three approaches in a lightweight 

manner has not been explored. Therefore, the proposed framework integrates the 

strengths of each approach using convolutions, vision transformers, and a unique 

sequence-pooling technique. Our framework uses transformer encoders with patches 

extracted in frames and sequences. Differences between consecutive frames are 

exploited, allowing a holistic analysis of deepfake video. By doing this, the 

proposed framework is able to capture both the spatial and temporal features of the 

video, improving the accuracy of deepfake detection in a lightweight manner. 

3. Problem Definition and Formulation 

The tremendous success and continuously evolving deepfake generation 

technology can create content that is indistinguishable from reality to the human eye. 

Several approaches exist that describe deepfake detection as classification problem 

and employ either spatial or spatiotemporal artifacts for classing. However, no work 

has been done which studies the effect of spatial, temporal, and spatiotemporal 

artifacts together. Therefore, this paper attempts to answer the following research 

questions: 

• Does the holistic approach, i.e., using spatial, temporal, and spatiotemporal 

features together, give better detection accuracy than these features 

individually? 

• How does the holistic detection approach perform in terms of area under 

curve (AUC) and accuracy on multiple datasets and across corpora? 

• How does holistic approach perform when it processes the spatial, temporal, 

or spatiotemporal information of a given video individually vs. as one entity 

to classify it as real or deepfake? 
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Figure 2: A graphical representation of the proposed method. A suspected deepfake is fed 

to the proposed framework. Spatial, Temporal and Spatiotemporal Features, extracted from the 

images and sequences in step 1, are fed to the attention-based token extraction. This is then 

fused and sequence-pooled in step 3. Finally, the fused embeddings from suspected deepfakes 

are fed to a classification head in step 4 to give the final prediction. 

To answer the above questions, we formulate deepfake detection as a binary 

classification problem of real and fake sequences. A given video V is divided into n 

sequences {S1, S2, ..., Sn} and each sequence composed of 30 frames of dimensions 

224 × 224. Each sequence Si is fed to the HolisticDFD framework fn as follows: 𝑝𝑟𝑜𝑏 = 𝑓𝑛(𝑆𝑖)                                                    (1) 

The proposed framework returns a  probability, prob, in [0, 1]. The determination 

if a video is real or a deepfake is done with the following decision function: 𝑓(𝑝𝑟𝑜𝑏) = {𝑓𝑎𝑘𝑒,   𝑖𝑓 𝑝𝑟𝑜𝑏 ≥ 0.5𝑟𝑒𝑎𝑙, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

4. Proposed Method 

This section provides a detailed overview of the proposed HolisticDFD 

framework, which is divided into four stages. The first stage extracts feature maps 

from frozen spatial, temporal, and spatiotemporal models. In step two, frozen 

attention-based tokenization is performed in order to extract self-attended 

embeddings. Step three concatenates the tokens and performs pooling, and 

finally, a downstream classifier is trained to identify bonafide and forged video 

in Step 4. A pictorial representation of the proposed framework is shown in Figure 

2 and the pseudo-code of the complete framework is presented in Algorithm 1. A 

detailed discussion of each step is presented in the following subsections. 
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4.1. Feature Extraction 

In this section, we provide the details of feature extraction for the spatial, 

temporal, and spatiotemporal features using the Compact Convolutional Transformer 

 

Algorithm 1 Model Infusion for Deepfake Detection 

Input: Sequence of frames f, spatial network sn, temporal network t, spatiotemporal 

network k, sequence pooling layer s_ pool, classifier MLP 

Output: Probability fakeness pred 

1:   images  ←  flattened sequence S 

diff ←  s[:, 1:,] - s[:, :-1] ▷ s is of shape       

[batch, time, height, width, channels] 

2:   k_features ←  k(seq) 

s_f = sn(images) 

t_f ← t(diff) 
3:   c_f ← conc.(s_f, t_f, k_f) 

4:    pool ← s pool(c_f) 

   5:   pred ← MLP(pool) 

  

method described by Hassani et al. (2021). The spatial features make use of 2D 

Convolution and 2D Max Pooling and the temporal and spatiotemporal features use 

3D Convolution and 3D Max Pooling layers. The convolution layers, followed by 

pooling, significantly reduce the number of required parameters for the model and 

the number of features extracted from images and sequences making the entire 

architecture extremely lightweight. 

4.2. Feature Extraction 

In this section, we provide the details of feature extraction for the spatial, 

temporal, and spatiotemporal features using the Compact Convolutional Transformer 

method described by Hassani et al. (2021). The spatial features make use of 2D 

Convolution and 2D Max Pooling and the temporal and spatiotemporal features use 

3D Convolution and 3D Max Pooling layers. The convolution layers, followed by 

pooling, significantly reduce the number of required parameters for the model and 

the number of features extracted from images and sequences making the entire 

architecture extremely lightweight. 

