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Abstract

Deepfakes, or synthetic audiovisual media developed with the intent to deceive, are
growing increasingly prevalent. Existing methods, employed independently as
images/patches or jointly as tubelets, have, up to this point, typically focused on
spatial or spatiotemporal inconsistencies. However, the evolving nature of
deepfakes demands a holistic approach. Inspection of a given multimedia sample
with the intent to validate its authenticity, without adding significant
computational overhead has, to date, not been fully explored in the literature. In
addition, no work has been done on the impact of different inconsistency
dimensions in a single framework. This paper tackles the deepfake detection
problem holistically. HolisticDFD, a novel, transformer-based, deepfake detection
method which is both lightweight and compact, intelligently combines
embeddings from the spatial, temporal and spatiotemporal dimensions to
separate deepfakes from bonafide videos. The proposed system achieves 0.926
AUC on the DFDC dataset using just 3% of the parameters used by state-of-
the-art detectors. An evaluation against other datasets shows the efficacy of the
proposed framework, and an ablation study shows that the performance of the
system gradually improves as embeddings with different data representations are
combined. An implementation of the proposed model is available at:
https://github.com/smileslab/deepfake-detection/.

Keywords: Deepfake Detection, Intermediate Fusion, Multimedia Forensics,
Transformers

1. Introduction

The rapid evolution of generative Al algorithms has led directly to an increase
in cyber threats in the form of synthetic media, which may take various forms,
including deepfakes, as shown in Figure 1, Javed et al. (2021). Deepfake videos,
created to spread outright lies, may damage public perception of the target of
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such an attack, e.g., a political leader. Taken to its logical extent, they may be used
to undermine and destabilize governments. Moreover, malicious actors have been
known to use deepfakes, distributed under false profiles, to disseminate
disinformation on social media. Belief in convincing deepfake-created content,
fostered by the development of easily available deepfake generation tools,has
jeopardized the reputations of celebrities and world leaders, who are often the
targets of such attacks. Deepfakes have also been used to finance phishing
schemes, fund fake charities, and foment credit card fraud. More recently, bad-
actors have combined deepfakes and shallow-fakes into complex forgeries to
evade existing tools. A marked increase in the availability of open-source
implementations for deepfake creation and tremendous improvements to
generative algorithms, e.g., autocoders (AE), generative adversarial networks
(GAN), and diffusion models, for deepfake generation, has made it possible for users
with no knowledge of machine learning to generate exceptionally believable
deepfakes. These are growing increasingly difficult for an average person to spot
on social media because modern-day, sophisticated techniques are good enough
to fool an uninformed public. It is therefore imperative that the potential damage
caused by this new generation of deepfakes be curbed.

The research community is in active pursuit of tools and techniques to
counteract the threat of media falsification and the mass spread of disinformation
Khan et al. (2022); Khalid et al. (2023). However, detecting whether a video, audio
or image is original or forged is a continuously evolving task. Initial efforts used
hand-crafted features which effectively detected early versions of deepfakes and
used discrepancies in head pose, eye-blinking, and face-warping artifacts.
Generative algorithms, including recent developments such as the advent of
image/video diffusion models, have greatly improved image/video synthesis
Dhariwal and Nichol (2021). The resultant advances have increased the quality of
deepfakes over time, and have rendered previously effective methods useless.

Performant algorithms for video deepfake detection may be classified into two
categories, defined by the irregularities they focus on: spatial, or image-based
feature exploitation; and spatiotemporal, or video-based features. Image-based
methods focus only on spatial cues in individual frames and ignore temporal
oddities. Detectors based on spatial anomalies analyze each frame in order to
classify real and fake images. However, recent generative approaches are capable
of synthesizing highly photo-realistic frames that do not have spatial
inconsistencies. This causes image-based detection approaches, though
previously effective, to perform poorly on modern deepfakes. In contrast, video-
based feature extraction methods focus on sequence patterns and explore
spatiotemporal inconsistencies to detect deepfakes. These techniques, however,
do not detect inconsistencies that are distributed dynamically in multiple local
regions within frames. Though both approaches have had some success, a
deepfake detection technique that dynamically learns and automatically adjusts
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Figure 1: Samples from the FaceForensics++ (top row), DFDC (middle row), and Celeb-Df
(Bottom row) datasets. Forgery techniques in each dataset are differenti.e., FaceForensics++
has DeepFakes, Face2Face, FaceSwap and NeuralTextures. DFDC and Celeb-DF chiefly uti-
lizes Faceswap. As evident in the samples, these forgeries introduce spatial (incomplete glasses,
beard) and temporal artifacts (missing beard between consecutive frames).

the weights of spatial or temporal features, while analyzing the inconsistency
patterns in synthetic video, has not been attempted. We argue that variation in
deepfake generation methods has a key impact on the performance of detection
algorithms. In Figure 1, the artifacts in the deepfake samples generated with
various forgery techniques can be grouped into those with spatial and temporal
anomalies. These can then be exploited for detecting suspected deepfakes. As
generative algorithms evolve to produce more realistic results, it is imperative to
define a holistic approach that exploits spatial, spatiotemporal, and temporal
features to detect deepfakes.

