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Abstract. Personal Identification Numbers (PINs) are the most com-
mon user authentication method for in-person banking transactions at
ATMs. The US Federal Reserve reported that, in 2018, PINs secured
31.4 billion transactions in the US, with an overall worth of US$ 1.19
trillion.
One well-known attack type involves the use of cameras to spy on the
ATM PIN pad during PIN entry. Countermeasures include covering the
PIN pad with a shield or with the other hand while typing. Although this
protects PINs from visual attacks, acoustic emanations from the PIN pad
itself open the door for another attack type. In this paper, we show the
feasibility of an acoustic side-channel attack (called PinDrop) to recon-
struct PINs by profiling acoustic signatures of individual keys of a PIN
pad. We demonstrate the practicality of PinDrop via two sets of data
collection experiments involving two commercially available metal PIN
pad models and 58 participants who entered a total of 5,800 5-digit PINs.
We simulated two realistic attack scenarios: (1) a microphone placed near
the ATM (0.3 meters away) and (2) a real-time attacker (with a micro-
phone) standing in the queue at a common courtesy distance of 2 meters.
In the former case, we show that PinDrop recovers 96% of 4-digit, and
up to 94% of 5-digits, PINs. Whereas, at 2 meters away, it recovers up
to 57% of 4-digit, and up to 39% of 5-digit PINs in three attempts. We
believe that these results are both significant and worrisome.

Keywords: Keyboard eavesdropping · PIN security · ATM security.

1 Introduction

The Automatic Teller Machines Industry Association estimates that over 300
million ATMs are deployed worldwide [3]. In the US alone, over 10 billion ATM
transactions are performed every year [19]. ATMs have now become an indis-
pensable part of the self-service banking ecosystem. An ATM typically uses a
unique physical card (which a customer possesses) along with a PIN (which a
customer remembers) to form a two-factor authentication system, wherein the
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card uniquely identifies the customer account and the PIN identifies the cus-
tomer.

In recent years, there have been many attacks aimed at PINs and at informa-
tion encoded on ATM cards. Such attacks are broadly referred to as skimming
operations [25], whereby criminals usually install a card-reader-like device to
trick customers into placing (or inserting) their cards and copy the informa-
tion [7,18]. This is often done in tandem with installing a video camera on the
ATM (or in its vicinity) at an angle that allows the criminal to record PIN en-
try [22]. Recently studied attacks on PINs (e.g., [5,8,26]) went one step further
and showed that the attacker does not even have to see the PIN. These side-
channel attacks use a recording device (e.g., a video camera [5], a microphone [8],
or a thermal camera [26]) placed near the ATM to collect information and use
it to infer customers’ PINs.

In this paper, we present a new acoustic side-channel PinDrop attack on
ATM PIN entry. Di↵erently from [8], PinDrop leverages the entire audio track to
profile each key on the PIN pad, leading to far more accurate results. Our attack
consists of two steps: (1) the attacker builds an acoustic profile (a signature of
click sounds) for each key on the target PIN pad, and (2) at PIN entry time,
the attacker records audio emitted by each pressed key and compares them to
the acoustic profile to infer the actual keys pressed, thereby learning the PIN.
These two steps can be carried out in any order.

1.1 Intended Contributions

The main contributions of this work are:

1. We described a novel attack targeting PINs: PinDrop, based on acoustic em-
anations from commodity ATM PIN pads. We demonstrated that PinDrop
reconstructs up to 94% of 5-digit PINs and 96% of 4-digit PINs within three
attempts. We showed that the threat posed by PinDrop is higher compared
to state-of-the-art acoustic side-channel attacks on ATM PIN pads [8,14,20].

2. We evaluated PinDrop via extensive experiments on two commercially avail-
able ATM PIN pad models, collecting acoustic emanations for 5,800 5-digit
PINs entered in a simulated ATM (though using real PIN pads) by 58 dis-
tinct participants. The resulting dataset is publicly available 5 to the research
community. We believe it will be useful in studying the problem further and
developing countermeasures.

3. We analyzed the performance of PinDrop with two recording distances: 0.3
and 2 meters away from the PIN pad. At the distances of 0.3 and 2 meters,
up to 96% and 57% (respectively) of 4-digit PINs were correctly learned in
three attempts.

4. We assessed the performance of PinDrop in noisy environments, consid-
ering di↵erent levels and sources of noise to simulate real-context scenar-
ios. We showed that PinDrop is still an e↵ective attack at 2 meters with

5 Dataset link: https://spritz.math.unipd.it/projects/PINDrop

https://spritz.math.unipd.it/projects/PINDrop


We Can Hear Your PIN Drop 3

low/moderate noise, while it remains e↵ective under any noise condition at
0.3 meters.

