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Abstract

Safe reinforcement learning (RL) with assured satisfaction of hard state constraints during
training has recently received a lot of attention. Safety filters, e.g., based on control barrier functions
(CBFs), provide a promising way for safe RL via modifying the unsafe actions of an RL agent on
the fly. Existing safety filter-based approaches typically involve learning of uncertain dynamics and
quantifying the learned model error, which leads to conservative filters before a large amount of data
is collected to learn a good model, thereby preventing efficient exploration. This paper presents a
method for safe and efficient RL using disturbance observers (DOBs) and control barrier functions
(CBFs). Unlike most existing safe RL methods that deal with hard state constraints, our method
does not involve model learning, and leverages DOBs to accurately estimate the pointwise value
of the uncertainty, which is then incorporated into a robust CBF condition to generate safe actions.
The DOB-based CBF can be used as a safety filter with model-free RL algorithms by minimally
modifying the actions of an RL agent whenever necessary to ensure safety throughout the learning
process. Simulation results on a unicycle and a 2D quadrotor demonstrate that the proposed method
outperforms a state-of-the-art safe RL algorithm using CBFs and Gaussian processes-based model
learning, in terms of safety violation rate, and sample and computational efficiency.

Keywords: Reinforcement learning, robot safety, robust control, uncertainty estimation

1. Introduction

Reinforcement learning (RL) has demonstrated impressive performance in robotic control in recent
years. Many real-world systems are subject to safety constraints. As a result, safe RL has recently
received a lot of attention, although there are different definitions of “safety” Garcia and Ferndndez
(2015); Brunke et al. (2022). We limit our discussion to safe RL that aims to ensure satisfaction of
hard state constraints all the time during both training and deployment.

Among different safe RL paradigms, a commonly used one is to leverage safety filters (SFs) to
constrain the actions of RL agents and modify them whenever necessary to ensure satisfaction of
safety constraints. The advantages of this paradigm mainly lie in its flexibility, i.e., a safety filter can
often work with many existing RL algorithms without (many) modifications to the RL algorithms.
Along this line, researchers have proposed different safety filters based on shielding Alshiekh et al.
(2018), control barrier functions (CBFs) Cheng et al. (2019); Ohnishi et al. (2019); Emam et al.
(2021), Hamilton-Jacobi reachability (HJR) Fisac et al. (2018), and model predictive safety certifi-
cation (MPSC) Wabersich et al. (2021). Among these different SFs, the shielding SF of Alshiekh
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Figure 1: Proposed safe RL framework via using DOB-CBF. At each time step ¢, the RL agent
action uR" potentially violates the predefined safety constraints. A DOB-CBF based safety filter will
render a safe action u{*™ based on uRY, a precomputed estimation error bound y and an estimated
disturbance d;. Then, uiafe is applied to interact with the environment to enforce safety during and

after the policy training.

et al. (2018) only works for discrete state and action spaces. All other SFs are model-based, and
hinge on Gaussian process regression (GPR) to learn the uncertain dynamics together with quan-
tifiable prediction error for robust safety assurance. When applying these SFs to model-free RL,
model learning is still needed. More importantly, due to the reliance on model learning, when the
learned model is poor due to insufficient data, existing model-based SFs will be overly conservative,
preventing efficient exploration of RL agents. Additionally, it is well known that GPR is compu-
tationally demanding (standard GPR model training involves computing the inverse of an N x N
covariance matrix, where N is the number of data points). As a result, GPR is probably not scal-
able for disturbance estimation in high-dimensional systems, particularly compared to alternative
methods such as disturbance observers.

This paper presents a safe RL approach using disturbance observer (DOB) based robust CBFs
that were introduced in Zhao et al. (2020), and later extended in Das and Murray (2022). As illus-
trated in Figure 1, our approach leverages a DOB to accurately estimate the value of the lumped
disturbance at each time step with a pre-computable estimation error bound (EER). The estimated
disturbance together with the EEB is incorporated into a quadratic programming (QP) module with
robust CBF conditions that generates safe actions at each step by minimally modifying the RL ac-
tions. Compared to existing CBF-based safe RL approaches, e.g., Cheng et al. (2019); Ohnishi et al.
(2019); Emam et al. (2021), our approach does not need model learning of the uncertain dynamics
(although a nominal model is needed).

This article is organized as follows. Section 2 includes preliminaries related to DOBs, CBFs,
RL. Section 3 presents the proposed safe RL framework, while Section 4 includes the simulation
results for verifying the proposed framework using a unicycle and a 2D quadrotor.