On the algorithmic side, transformers, well-known for their dominance in
natural language processing, are increasingly being applied to vision tasks, and
deepfake detection is no exception. For instance, Coccomini et al. (2022); Heo et
al. (2021) use a transformer architecture for this problem. Similar approaches use
large complex structures and a multitude of parameters. They focus either on the
spatial or temporal inconsistencies extant in deepfakes. A deepfake may have all
spatial artifacts, e.g., in one frame there may be a discrepancy in eye color,
temporal artifacts, e.g., an unnatural transition between frames, or a joint
spatiotemporal anomaly between frames, and any of these may be used to
classify the sample as fake. However, a synthesis of spatial and spatiotemporal
pattern mining for deepfake detection has not been extensively explored. In



addition, existing methods use models pre-trained for other tasks, or a
computationally expensive, pure transformer-based architecture which requires
a large dataset. In Hassani et al. (2021), the authors suggest that combining the
benefits of convolution and transformers in a single network architecture may
result in @ more robust application. To address the challenges discussed above,
this work proposes a novel framework that combines spatial, temporal, and
spatiotemporal features. It accomplishes detection using a smaller parameter set
than existing methods, and offers the following major contributions:

1.A novel multi-dimensional Model Infused Deepfake Detection method
(HolisticDFD) is proposed that fuse embeddings independently as well as jointly
from frozen models on the spatial and temporal dimensions of a video sample.
The individual models are pre-trained to independently learn a single deepfake
inconsistency dimension, and the proposed method combines different views of
the same video sequence in a joint space.

2. Unlike existing methods that analyze a specific region of the subject (e.g.,
eyebrow movement), the proposed framework takes a holistic view, using
sequence pooling technique to fuse the embeddings from spatial, temporal,
and spatiotemporal data representations of a suspected deepfake. This
method focuses on patterns extracted from potential forgery regions
compared to other areas and weights them accordingly.

3. Unlike existing methods which either employ transfer learning or knowledge
distillation, a compact transformer-based deepfake detection method is
proposed which uses just 3% of the parameters required by state-of-the-art
(SoTA) models.

The rest of the paper is organized as follows: Current deepfake generation
and detection methods are reviewed in Section 2. Section 3 describes the
research questions we attempt to answer and formalizes the problem of
deepfake detection. The technical details of the proposed deepfake detection
framework are described in Section 4. Section 5 is dedicated to the experimental
results and analysis, followed by conclusions and future work in Section 6.

2. Related Work

A number of algorithms have been developed for deepfake generation and
detection. This section provides a brief overview of the techniques currently in
use for deepfake video.

2.1. Deepfake Generation

Deepfakes have a long history, dating to 1997 when a program was developed
that could alter video footage. It could create new content, making it appear as if
the individual in the video said words that were in the source clip. However, the
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first “well-known ‘deepfake’” appeared in September 2017 when a forged
pornographic content of known actresses was released. In the following years,
two approaches to create genuine faces in a deepfake: Variational Auto Encoders,
commonly called VAEs, and Generative Adversarial trained Networks (GANs)
gained popularity for deepfake generation. VAEs employ two encoder- decoder
sets, individually trained to encode and decode the faces to be exchanged. Faces
are then encoded in a latent distribution by the encoder. In the last step, the
decoder synthesizes the target face.

In contrast, GANs utilize a different technique, also composed of two steps.
The first, a discriminator, which distinguishes real and synthetic data. The other
component, the generator, modifies the input sample in an attempt to deceive
the discriminator. Convincing output requires multiple iterations of this process,
but very realistic forgeries have been attained with GANs. Several GAN-based
methods have been invented, e.g., StarGAN Choi et al. (2018), and top results
have been achieved through StyleGAN-V2 Karras et al. (2020). GANs support
manipulation, such as image restoration and style transfer. Neither of these can
be achieved by classical forgery generation methods. The next generation of
diffusion models are being developed which outperform these individual
approaches. GANs have significant computational requirements and require large
datasets for training, which has limited their availability to the general public.

Regardless of the technique used to carry out the manipulation, deepfake
generation approaches may be categorized by the specific way in which the image
is modified Masood et al. (2022). Deepfakes may be loosely grouped into the
following categories:

Facial Synthesis uses latent representations of the facial datasets for generating
a hyper-realistic “person.” The resulting image is not a representation of a real
person, in whole or in part, as it is synthesized without a target subject.

Facial Transfer transfers both identity-aware and identity-agnostic content
(e.g., expression and pose) from a source face to the target face.

Facial Swapping transfers the identity of the source face to the target face while
preserving identity-agnostic content.

Facial Stacked Manipulation (FSM) is a set of methodologies that transfer both
the identity and the attributes of the target to the source, while others alter the
attributes of the swapped target after the transfer of the identity.

Facial Reenactment preserves the identity of the source subject but
manipulates intrinsic attributes such as mouth or expression.

Facial Editing modifies external attributes such as age, gender, or ethnicity.

