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To elucidate the effect of particle shape on the rheology of a dense, viscous suspen-
sion of frictional, non-Brownian particles, experimental measurements are presented for
suspensions of polystyrene particles with different shapes in the same solvent. The first
suspension is made of spheres while the particles which compose the second suspension are
globular but with flattened faces. We present results from steady shear and shear-reversal
rheological experiments for the two suspensions over a wide range of stresses in the viscous
regime. Notably, we show that the rheology of the two suspensions is characterized by
a shear-thinning behavior, which is stronger in the case of the suspension of globular
particles. Since the shear-reversal experiments indicate an absence of adhesive particle
interactions, we attribute the shear thinning to a sliding friction coefficiont which varies
with stress as has been ohserved previously for systems similar to the first suspension.
We ohserve that the viscosity of the two suspensions is similar at high shear stress where
small sliding friction facilitates particle relative motion due to sliding. At lower shear
stross, however, the sliding friction is expected to increase and the particle relative motion
would be associated with rolling. The globular particles attain a higher viscosity at low
shear stress than the spherical particles. We attribute this difference to a shape-induced
resistance to particle rolling that is enhanced by the flattened faces. Image analysis 1s
employed to identify features of the particle geometry that contribute to the resistance to
rolling. It is shown that the apparent rolling friction cocfficients inferred from the rheology
are intermediate between the apparent dynamic and static rolling friction coefficients
predicted on the basis of the image analysis. All three rolling resistance estimates are
larger for the globular particles with flat faces than for the spherical particles and we argue
that this difference yields the stronger shear thinning of the globular particle suspension.

Key words: Rheology, Non-Brownian frictional suspension, crushed particles, globular
particle shape, irregular polygonal shape, viscosity, shear-thinning, jamming, shding
friction cocfficient, rolling friction coefficient, eccentricity, shear reversal

1. Introduction

Non-Brownian suspensions made of relatively rigid particles are ubiquitous in industry
(frosh concrete, civil engineering, rocket fuel, ote) and in natural Hows (mud, lava fows,
submarine avalanches, ete.). This widespread occurrence has encouraged active research

1t Email address for correspondence: hormozi@cornell.edu
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Ficure 1. Schematic of different types of 2D-projected particle shapes (from the left to the
right): a simple sphere (disc), a regular polyhedron (polygon) and a globular ferushed particle
which possesses flat faces and spherical arcs.

in the past years that has revealed great complexity in the behavior of these systems,
which are usually composed of particles with irregular shape. Notably, it has been shown
that even the simplest suspension, a non-Brownian suspension made of relatively rigid,
single-sized rough spheres (of radius a) with negligible colloidal forees (no adhesion),
suspended in a density-matched (no effect of gravity) Newtonian fluid (of viscosity mg)
and sheared in a viscous creeping fHow (no inertial effect), can exhibit a rich variety
of rheological behaviors. The best known feature is obviously the divergence of shear
wviscosity, 1, when the solid volume fraction, ¢, tends to a masdmum value known as the
Jamming volume fraction, d¢iy,;. But the range of complex rheological behaviors can also
include the occurence of a yield stress (Ovarlez ef al. 2015; Dagois-Bohy et al 2015),
shear-thinning {Vazquez-Quesada et al. 2016; Lobry ef al. 2019) or shear-thickening
behaviors (Barnes 1989; Mari et al. 2014; Guy et al. 2015; Comtet et al. 2017; Madraki
et al. 2017, 2018, 2020), normal stress differences, irreversibility under oscillating shear
(Pine et al. 2005; Blanc et al. 2011a), shear-induced microstructure (Gadala-Maria &
Acrivos 1980; Blanc et al. 2011a, 2013) and particle migration (Phillips et al. 1992;
Snook ef al 2016; Sarabian et al. 2019; Rashedi ef al. 2020).

Because of the complexity already present in the “simplest system” | suspensions made
of spheres have been extensively studied for decades. In contrast, the role played by
the particle shape has only started to be investigated recently and still suffers from a
dearth of experimental data. Yet, many suspensions found in industry and in nature
are composed of globular particles, which have an irregular compact form with a global
aspect ratio close to 1 (see Figure 1). These particles are predominantly convex due to
erosion. The present paper describes an experimental work which aims at reducing this
deficit, by studying the rheology of a viscous non-Brownian frictional suspension made
of globular particles (2a ~ 40pm) and comparing it with a suspension of spheres made
of the same solid material and suspended in the same solvent. For this purpose, some
polystyrene (PS) beads have been erushed, while others have not, in order to create two
similar suspensions (described in § 2): one made of beads (see the first sketch from the
left in Figure 1) and the other made of particles with irregular globular shapes (see the
third sketch from the left in Figure 1). Since the recent works of Le ef al (2023) have
shown that the rheology of a suspension depends strongly both on the type of particles
and the solvent, it is important to note that both types of PS particles studied in the
present paper are separately dispersed in the same suspending liquid (Silicone oil).
Therefore, the only difference between the two types of suspension studied in the present
paper is the solid particle shape and we investigate the role of shape disentangled from
other factors.