2. Preliminaries

We consider a nonlinear control-affine system

2(t) = f2(t) + g(e(t))u(t) + d(x(t)), (D

where z(t) € X C R™ denotes the state vector, u(t) € U C R™ is the input vector, X and U
are compact sets, f : R® — R" and g : R" — R™ are known and locally Lipschitz-continuous
functions, and d : R™ — R’ is an unknown function that captures uncertain dynamics.
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Assumption 1 There exist positive constants |5 and by such that for any z,y € X, the following
inequalities hold:

ld(z) = d(y)]| < lallz = yll; )
1d(0)]| < ba 3)

Moreover, the constants [; and b, are known.

Remark 1 Assumption 1 is a fairly standard assumption in nonlinear systems stating that the un-
certain function d(x) is locally Lipschitz continuous with a known bound on the Lipschitz constant
in the compact set X and is bounded by a known constant at the origin. The Lipschitz constant and
uniform bounds will affect the estimation error bound when using a DOB to estimate the uncertainty
d(x), as characterized in Lemma 4.

2.1. Reinforcement Learning

Reinforcement learning aims to find an optimal policy 7* in an environment which can be formu-
lated as a Markov decision process (MDP). In this work, an MDP is defined by a tuple (S, A, p, ),
where the state space S and the action space A are continuous. Given the current state s; € S and
action a; € ‘A, the transition function p : S X S x A — [0, c0) represents the probability density of
the succeeding state s;+1 € S. The reward function 7 : S X A — [min, "max| determines a bounded
reward for each transition.

Our proposed safe RL scheme can work with any model-free RL algorithm. For illustration and
experimental demonstration in Section 4, we choose soft actor-critic (SAC) Haarnoja et al. (2018), a
state-of-the-art model-free RL algorithm. SAC uses an off-policy formulation that reuses historical
data to improve sample efficiency and utilizes entropy maximization to improve the stability of the
training process. In general, SAC aims to find a policy to maximize an entropy objective which is
formed as Zfzo E (2, a0)~px [T (Tt at) + aH (7 (- | 71))], where H(-) is the entropy term that in-
centivizes exploration, « is a positive parameter to determine the relative importance of the entropy
term against the reward, p, denotes the states and actions distribution induced by the policy 7, and
T is the termination time.

2.2. Control Barrier Function

The CBFs are introduced in Ames et al. (2016) to synthesize control laws to ensure forward in-
variance of some sets (often related to safety) for nonlinear control-affine systems. They are often
used as safety filters to modify a baseline control law to ensure that the system stays in a safety set.
Consider a set

C:={zeR":h(x) >0} C X, 4)

where h(x) is a continuously differentiable function h. A function g : (—=b,a) — (—o00, 00) is said
to belong to extended class K for some a, b > 0 if it is strictly increasing and 3(0) = 0.

Definition 2 (CBF Ames et al. (2016)). Given a set C defined using h(x) via (4), h(x) is a control
barrier function for (1) if there exists an extended class IC function 8 such that Vx € C

31615 {Lsh(z) + Lyh(z)u + hy(z)d(z)} > —B(h(z)), (5)
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where hy(z) £ 285 1 op(x) £ @) ¢y and Lyh(z) £ 2808 g ().

We define the input relative degree (disturbance relative degree) of a differentiable function
h : R® — R with respect to (1) as the number of times we need to differentiate it along (1)
until the input u (the disturbance d) explicitly shows up. Condition (5) works only for constraints
with input relative degrees (IRDs) of one. To handle constraints with higher IRDs, high-order
CBFs are introduced in Xiao and Belta (2021). Before introducing high-order CBFs, we make the
following assumption, which indicates that the input v and the disturbance d show up together when
differentiating h.

Assumption 2 The disturbance relative degree is equal to the input relative degree.