4.2.1. Spatial Feature Extraction 

Spatial features are extracted from video frames in order to detect image level 

discrepancies, e.g., irregularities in eye-color, skin tone, or texture. When extracting 

features which focus on spatial inconsistencies in the input images, a 2D Convolution 

operation is performed on a frame xi. The obtained feature maps are passed to 2D 

Max Pooling layers. Equation 2 shows the spatial patch extraction performed on a 

batch of images x. 𝑓𝑚𝑠 =  𝑀𝑎𝑥𝑃𝑜𝑜𝑙2𝐷 (𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑣2𝑑(𝑥)))  (2) 
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Figure 3: Differential Module used in the Temporal Transformer. (a) consecutive frames from 

DFDC, (b) the resultant differential image. 

4.2.2. Temporal Feature Extraction 

In order to detect irregularities in the transition between frames, temporal 

features are calculated. We adopted a differential module for detecting and 

classifying moving targets in real-time video samples from Lipton et al. (1998). 

Unlike raw feature extraction, the differential module makes the model 

insensitive to changes in illumination. A differential module, d, is introduced 

which computes the difference between consecutive frames, fi and fi+1, for all 

frames in sequence x. Figure 3 demonstrates the resultant differential image from 

sequential frames obtained using Equation 3.  𝑑 =  [𝑓𝑖 −  𝑓𝑖+1 ∀ 𝑓𝑖 ∈ 𝑆]   (3) 

where S is the sequence of frames. The differential d is then fed to a 3D 

Convolution followed by 3D Max Pooling to extract the features which focus on 

temporal inconsistencies, as given in Equation 4. 𝑓𝑚𝑡 =  𝑀𝑎𝑥𝑃𝑜𝑜𝑙3𝐷 (𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑣3𝑑(𝑑))) (4) 

where fmt are the resultant temporal feature maps. Conv3D, ReLU, and 

MaxPool3D are the same operations as in the spatial feature extraction process 

but in this case, they are applied to a sequence of images or tubelets instead of 

2D images. 

4.2.3. Spatiotemporal Feature Extraction 
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Spatiotemporal features are extracted to identify discrepancies in both images 

and transitions between consecutive frames. The sequence of frames, S, is 

directly passed to a 3D Convolution Layer and 3D Max Pooling, as given in 

Equation 5. 𝑓𝑚𝑠𝑡 =  𝑀𝑎𝑥𝑃𝑜𝑜𝑙3𝐷 (𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑣3𝑑(𝑆)))  (5) 

where fms, fmt, fmst are the resultant spatiotemporal feature maps. The same 

functions (Conv3D, ReLU and MaxPool3D) are again performed, but in this 

case, they are applied directly to a sequence of images or tubelets without passing 

them to the differential module. 

4.3. Attention based Tokens Extraction 

Multi-head, self-attention-based Transformer encoders are used to provide a 

wider range of context for the features obtained in the feature extraction layer. 

The extracted fms, fmt, and fmst feature maps are fed into a separate, attention-

based architecture comprised of a stack of transformer encoders. Each encoder 

layer contains two sub-layers: A Multi-head Self-Attention Layer (MSA) and a 

Multi-Layer Perceptron (MLP).  Layer normalization (LN) is performed on the 

input features before feeding them to the MSA, as shown in Equation 6, along 

with a residual connection to the inputs, Equation 7, followed by a residual 

connection. 𝑧𝑙′ = 𝑀𝑆𝐴(𝐿𝑁(𝑧𝑙−1) + 𝑧𝑙−1)   (6) 𝑧𝑙 = 𝑀𝐿𝑃(𝐿𝑁(𝑧𝑙′) + 𝑧𝑙′)    (7) 𝑦 = 𝐿𝑁(𝐿𝑁(𝑧𝑙′) + 𝑧𝑙)    (8) 

 The respective inconsistency dimension features, spatial yS, temporal yT, 

and spatiotemporal yST, are received from their respective networks as shown in 

Equation 8, where the MSA allows the model to jointly attend the information 

from different representation subspaces. Multi-Head Attention is defined as: 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐. (ℎ𝑒𝑎𝑑1 , … , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂   (9) ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖𝑄 , 𝐾𝑊𝑖𝐾 , 𝑉𝑊𝑖𝑉)   (10) 

where Q, K, and V are the query, key, and value, respectively. 

4.4. Feature Fusion and Sequence Pooling 

The spatial, temporal and spatiotemporal tokens, taken from the transformer 

layers, are concatenated to form a single vector, v, as given in Equation 11. 𝑣 = 𝐶𝑜𝑛𝑐. (𝑦𝑆 , 𝑦𝑇 , 𝑦𝑆𝑇)    (11) 

where yS, yT, yST are the tokens from spatial, temporal and spatiotemporal 
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encoders. For concatenation purposes, the output vectors from the transformer 

encoders all have the same shape. The concatenated tokens, v, from Equation 11 

are then fed to a linear layer g(v)ϵRd×1 followed by Softmax activation, as given 

in 12, 𝑋𝐿 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑔(𝑣)𝑇)𝜖𝑅𝑏×𝟙×𝑛    (12) 

 The attention-weights, XL, obtained from Equation 12 are multiplied with 

v, as shown in Equation 13. 𝑧 = 𝑋𝐿 × 𝑣𝜖𝑅𝑏×1×𝑑     (13) 

After pooling, the second dimension, z ϵRb×d, is squeezed. Function g(v) applies a 

linear transformation to the incoming data. 𝑦 = 𝑊𝑣𝑇 + 𝐵 (14) 