In the last decade, the central role played by direct solid contact in the flow properties
of non-Brownian frictional suspensions has been revealed by Boyer ef al. (2011) who
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succoeded in applying a granular paradigm to describe the rheological behavior of
non-Brownian and "non-colloidal” spheres suspended in a Newtonian Huid in the dense
regime, showing the key role played by solid contact interactions between particles,
existing thanks to their asperities. Later, Gallier et al. (2014) have extensively studied
through a discrete element method (DEM)-like approach the influence of asperity height,
hy, and shding friction coefficient, p;, between spheres on the rheology of suspensions.
They have notably shown that p; is a key parameter that governs the How properties of
frictional suspensions of spheres in the concentrated regime (¢ > 0.40). Several numerical
studies (Man et al. 2014; Wyart & Cates 2014; Gallier et al. 2014; Peters ef al. 2016;
Singh et al. 2018) have then shown that p, changes the value of the jamming volume
fraction, d¢y,. For instance, Seto et al (2013) and Mari ef al. (2014) have shown that
the proliferation of frictional contacts 1= known to be the cause of the discontinuous
shear-thickening (DST) observed in highly concentrated suspensions of spheres when
the shear stress is high enough to overcome repulsive interactions between particles and
push them into contact. As consequences, the authors have measured, in the case of
spherical particles, a decay of ¢y, from 0.66 to (.58 when p; increases from 0 (frictionless
case) to 1 (frictional), in qualitative agreement with the experimental values from the
literature for frictional suspensions of spheres: ¢y, € [0.54;0.62] Zarraga et al. (2000);
Owarlez et al (2006); Boyer ef al. (2011); Blanc ef al. (20114, 2018). Later, Poters ef al.
(2016) numerically found that ¢y, decreases from 0.7 to (.56 for the same variation
of pe (0 £ p; £ 1), in quite good agreement with these previous works. Moreover,
recent experimental studies have directly measured the values of g, by Atomic Force
Microscopic (AFM) measurements between pairs of polystyrene beads suspended in
Silicone oil (Arshad et al. 2021; Le et al. 2023). They found that 0.1 =< p, = 4, which
confirms the considered range of the values of y; in the numerical studies.

Shear-thinning is common in viscous non-Brownian suspensions (Gadala-Maria &
Acrivos 1980; Zarraga et al. 2000; Vazquez-Quesada et al. 2016, 2017; Dhouk et al. 2013;
Blanc et al. 2018; Gilbert et al. 2022) and can have different physical origin, depending
both on the physical properties of the suspension and the range of applied shear
stross, Yo, By studying a non-Brownian suspension made of polyvinyl chloride (PVC)
particles suspended in a 1,2-Cyclohexane dicarboxylic acid diisononyl ester (DINCH,
Newtonian oil), Chatté ef al. (2018) have notably put forward the possible existence
of two successive regimes of shear-thinning behavior separated by a shear-thickening
regime related to the frictionless-frictional transition. The first shear-thinning regime
occurs at small stress, when the suspension remains frictionless since repulsion prevents
direct solid particle contacts. This system can be actually seen as a suspension of “soft”
particles, composed of a *hard core” (of diameter d = 2a) to which a frictionless jacket
of thickness, £, 15 added. The gap 2£ between neighboring particles 1s determined by
balancing the normal force Fyy induced by the applied stress with the colloidal repulsive
force, fiy. When ¥ys (and therefore the normal foree Fiy between particles) increases,
£ decreases - and so, the apparent size of the particles decreases, agpy = a + £(fx) -
inducing a decay of the apparent volume fraction of the suspension and, in fine, a decay
of 7 (Krieger 1972; Maranzano & Wagner 2001a). When the particle pressure increases
more and overcomes the repulsive forces (Fiy = ), the particles enter more and more
frequently into direct solid contact thanks to their asperities and the suspension passes
from a frictionless state to a frictional one.