Define a sequence of functions ¢; : R — R,7 € {1,...,m} as:

¢i(x) = di1(x) + Bi(di-1(x)), do = h(x). (6)
Furthermore, define an associate sequence of sets as:

Ci:{meR":gbi,l(x)ZO}gX,ie{l,...,m}. @)

Definition 3 (High-Order CBF under Perturbed System Dynamics). Consider a sequential func-
tion ¢;(x) defined in (6) and a sequential set C;,i € {1, ...,m} defined in (7). Under Assumption 2,
an m'"-order differentiable function h : R" — R is a high-order CBF of IRD m for (1) if there exist
extended differentiable class K functions (3;,i € {1, ..., m}, such thatVz € C; N ...,NCp,

81615 L5 h(z) + ,Cgﬁ’}"”_lh(:c)u + [E}"_lh(x)}xd(x) + O(h(z)) + Bm (dm—1(x)) >0, (8)

m oL 'h(z) m— L™ 'h(x) . L™ h()
where L' h(x) = —L=—f (), LLF h(w) = —Lgp——g(x) and [}~ h(2)]; = —Lgr—,

and O(h(z)) = 77 L% (Br—i © $m—i-1) (x).

The true uncertainty d in Definitions 2 and 3 is not accessible in practice. Therefore, it is impossible
to evaluate whether a function h(x) obeys the constraints in (5) or (8). One solution is to derive a
sufficient condition for (5) or (8) using a uniform bound for the uncertainty d(x), as adopted in Zhao
et al. (2020); Nguyen and Sreenath (2016). In the following, we will derive an alternative sufficient
condition to define the so-called DOB-CBFs.

2.3. Disturbance Observer (DOB) with a Precomputable Estimation Error Bound

Disturbance observers have been widely used in control of uncertain systems Chen et al. (2015). All
different types of DOBs share a common idea, i.e., lumping all the uncertainties (that may consist
of unknown parameters, unmodeled dynamics and external disturbances) together as a total distur-
bance and estimate its value at each time instant. In this work, we leverage the DOB presented in
Zhao et al. (2020), which is inspired by the piecewise-constant (PC) adaptive law Wang et al. (2017)
and (Hovakimyan and Cao, 2010, Section 3.3), and was used in £, adaptive control of manned air-
craft Ackerman et al. (2017, 2019), and in learning-enabled control Gahlawat et al. (2020); Cheng
et al. (2022b). The DOB contains two components, i.e., a state predictor and a PC estimation law to
estimate the disturbance. For the disturbed system (1), the state predictor is given by

#(t) = f(z) + g(x)u +d(t) — aF, )
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where £ = % — x denotes the prediction error, @ > 0 is a constant, and d(t) is the estimated
disturbance. The disturbance estimation is updated according to

d(t) = d(iT), te[iT,(i+1)7T),
- a . (10)
1:6(7,T),z =0,1,...,

eaT _

where T is the estimation sampling time. The estimation error bound associated with the DOB is
given next.

Lemma 4 (Estimation Error Bound Zhao et al. (2020)) Given the uncertain system (1) subject to
Assumption 1, and the DOB defined via (9) and (10), the estimation error can be bounded as

OéldmaxxexHxH + by, YVO<t<T,

11
AT 2 2T + /i (1—e=T) 6, Ve >T, "

ld(t) — d(=(0))I] < 8(t) & {

where 1 £ lg(max,ex veu || f(2) + g(z)ul| + 0). Moreover, limg_,y(T) = 0.

Remark 5 Lemma 4 implies that the estimated disturbance can be made arbitrarily accurate for
t > T, by reducing T, the latter only subject to hardware limitations, including measurement noises.

Remark 6 As seen from Lemma 4, larger values of the Lipschitz bound |y and the uniform bound
bq (introduced in Assumption 1) lead to larger estimation error bounds. On the other hand, we
found that the estimation error bound in (11) could be quite conservative in most cases, potentially
due to the frequent use of Lipschitz continuity properties and triangular inequalities. Therefore, for
practical implementation one could leverage some empirical study, e.g., doing simulations under a
few user-selected functions of d(x) and determining a tighter bound than that defined in (11). The
conservativeness also indicates that even if the constants lg and by violate the conditions (3) to a
certain extent, the error bound in (11) most likely still holds in practice.

3. Main Approach

In this section, we first introduce high-order DOB-based CBFs (DOB-CBFs), by extending the re-
sult in Zhao et al. (2020), which only considers constraints with IRDs of one. The work in Das and
Murray (2022) considers high IRD constraints using exponential CBFs in the presence of matched
uncertainties (which are injected to the system through the same channel as control inputs). Com-
pared to Das and Murray (2022), we do not constrain the uncertainties to be matched, and leverage
high-order CBFs Xiao and Belta (2021) which are generalizations of exponential CBFs. Then, we
introduce our DOB-CBF based safe RL scheme (DOB-CBF-RL).