2 Related Work

This section overviews attacks based on acoustic emanations from user input de-
vices. We first consider attacks targeting keyboards, followed by those targeting
PIN pads. For a comprehensive discussion of keyboard side-channel attacks, we
refer to [17].

Attacks on generic keyboards. The first extensive study on keyboard
acoustic eavesdropping was conducted by Asonov and Agrawal [2]. It showed
that each key can be identified by the unique sound that it emits when pressed.
This work investigated the reasons for this behavior, demonstrating that it can be
attributed to the placement of keys on the keyboard plastic plate. In particular,
when di↵erent keys are pressed, the plate emits sounds with di↵erent timbers.

Subsequent e↵orts to infer key sequences from acoustic emanations are based
on two types of approaches: (i) extraction of features that allow exploiting the
uniqueness of acoustic emissions of pressed keys, and (ii) extraction of temporal
information. The former tries to distinguish among keys by their characteris-
tic sound, and relies on either supervised [2,10,11,16] and unsupervised [6,28]
machine learning models, depending on the specific attack scenario. Supervised
models exploit features, notably Fast Fourier Transform (FFT) coe�cients and
their derivatives, such as Mel-frequency cepstral coe�cients (MFCCs). Super-
vised algorithms generally achieve better performance in identifying keystrokes.
On the other hand, these models have a greater dependence on the keyboard
used in training and the users’ typing style. A further weakness of supervised
algorithms is the need to collect a labeled dataset to be used as a training set.
Indeed, the ground truth collection is not a trivial task and could significantly
a↵ect the attack’s e↵ectiveness. One possible solution is discussed in [1,9]. which
take advantage of the audio recorded during a VoIP call to collect a ground
truth dataset directly. In this scenario, the attacker can exploit the text typed
by the victim in a shared medium (e.g., in the VoIP chat or an email sent to the
attacker during the call) to label the keystroke sound.

Unsupervised methods are used to group collected samples into unlabeled
clusters. The label-cluster association is made by exploiting the characteristics of
the input language. In particular, Zhuang et al. [28] perform labeling using letter
frequency, while Berger et al. [6] make an association by selecting words from
a dictionary that match specific constraints. Unsupervised approaches overcome
the need for a ground-truth dataset. However, the scenarios where these attacks
can be applied are limited by the strong assumptions on input text and therefore
their performance drastically declines on random letter sequences.
The second approach involves the extraction of temporal features of pressed
keystrokes. To this end, many e↵orts focused on analyzing the Time Di↵erence
of Arrival (TDoA) of the audio signal emitted by the keypress. They used one [13]
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or more [27] microphones positioned around the input device to triangulate the
position of the pressed key.

PIN pad-focused attacks. PIN pads are numeric keypads specifically de-
signed for Point-of-Sale (PoS) terminals and ATMs, They facilitate users to enter
their Personal Identification Numbers (PINs). Attacks on PIN pads tend to be
di↵erent from those on regular keyboards. For instance, it is rather challenging
to apply unsupervised techniques with PIN pads since the assumptions about
the victim’s language are no longer applicable. However, the other types of at-
tacks, such as those based on the uniqueness of the acoustic emission and those
based on the temporal information are usually applicable. PIN pads also prompt
a new set of assumptions, usually dictated by the specific conditions under which
they operate. This paves the way to new and more e�cient side-channel attack
scenarios. Below, we briefly discuss these attacks.

In [5], the authors demonstrate how to obtain PIN information by exploiting
inter-keystroke timings. This information is leaked by recording the timing of
appearance of masking symbols (e.g., asterisks) on the screen while the victim is
entering the PIN. On a related note, [8], shows how inter-keystroke timing infor-
mation can be inferred with higher accuracy from the feedback sound emitted
by the PIN pad when a key is pressed. It also shows that combining multiple
side-channel information (e.g., inter-keystroke timing and thermal residue) im-
prove the probability of reconstructing a 4-digit PIN. Similarly, [14], proposes a
user-independent attack based on inter-keystroke timing on a plastic PIN pad.