Interestingly, Mari ef al (2014) have shown that the onset of this frictionless-
frictional transition (“ff#f") occurs for a critical shear stress (and not a shear rate, +):
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olf* 0.3 x f§/(6ma?) for spheres, whose value is independent of ¢ as already ohserved
in many experiments (Frith et al. 1996; Bender & Wagner 1996; Maranzano & Wagner
2001 a,b; Lootens et al. 2005; Fall et al. 2010; Larsen et al. 2010; Brown & Jaeger 2012,
2014). The authors have also shown that the stress range over which thickening oecurs
remains constant. This has motivated us to control the applied shear stress in the present
study, instead of the shear rate. Once the load Fy is large enough (Fy >> f§), the
direct solid contacts between particles saturate sinee all the particles in the suspension
have contacts with their neighbors: the system is in the frictional state. Man et al
{2014) have measured the occurrence of this second regime at Xya equal to Jg,{:' ~ fS fa?.

In the frictional state, if Xyo increases further, then a potential second shear-thinning
regime can be observed. We want to emphasize that it is precisely this second shear-
thinning regime (when the suspension is frictional) that will be explored in the present
paper. The physical origin of this complex behavior remains an open question. For
instance, Acrivos et al. (1994) suggest that the apparent shear-thinning behavior
observed in Couette flow can be due to a difference of density, Ap, between the solid
particles and the suspending fluid. Indeed, solid particles heavier than the suspending
fuid settle because of gravity and form a more concentrated layer. Then, shear-induced
viscous resuspension (Gadala-Maria 1979; Acrivos et al 1993; Zarraga et al. 2000;
Saint-Michel et al 2019; d"Ambrosio ef al. 2021) tends to homogenize the suspension
when ¥ya increases, which induces an apparent decay of the viscosity. However, while
this mechanism may arise in some experiments with Couette rheometers, it cannot
explain the shear-thinning behavior observed in other types of flow. For instance, in
the case of a parallel plates geometry, the shear-induced viscous resuspension would
tend to increase the viscosity. In addition, we will see that ¥'y5 in the present study is
large enough so that gravity would not cause significant deviation from uniform volume
fraction, so the effect of any shear rate dependence related to gravity is absent.

Lastly, numerical simulations (Lobry et al 2019) and experimental studies (Chatté
et al. 2018; Arshad et al. 2021; Le et al. 2023) have shown that the shear-thinning behavior
observed for concentrated viscous non-Brownian frictional suspensions (1.e. beyond the
DST) could be related to a sliding friction between solid particles that varies with the
normal force Fyy. Following the model from Brizmer et al. (2007), Lobry et al (2019)
have considered that the contact between particles is elastic and occurs only through a
few hemisphere-like asperities. In these conditions and according to the Hertz theory, the

elastic contact area A.pniae 15 proportional to F?;r"ra which gives:

Hs = % x —A*“;:“‘ o F'® (1.1)
Fr denotes the tangential foree. This model i1s in good agreement with experimental works
(Chatteé et al. 2018; Arshad et al. 2021; Le et al. 2023) which have directly determined the
decay of pg; with the normal foree Fyy by conducting AFM measurements between pairs
of particles. Arshad et al. (2021) and Le ef al. {2023) have conducted AFM measurements
to measure the pairwise friction between pairs of PS beads (d = 40pm) immersed in an
aqueous liquid and silicone oil, respectively. Note that the system of suspension studied
by Le et al (2023) is the same as the one that will be studied in the present paper.
The different studies (Lobry ef al. 2019; Arshad ef al 2021; Le et al 2023) done on
suspensions of spherical particles have all comverged to the following equation based on
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the works from Brizsmer et al. (2007):

i (22) ]
ps = pg” X coth |pg® | — (1.2)
L.

L. corresponds to the eritical normal foree which scales the saturation of pg. In other
words, the shiding friction coefficient becomes constant and equal to p2® when Fiy == L,
becanse of an elastic to plastic transition of asperities deformation (Lobry et al. 2019). In
the case of a contact between a perfectly smooth half sphere and a flat surface, Brizmer
et al (2007) determined: pi® = 0.27 and m = 0.35, while Lobry et al (2019) estimated
L, = 20nN based on the material properties (PS particles). More recently, Arshad
et al. (2021) directly measured pf® = 0.18 by AFM measurements and determined
L, = 332nN and m = 0.54 by fitting their experimental results obtained for PS
particles in an aqueous liquid by eq.(1.2). On the other hand, Le et al. (2023) measured
for PS beads in silicone oil: g5 = 0.15 (m = 0.4). Note that, since the particles of the
suspensions studied in the present paper are of the same chemical composition found
in these studies from the literature (and even the same solvent for Le ef al. (2023)), we
will reuse eq.1.2 coupled with the latter constants to characterize the shear-thinning
behavior of the studied suspensions.