3.1. High-Order DOB-Based Control Barrier Function (DOB-CBF)

Given the disturbance bound in Assumption 1 and the estimation error bound in Lemma 4, we have
[ﬁ?*lh(x)]xd(x) < [C}”*lh(:c)]x II(0426(t)). The detailed proof could be found in the extended
version of this paper Cheng et al. (2022a). Therefore, we have the following definition.
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Definition 7 (DOB-CBF) Consider the system in (1), the DOB defined via (9) and (10) with an
estimation error bound given by (11), and a sequential function ¢;(x) defined in (6) and a sequential
set Ci,i € {1,...,m} defined in (7). Under Assumption 2, an m'"-order differentiable function
h : R™ — R is a high-order DOB-based control barrier function of relative degree m for (1) if there
exist extended class K functions (3;,1 € {1, ..., m}, such that

sup £7 () +,L7 " hau= 127 Rl (042, masx 5(0)+0(h(w))+Br (6-1(2)) 2 0
(12)
forallxz € C1 N ...,NCpp.

It is obvious that if a control input w is a solution for (12), it also satisfies (8). We next define
K(t,x,u) & Lfh(@)+ Lo L7~ h(@)u+O(h(@)+ L7 h(@)]ed(t) — | [LF h(a)]:[15(2). (13)
Then, the main theorem of the proposed approach is introduced as follows.

Theorem 8 Suppose the condition (12) holds. Then, the condition

Sup’C(taLEa U) > _ﬁm (Qsmfl(x)) (14)
ueU

is a sufficient condition for (8). It is also a necessary condition for (8) for any t > T when T" — Q.

The proof of Theorem 8 could be found in Cheng et al. (2022a).

3.2. Safe RL Policy Training with DOB-CBFs

Using the condition in (14) that depends on the estimated disturbance ci(t) we can compute the safe
control inputs via solving a quadratic programming (QP) problem defined as

1
tsafe = argmin - (u — urr)” P(u — uge) (DOB-CBF-QP)
u€eR™

S.t. ’C(t,l', U) + ﬁm (d)mfl(w)) 2 07
uEU,

5)

where P is a positive-definite weighting matrix, uryp is the action of RL policy and wgyf is the
final control input applied to the system (1) during both policy training and policy deployment. In
case ugy satisfies the constraints of (15) and is therefore safe, we have ug,fe=ugry ; otherwise, (15)
produces safe inputs that are mostly close to ugy. With the DOB-CBF-QP in (15), our proposed
DOB-CBF-RL scheme is summarized in Algorithm 1. At each step during training, the vanilla RL
policy determines a potentially unsafe action. This action is then modified by the DOB-CBF-QP in
(15) to produce a safe action ug,g that is applied to the environment. It is worth mentioning that
the tuple (z¢, S, x4y1,7,) involving the safe action is added to the reply buffer D and used to
update the policy. Using safe actions for policy training will promote the agent to learn a safe and
optimal policy (although not guaranteed), which the DOB-CBF as a safety filter does not need to
(frequently) intervene with.
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Algorithm 1: DOB-CBF based safe RL
Input: Initial SAC policy 7y, number of episodes N, number of steps per episode M, number
of policy update G, nominal dynamics & = f(x) + ¢g(z)u, DOB defined via (9) and
(10) with estimation error bound -,
fori=1,...., N do
fort=1,...,M do
Obtain action uR" from policy 7y
Obtain disturbance estimation d; from the DOB defined via (9) and (10)
Obtain safe action uiafe from DOB-CBF-QP defined in (15), using u?L, ~ and d}
Take action u$® in the environment
Add transition (z¢, uf*®, x;,1,7¢) to replay buffer D
forj=1,...,Gdo
Sample mini-batch 5 from D
Update policy g using B
end

end

end

4. Simulation

We use a unicycle and a 2D quadrotor to validate the efficacy of the proposed DOB-CBF-RL
method. For comparison, we also implemented a state-of-the-art safe RL method based on CBFs
and GPR-based model learning (denoted as GP-CBF-RL) in Cheng et al. (2019). The policy train-
ing was performed on a desktop with an INTEL 19-9980XE and an NVIDIA 3090Ti GPU and
64GB RAM. The codes are available at https://github.com/Adriancyk/Safe-RL-with-Disturbance-
Observer.

