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Abstract

Safe reinforcement learning (RL) with assured satisfaction of hard state constraints during

training has recently received a lot of attention. Safety lters, e.g., based on control barrier functions

(CBFs), provide a promising way for safe RL via modifying the unsafe actions of an RL agent on

the y. Existing safety lter-based approaches typically involve learning of uncertain dynamics and

quantifying the learned model error, which leads to conservative lters before a large amount of data

is collected to learn a good model, thereby preventing efcient exploration. This paper presents a

method for safe and efcient RL using disturbance observers (DOBs) and control barrier functions

(CBFs). Unlike most existing safe RL methods that deal with hard state constraints, our method

does not involve model learning, and leverages DOBs to accurately estimate the pointwise value

of the uncertainty, which is then incorporated into a robust CBF condition to generate safe actions.

The DOB-based CBF can be used as a safety lter with model-free RL algorithms by minimally

modifying the actions of an RL agent whenever necessary to ensure safety throughout the learning

process. Simulation results on a unicycle and a 2D quadrotor demonstrate that the proposed method

outperforms a state-of-the-art safe RL algorithm using CBFs and Gaussian processes-based model

learning, in terms of safety violation rate, and sample and computational efciency.
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1. Introduction

Reinforcement learning (RL) has demonstrated impressive performance in robotic control in recent

years. Many real-world systems are subject to safety constraints. As a result, safe RL has recently

received a lot of attention, although there are different denitions of “safety” Garcıa and Fernández

(2015); Brunke et al. (2022). We limit our discussion to safe RL that aims to ensure satisfaction of

hard state constraints all the time during both training and deployment.

Among different safe RL paradigms, a commonly used one is to leverage safety lters (SFs) to

constrain the actions of RL agents and modify them whenever necessary to ensure satisfaction of

safety constraints. The advantages of this paradigm mainly lie in its exibility, i.e., a safety lter can

often work with many existing RL algorithms without (many) modications to the RL algorithms.

Along this line, researchers have proposed different safety lters based on shielding Alshiekh et al.

(2018), control barrier functions (CBFs) Cheng et al. (2019); Ohnishi et al. (2019); Emam et al.

(2021), Hamilton-Jacobi reachability (HJR) Fisac et al. (2018), and model predictive safety certi-

cation (MPSC) Wabersich et al. (2021). Among these different SFs, the shielding SF of Alshiekh
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Assumption 1 There exist positive constants ld and bd such that for any x, y ∈ X , the following

inequalities hold:

∥d(x)− d(y)∥ ≤ ld∥x− y∥, (2)

∥d(0)∥ ≤ bd. (3)

Moreover, the constants ld and bd are known.

Remark 1 Assumption 1 is a fairly standard assumption in nonlinear systems stating that the un-

certain function d(x) is locally Lipschitz continuous with a known bound on the Lipschitz constant

in the compact set X and is bounded by a known constant at the origin. The Lipschitz constant and

uniform bounds will affect the estimation error bound when using a DOB to estimate the uncertainty

d(x), as characterized in Lemma 4.

2.1. Reinforcement Learning

Reinforcement learning aims to nd an optimal policy π∗ in an environment which can be formu-

lated as a Markov decision process (MDP). In this work, an MDP is dened by a tuple (S,A, p, r),
where the state space S and the action space A are continuous. Given the current state st ∈ S and

action at ∈ A, the transition function p : S ×S ×A → [0,∞) represents the probability density of
the succeeding state st+1 ∈ S . The reward function r : S ×A → [rmin, rmax] determines a bounded

reward for each transition.

Our proposed safe RL scheme can work with any model-free RL algorithm. For illustration and

experimental demonstration in Section 4, we choose soft actor-critic (SAC) Haarnoja et al. (2018), a

state-of-the-art model-free RL algorithm. SAC uses an off-policy formulation that reuses historical

data to improve sample efciency and utilizes entropy maximization to improve the stability of the

training process. In general, SAC aims to nd a policy to maximize an entropy objective which is

formed as
T

t=0 E(xt,at)∼ρπ [r (xt, at) + αH (π (· | xt))], where H(·) is the entropy term that in-

centivizes exploration, α is a positive parameter to determine the relative importance of the entropy

term against the reward, ρπ denotes the states and actions distribution induced by the policy π, and

T is the termination time.