Recently, audiovisual deepfake datasets, where the audio and images have
both been manipulated, have been presented to the research community Khalid
et al. (2021). Thus, it may be inferred that deepfake generation technologies are
evolving faster than detection technologies and even more realistic content is
expected to be seen in the future.



2.2. Deepfake Detection

A deepfake detection method has recently gained widespread attention
across the globe that finds traces of forgeries by exploiting the contextual and
semantic understanding of the data. Researchers in the area of multimedia
forensics have provided a wide range indicators to be used when spotting fake
media, including but not limited to: face wobble, distortion and shimmer,
waviness in movement, inconsistency in facial movement and speech, anomalies
in the movement of an object between frames, inconsistency in lighting, shadows
and reflections, blurred edges, abnormal facial angles and feature blurring,
breathing patterns, eye direction inconsistencies, missing facial features, e.g., a
known cheek mole, weight and softness of hair and clothing, over smoothness of
skin, missing teeth and hair details, lack of alignment in facial symmetry,
inconsistency in pixel contours, and strange or implausible behavior Masood et
al. (2022).

e Frame-based detection methods: Deepfake detection using frame-based
models is less complex and focuses on blending defects. For instance, Jia et al.
(2021) developed a two-branch multi-task learning framework based on within-
image and between-frame inconsistencies for classifying single frame. Zhao et al.
(2021) regarded deepfake detection as a fine-grained classification task, and
constructed a multi-attentional network to focus on local discriminative features
from multiple face attentive regions. The method in Coccomini et al. (2022)
achieved competitive results by joining Transformers to a pre-trained
convolutional network. Heo et al. (2021), improved the performance of the
network by using distillation in Vision Transformer from a pre-trained
EfficientNet-B7. Xia et al. (2022) leveraged textural disparities in facial images
from multi-color channels for detecting forged multimedia. Tian et al. (2023)
developed a frequency-aware contrastive approach to differentiate deepfakes
from real, and Liang et al. (2023) used facial geometry analysis along with a CNN-
LSTM network for the same purpose. Lastly, Wang et al. (2022) developed a fast
landmark-based method employing feature point defects.

e Sequence-based detection: Sequence based methods use a stack of frames for
detecting a suspected deepfake. Nguyen et al. (2021) propose a 3D CNN that
learns spatiotemporal features from sequence of video. In Hu et al. (2021), a
two-stream detector detects fakes by analyzing the frame-level and temporal
artifacts of compressed videos. A more recent study, Gu et al. (2021), proposes
spatial and temporal inconsistency learning using separate spatial and temporal
modules for deepfake detection. Another method, Chen et al. (2022), uses
spatiotemporal attention and a convolutional LSTM for tackling deepfakes.
Yang et al. (2023) proposes a graph relation-based approach used for
spatiotemporal deepfake detection, and finally, Zhao et al. (2023) uses a
spatiotemporal video vision transformer for performant deepfake detection.



Patch-based solutions: The arrival of transformers in vision has seen increased
use of patches for the task of recognizing fabricated faces. Li et al. (2020b) crop
facial regions and no-face regions into different patches and use a dual-branch
learning framework to distinguish between bonafide and forged facial patches.
This method also detects inconsistencies in the facial and background regions.
Similarly, Zhao et al. (2020) hypothesizes that source artifacts are still there after
the original image is forged. Using real-video features and monitoring
consistency, the forged images can be found. In Chai et al. (2020), a convolutional
patch-based classifier is developed which gives predictions (bonafide or forged)
over moving patches of a target image. Schwarcz and Chellappa (2021) employ
facial parsing and develop separate patch-based detectors on truncated outputs,
while Heo et al. (2023) use concatenated CNN features, along with patch-based
positioning, to specifying the artifact regions in the face.

Summarizing existing work, frame-, sequence-, and patch- based models each
have pros and cons. Frame-based approaches for deepfake detection have received
more attention in the literature compared to spatial and temporal artifact- based
methods Gu et al. (2021); Zhao et al. (2023); Haiwei et al. (2022). However,
a framework that combines the strengths of all three approaches in a lightweight
manner has not been explored. Therefore, the proposed framework integrates the
strengths of each approach using convolutions, vision transformers, and a unique
sequence-pooling technique. Our framework uses transformer encoders with patches
extracted in frames and sequences. Differences between consecutive frames are
exploited, allowing a holistic analysis of deepfake video. By doing this, the
proposed framework is able to capture both the spatial and temporal features of the
video, improving the accuracy of deepfake detection in a lightweight manner.

3. Problem Definition and Formulation

The tremendous success and continuously evolving deepfake generation
technology can create content that is indistinguishable from reality to the human eye.
Several approaches exist that describe deepfake detection as classification problem
and employ either spatial or spatiotemporal artifacts for classing. However, no work
has been done which studies the effect of spatial, temporal, and spatiotemporal
artifacts together. Therefore, this paper attempts to answer the following research
questions:

e Does the holistic approach, i.e., using spatial, temporal, and spatiotemporal
features together, give better detection accuracy than these features
individually?

e How does the holistic detection approach perform in terms of area under
curve (AUC) and accuracy on multiple datasets and across corpora?

e How does holistic approach perform when it processes the spatial, temporal,
or spatiotemporal information of a given video individually vs. as one entity
to classify it as real or deepfake?
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Figure 2: A graphical representation of the proposed method. A suspected deepfake is fed
to the proposed framework. Spatial, Temporal and Spatiotemporal Features, extracted from the
images and sequences in step 1, are fed to the attention-based token extraction. This is then
fused and sequence-pooled in step 3. Finally, the fused embeddings from suspected deepfakes
are fed to a classification head in step 4 to give the final prediction.