 

Figure 4: The architectural flow for sequence pooling, where normalized tokens are passed 

to a single neuron dense layer followed by softmax activation. The input tokens are passed 

through a single-neuron neural network which is then softmaxed and attention is multiplied with 

the input tokens. 

where W is a weight matrix and B is the bias matrix, while the softmax function 

rescales an n-dimensional feature vector so that all elements of the n-

dimensional tensor lie in the range of [0,1] and the sum is equal to 1 along a 

particular axis, as in 15 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) = 𝑒𝑥𝑝(𝑥𝑗)∑ 𝑒𝑥𝑝(𝑥𝑗)𝑗      (15) 

 As given in Figure 4, sequence pooling allows the network to weigh the 

sequential tokens in the latent space produced by the transformer encoder and 

correlates data across the input tokens. The sequence pooling module attends to 

the sequential data in order to assign attention weights across the sequence of 



13  

tokens. By employing softmax activation to the attended tokens, the proposed 

model gives higher attention-weights to tokens that have more information 

related to downstream classification. 

4.5. Downstream Classification 

The output from the sequence pooling layers is fed to a fully-connected linear 

classifier, essentially a multi-layer perceptron (MLP), which encodes the features 

using hidden layers and gives a prediction in the last layer. Dropout and L2 

regularization are used for better generalization. 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝑥𝑖) = ∑ 𝑤𝑖𝑥𝑖𝑖 + 𝑏𝑖𝑎𝑠𝑖     (16) 

Sigmoid activation is used for binary classification, which has a characteristic S-

shaped curve. 𝑆(𝑥) = 11+𝑒−𝑥      (17) 

 
Figure 5: Visualization of different augmented samples after face detection and cropping. 

5. Experiments and Results 

This section provides a detailed discussion of the performance of the pro- 

posed method over various evaluation matrices, datasets used for 

experimentation, the preprocessing pipeline, and the training phases. All 

implementation and experiments were performed in a distributed manner on a 

High-Performance Computing Cluster with 4 Tesla v100 GPUs. TensorFlow was 

used for designing and training the proposed architecture, and for experimenting 

with larger batch sizes, automatic mixed precision was employed. 

5.1. Data Preparation and Preprocessing 

Released in 2019, Facebook’s Deepfake Detection Challenge (DFDC) 
Dolhansky et al. (2020) is the largest publicly-available dataset of face swap 

videos, with more than 100,000 clips created via various Deepfake, non-learned, 

and GAN-based methods. Another dataset, FaceForensics++ Rossler et al. (2019), 

is composed of bonafide and forged video clips synthesized using a number of 

different generative methods. For evaluation based on FF++, we used the videos 

generated in the Face2Face, Deepfakes, FaceSwap, FaceShifter and Neural 

Textures subsets. We also used Celeb-DF Li et al. (2020c), itself comprised of 590 
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bonafide video samples sourced from online platforms with subjects of diverse 

age, gender, and ethnic group, and 5639 forged videos. Details of these datasets 

are shown in Table 1. To conduct a fair comparison with SoTA methods, we used 

the same split ratio released by each respective dataset. 

For experimentation, face positions are extracted from deepfake video 

samples using MTCNN and cropped to a fixed dimension of 224×224 pixels 

without losing the aspect ratio, creating sequences of 30 consecutive frames. 

When cropping, empty areas of the image are filled with black pixels. For better 

generalization, extensive data augmentation techniques are used, including 

random brightness/contrast, masking patches of images with black pixels, and 

horizontal flipping. Figure 5 shows some of the augmented samples. 

Table 1: Dataset details used for evaluation. DF: Deepfake, F2F: Face2Face, FS: FaceSwap, 

NT: Neural Textures 

Datasets 

Manipulation 

Celeb-DF 

DF 
 

DF 

FF++ 

F2F 

c23 

FS 
 

NT 

DFDC 

FS 

Training set 50k 24k 24k 24k 24k 100k 

Testing set 32k 6k 6k 6k 6k 2.5k 

5.2. Evaluation Metrics 

Area Under the Curve (AUC): AUC measures the entire two-dimensional area 

under the receiver operating characteristic (ROC) curve, which is a plot that shows 

the performance of a classifier at all classification thresholds. It plots two 

parameters: i.e., True Positive Rate (TPR) and False Positive Rate (FPR). These are 

defined as: 𝑇𝑃𝑅 = 𝑇𝑃𝑇𝑃+𝐹𝑁     (18) 

𝐹𝑃𝑅 = 𝐹𝑃𝐹𝑃+𝑇𝑁     (19) 

where FP and TN refer to false positive and true negative, respectively. 

Accuracy is the percentage of predictions classified correctly by a given model. 

For binary classification tasks like deepfake detection, accuracy may also be 

calculated in terms of positives and negatives as follows: 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑡𝑜𝑡𝑎𝑙     (20) 

where ncorrect is the number of correct predictions and ntotal is the total number 

of samples. 