Lobry et al. (2019) have numerically determined the relationship between the normal
force applied on spherical particles and the shear stress: Fiy = 6mwa®X)2/1.69. Equiva-
lently, a critical shear stress, X, can be defined as: L, = 6ma®X,/1.69, which allows one
to obtain the following updated equation for the variable shiding friction coefficient:

&0 o0 Lo ™
pa = p” % coth |u} > (1.3)
[}

It 1z known in granular media that the two possible motions for a particle are shding
(characterized by p;) and rolling. The one offering the least resistance will be favored but
both can obviously occur at the same time in a sheared suspension (Estrada et al. 2008).
One can easily understand that the particle shape might have a significant effect on one
or even both of these motions, depending on the contact between particles. A decade ago,
the numerical simulations of Estrada et al. (2011) in granular media have shown that
the way a non-spherical shape provides resistance to rolling can be essentially modelled
by approximating the non-spherical particle (like a globular one) by a sphere " equipped”
with an apparent rolling resistance torque, I'r,, (see Figure 2). This shape-induced rolling
resistance would be therefore characterized by a rolling friction coefficient, p,, defined
from a Coulomb’s type law:

FY < peF (14)
This is the sense in which we will consider rolling friction in the present paper. It is
important to note that the main assumption that we will make in the present paper
will be then to approxdmate the 3D globular particles (irregular polyhedra) by their
2D-projected shapes (irregular polygons).

Recent numerical simulations from Singh ef al (2020) have notably predicted a
decay of dy when pp increases, but a dearth of experimental data remains preventing
verification of this important insight. Thus, in the present paper, after describing the
experimental process in § 2, we will first aim (in § 3) at measuring the jamming volume
fraction, ¢y, of the two studied suspensions, in order to characterize the rheological
behavior of non-Brownian viscous suspensions made of frictional particles with irregular
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Ficurge 2. Schema of rolling on a plane from the left to the right for a regular octagon (on the

left} and a disc (on the right), thanks to a tangential force, F_;-, applied at the center of mass G
of the particles. The two particles have the same perimeter. The two svstems can be considered
equivalent if the disc is “eqmpped“ with a rolling resistance turque gy, . directly related to a

“rolling resistance force”™, FN defined from the normal force, Fp.- applied on G as: Ffy < pFw.
pir is the rolling friction coefficient (Estrada et al. 2008, 2011).

shapes and compare it with the rheology of a basic suspension made of spheres of the
same material. In the second part, we will then determine by image analysis process
(sce § 4) the rolling friction coefficient, u,, of the studied globular particles in order to
compare the numerical predictions of ¢, from the literature with our own experimental
data.

2. Experimental methods
2.1. Suspensions

In this paper, the rheological behavior of two different non-Brownian wviscous
suspensions are investigated. The two suspensions are very similar to one another:
they are both made of the same polystyrene (PS) particles (T540, Microbeads) with
a density measured as p, = 1.06g/em? and sieved between 36 and 45pm in order
to reduce the initially large size distribution. The solid particles are then separately
dispersed in the same Newtonian silicone oil (Sigma-Aldrich) of density py = 0.97 g/em?
and viscosity ng = 0.98 Pa.s measured at T = 23°C. The only difference between the
two suspensions is in the shape of the PS particles. For the first suspension, labelled
Spsgan, the solid particles are spheres and to make the second suspension labelled Cpgyn,
the PS particles have been crushed by a process described in appendic A. Figure 3 shows
examples of these particles captured with a basic microscope: some spherical particles
are presented in Fig.3(a) while a sample of crushed ones are shown in Fig.3(h). One
can already note that the population of crushed particles is shlightly heteroclyte, being
composed of different shapes classified from simple spheres to more facetted particles
and particles having both spherical and flat surfaces (see the right most schematic in
Fig.1). It is this appearance, combining spherical arcs and flat surfaces similarly to a
quidditch ball (the so-called gquaffle), which motivated us to choose the title for the
present paper. Figure 4 displays a zoomed-in image of a sample of crushed PS particles,
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Ficure 3. (a) Spherical PS particles. (b) Crushed PS particles. Scale = 1.75 pz/pm. Particle
diameter : d = 2a ~ 40pm.

Ficure 4. Globular/Crushed PS particles composing Cpasgp.

which allows one to better appreciate this heteromorphism.

A quantitative study by image analysis has been conducted over a fow hundred images
captured with a microscope like the ones presented in Fig.3 in order to characterize the
size distribution of the two types of particles, displayed in Figure 5. One can ohserve that
the spherical and crushed PS particles have roughly the same size and both populations
can be considered monodisperse with mean and standard deviation of the diameter of:
(d)SFsa0 25 (42 £ 1) pm and (d)Crseo a5 (43 £ 4) pm.