To answer the above questions, we formulate deepfake detection as a binary
classification problem of real and fake sequences. A given video V is divided into n
sequences {Si, Sz, ..., Sn} and each sequence composed of 30 frames of dimensions
224 x 224, Each sequence S; is fed to the HolisticDFD framework fn as follows:

prob = fn(s;) (1)

The proposed framework returns a probability, prob, in [0, 1]. The determination
if a video is real or a deepfake is done with the following decision function:

fake, if prob = 0.5
real, otherwise

frob) = {

4. Proposed Method

This section provides a detailed overview of the proposed HolisticDFD
framework, which is divided into four stages. The first stage extracts feature maps
from frozen spatial, temporal, and spatiotemporal models. In step two, frozen
attention-based tokenization is performed in order to extract self-attended
embeddings. Step three concatenates the tokens and performs pooling, and
finally, a downstream classifier is trained to identify bonafide and forged video
in Step 4. A pictorial representation of the proposed framework is shown in Figure
2 and the pseudo-code of the complete framework is presented in Algorithm 1. A
detailed discussion of each step is presented in the following subsections.



4.1. Feature Extraction
In this section, we provide the details of feature extraction for the spatial,
temporal, and spatiotemporal features using the Compact Convolutional Transformer

Algorithm 1 Model Infusion for Deepfake Detection
Input: Sequence of frames f, spatial network sn, temporal network t, spatiotemporal
network k, sequence pooling layer s_pool, classifier MLP
Output: Probability fakeness pred
1: images & flattened sequence S
diff & s[:, 1:,] - s[:, :-1] D> s is of shape
[batch, time, height, width, channels]
2: k_features & k(seq)
s _f=sn(images)
t_f & t(diff)
3: c_f< conc.(s_f, t_f, k f)
pool & s pool(c_f)
5: pred < MLP(pool)

A

method described by Hassani et al. (2021). The spatial features make use of 2D
Convolution and 2D Max Pooling and the temporal and spatiotemporal features use
3D Convolution and 3D Max Pooling layers. The convolution layers, followed by
pooling, significantly reduce the number of required parameters for the model and
the number of features extracted from images and sequences making the entire
architecture extremely lightweight.

4.2. Feature Extraction

In this section, we provide the details of feature extraction for the spatial,
temporal, and spatiotemporal features using the Compact Convolutional Transformer
method described by Hassani et al. (2021). The spatial features make use of 2D
Convolution and 2D Max Pooling and the temporal and spatiotemporal features use
3D Convolution and 3D Max Pooling layers. The convolution layers, followed by
pooling, significantly reduce the number of required parameters for the model and
the number of features extracted from images and sequences making the entire
architecture extremely lightweight.

4.2.1. Spatial Feature Extraction

Spatial features are extracted from video frames in order to detect image level
discrepancies, e.g., irregularities in eye-color, skin tone, or texture. When extracting
features which focus on spatial inconsistencies in the input images, a 2D Convolution
operation is performed on a frame x;. The obtained feature maps are passed to 2D
Max Pooling layers. Equation 2 shows the spatial patch extraction performed on a
batch of images x.

fmg = MaxPool2D (ReLU(Conde(x))) (2)



Figure 3: Differential Module used in the Temporal Transformer. (a) consecutive frames from
DFDC, (b) the resultant differential image.

4.2.2. Temporal Feature Extraction

In order to detect irregularities in the transition between frames, temporal
features are calculated. We adopted a differential module for detecting and
classifying moving targets in real-time video samples from Lipton et al. (1998).
Unlike raw feature extraction, the differential module makes the model
insensitive to changes in illumination. A differential module, d, is introduced
which computes the difference between consecutive frames, f; and fi.1, for all
frames in sequence x. Figure 3 demonstrates the resultant differential image from
sequential frames obtained using Equation 3.

d=[fi— fir1V fi €S] 3)

where S is the sequence of frames. The differential d is then fed to a 3D
Convolution followed by 3D Max Pooling to extract the features which focus on
temporal inconsistencies, as given in Equation 4.

fm, = MaxPool3D (ReLU(Conv3d(d))) (4)

where fm: are the resultant temporal feature maps. Conv3D, RelU, and
MaxPool3D are the same operations as in the spatial feature extraction process
but in this case, they are applied to a sequence of images or tubelets instead of
2D images.