5.3. Training and Hyperparameter Setting 
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Training of the proposed system is conducted in two phases. The first phase 

is pretraining, where dimension-specific models are trained, and the second is 

training in the joint space. In the first phase, the model is focused on one 

inconsistency dimension of the data, and these sequences are passed through the 

temporal and spatiotemporal models. For the spatial model, sequences are 

rearranged to obtain images.  The spatial, temporal and spatiotemporal models 

are pre-trained with sequence pooling and independent classification heads with 

a binary cross-entropy loss, along with the Adam optimizer with weight decay. 

Consequently, the spatial model learns to give a prediction based on images, 

while the temporal and spatiotemporal models learn from a sequence of frames. 

The embedding dimension for all three models is kept the same for ease of 

concatenation. The pre-trained models are frozen and the embeddings are 

concatenated, as described in Section 3.3, and passed to a sequence pooling 

layer, which in turn is passed to a fully connected classifier, as shown in Figure 

1. For the spatial model, sequences are rearranged and the resultant images are 

used as input. Sequences of frames are then fed to the temporal and 

spatiotemporal models. These regularization techniques on individual models 

improved the overall AUC from 0.915 to 0.926 on the DFDC Dataset. 

Table 2: A comparative analysis of the proposed system with SoTA methods on the DFDC 

dataset. S: Spatial Method, ST: spatiotemporal Method, STM: Spatial, Temporal and 

spatiotemporal 

Method Arch. # P AUC F1-score 

CViT Wodajo and Atnafu (2021) S 89 M 0.8458 77.0% 

TEI Liu et al. (2020) ST 30. 4M 0.8697 - 

ViT Distillation Heo et al. (2021) S 373 M 0.978 91.9% 

XceptionNet-avg Rossler et al. (2019) S 22.8 M 0.843 - 

I3D ST 25 M 0.8082 - 

EfficViT Coccomini et al. (2022) S 109 M 0.919 83.8% 

D-FWA Li and Lyu (2018) S - 0.8511 - 

ADDNet-3D Zhao et al. (2021) ST - 0.7966 - 

HolisticDFD (Our) STM 11.5 M 0.926 92.64% 

For finding optimal hyperparameters, we performed the experiments with the 

following embedding dimensions [64, 128, 256, 384] and U-net encoder-like 

convolution layers for feature extraction.  Performance was optimal when the 

embedding size was set to 256. The learning rate was set to 10−3 at the start and 
later lowered to 10−5, along with weight decay of 10−4. We used 3 transformer 
layers inside for the spatiotemporal and temporal modules, and 6 transformer 

layers for the spatial module. We trained the model over 300 epochs, stopping 

early at the lowest validation loss, as required. We also experimented with 

different batch sizes from 8 to 16 on each device with distributed data-parallel. 

5.4. Performance Analysis 
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Extant deepfake detection algorithms may be classified as either frame-based 

spatial (S in Table 2) or sequence-based spatiotemporal (ST in Table 2). For frame-

based techniques, we chose Xception Rossler et al. (2019), Convolution- ViT 

Wodajo and Atnafu (2021), ViT Distillation Heo et al. (2021), EfficientVit 

Coccomini et al. (2022), and SelimEfficientNet. In contrast, frame-based methods 

are either based on Convolutional Neural Networks or Vision Transformers. To 

perform a fair comparison, we took the mean of the frame-level predictions in 

order to give a final prediction for the entire video. The sequence-based detectors 

used in the comparison are 3D convolution based C3D Liu et al. (2021), 2D-

Convolution-with-RNN Graves (2012), and TEI Liu et al. (2020), for spatial-

temporal modeling on a 2D CNN, D-FWA Li and Lyu (2018), ADDNet-3D Zhao et 

al. (2021), and S-IML-T Li et al. (2020a). 

Table 3: Performance evaluation of the proposed framework on Celeb-DF and 

FaceForensics++ c23. 

Method Celeb-DF FF++ c23 

XceptionNet-avg Rossler et al. (2019) 0.9944 0.9940 

Two-Branch Masi et al. (2020) - 0.9643 

D-FWA Li and Lyu (2018) 0.9858 - 

I3D Spatiotemporal 0.9923 0.9826 

ADDNet-3D Zhao et al. (2021) 0.9517 - 

Meso-4 Afchar et al. (2018) - 0.8310 

LSTM based Network 0.9573 0.9482 

Patch-DFD Yu et al. (2022) - 0.9565 

S-IML-T Li et al. (2020a) 0.9884 - 

Bayar and Stamm (2016) - 0.8297 

Xia et al. (2022) - 0.9100 

HolisticDFD (our) 0.9624 0.9415 

Table 4: Performance evaluation (accuracy) on different subsets of FaceForensics++ c23, DF: 

Deepfake, F2F: Face2Face, FS: FaceSwap, NT:Neural Texture. 