PIN pad acoustic emanations can also be used to improve security of PIN-
based authentication systems. For example, [20] shows that inter-keystroke fea-
tures obtained from PIN pad-emitted audio, can be used as an additional layer
of authentication. The same work also showed how to perform a close-by attack
(i.e., with the microphone placed a few centimeters from the PIN pad) on an
arbitrary subset of keys. Exploiting the inter-keystroke features on this subset,
a 60% accuracy in the identification of the pressed key can be reached. Acoustic
information is also used in [24], where a Point-of-Sale (PoS) terminal is tam-
pered with by inserting multiple microphones into it. This allows identifying the
pressed key position using triangulation, reaching the average accuracy of 88%
for a single key, on three PoS models. Although very e↵ective, this approach
requires full physical access to the PoS, thus reducing the attack’s applicability
and scalability.

3 PinDrop Attack

Assumptions: We assume that the victim interacts with a generic ATM, per-
forming PIN-based authentication. The ATM is equipped with a PIN pad that
emits a feedback sound when a key is pressed. The feedback sound (as perceived
by the human ATM users) is the same for all keys. The attacker aims to learn
the victim’s PIN by placing a microphone near the ATM to record acoustic em-
anations of the PIN pad. The microphone stores recorded audio. How the micro-
phone stores that audio is not relevant for PinDrop, i.e., it can be stored locally
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corresponding audio. The attack set consists of the audio recordings entered by
the victim.

3.2 Data Processing

This phase is conducted on the data entered by both the attacker and the victim.
It also consists of two steps: segmentation of the PIN audio signal into individual
key-press sounds, and extraction of corresponding features.
B.1 Segmentation: The attacker uses the feedback sound emitted by the PIN

pad as a signal that a key has been pressed. This can be achieved via the
characteristic frequency of the feedback sound, as in [8]. The attacker seg-
ments the signal, using time windows centered at the detected key-press.
The window size is chosen to comprise the entire audio segment related to a
single key-press.

B.2 Feature Extraction: The attacker extracts features descriptive of a key-
press sound. Prior results show that short-term power spectrum can be used
for this type of a classification problem. In particular, [9] shows that mel-
frequency cepstral coe�cients (MFCC) [15] achieve the best performances
for discriminating among the sounds of di↵erent keys. This step yields two
feature sets: (1) a labeled training, and an (2) unlabeled attacker.

3.3 Model Generation

This phase is applied to the labeled training set in order to train a classifier.
C.1 Down-sampling: Since we make no assumptions about how often a victim

uses a specific digit in the PIN, it may be necessary to down-sample the data
by classes before proceeding with training. The down-sampling mitigates
over-fitting and leads to a balanced dataset where each class (i.e., each digit)
has the same number of samples.

C.2 Model Training. The attacker trains a multi-class classifier to predict the
digit based on its emitted key-press sound. The class labels output by the
classifier are the keys (digits) of the PIN pad. Together with the predicted
digit, classifiers also output the prediction probability of each class.

3.4 PIN Inference

In this phase, the attacker utilizes the trained classifier to guess a victim’s PIN.
The output is a sequence of all possible PINs ordered by probability. This order-
ing allows the attacker to minimize the number of attempts to guess the PIN.
In a real-life setting, ATM cards are usually blocked after three failed attempts.
This phase involves two steps:

D.1 Prediction: The attacker reconstructs the PIN entered by the victim ap-
plying the classifier trained in the previous phase to the attack set. As input
to the classifier, the attacker feeds the features of a single key of the victim’s
PIN. This is repeated for each digit of the PIN.
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(a) PAD-1: DAVO LIN

Model D-8201 F

(b) PAD-2: DAVO LIN Model D-8203

B

Fig. 3: Two commodity metal PIN pads we used.

which we placed the PIN pad and the monitor. The keyboard is 1.1m above the
ground. To record keystroke sounds, we used the microphones of two Logitech
HD C920 Pro webcams: one placed on the ATM’s chassis 0.3m above the PIN
pad, and another microphone 2m in front of the ATM, as shown in Figure 2b.

The first data collection e↵ort involved 38 participants (23 male and 15 fe-
male, average age 38.97± 11.36), while the second involved 20 participants (11
male and 9 female, average age 29.50± 5.74). Together, that makes the total of
58 participants who entered 5, 800 5-digit PINs. Participants were university em-
ployees and students who participated voluntarily without compensation. The
average duration of an experiment was 15 minutes. We used both these data
collections to obtain datasets of 4-digit PINs by removing the last key entered
by the participants from each 5-digit PIN. Since the attack takes advantage of
the sound emitted when a key is pressed, shortening the PIN does not a↵ect
the reliability of the dataset. We selected 4 and 5-digits PINs to be compara-
ble with the works [5,8]. After being informed about the study’s goals and the
confidentiality and anonymity of the data, all participants provided written in-
formed consent for their volunteer participation. At the University of Padua,
where the experiments were carried out, a formal review process for research
involving human participants was not required, so such ethical considerations
were considered based on the authors’ past experience with similar experiments.
During the experiments, participants were asked to stand in front of the simu-
lated ATM, and remain silent for the duration. A participant’s task consisted
of typing 100 5-digits PINs randomly generated, divided into four batches of 25
PINs. This split was made to allow for short breaks between batches in order
to lower fatigue. PINs were displayed one at a time on the ATM screen: once a
PIN is entered, the participant presses the Enter button to proceed to the next
PIN.