4.2.3. Spatiotemporal Feature Extraction
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Spatiotemporal features are extracted to identify discrepancies in both images
and transitions between consecutive frames. The sequence of frames, S, is
directly passed to a 3D Convolution Layer and 3D Max Pooling, as given in
Equation 5.

fmy = MaxPool3D (ReLU(Conv3d(s))) (5)

where fms, fm:, fms: are the resultant spatiotemporal feature maps. The same
functions (Conv3D, ReLU and MaxPool3D) are again performed, but in this
case, they are applied directly to a sequence of images or tubelets without passing
them to the differential module.

4.3. Attention based Tokens Extraction

Multi-head, self-attention-based Transformer encoders are used to provide a
wider range of context for the features obtained in the feature extraction layer.
The extracted fms, fmt, and fmst feature maps are fed into a separate, attention-
based architecture comprised of a stack of transformer encoders. Each encoder
layer contains two sub-layers: A Multi-head Self-Attention Layer (MSA) and a
Multi-Layer Perceptron (MLP). Layer normalization (LN) is performed on the
input features before feeding them to the MSA, as shown in Equation 6, along
with a residual connection to the inputs, Equation 7, followed by a residual
connection.

z] = MSA(LN (z;_1) + 2,_1) (6)
z, = MLP(LN(z]) + z]) (7)
y = LN(LN(z]) + z;) (8)

The respective inconsistency dimension features, spatial ys, temporal yr,
and spatiotemporal ysr, are received from their respective networks as shown in
Equation 8, where the MSA allows the model to jointly attend the information
from different representation subspaces. Multi-Head Attention is defined as:

MultiHead(Q,K,V) = Conc. (head,, ..., head, )W?° (9)
head; = Attention(QW,°, KWX,vw}) (10)

where Q, K, and V are the query, key, and value, respectively.

4.4. Feature Fusion and Sequence Pooling

The spatial, temporal and spatiotemporal tokens, taken from the transformer
layers, are concatenated to form a single vector, v, as given in Equation 11.

v = Conc. (¥s, Y1, Ysr) (11)
where ys, yr, ysr are the tokens from spatial, temporal and spatiotemporal
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encoders. For concatenation purposes, the output vectors from the transformer
encoders all have the same shape. The concatenated tokens, v, from Equation 11
are then fed to a linear layer g(v)eR*? followed by Softmax activation, as given
inl12,

X, = softmax(g(v)T)eRP*1*n (12)

The attention-weights, X, obtained from Equation 12 are multiplied with
v, as shown in Equation 13.

z = X, X veRb*1xd (13)

After pooling, the second dimension, z eR?™?, is squeezed. Function g(v) applies a
linear transformation to the incoming data.

y=WwvT +B (14)

Multiply attention

l l weight wir token

Single neuron
dense layer

Attention
Norm. Layer pooled tokens

Sequence Pooling

Figure 4: The architectural flow for sequence pooling, where normalized tokens are passed
to a single neuron dense layer followed by softmax activation. The input tokens are passed
through a single-neuron neural network which is then softmaxed and attention is multiplied with
the input tokens.

where W is a weight matrix and B is the bias matrix, while the softmax function
rescales an n-dimensional feature vector so that all elements of the n-
dimensional tensor lie in the range of [0,1] and the sum is equal to 1 along a
particular axis, as in 15

exp(x;)

Softmax(xi) = m

(15)

As given in Figure 4, sequence pooling allows the network to weigh the
sequentialtokens in the latent space produced by the transformer encoder and
correlates data across the input tokens. The sequence pooling module attends to
the sequential data in order to assign attention weights across the sequence of
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tokens. By employing softmax activation to the attended tokens, the proposed
model gives higher attention-weights to tokens that have more information
related to downstream classification.
4.5. Downstream Classification

The output from the sequence pooling layers is fed to a fully-connected linear
classifier, essentially a multi-layer perceptron (MLP), which encodes the features
using hidden layers and gives a prediction in the last layer. Dropout and L2
regularization are used for better generalization.

Classifier(x;) = Y;w;x; + bias; (16)

Sigmoid activation is used for binary classification, which has a characteristic S-
shaped curve.

1
1+e™X

S(x) =

(17)

S ——4
e -
% 4 ,.n“/
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Figure 5: Visualization of different augmented samples after face detection and cropping.

5. Experiments and Results

This section provides a detailed discussion of the performance of the pro-
posed method over various evaluation matrices, datasets used for
experimentation, the preprocessing pipeline, and the training phases. All
implementation and experiments were performed in a distributed manner on a
High-Performance Computing Cluster with 4 Tesla v100 GPUs. TensorFlow was
used for designing and training the proposed architecture, and for experimenting
with larger batch sizes, automatic mixed precision was employed.

5.1. Data Preparation and Preprocessing

Released in 2019, Facebook’s Deepfake Detection Challenge (DFDC)
Dolhansky et al. (2020) is the largest publicly-available dataset of face swap
videos, with more than 100,000 clips created via various Deepfake, non-learned,
and GAN-based methods. Another dataset, FaceForensics++ Rossler et al. (2019),
is composed of bonafide and forged video clips synthesized using a number of
different generative methods. For evaluation based on FF++, we used the videos
generated in the Face2Face, Deepfakes, FaceSwap, FaceShifter and Neural
Textures subsets. We also used Celeb-DF Li et al. (2020c), itself comprised of 590
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bonafide video samples sourced from online platforms with subjects of diverse
age, gender, and ethnic group, and 5639 forged videos. Details of these datasets
are shown in Table 1. To conduct a fair comparison with SoTA methods, we used
the same split ratio released by each respective dataset.