2.2. Control Barrier Function

The CBFs are introduced in Ames et al. (2016) to synthesize control laws to ensure forward in-

variance of some sets (often related to safety) for nonlinear control-afne systems. They are often

used as safety lters to modify a baseline control law to ensure that the system stays in a safety set.

Consider a set

C := {x ∈ R
n : h(x) ≥ 0} ⊆ X , (4)

where h(x) is a continuously differentiable function h. A function β : (−b, a) → (−∞,∞) is said
to belong to extended class K for some a, b > 0 if it is strictly increasing and β(0) = 0.

Denition 2 (CBF Ames et al. (2016)). Given a set C dened using h(x) via (4), h(x) is a control

barrier function for (1) if there exists an extended class K function β such that ∀x ∈ C

sup
u∈U

{Lfh(x) + Lgh(x)u+ hx(x)d(x)} ≥ −β(h(x)), (5)
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where hx(x) ≜
∂h(x)
∂x

, Lfh(x) ≜
∂h(x)
∂x

f(x) and Lgh(x) ≜
∂h(x)
∂x

g(x).
We dene the input relative degree (disturbance relative degree) of a differentiable function

h : R
n → R with respect to (1) as the number of times we need to differentiate it along (1)

until the input u (the disturbance d) explicitly shows up. Condition (5) works only for constraints

with input relative degrees (IRDs) of one. To handle constraints with higher IRDs, high-order

CBFs are introduced in Xiao and Belta (2021). Before introducing high-order CBFs, we make the

following assumption, which indicates that the input u and the disturbance d show up together when

differentiating h.

Assumption 2 The disturbance relative degree is equal to the input relative degree.

Dene a sequence of functions ϕi : R
n → R, i ∈ {1, ...,m} as:

ϕi(x) = ϕ̇i−1(x) + βi(ϕi−1(x)),ϕ0 = h(x). (6)

Furthermore, dene an associate sequence of sets as:

Ci = {x ∈ R
n : ϕi−1(x) ≥ 0} ⊆ X , i ∈ {1, . . . ,m}. (7)

Denition 3 (High-Order CBF under Perturbed System Dynamics). Consider a sequential func-

tion ϕi(x) dened in (6) and a sequential set Ci, i ∈ {1, ...,m} dened in (7). Under Assumption 2,
anmth-order differentiable function h : Rn → R is a high-order CBF of IRD m for (1) if there exist

extended differentiable class K functions βi, i ∈ {1, ...,m}, such that ∀x ∈ C1 ∩ ...,∩Cm

sup
u∈U

Lm
f h(x) + LgL

m−1
f h(x)u+ [Lm−1

f h(x)]xd(x) +O(h(x)) + βm (ϕm−1(x)) ≥ 0, (8)

whereLm
f h(x) =

∂Lm−1

f
h(x)

∂x
f(x),LgL

m−1
f h(x) =

∂Lm−1

f
h(x)

∂x
g(x) and [Lm−1

f h(x)]x =
∂Lm−1

f
h(x)

∂x
,

and O(h(x)) =
m−1

i=1 Li
f (βm−i ◦ ϕm−i−1) (x).

The true uncertainty d in Denitions 2 and 3 is not accessible in practice. Therefore, it is impossible

to evaluate whether a function h(x) obeys the constraints in (5) or (8). One solution is to derive a

sufcient condition for (5) or (8) using a uniform bound for the uncertainty d(x), as adopted in Zhao
et al. (2020); Nguyen and Sreenath (2016). In the following, we will derive an alternative sufcient

condition to dene the so-called DOB-CBFs.