Method DF F2F FS NT 

C3D Liu et al. (2021) 0.9286 0.8857 0.9179 0.8964 

XceptionNet-avg Rossler et al. (2019) 0.9893 0.9893 0.9964 0.9500 

I3D Carreira and Zisserman (2017) 0.9286 0.9286 0.9643 0.9036 

LSTM Tariq et al. (2020) 0.9964 0.9929 0.9821 0.9393 

TEI Liu et al. (2020) 0.9786 0.9714 0.9750 0.9429 

FaceNetLSTM Sohrawardi et al. (2019) 0.8900 0.8700 0.9000 - 

DeepRhythm Qi et al. (2020) 0.9870 0.9890 0.9780 - 

Comotion-35 Wang et al. (2020) 0.9595 0.8535 0.9360 0.8825 

Comotion-70 Wang et al. (2020) 0.9910 0.9325 0.9830 0.9045 

ADDNet-3d Zi et al. (2020) 0.9214 0.8393 0.9250 0.7821 

HolisticDFD (Our) 0.98 0.95 0.944 0.965 
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As shown in Table 2, the proposed architecture achieves 92.64% AUC on the 

test set of the DFDC dataset.  Our model is trained on the training set of the DFDC 

and we chose the model weights with the lowest loss on the validation set. 

When compared with the SoTA methods, our model’s ROC-AUC curve has a 

comparable area (0.9264) to the SoTA (0.978) without using any distillation or 

transfer learning from other tasks. As shown in Table 2, the Heo et al. (2021) 

models which demonstrate performance closest to the proposed method utilize 

distillation or transfer learning from large models such as EfficientNet. 

Table 5: Cross-dataset generalization. The models are trained on the DFDC and Celeb-DF datasets 

and tested on other datasets 

Train Test ROC-AUC 

DFDC FaceForensics++ 0.761 

DFDC Celeb-DF 0.701 

Celeb-DF FaceForensics++ 0.782 

The proposed method was also evaluated on Celeb-DF and FaceForensics++ 

c23, and shows significant performance on the Neural Textures subset of Face- 

Forensics++, compared to the SoTA video and image level methods, as shown in 

Table 3. When tested on the subsets of FaceForensics++ c23, the proposed model 

gave SoTA accuracy of 0.965 on the Neural Textures subset of FaceForensics++, 

as demonstrated in Table 4. The proposed method gives an AUC of 0.9624 on 

Celeb-DF and 0.9415 on FaceForensics++ with c23 compression, as shown in 

Table 4. It is important to note that the proposed method performs better due to 

its ability to capture inconsistencies in small regions of the frames, such as lips, 

which is the case in Neural Texture. 

For cross-dataset evaluation, as shown in Table 5, the proposed framework 

achieved an AUC of 0.761 on FaceForensics++ with the model trained on DFDC. 

The same model gave an AUC of 0.701 on Celeb-DF. If trained on Celeb-DF, the 

model showed an AUC of 0.782 on FaceForensics++. 

We also performed time-complexity analysis of the HolisticDFD. The time 

was calculated by doing multiple forward passes through the framework with 

batch sizes ranging from 2 to 12 and a weighted average, as displayed in Figure 6. 

We also found that HolisticDFD has an approximately linear time complexity with 

respect to batch size. The proposed method took an average inference time of 

14.63 seconds with an uncertainty of ± 3.06 seconds on a CPU and an average 

time of 250.46 milliseconds with an uncertainty of ± 106 milliseconds on GPU 

machines. 
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Figure 6: Time consumed by each module of the proposed framework on GPU and CPU. 

5.5. Ablation Study 

To test the effectiveness of the proposed method, we performed an 

ablation study by removing individual components and experimenting with 

binary combination of spatial, temporal and spatiotemporal feature-types. We 

also experiment with a majority voting ensemble of the three independent 

pipelines. The proposed frame- work obtained an AUC of 0.8968, 0.8801, and 

0.901 using the spatial, temporal, and spatiotemporal transformers, individually. 

We also experimented with the majority ensemble of these three models and the 

obtained an AUC of 0.918. Although performance improved, the final 

configuration chosen for the proposed framework where we intelligently 

combined embeddings outperformed the majority voting ensemble. The 

performance of various combinations of spatial, temporal and spatiotemporal 

feature extractors in the proposed network is shown in Table 6. This 

performance gradually improved as embeddings from different models were 

infused, showing the enhanced performance of the joint model. The AUC score 

improved from 0.896 to 0.907 when the spatial and spatiotemporal models are 

concatenated, and further improved from 0.907 to 0.926 after concatenating the 

joint spatiotemporal model. This demonstrates that infusion enables better 

integrated pattern recognition by concatenating the embeddings from multiple 

dimensions. 

Table 6: Ablation study of the proposed framework on DFDC. S: Spatial Transformer, T: 

Temporal Transformer, ST: spatiotemporal Transformer 

Component AUC Params(#) 

Only Spatial Transformer 0.8968 2.3 M 

Only Temporal Transformer 0.8801 4.6 M 

Only spatiotemporal Transformer 0.901 4.6 M 

Spatial and Temporal Transformer 0.9021 6.9 M 

Spatial and spatiotemporal 0.907 6.9 M 

Ensemble (S, T, ST) 0.918 - 

HolisticDFD (Our) 0.926 11.5 M 
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Figure 7: Integrated Gradient Analysis for different forgery techniques in the FaceForensics++ 

Dataset. 

5.6. Integrated Gradient Analysis 

To better explain the relationship between the prediction of each pipeline 

in terms of its input images or sequences, we also performed integrated gradient 

analysis of the individual pipelines. Model gradients were computed with respect 

to inputs in order to determine attribution. Integrated gradient analysis of the 

spatial model was performed using a black image baseline and interpolating the 

target image in 10 steps. As given in Figure 7, the spatial model focused more on 

particular artifacts like eyes or lips. Next, integrated gradient analysis of the 

temporal model was performed on a sequence of frames with the same settings. 