2.2, Rheometry erperiments

Rheometric experiments are carried out in a controlled-stress rheometer HR30 (TA
instruments) with a smooth rotating parallel plate of radius B = 20 mm. The temperature
is controlled by the static lower plate and is set at T = 23°C for all the experiments. The
gap is imposed at 1 mm < h = 2mm, which allows one to have enough particles (20 =<
h/d = 50) to minimize phenomena of layering and sliding. The preference of working in a
parallel rotating disk is led by the near absence of shear-induced particle migration in such
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Ficure 5. Size distribution of spheres (blue) and crushed particles (orange). For a crushed
particle, the projected area, denoted Ap, is measured by microscopic image analysis. The
diameter d corresponds to the diameter of a disc having the same area as the projected crushed

particle : d = 2 x 4/ Ap /7.

a geometry (Chow et al 1994; Merhi et al. 2005), which helps in keeping a homogeneous
suspension across the gap. However, the drawback of this geometry is that the shear rate
is not constant. Indeed, + increases from 0 at the center to v = PR/h at r = R, with 2
the angular velocity of the upper rotating plate. In the case of a non-Newtonian behavior,
this variation can be problematic since the viscosity of the suspension, 7, depends on the
shear rate, 4. In order to take into account this experimental bias and deduce the correct
values of 5, we use the well-known Mooney-Rabinovitch correction :

1 dIn(app)
= 1+-——== 21
N = Tapp [ + 4 dln(¥r) (2.1)
Tapp 15 the apparent viscosity deduced by the rheometer from the measurements of shear
rate at the rim of parallel plates, 45, and applied torque, I':

2 r

22
7R3 4p (2.2)

Tapp =

We studied the rheclogical behavior of each suspension over a wide range of shear
stress, X2 € [5, 100] Pa, and solid volume fraction, ¢ £ [0.43, 0.51]. For each Xys
and each ¢ - in total, 50 combinations of (¢, ¥y2) -, a shear reversal experiment was
performed. We encourage the readers to consult Blanc ef al. (2018) for details on the
protocol. Briefly, the suspension is simply sheared at a given constant ¥ys. Once the
steady state has been reached (7 is constant), the How direction is reversed while the
value of ¥ys 15 kept constant. Then, the suspension is sheared in this new direction
until the steady wvalue of 5 1= retrieved. For each ¢ on both types of suspension, a series

of shear-reversal experiments was performed on two independent samples. The results
shown below correspond to the average of these two independent measurements.

Within these conditions, the values of the Péclet and Reynolds numbers characterize

the suspension as non-Brownian and its How as viscous (inertial effects are negligible),
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respectively:
B X yaa’
Pe = “FaT
with kg the Boltzmann constant. At the same time, note that the Stokes number is kept

small throughout all the experiments: St = {%:I Eﬁ:ﬁzﬁ < 1073 It is thus expected
that only viscous and contact forces govern the suspension behavior.

Yiah?
=Pf 12 -

>10° and  Re 0.1 (2.3)

The maximum shear stress (X2 = 100 Pa) is set by the occurrence of edge fracture
which is expected for a first normal stress of the order of the capillary pressure (Keentok &
Xue 1999): Ny = 2vgir i/ h, with the surface tension of silicone oil, Yairon = 30 mN.m L.
Since the literature shows Ny = (L5812, we obtain the following criterion to avold edge
fracture: X152 =< 120 Pa, a value close to experimental observations. On the other hand,
the minimum stress (X2 = 5Pa) i1s chosen in such a way that the Shield number,
denoted Sh, 1s large enough (Sh > 1) to ensure that the particles do not settle due to
the slight difference of density, Ap, between the solid and liquid phases, and that a vertical
homogeneous suspension 1= maintained throughout the entire experimental procedure:

X

.»_1;,::& >10°  with  Ap=py— py = (0.09 £0.02) g/em® (2.4)
We want to underline that AFM measurements found in the literature (Le et al. 2023)
do not observe any repulsive forces before contact for PS particles (from Microbeads
too) in a silicone oil (from Merck, py = 0.95 g/em?, o = 20mPa.s! at 25°C), meaning
that we are already in the frictional regime for the range of ¥ys studied in the present
paper. This will be confirmed later by the measured values of ¢y and the comparison
with the literature (Mari et al. 2014; Gallier et al. 2014; Petors ef al. 2016).

Sh=

To conclude this section on the rheometry, we want to emphasize that the plate
surfaces are smooth and we made sure that there was no wall slip phenomenon by
measuring the viscosity of the suspensions at the largest volume fraction for different
gap size. A viscosity found to be independent of the height of the upper plate indicates
that there is no detectable wall slip (Yoshimura & Prud’homme 1988).