Regardless of the individual’s typing behavior and familiarity (or lack thereof)
with a given PIN or the PIN pad, we decided to randomize the order of PINs,
rather than ask users to enter the same PIN multiple times. This approach gen-
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eralizes the PinDrop attack, which is actually applicable to both mnemonic
PINs and One Time Passwords (OTPs). We also collected the key logs of the
PIN pad via the USB interface to create ground truth. In particular, for each
pressed key, we collected both the “key-down” (press) and “key-up” (release)
events. Moreover, we synchronized the recordings with the timestamp of these
key events. We found no significant di↵erences in synchronizing recordings using
logs or the feedback sound as suggested in [8]. All recordings were done with a
sampling frequency of 44, 100Hz and then saved in the 32-bit WAV format.

4.2 Classification Methods

To identify the key pressed by the victim, we experimented with four well-known
and popular classifiers: Support Vector Classification (SVC), k Nearest Neigh-
bors (KNN), Random Forests (RF), and Logistic Regression (LR). We applied
a repeated nested crossfold validation to evaluate the performance of our ap-
proach. The pipeline varies on the number of attackers (i.e., a single attacker or
a group) included in the training set.

In the outer loop, we randomly selected the attacker(s) among the partici-
pants. This procedure was repeated 10 times generating 10 groups of attackers.
The inner loop consists of a k-fold cross-validation, where k depends on the
number of attackers. If the training set contains samples from a single attacker,
we used 5-fold cross-validation, since a user-independent split is not applicable.
If samples from at least two attackers are present in the training set, we use a
k-fold cross-validation user-independent where k is the number of attackers.

We varied hyper-parameters by using the grid search on all four consid-
ered classifiers. For SVC, we considered a linear kernel and varied C among:
[10�2, 10�1, 100, 101, 102]. For KNN, we varied the number of neighbors to among:
[1, . . ., 20]. For RF, we considered from 10 to 100 estimators (steps of 10 and
extremes included) and a max depth from 6 to 31 (steps of 5 and extremes in-
cluded). Finally, LR was evaluated for `1 and `2 penalties, with C ranging from
10�4 to 104.

5 Experimental Results

We evaluated PinDrop in di↵erent scenarios, showing its performance in the
di↵erent conditions in which the attacker may find himself. Section 5.1 describes
how we evaluated di↵erent classifiers and consequently selected the best for our
purpose. Sections 5.2 and 5.3 report the results for our algorithms on the key
classification task and PIN classification task, respectively. Finally, Section 5.4
compares the performance of PinDrop with the results obtained in the state-of-
the-art.

5.1 Model evaluation

To assess the performance of our classifiers, we evaluated di↵erent attack sce-
narios. In particular, we considered two settings: (i) number of distinct attackers
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and (ii) the number of digits entered by each attacker. We varied the number
of attackers included in the training set between 1 and 10. This range has been
selected to reflect a realistic attack scenarios. We varied the number of digits en-
tered by each attacker in increments of 100, i.e., 100, 200, 300, 400, or 500. The
performance of our attack was evaluated on all possible combinations between
the number of attackers and the number of digits entered by each attacker.

To select the best classifier, we compared the PIN validation accuracy of all
the classifiers across di↵erent scenarios (i.e., PIN pads, and distances) and set-
tings (i.e., number of digits per attacker, and number of attackers). SVC and LR
achieved comparable performance, outperforming KNN and RF. In particular,
LR achieved higher validation accuracy on PAD-1, while SVC showed better
performance on PAD-2. In Appendix 8.1, Table 2 reports a comparison of the
validation accuracies for all the investigated classifiers, considering five attackers
that train the classifiers with 500 digits each (i.e., training size = 2500 digits).