From this analysis, it is evident that the temporal model focused on the entire 

face. Similarly, an integrated gradient analysis of the spatiotemporal model 

focused on both particular position artifacts and small areas (e.g., surrounding of 

lips). The diversity of attention/attribution in the models demonstrate the 

strength of the proposed method. 

 Integrated gradient analysis also demonstrates the strength of the feature 

extractor with respect to different types of forgeries. For instance, Figure 7 shows 

the integrated gradient heatmaps of several forgery methods on the DFDC dataset. 

The blue areas show the highest activation values on the heatmaps, which the 

proposed framework uses for predictions. As a face-based manipulation, FaceSwap 

transfers facial regions from the source to the target video, so the forged parts in 

the fabricated videos cover the entire facial regions. It can be seen in Figure 7 

that the integrated gradient outputs of the temporal model are very high in 

FaceSwap when compared to other forgery methods. Face2Face is a reenactment 

system which modifies the expressions in a target video while maintaining 

identity information. It is clear from Figure 7 that the spatiotemporal model 

focuses on the sides of t h e  lips, which give a  strong indication of expression-

based modification. Similarly, the spatial model focuses on lips and eyes, markers 

for expression manipulation. The activation regions of the Neural Texture samples 

concentrated not only on lips but also on the cheeks and forehead region, possibly 
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due to the texture rendering operation when synthesizing fake facial regions, 

resulting in irregular shadows and discordance in these areas. Examining the 

deepfakes in Figure 7, the forged facial regions are pasted back to the target face, 

providing obvious blending or visual artifacts near facial features like eyebrows. 

Activation areas in the corresponding heatmaps for spatial are thus concentrated 

around eyebrows and lips, while for temporal, on movements in the upper cheeks, 

and for spatiotemporal around eyebrows and the nose, which is in line with our 

hypotheses for this method. 

In summary, Figure 7 demonstrates that the proposed framework has the 

ability to learn distinct features of different facial parts and forgery methods, 

which is a key step toward generalization of this framework to unseen deepfakes. 

6. Conclusion 

In this paper, we propose a novel, lightweight, and compact transformer- 

based, deepfake detection method which intelligently combines the embeddings 

from the spatial, temporal and spatiotemporal dimensions to differentiate a 

suspected deepfake from bonafide video. We show that by adding spatial, temporal, 

and spatiotemporal views of the data, the model learns a better data 

representation and performance gradually improves. Our model preforms 

competitively on the Celeb- DF and FaceForensics++ datasets and shows near 

SoTA performance on the DFDC dataset when compared on AUC.  I n  

a d d i t i o n ,  i t  outperforms all baselines on the basis of F1 Score. Cross-corpus 

evaluation of the proposed method is comparable to SoTA methods, which 

demonstrates the generalizability of the proposed method. More importantly, 

the proposed model is significantly lightweight, using just 3% of the parameters 

of SoTA deepfake detection methods. A performance evaluation of the model 

shows employing the spatial, temporal and spatiotemporal latent joint space and 

learned attention weights significantly improves the capability of deepfake 

detectors. A comparative analysis of the framework with existing techniques 

shows significant improvement when deployed on large datasets, such as the 

DFDC, and specific forgeries, such as neural texture. 

Acknowledgement 

This material is based upon work supported by the National Science 

Foundation (NSF) under award number 1815724, 2231619  and Michigan 

Transnational Research and Commercialization (MTRAC), Advanced Computing 

Technologies (ACT) award number 292883. Any opinions, findings, conclusions or 

recommendations expressed in this material are those of the author(s) and do 

not necessarily reflect the views of the NSF and MTRAC ACT. 

References 

Afchar, D., Nozick, V., Yamagishi, J., Echizen, I., 2018. Mesonet: a compact facial 



21  

video forgery detection network, in: 2018 IEEE international workshop on 

information forensics and security (WIFS), IEEE. pp. 1–7. 

Bayar, B., Stamm, M.C., 2016. A deep learning approach to universal image 

manipulation detection using a new convolutional layer, in:  Proceedings of the 

4th ACM workshop on information hiding and multimedia security, pp. 5–10. 

Carreira, J., Zisserman, A., 2017. Quo vadis, action recognition? A new model and 

the kinetics dataset. CoRR abs/1705.07750. URL: 

http://arxiv.org/abs/1705.07750, arXiv:1705.07750. 

Chai, L., Bau, D., Lim, S.N., Isola, P., 2020. What makes fake images detectable? 

understanding properties that generalize, in: European conference on computer 

vision, Springer. pp. 103–120. 

Chen, B., Li, T., Ding, W., 2022. Detecting deepfake videos based on 

spatiotemporal attention and convolutional lstm. Information Sciences 601, 58–
70. 

Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J., 2018. Stargan: Unified 

generative adversarial networks for multi-domain image-to-image translation, in: 

Proceedings of the IEEE conference on computer vision and pattern recognition, 

pp. 8789–8797. 