4.1. Unicycle

A unicycle model was borrowed from Emam et al. (2021) and adapted. The state z = [ps, py, 0]7,
where p, and p, denote the robot position along the x-axis and y-axis, respectively, and 0 is the
counterclockwise angle between the positive direction of the x-axis and the head direction of the
robot. The control inputs are the linear velocity v and angular velocity w of the system. The goal is
to navigate the unicycle from the red dot to the yellow dot without colliding with any obstacles, as
shown in Figure 2 (Right). The vehicle’s equations of motion are given by

vy = cosB(v +dpy,),
vy = sinf(v + dp,), (16)
0= w,

where the uncertainty d,, is introduced to mimic the slippery ground that causes the vehicle to lose

partial control efficiency. We train DOB-CBF-RL policy and the GP-CBF-RL policy separately and

define hi(x) = 5(([[piobs|l = /P2 + D2)? — 17 4ps)> Where i = 1,2, 3, pi obs denotes the location of

tth obstacle in xy-plane, and 7; s is the radius of the sth obstacle. The parameters of the system
dynamics and the details of the RL training are included in Cheng et al. (2022a).

We can see from Figure 2 (Left) that the DOB-CBF-RL policy consistently converges within 60
episodes. In comparison, it takes at least 90 episodes for the GP-CBF-RL to find an equally good
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policy. Considering the use of 200 episodes to train a policy, a 30-episode gap is a considerable
improvement in training efficiency. It is worth noting that compared with DOB-CBF-RL, there are
more variations in the training performance across different trials under GP-CBF-RL. It indicates
that DOB-CBF-RL can further improve the training stability by providing accurate disturbance
estimation. Figure 2 (Right) compares the navigation performance. DOB-CBF-RL provides a more
aggressive way to approach the target. In comparison, GP-CBF-RL chooses a more conservative
trajectory and fails to reach the target, although the deviation is negligible. The safety violation rate
for each 50 training episodes during training is listed in Table 1. One can see that DOB-CBF-RL
achieves zero-violation rates during the entire training process, while GP-CBF has a higher violation
rate at the initial training stage. With the estimation accuracy of GP model increasing, the violation
rate gradually decreases. It is worth mentioning that in Cheng et al. (2019), the estimation error
bound in GPR-based uncertainty estimation is simply determined by a constant ks selected purely
according to the desired confidence level, 1 — §. The computation of the error bound in this way
is incorrect, and could potentially give an underestimation of the true error bound, especially when
data is limited. The underestimated error bounds lead to high safety violation rates at the initial
learning stage. A more rigorous approach for error bound determination is given in Lederer et al.
(2019).

—_
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Figure 2: (Left) Unicycle training curves for DOB-CBF-RL and GP-CBF-RL. The solid lines and
shaded areas denote the mean and standard deviation over five trials. (Right) Navigation perfor-
mance for DOB-CBF-RL policy and GP-CBF-RL policy trained in 200 episodes.

Table 1: Safety violation rate during training for the unicycle

Training Episode | 1~50 | 51~100 | 101~150 | 151~200
DOB-CBF 0.0% 0.0% 0.0% 0.0%
GP-CBF 12.0% | 6.0% 2.0% 0.0%

4.2. 2D Quadrotor

The state of the quadrotor is z = [pg, vz, P2, vz, 0, 0]T, where [p,, pz) and [v, v;] are the position
and velocity of the quadrotor in the zz-plane, respectively, and [, 0] are the pitch angle, i.e., the
angle between x direction of the quadrotor body frame and the x direction of the inertia frame, and
its angular velocity, respectively. The dynamics are given as follows:
Up = —sinf (ug + ug + dy, + dy,) /m + dy,
vy = cos O (ur + up + duy +du,) /M — g +dz, (17)
0 = (uz — uy — du, +du,) L/ Iy,
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Figure 3: (Left) Quadrotor training curves for DOB-CBF-RL and GP-CBF-RL. The solid lines
and shaded areas denote the mean and standard deviation over five trials. The cumulative reward
is normalized. (Right) Trajectory tracking performance for DOB-CBF-RL policy trained in 2500
episodes and GP-CBF-RL policy trained in 5000 episodes.
where g is the gravitational acceleration, m denotes the total mass of the quadrotor, L is the effective
moment arm, [, is the moment of inertia around y-axis, d,, and d,, are uncertainties to mimic
the rotational friction of motors, and d, and d, denote the air resistance along each axis. To be
realistic, we impose the constrained control input u; € [0, umax| for i = 1,2, where tumax = 2
N is the maximum thrust force generated by each rotor. The objective is to control the quadrotor
to track a reference trajectory (denoted by the gray line in Fig. 3) while staying within a circle
boundary with a radius rp,g = 0.85m. For DOB-CBF design, we first chose a function h(z) =
T(rdg — (P2 + p3)) as a candidate high-order CBF function for the nominal (i.e., uncertainty-free)
system in the absence of control limits. The details about the dynamics, RL training and simulation
settings can be found in Cheng et al. (2022a). Figure 3 (Left) shows that the DOB-CBF-RL method
can significantly improve the training efficiency, allowing the SAC policy to converge in less than
two-thousand episodes. In any case, the GP-CBF-RL method failed to find an equally good policy
in 6000 episodes in most trials. One can see from Figure 3 (Right) that DOB-CBF-RL enables the
agent to generate a more aggressive trajectory. Knowing the accurate disturbance estimation, the
policy trained with DOB-CBF-RL pushes the agent to finish the task as perfectly as possible, while
still enforces the safety of the quadrotor.