3. Results and discussions on macroscopic rheological measurements
3.1. Rheological measurements

In this section, we aim to characterize the rheological behavior of the suspension made
of crushed PS particles (Cpggp) and compare it to our measurements of the rheology
of the suspension made of spherical PS particles (Spgyp), which s more common in the
literature.

3.1.1. Steady viscosity

Figure 6 displays the variation of the measured relative steady viscosity, . = 1/m0,
with applied shear stress, Xya, for (a) the suspension Spggyy made of spherical PS
particles and (b} Cpgyp made of crushed PS particles. Each colored point corresponds to
an experimental measurement of 5, (relative viscosity corrected by eq.(2.1)) at a given

¢ and a given Xya. The relative uncertainty for each measurement, not represented on
the graphs in Fig.6 in order to keep them clear, is always smaller than 5%.
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Ficure 6. Variation of the measured relative steady viscosity, 5 = 75/mo, with applied shear
stress X3 for (a) the suspension Spsqn made of spherical PS beads and (b) Cpsan made of
crushed PS particles. Each color labels the solid volume fraction ¢ : 0.43 (blue), 0.45 {orange),
(.47 (green), 0.49 (red), 0.51 (purple). For each given ¢, the experimental measurements (colored
dot) are fitted by a power law (colored straight line) : X'y2 = K4™ with 4 = X2 /7. The resulting
parameters of these fits are shown in Fig.7.

The values of viscosity measured on Spgyp within the explored range of ¥ys are in
quite good agreement with other previous works present in the literature (Blanc et al
2018; Lobry ef al. 2019; Le ef al. 2023) and conducted on an identical system (1.e. PS
spheres of size close to 40pum dispersed in silicone oil). It appears in Fig.6 that Cpgyp
exhibits a rheological behavior which is broadly similar to the one which characterizes
Spgap. In particular, we observe for both suspensions that:

- as expected, 7, Increases with ¢ for a given ¥ya.

- 7y decreases with Yo for a given ¢, qualifying the non-Newtonian behavior in the
range of applied shear stress (X2 € [5—100| Pa) for both suspensions as shear-thinning.

- as expected, the decay of i, with X2 is steeper (meaning the shear-thinning behavior
is more pronounced) at large ¢.

On the other hand, the primary distinction between the suspensions is that the shear-
thinning behavior is stronger for Cpgyp compared to Spgyp for a given ¢.

According to the literature (Coussot & Pian 1994; Schatzmann et al. 2003; Sosio &
Crosta 2000; Mueller et al. 2010; Vance et al. 2015), we can quantify the non-Newtonian
behavior of such suspensions by fitting the experimental measurements by a power law
(colored straight lines in Fig.6):

Eia = Kq" (3.1)
K and n are the consistency factor and the shear-thinning index, respectively. Their
values resulting from the fits of the experimental data in Fig.6 are displayed as functions
of ¢ in Figure 7. We observe in Fig.T(a) that K increases with ¢ as expected. This reflects
the increase of the viscosity with volume fraction. On the other hand, we observe in
Fig.7(b) that n decreases with ¢, which accounts for the more pronounced shear-thinning
behavior at large ¢. One can also note that n is systematically smaller in the case of
Cpgyn at a given ¢, which reflects the more pronounced shear-thinning behavior for
the suspension made of crushed particles. More precisely, we observe that the relative

variation of n over the range of studied ¢ 1z roughly twice as large for Cpgyy than for
Spsan (2% ~ 0.2 for crushed particles while f‘T"; ~ 0.1 for spheres). Regarding the

T
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Ficure 7. Variation of (a) the consistency factor K and (b) the shear-thinning index n with
solid volume fraction ¢ for the suspensions Spsa made of spherical PS particles (blue disks)
and Cpgyp made of crushed PS particles (orange squares), deduced from eq.(3.1).

consistency factor, K | it is interesting to see that apparently K ©Fs40 a5 K5Ps40 ot 3 given
¢. However, any further interpretation of this comparizon in K can be difficult since its
units are not exactly the same between the two suspensions becanse n“Fsi oL pSrsa
([K] = Pa.s™™).

From figures 6 and 7, it can be seen that the more pronounced shear-thinning behavior
which characterizes the suspension Cpgyy compared to the same suspension made of
spheres (Spgqp) results from the observations that:

. ﬂfps.lu . ﬂfps.lu at large K12 while ,FFFHJD - :.?fps.lu at small Xya.