For experimentation, face positions are extracted from deepfake video
samples using MTCNN and cropped to a fixed dimension of 224x224 pixels
without losing the aspect ratio, creating sequences of 30 consecutive frames.
When cropping, empty areas of the image are filled with black pixels. For better
generalization, extensive data augmentation techniques are used, including
random brightness/contrast, masking patches of images with black pixels, and
horizontal flipping. Figure 5 shows some of the augmented samples.

Table 1: Dataset details used for evaluation. DF: Deepfake, F2F: Face2Face, FS: FaceSwap,
NT: Neural Textures

Datasets Celeb-DF FF++ ¢23 DFDC
Manipulation DF DF F2F FS NT FS
Training set 50k 24k 24k 24k 24k 100k
Testing set 32k 6k 6k 6k 6k 2.5k

5.2. Evaluation Metrics

Area Under the Curve (AUC): AUC measures the entire two-dimensional area
under the receiver operating characteristic (ROC) curve, which is a plot that shows
the performance of a classifier at all classification thresholds. It plots two
parameters: i.e., True Positive Rate (TPR) and False Positive Rate (FPR). These are

defined as:
TP

TPR = (18)
TP+FN

FPR = % (19)
FP+TN

where FP and TN refer to false positive and true negative, respectively.
Accuracy is the percentage of predictions classified correctly by a given model.

For binary classification tasks like deepfake detection, accuracy may also be
calculated in terms of positives and negatives as follows:

n,
accuracy = ;"r—re“ (20)
total

where Ncorrect is the number of correct predictions and newta is the total number
of samples.

5.3. Training and Hyperparameter Setting
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Training of the proposed system is conducted in two phases. The first phase
is pretraining, where dimension-specific models are trained, and the second is
training in the joint space. In the first phase, the model is focused on one
inconsistency dimension of the data, and these sequences are passed through the
temporal and spatiotemporal models. For the spatial model, sequences are
rearranged to obtain images. The spatial, temporal and spatiotemporal models
are pre-trained with sequence pooling and independent classification heads with
a binary cross-entropy loss, along with the Adam optimizer with weight decay.
Consequently, the spatial model learns to give a prediction based on images,
while the temporal and spatiotemporal models learn from a sequence of frames.
The embedding dimension for all three models is kept the same for ease of
concatenation. The pre-trained models are frozen and the embeddings are
concatenated, as described in Section 3.3, and passed to a sequence pooling
layer, which in turn is passed to a fully connected classifier, as shown in Figure
1. For the spatial model, sequences are rearranged and the resultant images are
used as input. Sequences of frames are then fed to the temporal and
spatiotemporal models. These regularization techniques on individual models
improved the overall AUC from 0.915 to 0.926 on the DFDC Dataset.

Table 2: A comparative analysis of the proposed system with SOTA methods on the DFDC
dataset. S: Spatial Method, ST: spatiotemporal Method, STM: Spatial, Temporal and
spatiotemporal

Method Arch. #P AUC Fl-score
CViT Wodajo and Atnafu (2021) S 89 M 0.8458 77.0%
TEI Liu et al. (2020) ST 30.4M 0.8697 -
ViT Distillation Heo et al. (2021) S 373 M 0.978 91.9%
XceptionNet-avg Rossler et al. (2019) S 22.8M  0.843 -
13D ST 25M  0.8082 -
EfficViT Coccomini et al. (2022) S 109 M  0.919 83.8%
D-FWA Li and Lyu (2018) S - 0.8511 -
ADDNet-3D Zhao et al. (2021) ST - 0.7966 -
HolisticDFD (Our) STM 115M 0.926 92.64%

For finding optimal hyperparameters, we performed the experiments with the
following embedding dimensions [64, 128, 256, 384] and U-net encoder-like
convolution layers for feature extraction. Performance was optimal when the
embedding size was set to 256. The learning rate was set to 10-3 at the start and
later lowered to 10-5, along with weight decay of 10-4. We used 3 transformer
layers inside for the spatiotemporal and temporal modules, and 6 transformer
layers for the spatial module. We trained the model over 300 epochs, stopping
early at the lowest validation loss, as required. We also experimented with
different batch sizes from 8 to 16 on each device with distributed data-parallel.

5.4. Performance Analysis
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Extant deepfake detection algorithms may be classified as either frame-based
spatial (Sin Table 2) or sequence-based spatiotemporal (ST in Table 2). For frame-
based techniques, we chose Xception Rossler et al. (2019), Convolution- ViT
Wodajo and Atnafu (2021), ViT Distillation Heo et al. (2021), EfficientVit
Coccomini et al. (2022), and SelimEfficientNet. In contrast, frame-based methods
are either based on Convolutional Neural Networks or Vision Transformers. To
perform a fair comparison, we took the mean of the frame-level predictions in
order to give a final prediction for the entire video. The sequence-based detectors
used in the comparison are 3D convolution based C3D Liu et al. (2021), 2D-
Convolution-with-RNN Graves (2012), and TEI Liu et al. (2020), for spatial-
temporal modeling on a 2D CNN, D-FWA Li and Lyu (2018), ADDNet-3D Zhao et
al. (2021), and S-IML-T Li et al. (2020a).