5.2 Single Key Inference

We report the LR classifier performance for the PAD-1 and the SVC classifier
performance for the PAD-2 based on the validation results. In Figure 4 we
show single key accuracy comparison for all the considered settings (i.e., the
number of attackers and the number of digits entered by each attacker) in our
four scenarios (see Figure 8, and Appendix 8.2 for PAD-2 results). Each graphic
depicts how the accuracy varies in the considered scenario as the number of
entered keys included in the training set varies. Further, each graphic shows
five curves representing the number of digits entered by the attackers, while the
bullets of a curve represent the number of attackers included in the training set.
The bullets have an increasing value from left to right: the first bullet (from
left) of each curve indicates the result obtained when only one attacker has been
included in training, the second indicates the result obtained when two attackers
were included in training, and so on. Therefore, the number of numeric keys
included in the training set varies according to the number of attackers and
the number of digits entered by each attacker. We note that the accuracy is
significantly a↵ected by the training set’s size (i.e., entered keys in training) and
the distance. Interestingly, with the same number of entered keys in training,
the accuracy improves due to the number of attackers. For example, if we set the
number of entered keys in training at 400, we can see that in all scenarios, the
accuracy obtained by four attackers typing 100 keys each (i.e., 20 5-digit PINs
per attacker) is significantly higher than a single attacker typing 400 keys (i.e., 80
5-digits PINs). This may depend on the variability of the data used to train the
classifiers. Each person has a slightly di↵erent typing style [20] (e.g., pressure,
typing speed), and adding more attackers would introduce higher variance in the
training set, helping our classifiers to generalize improving their classification
performance over a test set.

Appendix 8.2 provides experiments where we analyzed how our classifiers
mis-classify the true key to investigate how spatial locality interferes in the
classifiers’ predictions.
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(a) PAD-1, 0.3m (b) PAD-1, 2m

Fig. 4: Key accuracy on the testing set for the best classifiers.

5.3 PIN inference

In a realistic context, an attacker generally has three attempts to guess the vic-
tim’s PIN (i.e., the max number of incorrect PIN entries allowed before blocking
the card). In this section, we report on the performance of our approach in PIN
reconstruction in TOP 3-accuracy, i.e., only the three most probable PIN predic-
tions. In Figure 5 we show the performance of the classifiers in the reconstruction
of 4-digit and 5-digit PINs according to the di↵erent settings (i.e., PIN pad and
distances). Further, similar to Figure 4, each graphic reports the performance
for all settings on PAD-1 (see Figure 10, and Appendix 8.2 for PAD-2 results).

The results show that the e↵ectiveness of the attack in each scenario. In
particular, at 0.3m away, we can reconstruct correctly within three attempts
up to 94% 4-digit PINs for PAD-1 and up to 96% PINs for PAD-2. Although
the performance worsens by increasing the distance at which the microphone is
placed, PinDrop manages to reconstruct within three attempts up to 57% of
the 4-digit PINs for PAD-1 and up to 50% for PAD-2 at 2m away. At 0.3m,
the accuracy graphs reach a plateau at around 1500 digits in training. On the
contrary, at 2m, the accuracy seems not to reach the plateau even with a training
of 10 attackers and 500 digits per attacker (i.e., 5000 digits in training). This
behavior is particularly marked in PAD-2, where the increase appears almost
linear also with a high number of digits in training. This could be partially due
to the classifier used in the specific scenario (i.e., LR for PAD-1 and SVC for
PAD-2 ) in addition to the physical di↵erences between the two PIN pads.

Comparing the performance on two PIN pads (fixing the number of attackers
and entered keys per attacker), the accuracy on PAD-1 appears generally higher
than the one on PAD-2. This applies to both distances. The number of attack-
ers significantly a↵ects performance with the same number of entered keys in
training. For example, in PAD-1 at 0.3m, the threshold of 80% of 4-digit PINs
reconstructed in three attempts is reached with three attackers whom enter 100
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digits each (i.e., 300 total digits), or two attackers whom enter at least 200 digits
each (i.e., at least 400 total digits).

(a) PAD-1 and microphone placed at 0.3m (b) PAD-1 and microphone placed at 2m

Fig. 5: 5-digit PINs inference performance within 3 attempts for the best classi-
fiers.

5.4 Comparison with the state-of-the-art

To evaluate PinDrop, we compare its with that of state-of-the-art attacks ex-
ploiting acoustic emanations of PIN pads [8,14,20,24]. Table 1 summarizes the
results (with 10 attackers entering 500 digit each) in terms of key accuracy and
PIN reconstruction accuracy within three attempts.

