

High Resolution MR Elastography Of The Human Brain: Technical Development And Applications In Aging And Alzheimer's Disease

E. Triolo (1), O. Khegai (2), A. Alipour (2), T. Hedden (2,3), P. Balchandani (2), M. Kurt (1,2)

(1) Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
(2) The Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
(3) Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA

ABSTRACT (400 word limit):

Introduction: MR elastography (MRE) is a technique for determining the mechanical response of tissues using applied harmonic deformation and motion-sensitive MRI¹. Performing MRE on human brain can provide information on different structures within brain tissue based on their mechanical properties, which can then be used to diagnose pathologies e.g., Alzheimer's disease (AD) and dementias². Aiming for higher resolution at 7T, MRE presents unique challenges of decreased octahedral shear strain-based signal-to-noise ratio (OSS-SNR)³ and lower shear wave motion sensitivity. *Overall, this work seeks to investigate advanced reconstruction and denoising to improve accuracy of ultra-high field (7T) MRE in determining mechanical properties of small brain tissue structures, with applications in aging and early detection of dementias.*

Materials and Methods: Full brain coverage MRE, using our custom 2D multi-slice SE-EPI 7T MRE sequence⁴ and custom pneumatic actuator⁵, was performed on twenty healthy human subjects (young adults, Avg. Age 26.9±3.4 years), six subjects with cognitive deficits (CD, Avg. age 75.8±6.5 years), and nine age-matched ($p>0.10$) cognitively normal subjects (CN, Avg. age 69.0±8.0 years) at 1.1mm³ isotropic resolution and 50Hz, using a 32-channel head coil (Nova Medical) on a 7T Siemens Magnetom MRI Scanner (TR/slice=140ms, TE=65ms, GRAPPA=3, Partial Fourier=7/8). To improve image reconstruction, we used Gadgetron⁶, an open-source MRI image reconstruction software, on the raw data to generate magnitude and phase images before employing MP-PCA denoising⁷ and Algebraic Inversion (AIDE) to calculate the magnitude of the complex shear modulus ($|G^*|$)⁴. Segmentation of brain regions was performed on MP2RAGE T1scans (0.7mm³) using Freesurfer and were co-registered using SPM12.

Results: We observed a whole-brain average 127% increase in OSS-SNR using denoising and a 375% increase using advanced reconstruction and denoising concurrently. Advanced reconstruction also removed artifacts in phase images observed in low SNR areas (Figure 2a). We observe a significant decrease in average $|G^*|$ between CN and CD groups in each brain region except EC (Figure 2b). Additionally, we observe a significant decrease in $|G^*|$ between young adult and CN groups in WB, GM, WM, TL, and HC because of normal aging (Figure 2b).

Conclusions: Overall, we successfully developed and implemented high resolution MRE at 7T to determine mechanical properties of small brain tissue structures, showing regional differences in brain stiffness in subjects with cognitive deficits.

Acknowledgements: We acknowledge funding from NSF CMMI 1953323, NIH R21AG071179, NIH P30AG066514, and other sources.

References: [1]Muthupillai, 1996 [2]Murphy, 2011 [3]McGarry, 2011 [4]Triolo, 2022 [5]Triolo, 2022 [6]Hansen, 2013 [7]Veraart, 2016

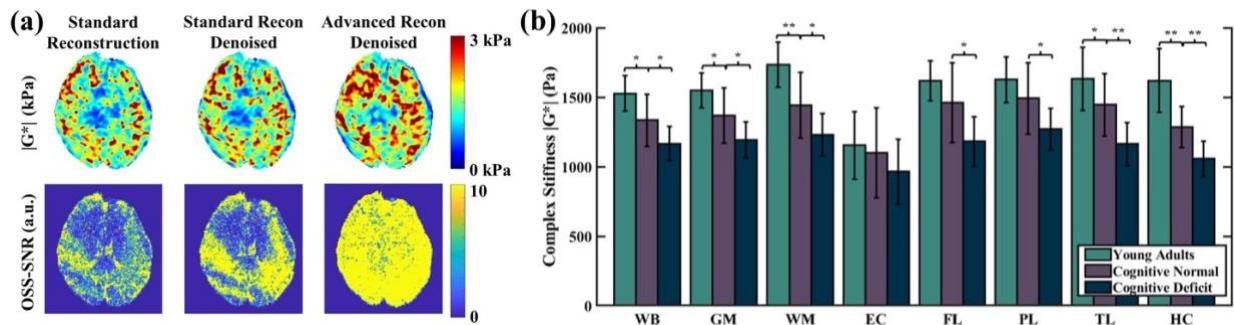


Figure 2: (a) High resolution Elastograms and OSS-SNR maps with MP-PCA Denoising and Advanced Reconstruction methods using Gadgetron in One Young, Healthy Subject. (b) Average $|G^*|$ for Young Adults, CN, and CD individuals in all Segmented Brain Regions of Whole Brain (WB), all Gray Matter (GM), all White Matter (WM), the Entorhinal Cortex (EC), Frontal Lobe (FL), Parietal Lobe (PL), Temporal Lobe (TL), and Hippocampus (HC) (one-tailed, unequal variance, t-tests * $p < 0.05$, ** $p < 0.01$)