Table 3: Performance evaluation of the proposed framework on Celeb-DF and
FaceForensics++ c23.

Method Celeb-DF FF++ c23
XceptionNet-avg Rossler et al. (2019) 0.9944 0.9940
Two-Branch Masi et al. (2020) - 0.9643
D-FWA Li and Lyu (2018) 0.9858 -
I3D Spatiotemporal 0.9923 0.9826
ADDNet-3D Zhao et al. (2021) 0.9517 -
Meso-4 Afchar et al. (2018) - 0.8310
LSTM based Network 0.9573 0.9482
Patch-DFD Yu et al. (2022) - 0.9565
S-IML-T Li et al. (2020a) 0.9884 -
Bayar and Stamm (2016) - 0.8297
Xia et al. (2022) - 0.9100
HolisticDFD (our) 0.9624 0.9415

Table 4: Performance evaluation (accuracy) on different subsets of FaceForensics++ c23, DF:
Deepfake, F2F: Face2Face, FS: FaceSwap, NT:Neural Texture.

Method DF F2F FS NT
C3D Liu et al. (2021) 0.9286 0.8857 0.9179 0.8964
XceptionNet-avg Rossler et al. (2019) 0.9893 0.9893 0.9964 0.9500
13D Carreira and Zisserman (2017) 0.9286 0.9286 0.9643 0.9036

LSTM Tariq et al. (2020) 0.9964 0.9929 0.9821 0.9393

TEI Liu et al. (2020) 0.9786 0.9714 0.9750 0.9429
FaceNetLSTM Sohrawardi et al. (2019) 0.8900 0.8700 0.9000 -
DeepRhythm Qi et al. (2020) 0.9870 0.9890 0.9780 -

Comotion-35 Wang et al. (2020) 0.9595 0.8535 0.9360 0.8825

Comotion-70 Wang et al. (2020) 0.9910 0.9325 0.9830 0.9045

ADDNet-3d Zi et al. (2020) 0.9214 0.8393 0.9250 0.7821

HolisticDFD (Our) 0.98 0.95 0.944  0.965

16



As shown in Table 2, the proposed architecture achieves 92.64% AUC on the
test set of the DFDC dataset. Our model is trained on the training set of the DFDC
and we chose the model weights with the lowest loss on the validationset.
When compared with the SoTA methods, our model’s ROC-AUC curve has a
comparable area (0.9264) to the SoTA (0.978) without using any distillation or
transfer learning from other tasks. As shown in Table2, the Heo et al. (2021)
models which demonstrate performance closest to the proposed method utilize
distillation or transfer learning from large models such as EfficientNet.

Table 5: Cross-dataset generalization. The models are trained on the DFDC and Celeb-DF datasets
and tested on other datasets

Train Test ROC-AUC

DFDC FaceForensics++ 0.761

DFDC Celeb-DF 0.701
Celeb-DF FaceForensics++ 0.782

The proposed method was also evaluated on Celeb-DF and FaceForensics++
c23, and shows significant performance on the Neural Textures subset of Face-
Forensics++, compared to the SoTA video and image level methods, as shown in
Table 3. When tested on the subsets of FaceForensics++ c23, the proposed model
gave SoTA accuracy of 0.965 on the Neural Textures subset of FaceForensics++,
as demonstrated in Table 4. The proposed method gives an AUC of 0.9624 on
Celeb-DF and 0.9415 on FaceForensics++ with c23 compression, as shown in
Table 4. It is important to note that the proposed method performs better due to
its ability to capture inconsistencies in small regions of the frames, such as lips,
which is the case in Neural Texture.

For cross-dataset evaluation, as shown in Table 5, the proposed framework
achieved an AUC of 0.761 on FaceForensics++ with the model trained on DFDC.
The same model gave an AUC of 0.701 on Celeb-DF. If trained on Celeb-DF, the
model showed an AUC of 0.782 on FaceForensics++.

We also performed time-complexity analysis of the HolisticDFD. The time
was calculated by doing multiple forward passes through the framework with
batch sizes ranging from 2 to 12 and a weighted average, as displayed in Figure 6.
We also found that HolisticDFD has an approximately linear time complexity with
respect to batch size. The proposed method took an average inference time of
14.63 seconds with an uncertainty of + 3.06 seconds on a CPU and an average
time of 250.46 milliseconds with an uncertainty of £ 106 milliseconds on GPU
machines.
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Figure 6: Time consumed by each module of the proposed framework on GPU and CPU.