Both [14] and [8], exploit inter-keystroke timing. Although in [14] the distance
at which the acoustic information is collected is unspecified, such attacks can
be carried out from a distance over one meter, as demonstrated in [8]. The
distance significantly decreases the risk of the attacker being detected. However,
the reported performance is rather poor, since the PINs correctly reconstructed
within three attempts were less than 1% for both attacks. However, from a
greater distance (i.e., 2m) PinDrop outperform [14,8] achieving the accuracy of
44% and 54% on 5-digit and 4-digit PINs, respectively. Most e↵ective attacks
are those carried from a significantly shorter distance. In particular, [20] records
acoustic emanations with a microphone placed at 0.05m from the PIN pad. This
work obtains 60% key accuracy on a sub-set of keys (i.e., 6 on 10). Since we
can not estimate the real accuracy considering all the 10 digits we decided for
fairness, to leave this upper-bound. Under this assumption, we derived that this
attack may achieve 4-digit and 5-digit PIN accuracies of 27.36% and 16.42%,
respectively. Comparing these results with the performance of PinDrop, we can
see how PinDrop achieves better accuracy for both 0.3m and 2m.

The last method we consider was proposed by De Souza [24]. This attack
assumes that two microphones are placed inside a PoS under the PIN pad.
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Unlike other methods, it uses the time of arrival of the acoustic signals. The
performance achieved by the De Souza is slightly better to PinDrop from 2m.
However, PinDrop has better performance from 0.3m (i.e., a 26% increase in
4-digit PINs and a 33% increase in 5-digit PINs). Moreover, PinDrop di↵ers
from [24] in that it does not require physical tampering with the device, even if
the attack is performed from 0.3m away.

Key Accuracy 4-digit PINs 5-digit PINs Recording Distance

Liu [14] NA 0.26% * 0.11% * NA
Cardaioli [8] NA 0.72% NA 1.50m

Panda [20] 60.00% 27.36% ** 16.42% ** ⇠ 0.05m

De Souza [24] 87.60% 68.40% ** 59.92% ** 0.00m***

PinDrop 95.84% 94.64% 92.79% 0.30m
PinDrop 74.58% 53.75% 43.99% 2.00m
* Performance derived from the proportion of human-chosen PINs and the
accuracy of each PIN strength level reported in the paper.
** Performance estimated from reported key accuracy, assuming the predic-
tion error to be equally distributed.
*** Multiple microphones are integrated in the device.

Table 1: Comparison between PinDrop and the state-of-the-art results on single
key accuracy and percentage of guessed PINs within three attempts. If the score
cannot be derived from the reference paper, we report N/A.

6 Impact of Noise on PinDrop

In Section 5 we demonstrated the e↵ectiveness of PinDrop in a noise-controlled
environment. This scenario can be traced back to ATM rooms commonly found in
banks or city centers. To evaluate the e↵ectiveness of PinDrop in other contexts
(e.g., external ATMs), we simulated two di↵erent noise sources: i) road noise
produced by urban tra�c and ii) Gaussian noise. We modulated the two sources
to obtain four levels of SNRs (Signal to Noise Ratios): very low noise (SNR
10dB), low noise (SNR 5dB), high noise (SNR -5dB), and very high noise (SNR
-10dB). In Figure 6, we show the comparison between the audio emitted the
sound emitted by a key press (with the corresponding feedback sound) and two
amplitude levels of the modulated Gaussian noisy signal. Following the procedure
described in Section 4, for each considered SNR, we trained and tested PinDrop
with the perturbed signals obtained from the sum of the original signal with the
corresponding modulated noise.

To simulate the noise produced by urban tra�c, we extracted a set of urban
noises from the AudioSet [23] dataset made available by Google. Accordingly to
the four considered SNRs levels, we modulated the noises, and we added them to
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Fig. 6: Comparison between very-low and very high levels of Gaussian noise with
the original sound signal of a keypress.

the original signal. In particular, 99% of the power of the considered set of urban
noises ranges between 125Hz and 2500Hz, in line with the literature [4,21]. Sim-
ilarly, to evaluate if the addition of a noise that covers all frequencies a↵ects the
performance of PinDrop, we perturbed the original signal with four modulated
Gaussian noises amplitude, according to the four SNRs considered.

Figure 7 shows the results of PinDrop trained on the perturbed PAD-1
dataset (configuration 500 digits per attacker) in inferring 5-digit PINs within
three attempts. The graphs suggest that both at 0.3m and at 2m distance re-
gardless the source of noise, PinDrop remains very e↵ective when low noisy
signals are added (i.e., SNR 10dB and 5dB). Further, Figure 7 highlights how
the addition of low noises has a greater impact on the performance of PinDrop
at 0.3m than at 0.2m. This di↵erence in performance can be related to the more
significant background noise component already present in the original signal
recorded at 2m, making the algorithm more robust at low perturbation levels.
Figure 11 in Appendix 8.2 reports the results for PAD-2.