Coccomini, D.A., Messina, N., Gennaro, C., Falchi, F., 2022. Combining efficientnet 

and vision transformers for video deepfake detection, in: International 

Conference on Image Analysis and Processing, Springer. pp. 219–229. 

Dhariwal, P., Nichol, A., 2021. Diffusion models beat gans on image synthesis. 

CoRR abs/2105.05233. URL: https://arxiv.org/abs/2105.05233, 

arXiv:2105.05233. 

Dolhansky, B., Bitton, J., Pflaum, B., Lu, J., Howes, R., Wang, M., Canton-Ferrer, 

C., 2020. The deepfake detection challenge dataset. CoRR abs/2006.07397. URL: 

https://arxiv.org/abs/2006.07397, arXiv:2006.07397. 

Graves, A., 2012. Long short-term memory. Supervised sequence labelling with 

recurrent neural networks, 37–45. 

Gu, Z., Chen, Y., Yao, T., Ding, S., Li, J., Huang, F., Ma, L., 2021. Spatiotemporal 

inconsistency learning for deepfake video detection, in: Proceedings of the 29th 

ACM International Conference on Multimedia, pp. 3473–3481. 

Haiwei, W., Jiantao, Z., Shile, Z., Jinyu, T., 2022. Exploring spatial-temporal 

features for deepfake detection and localization. arXiv preprint 

arXiv:2210.15872. 

Hassani, A., Walton, S., Shah, N., Abuduweili, A., Li, J., Shi, H., 2021. Escaping the 

http://arxiv.org/abs/1705.07750


22  

big data paradigm with compact transformers. CoRR abs/2104.05704. URL: 

https://arxiv.org/abs/2104.05704, arXiv:2104.05704. 

Heo, Y.J., Choi, Y.J., Lee, Y.W., Kim, B.G., 2021. Deepfake detection scheme based 

on vision transformer and distillation. arXiv preprint arXiv:2104.01353. 

Heo, Y.J., Yeo, W.H., Kim, B.G., 2023. Deepfake detection algorithm based on 

improved vision transformer. Applied Intelligence 53, 7512–7527. 

Hu, J., Liao, X., Wang, W., Qin, Z., 2021. Detecting compressed deepfake videos 

in social networks using frame-temporality two-stream convolutional network. 

IEEE Transactions on Circuits and Systems for Video Technology 32, 1089–1102. 

Javed, A., Malik, K.M., Irtaza, A., Malik, H., 2021. Towards protecting cyber- 

physical and iot systems from single-and multi-order voice spoofing attacks. 

Applied Acoustics 183, 108283. 

Jia, G., Zheng, M., Hu, C., Ma, X., Xu, Y., Liu, L., Deng, Y., He, R., 2021. 

Inconsistency-aware wavelet dual-branch network for face forgery detection. 

IEEE Transactions on Biometrics, Behavior, and Identity Science 3, 308–319. 

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T., 2020. Analyzing 

and improving the image quality of stylegan, in: Proceedings of the IEEE/CVF 

conference on computer vision and pattern recognition, pp. 8110–8119. 

Khalid, F., Javed, A., Irtaza, A., Malik, K.M., 2023. Deepfakes catcher: A novel 

fused truncated densenet model for deepfakes detection, in: Proceedings of 

International Conference on Information Technology and Applications: ICITA 

2022, Springer. pp. 239–250. 

Khalid, H., Tariq, S., Kim, M., Woo, S.S., 2021.  Fakeavceleb:  a novel audio- video 

multimodal deepfake dataset. arXiv preprint arXiv:2108.05080. 

Khan, A., Javed, A., Malik, K.M., Raza, M.A., Ryan, J., Saudagar, A.K.J., Malik, H., 

2022. Toward realigning automatic speaker verification in the era of covid-19. 

Sensors 22, 2638. 

Li, X., Lang, Y., Chen, Y., Mao, X., He, Y., Wang, S., Xue, H., Lu, Q., 2020a. Sharp 

multiple instance learning for deepfake video detection, in: Proceedings of the 

28th ACM international conference on multimedia, pp. 1864–1872. 

Li, X., Yu, K., Ji, S., Wang, Y., Wu, C., Xue, H., 2020b. Fighting against deepfake: 

Patch&pair convolutional neural networks (ppcnn), in: Companion Proceedings 

of the Web Conference 2020, pp. 88–89. 

Li, Y., Lyu, S., 2018. Exposing deepfake videos by detecting face warping artifacts. 

arXiv preprint arXiv:1811.00656. 

Li, Y., Yang, X., Sun, P., Qi, H., Lyu, S., 2020c. Celeb-df: A large-scale challenging 

dataset for deepfake forensics, in: Proceedings of the IEEE/CVF conference on 



23  

computer vision and pattern recognition, pp. 3207–3216. 

Liang, P., Liu, G., Xiong, Z., Fan, H., Zhu, H., Zhang, X., 2023. A facial geometry 

based detection model for face manipulation using cnn-lstm architecture. 

Information Sciences 633, 370–383. 

Lipton, A.J., Fujiyoshi, H., Patil, R.S., 1998. Moving target classification and 

tracking from real-time video, in: Proceedings fourth IEEE workshop on 

applications of computer vision. WACV’98 (Cat. No. 98EX201), IEEE. pp. 8–14. 