To conclude this section, we would like to discuss why we have not considered the
existence of a yield stress for either suspension. It is true that it is more relevant to
characterize the rheological behavior for some non-Brownian suspensions by using the
Herschel-Bulkley (H-B) law:

Ep=1+Ky" (3.2)

instead of eq.(3.1). According to the literature (Pantina & Furst 2005; Guy et al 2018;
Richards et al. 2020), it is known that the existence of a yield stress, 7., may be caused by
the presence of weak adhesive forces between solid particles which would lead to particle
aggregation. Thus, the value of 7, may be understood as the minimum stress required
to break these aggregates. Furthermore, it i1s expected that the crushed particles, which
have some flat faces, favor Van der Waals interactions since they offer a much larger
contacting surface between particles compared to spheres, leading to a higher yield
stress. In view of this, we have also fitted our experimental measurements in Fig.6 by
eq.(3.2). The results have shown that the impact of the third fitting parameter v, on K
and n is negligible, since we found 7, < 1 Pa for both suspensions and all explored ¢.
For Spg4p, one can note that this is in good agreement with the works of Le ef al. (2023)
who measured 7. = 0.3 Pa for a very dense suspension made of PS beads having a size
of 40pm and concentration ¢ = (.55 in a silicone oil (same system as the one studied
in the present paper). The largest volume fraction studied in the present work being
¢ = (.51, one can expect that the values of 7, for Spgyp are even smaller than this value
within the range of studied ¢. Thus, we can advance with enough confidence that the
minimum applied shear stress in our study (X2 = 5 Pa) i1s at least 10 times larger than
Te for Spgyp and Cpgyp. We will confirm by some measurements from the shear-reversal
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experiments that adhesive forces do not play a significant role in the rheological behavior
of the studied suspensions within the applied range of shear stress Xya.

3.1.2. A stress-dependent jamming volume fraction

We want to recall that the shear-thinning regime observed for a frictional non-Brownian
suspension 18 common and has already been extensively observed in the literature for
suspensions made of spheres (Gadala-Maria & Acrivos 1980; Zarraga et al. 2000; Dbouk
et al. 2013; Vazquez-Quesada ef al. 2016, 2017) or even facetted (sugar) particles (Blanc
et al. 2018). As explained in the introduction of the present paper, the physical origin
of this complex behavior remains an open question. Some recent works including an
experimental study from Chatté et al. (2018) and numerical simulations from Lobry
et al. (2019) have demonstrated that the shear-thinning behavior for frictional spheres
could come from a decay of the sliding friction coefficient, p;, when the shear stress, Xya,
increases, which induces an increase of the jamming volume fraction, ¢n (Wildemuth
& Williams 1984; Zhou et al. 1995; Blanc et al. 2018; Lobry et al. 2019; Gilbert et al.
2022). The mtroduction of a stress-dependent jamming fraction ¢ (X)s) 1= thus very
useful to describe accurately the complex rheological behavior of a suspension. Figure 8
displays the evolution of n; with ¢ for each applied ¥y3 (see color code). The colored
points corresponds to the experimental data and, for each applied ¥yq, the variation of
the reduced viscosity, s, with the volume fraction, ¢, is fitted by a Maron-Pierce type

law:
EQ

E 2
( )

Note that op 1s used in eq.(3.3) as a second fitting parameter in order to get the most
accurate fit of our experimental data. The best fit is obtained with agp s 0.85 for both
suspensions, a value close to the one used in the former Maron-Pierce equation (ag = 1)
and in good agreement with the numerical simulations of Lobry et al. (2019): ag = 0.8
for p; = 0.5 (typical value of p; for usual material like polystyrenc). We know that
the recent literature (Blane et al. 2018; Lobry et al. 2019; Gilbert et al. 2022; Lo ef al
2023) evidences a variation of ag with Xya (or equivalently p,) while we have arbitranly
chosen to impose a constant value for ap, independent of the considered suspension and
of ¥ya. The main reason behind this choice is that ag remains a fitting parameter whose
physical meaning, if any, remains an open question. Its variation with pg is actually
only introduced to balance the variation of ¢y with g, when ¢ decreases enough and
the suspension enters in the semi-dilute regime (typically ¢ =< 0.3 for a suspension of
frictional spheres) (Gallier ef al. 2014; Poters ef al. 2016). However, when the suspension
is concentrated, even though the variation of ag with p, can be large (06 < ap < 1
for a suspension of spheres Lobry ef al. 2019 or facetted particles (Blanc et al. 2018)),
the values of n; when ¢ — ¢y are controlled primanly by the value of ¢y, Moreover,
one can note that the uncertainty in ag, taken into account here to fit 5;(¢) (see Fig.8),
is kept quite large and encompasses the values from the lhiterature: ap = 0.85 = 0.15.
Yet, it has a minimal impact on the determination of ¢y, as can be observed from the
confidence area on the values of ¢y, plotted for each suspension in Figure 9 (colored area).