Figure 4 (Left) shows the disturbance estimation result at different training steps. DOB shows
a relatively stable and decent estimation performance starting from the beginning and consistently
yields an estimation error that is smaller than 5%, while the GP model gradually decreases the error
and yields larger estimation error even at 6 x 10° steps. It is well known that GP model training
involves computing a N x N covariance matrix X, where N is the number of data points, which
is computationally expensive when NN is large. Figure 4 (Right) shows the average computation
time per one thousand training steps, from which the computation time of GP-CBF-RL is at least
about three times longer than the computation time of DOB-CBF-RL. To better validate the safe
exploration feature, we compute the safety violation rates for every 500 episodes during training
and summarize the results in Table 2. The “w/ pre-training” means we first trained a vanilla policy
using nominal dynamics and used the pre-trained policy as the starting point for GP-CBF-RL. We
can see from Table 2, that DOB-CBF-RL shows an overwhelming advantage over the GP-CBF-RL
method. Without pre-training, GP-CBF-RL shows significant safety guarantee performance at the
initial training stage. In ”w/ pre-training” case, GP-CBF still doesn’t demonstrate evenly matched
performance as DOB-CBF while its violation rates have been significantly lowered by introducing
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a pretrained policy. Theoretically, DOB-CBF-RL is supposed to guarantee zero safety violations
by leveraging a DOB-CBF function defined in Theorem 7. However, verifying whether a given
function is a DOB-CBF, especially in the presence of control limits, is still a challenging problem.
In other words, the intuitively selected function h may not be a DOB-CBF in the presence of the
uncertainties and control limits. As a result, the rigorous safety guarantee provided by our DOB-
CBF-RL framework is lost. However, compared to GP-CBF-RL, our DOB-CBF framework still
achieves much lower constraint violation rate throughout the learning phase.
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Figure 4: (Left) Disturbance estimation percentage error yielded by DOB and GP models at dif-
ferent steps during training. Five trials were performed and the mean with the standard deviation
is shown as an error bar at each test step. The color box attached to each error bar denotes the
worst and best estimation error at each shown step. For better illustration, we categorize all cases
where the estimation percentage error is greater than 100% as instances of 100% percentage error
cases. (Right) Average computation time per 1000 steps. Solid lines with markers plot the average
computation time per 1000 steps at nth training step.

Table 2: Safety violation rate during training for 2D quadrotor

Training Episode 1~500 | 501~1000 | 1001~1500 | 1501~2000
DOB-CBF 15.8% 2.6% 0.2% 0.0%
GP-CBF 91.4% 79.6% 59.8% 40.4%
GP-CBF(w/ pre-training) | 30.8% 22.8% 20.0% 7.8%

5. Conclusion and Future Work

This paper presents a safe and efficient reinforcement learning (RL) scheme based on disturbance
observers (DOBs) and control barrier functions (CBFs). Our approach leverages a DOB that can
accurately estimate the pointwise value of the uncertainty, and a quadratic programming (QP) mod-
ule with a robust CBF condition, to generate safe actions by minimally modifying the (potentially
unsafe) actions generated by the RL policy. Unlike existing safe RL approaches based on CBFs,
which often rely on model learning of the uncertain dynamics, our approach completely removes the
need for model learning and facilitates more sample- and computationally-efficient policy training.
The efficacy of our proposed scheme is validated in simulated environments, in comparison with an
existing CBF-based safe RL approach.

Our future work includes experimental validation of the proposed DOB-CBF-RL framework on
a real robot, and extension of the framework to model-based RL settings.
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