Liu, J., Zhu, K., Lu, W., Luo, X., Zhao, X., 2021. A lightweight 3D convolutional 

neural network for deepfake detection. Int. J. Intell. Syst. 36, 4990–5004. 

Liu, Z., Luo, D., Wang, Y., Wang, L., Tai, Y., Wang, C., Li, J., Huang, F., Lu, T., 2020. 

Teinet: Towards an efficient architecture for video recognition, in: Proceedings 

of the AAAI Conference on Artificial Intelligence, pp. 11669– 11676. 

Masi, I., Killekar, A., Mascarenhas, R.M., Gurudatt, S.P., AbdAlmageed, W., 2020. 

Two-branch recurrent network for isolating deepfakes in videos, in: European 

conference on computer vision, Springer. pp. 667–684. 

Masood, M., Nawaz, M., Malik, K., Javed, A., Irtaza, A., Malik, H., 2022. Deepfakes 

generation and detection: state-of-the-art, open challenges, countermeasures, 

and way forward. Applied Intelligence, 1–53doi:10.1007/s10489- 022-03766-z. 

Nguyen, X.H., Tran, T.S., Nguyen, K.D., Truong, D.T., et al., 2021. Learning 

spatiotemporal features to detect manipulated facial videos created by the 

deepfake techniques. Forensic Science International: Digital Investigation 36, 

301108. 

Qi, H., Guo, Q., Juefei-Xu, F., Xie, X., Ma, L., Feng, W., Liu, Y., Zhao, J., 2020. 

Deeprhythm: Exposing deepfakes with attentional visual heartbeat rhythms, in: 

Proceedings of the 28th ACM international conference on multimedia, pp. 4318–
4327. 

Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M., 2019. 

Faceforensics++: Learning to detect manipulated facial images, in: Proceedings 

of the IEEE/CVF International Conference on Computer Vision, pp. 1–11. 

Schwarcz, S., Chellappa, R., 2021. Finding facial forgery artifacts with parts- based 

detectors, in: Proceedings of the IEEE/CVF conference on computer vision and 

pattern recognition, pp. 933–942. 

Sohrawardi, S.J., Chintha, A., Thai, B., Seng, S., Hickerson, A., Ptucha, R., Wright, 

M., 2019. Poster: Towards robust open-world detection of deepfakes, in: 

Proceedings of the 2019 ACM SIGSAC conference on computer and 

communications security, pp. 2613–2615. 

Tariq, S., Lee, S., Woo, S.S., 2020. A convolutional LSTM based residual network 



24  

for deepfake video detection. CoRR abs/2009.07480. URL: 

https://arxiv.org/abs/2009.07480, arXiv:2009.07480. 

Tian, C., Luo, Z., Shi, G., Li, S., 2023. Frequency-aware attentional feature fusion 

for deepfake detection, in: ICASSP 2023-2023 IEEE International Conference on 

Acoustics, Speech and Signal Processing (ICASSP), IEEE. pp. 1–5. 

Wang, G., Jiang, Q., Jin, X., Cui, X., 2022. FFR_FD: Effective and fast detection of 

deepfakes via feature point defects. Information Sciences 596, 472–488. 

Wang, G., Zhou, J., Wu, Y., 2020. Exposing deep-faked videos by anomalous co-

motion pattern detection. arXiv preprint arXiv:2008.04848. 

Wodajo, D., Atnafu, S., 2021. Deepfake video detection using convolutional vision 

transformer. arXiv preprint arXiv:2102.11126. 

Xia, Z., Qiao, T., Xu, M., Zheng, N., Xie, S., 2022. Towards deepfake video forensics 

based on facial textural disparities in multi-color channels. Information Sciences 

607, 654–669. 

Yang, Z., Liang, J., Xu, Y., Zhang, X.Y., He, R., 2023. Masked relation learning for 

deepfake detection. IEEE Transactions on Information Forensics and Security 18, 

1696–1708. 

Yu, M., Ju, S., Zhang, J., Li, S., Lei, J., Li, X., 2022. Patch-dfd: Patch-based end-to-

end deepfake discriminator. Neurocomputing. 

Zhao, C., Wang, C., Hu, G., Chen, H., Liu, C., Tang, J., 2023. Istvt: interpretable 

spatial-temporal video transformer for deepfake detection. IEEE Transactions on 

Information Forensics and Security 18, 1335–1348. 

Zhao, H., Zhou, W., Chen, D., Wei, T., Zhang, W., Yu, N., 2021. Multi attentional 

deepfake detection, in: Proceedings of the IEEE/CVF conference on computer 

vision and pattern recognition, pp. 2185–2194. 

Zhao, T., Xu, X., Xu, M., Ding, H., Xiong, Y., Xia, W., 2020. Learning to recognize 

patch-wise consistency for deepfake detection. arXiv preprint arXiv:2012.09311 

6. 

Zi, B., Chang, M., Chen, J., Ma, X., Jiang, Y.G., 2020. Wilddeepfake: A challenging 

real-world dataset for deepfake detection, in: Proceedings of the 28th ACM 

international conference on multimedia, pp. 2382–2390. 