2.3. Disturbance Observer (DOB) with a Precomputable Estimation Error Bound

Disturbance observers have been widely used in control of uncertain systems Chen et al. (2015). All

different types of DOBs share a common idea, i.e., lumping all the uncertainties (that may consist

of unknown parameters, unmodeled dynamics and external disturbances) together as a total distur-

bance and estimate its value at each time instant. In this work, we leverage the DOB presented in

Zhao et al. (2020), which is inspired by the piecewise-constant (PC) adaptive lawWang et al. (2017)

and (Hovakimyan and Cao, 2010, Section 3.3), and was used in L1 adaptive control of manned air-

craft Ackerman et al. (2017, 2019), and in learning-enabled control Gahlawat et al. (2020); Cheng

et al. (2022b). The DOB contains two components, i.e., a state predictor and a PC estimation law to

estimate the disturbance. For the disturbed system (1), the state predictor is given by

˙̂x(t) = f(x) + g(x)u+ d̂(t)− ax̃, (9)

4



SAFE AND EFFICIENT RL USING DISTURBANCE-OBSERVER-BASED CBFS

where x̃ = x̂ − x denotes the prediction error, a > 0 is a constant, and d̂(t) is the estimated

disturbance. The disturbance estimation is updated according to







d̂(t) = d̂(iT ), t ∈ [iT, (i+ 1)T ),

d̂(iT ) = − a

eaT − 1
x̃(iT ), i = 0, 1, ...,

(10)

where T is the estimation sampling time. The estimation error bound associated with the DOB is

given next.

Lemma 4 (Estimation Error Bound Zhao et al. (2020)) Given the uncertain system (1) subject to

Assumption 1, and the DOB dened via (9) and (10), the estimation error can be bounded as

∥d̂(t)− d(x(t))∥ ≤ δ(t) ≜



θ ≜ ldmaxx∈X ∥x∥+ bd, ∀0 ≤ t < T,

γ(T ) ≜ 2
√
nηT +

√
n


1− e−aT


θ, ∀t ≥ T,
(11)

where η ≜ ld(maxx∈X ,u∈U ∥f(x) + g(x)u∥+ θ). Moreover, limT→0 γ(T ) = 0.

Remark 5 Lemma 4 implies that the estimated disturbance can be made arbitrarily accurate for

t ≥ T , by reducing T , the latter only subject to hardware limitations, including measurement noises.

Remark 6 As seen from Lemma 4, larger values of the Lipschitz bound ld and the uniform bound

bd (introduced in Assumption 1) lead to larger estimation error bounds. On the other hand, we

found that the estimation error bound in (11) could be quite conservative in most cases, potentially

due to the frequent use of Lipschitz continuity properties and triangular inequalities. Therefore, for

practical implementation one could leverage some empirical study, e.g., doing simulations under a

few user-selected functions of d(x) and determining a tighter bound than that dened in (11). The

conservativeness also indicates that even if the constants ld and bd violate the conditions (3) to a

certain extent, the error bound in (11) most likely still holds in practice.

3. Main Approach

In this section, we rst introduce high-order DOB-based CBFs (DOB-CBFs), by extending the re-

sult in Zhao et al. (2020), which only considers constraints with IRDs of one. The work in Daş and

Murray (2022) considers high IRD constraints using exponential CBFs in the presence of matched

uncertainties (which are injected to the system through the same channel as control inputs). Com-

pared to Daş and Murray (2022), we do not constrain the uncertainties to be matched, and leverage

high-order CBFs Xiao and Belta (2021) which are generalizations of exponential CBFs. Then, we

introduce our DOB-CBF based safe RL scheme (DOB-CBF-RL).

3.1. High-Order DOB-Based Control Barrier Function (DOB-CBF)

Given the disturbance bound in Assumption 1 and the estimation error bound in Lemma 4, we have

[Lm−1
f h(x)]xd(x) ≤ ∥[Lm−1

f h(x)]x∥(θ+2δ(t)). The detailed proof could be found in the extended
version of this paper Cheng et al. (2022a). Therefore, we have the following denition.
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Denition 7 (DOB-CBF) Consider the system in (1), the DOB dened via (9) and (10) with an

estimation error bound given by (11), and a sequential function ϕi(x) dened in (6) and a sequential
set Ci, i ∈ {1, ...,m} dened in (7). Under Assumption 2, an mth-order differentiable function

h : Rn → R is a high-order DOB-based control barrier function of relative degree m for (1) if there

exist extended class K functions βi, i ∈ {1, ...,m}, such that

sup
u∈U

Lm
f h(x)+LgL

m−1
f h(x)u−∥[Lm−1

f h(x)]x∥(θ+2 max
t∈[0,∞)

δ(t))+O(h(x))+βm (ϕm−1(x)) ≥ 0,

(12)

for all x ∈ C1 ∩ ...,∩Cm.