For higher noise levels (i.e., SNR -5dB and -10dB), PinDrop still manages to
reconstruct a significant percentage of PINs when the attack is performed from
0.3m (e.g., up to 59% with SNR -5dB and up to 43% with SNR -10dB). However,
the performance obtained at 0.3m by PinDrop on sounds perturbed by Gaussian
noise are slightly lower than those obtained with urban tra�c perturbation. This
di↵erence can be reconducted to the range of frequencies perturbed by the two
sources of noise: Gaussian noise a↵ects the entire spectrum, while urban noise
has a limited frequency band. At 2m, the performance of PinDrop degrades
significantly with high-noisy perturbation, suggesting that the information con-
tained in the original signal is no longer su�cient to make the attack e↵ective in
a very noisy environment. In contrast to the attack scenario at 0.3m, at a dis-
tance of 2m we do not notice significant di↵erences between accuracies of PINs
reconstructed from audio perturbed with urban noise and those reconstructed
from audio perturbed with Gaussian noise. This suggests that the high-frequency
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component (i.e., above 2500Hz) is less e↵ective in the reconstruction of the PINs
at 2m compared to 0.3m scenario.

(a) Urban noise and microphone placed

at 0.3m

(b) Urban noise and microphone placed

at 2m

Fig. 7: Impact of noise source and SNR in the inference of 5-digit PINs within
three attempts for PAD-1 and 500 digits per attacker.

7 Potential Countermeasures & Future Work

The relatively high accuracy of PinDrop highlights its danger and the impor-
tance of robust countermeasures. Barring wholesale replacement of PINs with
other login means, we consider the following possibilities:
– PIN Pad noise reduction: This idea is simple, though challenging to deploy.

It consists of masking the noise emitted by the PIN pad by covering it with
soundproofing material. This approach could help in reducing the e↵ective-
ness of longer-range attack.

– Noise emanation: This countermeasure involves the emission of white noise
by the ATM when entering the PIN. As shown in Section 6, high noise levels
negatively a↵ect attack performance.

– On-screen PIN pad : An e↵ective countermeasure could be to virtualize the
PIN pad using a touch screen. (This is in fact already done on some ATMs).
This countermeasure would also allow dynamic rearrangement of digits, mak-
ing it much more challenging to implement PinDrop-like attacks. On the
other hand, on-screen keypads are generally less user-friendly and can pose
a problem for visually impaired users;

– Feedback distortion: If removing the characteristic sound emitted by each key
is not possible, an alternative is to add noise that does not allow individual
keys to be profiled. By emitting a masking sound at each key-press, PinDrop
can be made more di�cult, especially, its training phase;
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– Personal PIN pad : Another possible countermeasure is to use a trusted de-
vice, such as a smartphone, to replace the physical PIN pad. The PIN could
then be transmitted to the ATM using a wireless medium (e.g., NFC);

– Behavioral biometrics layer : An additional layer of security might be possibly
via behavioral biometrics. One possibility is to involve user authentication
based on keystroke dynamics. While this method can yield a high rate of
false positives, it is completely transparent to the user (until or unless, a
false positive occurs).

Possible future directions range from improving applicability of PinDrop to ex-
ploring its e↵ectiveness on other kinds of PIN pads. An interesting direction
might be to apply more sophisticated (e.g., parabolic) microphones. Such a mi-
crophone could significantly extend the e↵ective recording distance of PinDrop.
Another direction is looking at PinDrop in the context of screen-based PIN pads
that are fairly common on modern ATMs. This setting is more complicated due
to lack of physical keys the sound of which can be profiled. However, it would be
interesting to study whether sounds emitted by the touchscreen still allow the
attacker to infer information about keys pressed. Finally, it would be interesting
to evaluate PinDrop in a noisy real-world environment to assess the robustness
of our approach, overcoming the actual experimental constraints.

8 Conclusions

This paper demonstrated PinDrop, a highly accurate acoustic side-channel at-
tack on PIN pads. It takes advantage of acoustic emanations produced by ATM
users entering their PINs into the commodity ATM’s metal PIN pads. These
emanations can be surreptitiously recorded and used to accurately profile all
PIN pad keys, allowing PinDrop to yield the victim’s PIN with high probabil-
ity. Specifically, this work shows that PinDrop is e↵ective when applied from a
very short (and perhaps not always realistic) distance away from the PIN pad
(0.3m) as well as from a rather safe and inconspicuous distance (2m).