5.5. Ablation Study

To test the effectiveness of the proposed method, we performed an
ablation study by removing individual components and experimenting with
binary combination of spatial, temporal and spatiotemporal feature-types. We
also experiment with a majority voting ensemble of the three independent
pipelines. The proposed frame- work obtained an AUC of 0.8968, 0.8801, and
0.901 using the spatial, temporal, and spatiotemporal transformers, individually.
We also experimented with the majority ensemble of these three models and the
obtained an AUC of 0.918. Although performance improved, the final
configuration chosen for the proposed framework where we intelligently
combined embeddings outperformed the majority voting ensemble. The
performance of various combinations of spatial, temporal and spatiotemporal
feature extractors in the proposed network is shown in Table 6. This
performance gradually improved as embeddings from different models were
infused, showing the enhanced performance of the joint model. The AUC score
improved from 0.896 to 0.907 when the spatial and spatiotemporal modelsare
concatenated, and further improved from 0.907 to 0.926 after concatenatingthe
joint spatiotemporal model. This demonstrates that infusion enables better
integrated pattern recognition by concatenating the embeddings from multiple
dimensions.

Table 6: Ablation study of the proposed framework on DFDC. S: Spatial Transformer, T:
Temporal Transformer, ST: spatiotemporal Transformer

Component AUC Params(#)

Only Spatial Transformer 0.8968 2.3 M

Only Temporal Transformer 0.8801 46 M

Only spatiotemporal Transformer 0.901 46 M

Spatial and Temporal Transformer  0.9021 6.9 M

Spatial and spatiotemporal 0.907 6.9 M
Ensemble (S, T, ST) 0.918 -

HolisticDFD (Our) 0.926 115 M
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Figure 7: Integrated Gradient Analysis for different forgery techniques in the FaceForensics++
Dataset.

5.6. Integrated Gradient Analysis

To better explain the relationship between the prediction of each pipeline
interms of its input images or sequences, we also performed integrated gradient
analysis of the individual pipelines. Model gradients were computed with respect
to inputs in order to determine attribution. Integrated gradient analysisof the
spatial model was performed using a black image baseline and interpolating the
target image in 10 steps. As given in Figure 7, the spatial model focused more on
particular artifacts like eyes or lips. Next, integrated gradient analysis of the
temporal model was performed on a sequence of frames with the same settings.
From this analysis, it is evident that the temporal model focused onthe entire
face. Similarly, an integrated gradient analysis of the spatiotemporal model
focused on both particular position artifacts and small areas (e.g., surrounding of
lips). The diversity of attention/attribution in the models demonstrate the
strength of the proposed method.

Integrated gradient analysis also demonstrates the strength of the feature
extractor with respect to different types of forgeries. For instance,Figure 7 shows
the integrated gradient heatmaps of several forgery methods onthe DFDC dataset.
The blue areas show the highest activation values on the heatmaps, which the
proposed framework uses for predictions. As a face-based manipulation, FaceSwap
transfers facial regions from the source to the target video, so the forged parts in
the fabricated videos cover the entire facial regions. It can be seen in Figure 7
that the integrated gradient outputs of the temporal model are very high in
FaceSwap when compared to other forgery methods. Face2Face is a reenactment
system which modifies the expressions ina target video while maintaining
identity information. It is clear from Figure7 that the spatiotemporal model
focuses on the sides of the lips, which give a strong indication of expression-
based modification. Similarly, the spatial model focuses on lips and eyes, markers
for expression manipulation. The activation regions ofthe Neural Texture samples
concentrated not only on lips but also onthe cheeks and forehead region, possibly
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due to the texture rendering operation when synthesizing fake facial regions,
resulting in irregular shadows and discordance in these areas. Examining the
deepfakes in Figure 7, the forged facial regions are pasted back to the target face,
providing obvious blending or visual artifacts near facial features like eyebrows.
Activation areas in the corresponding heatmaps for spatial are thus concentrated
around eyebrows and lips, while for temporal, on movements in the upper cheeks,
and for spatiotemporal around eyebrows and the nose, which is in line with our
hypotheses for this method.

In summary, Figure 7 demonstrates that the proposed framework has the
ability to learn distinct features of different facial parts and forgery methods,
which is a key step toward generalization of this framework to unseen deepfakes.

6. Conclusion

In this paper, we propose a novel, lightweight, and compact transformer-
based, deepfake detection method which intelligently combines the embeddings
from the spatial, temporal and spatiotemporal dimensions to differentiate a
suspected deepfake from bonafide video. We show that by adding spatial, temporal,
and spatiotemporal views of the data, the model learns a better data
representation and performance gradually improves. Our model preforms
competitively on the Celeb- DF and FaceForensics++ datasets and shows near
SoTA performance on the DFDC dataset when compared on AUC. In
addition, it outperformsall baselines on the basis of F1 Score. Cross-corpus
evaluation of the proposed method is comparable to SoTA methods, which
demonstrates the generalizability of the proposed method. More importantly,
the proposed model is significantly lightweight, using just 3% of the parameters
of SoTA deepfake detection methods. A performance evaluation of the model
shows employing the spatial, temporal and spatiotemporal latent joint space and
learned attention weights significantly improves the capability of deepfake
detectors. A comparative analysis of the framework with existing techniques
shows significant improvement when deployed on large datasets, such as the
DFDC, and specific forgeries, such as neural texture.
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