It is obvious that if a control input u is a solution for (12), it also satises (8). We next dene

K(t, x, u) ≜ Lm
f h(x)+LgL

m−1
f h(x)u+O(h(x))+[Lm−1

f h(x)]xd̂(t)−∥[Lm−1
f h(x)]x∥δ(t). (13)

Then, the main theorem of the proposed approach is introduced as follows.

Theorem 8 Suppose the condition (12) holds. Then, the condition

sup
u∈U

K(t, x, u) ≥ −βm (ϕm−1(x)) (14)

is a sufcient condition for (8). It is also a necessary condition for (8) for any t ≥ T when T → 0.

The proof of Theorem 8 could be found in Cheng et al. (2022a).

3.2. Safe RL Policy Training with DOB-CBFs

Using the condition in (14) that depends on the estimated disturbance d̂(t), we can compute the safe

control inputs via solving a quadratic programming (QP) problem dened as

usafe = argmin
u∈Rm

1

2
(u− uRL)

TP (u− uRL) (DOB-CBF-QP)

s.t. K(t, x, u) + βm (ϕm−1(x)) ≥ 0,

u ∈ U ,

(15)

where P is a positive-denite weighting matrix, uRL is the action of RL policy and usafe is the

nal control input applied to the system (1) during both policy training and policy deployment. In

case uRLsatises the constraints of (15) and is therefore safe, we have usafe=uRL; otherwise, (15)

produces safe inputs that are mostly close to uRL. With the DOB-CBF-QP in (15), our proposed

DOB-CBF-RL scheme is summarized in Algorithm 1. At each step during training, the vanilla RL

policy determines a potentially unsafe action. This action is then modied by the DOB-CBF-QP in

(15) to produce a safe action usafe that is applied to the environment. It is worth mentioning that

the tuple (xt, u
safe
t , xt+1, rt) involving the safe action is added to the reply buffer D and used to

update the policy. Using safe actions for policy training will promote the agent to learn a safe and

optimal policy (although not guaranteed), which the DOB-CBF as a safety lter does not need to

(frequently) intervene with.
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Algorithm 1: DOB-CBF based safe RL

Input: Initial SAC policy πθ, number of episodes N , number of steps per episode M , number

of policy update G, nominal dynamics ẋ = f(x) + g(x)u, DOB dened via (9) and

(10) with estimation error bound γ,

for i = 1, ...., N do

for t = 1, ...,M do

Obtain action uRLt from policy πθ
Obtain disturbance estimation d̂t from the DOB dened via (9) and (10)

Obtain safe action usafet from DOB-CBF-QP dened in (15), using uRLt , γ and d̂t
Take action usafet in the environment

Add transition (xt, u
safe
t , xt+1, rt) to replay buffer D

for j = 1, ..., G do
Sample mini-batch B from D
Update policy πθ using B

end

end

end

4. Simulation

We use a unicycle and a 2D quadrotor to validate the efcacy of the proposed DOB-CBF-RL

method. For comparison, we also implemented a state-of-the-art safe RL method based on CBFs

and GPR-based model learning (denoted as GP-CBF-RL) in Cheng et al. (2019). The policy train-

ing was performed on a desktop with an INTEL i9-9980XE and an NVIDIA 3090Ti GPU and

64GB RAM. The codes are available at https://github.com/Adriancyk/Safe-RL-with-Disturbance-

Observer.