We demonstrated the e↵ectiveness and robustness of PinDrop by conduct-
ing extensive experiments that involved a total of 58 participants and two com-
modities (commercially available) metal ATM PIN pads. We experimented with
PinDrop in several configurations, showing how its performance can be opti-
mized based on the training set size and the number of attackers.

PinDrop’s accuracy reaches 93% and 95% in reconstructing 5-and 4-digit
PINs, respectively, within three attempts, from 0.3 meters away. Also, at 2m
away, PinDrop outperforms state-of-the-art results, reaching over 44% accuracy.
This translates into an average accuracy improvement of 44% and 53% in 5-digit
and 4-digit PINs, respectively. Finally, we proved that PinDrop is e↵ective at 2
meters with low/moderate noise, reaching a lower-bound accuracy of 37%, while
it remains e↵ective under any noise condition at 0.3 meters. We believe that, due
to its real-world applicability and performance, this work significantly advances
the state-of-the-art in acoustic side-channel attacks.



We Can Hear Your PIN Drop 17

References

1. Anand, S.A., Saxena, N.: Keyboard emanations in remote voice calls: Password
leakage and noise (less) masking defenses. In: Proceedings of the Eighth ACM
Conference on Data and Application Security and Privacy. pp. 103–110 (2018)

2. Asonov, D., Agrawal, R.: Keyboard acoustic emanations. In: IEEE Symposium on
Security and Privacy, 2004. Proceedings. 2004. pp. 3–11. IEEE (2004)

3. ATM Industry Association: , https://www.atmia.com
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Appendix

8.1 Validation Results

Table 2 reports the results on the validation set for four di↵erent ML models.
Results show that LR and SVC obtain the best results on PAD-1 and PAD-2,
respectively.

8.2 Additional Results

In Figure 8, we report the key accuracy results for PAD-2 (from both 0.3 m and
2 m). The results refer to the SVC model that achieved better performances on
PAD-2.

In Figure 9, we report an example for the digit “3” for all the four scenarios.
All the other keys show similar behavior, highlighting no significant inter-class
di↵erences. Interestingly, we note a di↵erent distribution of classification errors
between PAD-1 and PAD-2. In the first case, the error is uniformly distributed
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PAD-1 PAD-2

Distance Distance Distance Distance
0.3 m 2 m 0.3 m 2 m

SVC 0.90±0.04 0.35±0.12 0.86±0.06 0.21±0.07
LR 0.92±0.04 0.40±0.11 0.85±0.06 0.19±0.04
KNN 0.65±0.07 0.13±0.07 0.17±0.05 0.02±0.01
RF 0.78±0.07 0.10±0.06 0.31±0.06 0.02±0.00

Table 2: PIN accuracies on the validation set for the investigated classifiers. The
training set includes samples from five distinct attackers. The results show that
for PAD-1 the best performing model is the Logistic Regression (LR), while for
PAD-2 the best model is the SVC.

(a) PAD-2, 0.3m (b) PAD-2, 2m

Fig. 8: Key accuracy on the testing set for the best classifiers.

over all digits, in the second case, a higher concentration of errors is prominent
around the true digit (i.e., digits 2, 5, and 6).

Figure 10 reports the PIN inference results within 3 attempts for PAD-2 and
SVC model.

Figure 11 shows the results of PinDrop trained on the perturbed PAD-2
dataset (configuration 500 digits per attacker) in inferring 5-digit PINs within
three attempts. The graphs report results similar to those obtained on PAD-1.
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(a) PAD-1 at 0.3m (b) PAD-1 at 2m (c) PAD-2 at 0.3m (d) PAD-2 at 2m

Fig. 9: Digit “3” prediction heat maps for the four considered attack scenarios
(the PIN pad layout is reported in Figure 3). We reported the results for the
experiment with 5 attackers and 500 digits entered per attacker.

(a) PAD-2 and microphone placed at

0.3m

(b) PAD-2 and microphone placed at

2m

Fig. 10: 5-digit PINs inference performance within 3 attempts for the best clas-
sifiers.

(a) Gaussian noise and microphone

placed at 0.3m

(b) Gaussian noise and microphone

placed at 2m

Fig. 11: Impact of noise source and SNR in the inference of 5-digit PINs within
three attempts for PAD-2 and 500 digits per attacker.
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