4.1. Unicycle

A unicycle model was borrowed from Emam et al. (2021) and adapted. The state x = [px, py, θ]
T ,

where px and py denote the robot position along the x-axis and y-axis, respectively, and θ is the

counterclockwise angle between the positive direction of the x-axis and the head direction of the

robot. The control inputs are the linear velocity v and angular velocity ω of the system. The goal is

to navigate the unicycle from the red dot to the yellow dot without colliding with any obstacles, as

shown in Figure 2 (Right). The vehicle’s equations of motion are given by

vx = cos θ(v + dm),

vy = sin θ(v + dm),

θ̇ = ω,

(16)

where the uncertainty dm is introduced to mimic the slippery ground that causes the vehicle to lose

partial control efciency. We train DOB-CBF-RL policy and the GP-CBF-RL policy separately and

dene hi(x) =
1
2((∥pi,obs∥ −



p2x + p2y)
2 − r2i,obs), where i = 1, 2, 3, pi,obs denotes the location of

ith obstacle in xy-plane, and ri,obs is the radius of the ith obstacle. The parameters of the system

dynamics and the details of the RL training are included in Cheng et al. (2022a).

We can see from Figure 2 (Left) that the DOB-CBF-RL policy consistently converges within 60

episodes. In comparison, it takes at least 90 episodes for the GP-CBF-RL to nd an equally good
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Ersin Daş and Richard M Murray. Robust safe control synthesis with disturbance observer-based

control barrier functions. In 61st IEEE Conference on Decision and Control (CDC), pages 5566–

5573, 2022.

11



SAFE AND EFFICIENT RL USING DISTURBANCE-OBSERVER-BASED CBFS

Yousef Emam, Paul Glotfelter, Zsolt Kira, and Magnus Egerstedt. Safe model-based reinforcement

learning using robust control barrier functions. arXiv preprint arXiv:2110.05415, 2021.

Jaime F Fisac, Anayo K Akametalu, Melanie N Zeilinger, Shahab Kaynama, Jeremy Gillula, and

Claire J Tomlin. A general safety framework for learning-based control in uncertain robotic

systems. IEEE Transactions on Automatic Control, 64(7):2737–2752, 2018.

Aditya Gahlawat, Pan Zhao, Andrew Patterson, Naira Hovakimyan, and Evangelos A Theodorou.

L1-GP: L1 adaptive control with Bayesian learning. In Conference on Learning for Dynamics

and Control, volume 120, pages 1–12, 2020.

Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement learning.

Journal of Machine Learning Research, 16(1):1437–1480, 2015.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy

maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the

35th International Conference on Machine Learning, volume 80, pages 1861–1870, 2018.

Naira Hovakimyan and Chengyu Cao. L1 Adaptive Control Theory: Guaranteed Robustness with

Fast Adaptation. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2010.

Armin Lederer, Jonas Umlauft, and Sandra Hirche. Uniform error bounds for Gaussian process re-

gression with application to safe control. In Advances in Neural Information Processing Systems,

volume 32, pages 657–667, 2019.

Quan Nguyen and Koushil Sreenath. Optimal robust control for constrained nonlinear hybrid sys-

tems with application to bipedal locomotion. In American Control Conference, pages 4807–4813,

2016.

Motoya Ohnishi, Li Wang, Gennaro Notomista, and Magnus Egerstedt. Barrier-certied adaptive

reinforcement learning with applications to brushbot navigation. IEEE Transactions on Robotics,

35(5):1186–1205, 2019.

Kim Peter Wabersich, Lukas Hewing, Andrea Carron, and Melanie N Zeilinger. Probabilistic model

predictive safety certication for learning-based control. IEEE Transactions on Automatic Con-

trol, 67(1):176–188, 2021.

Xiaofeng Wang, Lixing Yang, Yu Sun, and Kun Deng. Adaptive model predictive control of nonlin-

ear systems with state-dependent uncertainties. Int. J. Robust Nonlinear Control, 27(17):4138–

4153, 2017.

Wei Xiao and Calin Belta. High order control barrier functions. IEEE Transactions on Automatic

Control, 67(7):3655–3662, 2021.

Pan Zhao, Yanbing Mao, Chuyuan Tao, Naira Hovakimyan, and Xiaofeng Wang. Adaptive robust

quadratic programs using control Lyapunov and barrier functions. In 59th IEEE Conference on

Decision and Control, pages 3353–3358, 2020.

12