(3.3)

Ta =

Fig9 displays the variation of ¢y, with Yo for the suspensions Spgyy made of
spheres (blue circle) and Cpgyp made of crushed particles (orange square). As expected,
we observe that ¢y, increases with Xys for both suspensions. This increase is larger
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Ficure 8. Variation of measured relative steady viscosity 1 with solid volume fraction ¢ for
suspensions (a) Spsea made of spherical PS and (b) Cpssa made of crushed PS particles.
Each color labels the applied shear stress X3 @ 5 (blue), 10 (orange), 15 (green), 20 (red),
28 (purple), 36 (brown), 45 (pink), 60 (grey), 80 (yellow), 100 (cyan). For each given X, the
experimental measurements (colored dot) are fitted by a Maron-Pierce type law (see eq.(3.3)).
The measurements of ¢am(X12) resulting from these fits are shown in Fig.0.

for Cpgap compared to Spgyp, which illustrates the more pronounced shear-thinning
behavior for the suspension made of crushed particles. More precisely, we observe that:

o glrsin - g5Psa within the smaller end of the Xya range while ¢gCrs40 a5 gSpsen ¢
the largest ¥ys values. This mirrors the previous observation made from the viscosity
comparison between the two suspensions.

For Spgap, note that the values of ¢y range from 0.560 £ 0.005 to 0.595 + 0.009 in
very good agreement with Lobry et al. (2019}, while they range from 0.550 + 0.004 to
0.595 £+ 0.009 for Cpgyg. Globally, one can note that these values of ¢, for both types
of suspension are in good agreement with the literature when non-Brownian frictional
(s # 0) suspensions are considered {Zarraga et al. 2000; Ovarlez et al. 2006; Boyer ef al.
2011; Man et al. 2014; Peters et al. 2016; Singh et al. 2018; Lobry et al. 2019; Singh
et al. 2020). The rest of the paper will focus on finding a physical mechanism to explain
the observed rheological difference between the suspension made of crushed particles

and the common case of a suspension made of spheres.

3.2. Physical origin of the stronger shear-thinning regime for crushed particles

In this section, we want to understand the physical origin of the higher viscosity in
the suspension of crushed particles (C'pgyp) for small shear stress, as well as the reason
that the viscosity of the two types of suspension are similar when ¥y 15 increased. Since
the only difference between the suspensions is the shape of particles present in them, it
is obvious that this difference in viscosity is related to it. Two different possible physical
origing will be thus investigated. Firstly, we will see in § 3.2.1 that it is unlikely that
the small remaining adhesion between particles (which is expected to be stronger for the
crushed particles at a given shear stress) explains this observation. Second, we will discuss
in § 3.2.2 and 3.2.3 if changes in viscosity can be explained by a variable shiding friction
between particles coupled with a rolling resistance of particles related to the particle
shape itself. To end this section, we will study in § 3.2.4 the rheological behavior of the
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Ficurg 9. Variation of the jamming fraction ¢w, with shear stress X2 for the suspensions Spzan
made of spheres PS (blue circle) and Cpsao made of crushed PS particles (orange square),
deduced from Fig.8 and eq.(3.3) with ap = 0.85. The colored area for each suspension is related
to the possible range of ag: 0.65 < og < 1.

suspensions in a frictionless case in order to confirm some assumptions of the considered
model.

3.2.1. Shear reversal erperiments and absence of adhesion

As mentioned previously in this paper, shear-thinning behavior of a suspension is
common and can have different possible physical origing depending on the studied
system (Gadala-Maria & Acrivos 1980; Zarraga et al. 2000; Vazquez-Quesada et al
2016, 2017; Dbouk et al. 2013; Blanc et al. 2018; Chatté et al. 2018; Lobry ef al. 2019;
Gilbert ef al. 2022). One of them is adhesion. Weak adhesive forces exdst between solid
particles that would lead to particle aggregation. In this scenario, two main features
would appear. First, a suspension would exhibit a yield stress v, (Brown et al. 2010),
which may be understood as the minimum stress needed to break these aggregates.
Second, they would exhibit shear-thinning behavior, related to the fact that increasing
X2 would break more and more aggregates, which would produce as a result a decrease
in the viscosity of the suspension. Furthermore, this explanation would be suitable to
explain the highest viscosity at low ¥ys for crushed particles while the viscosity of the
two types of suspensions (Spgyp and Cpgyp) would tend to be similar at large Yo, As
already mentioned previously in § 3.1.1, flat surfaces of crushed particles favor particle
adhesion. Potential aggregates are then less likely destroyed in Cpggg than in Spsyp
when both suspensions are sheared at a given small enough ¥ya. This would make Cpgyp
more viscous than Spgyp when ¥ys is small. On the contrary, when Xya >> 7, all the
aggresates are destroyed by shear, even in the case of Cpgyy which then flows similarly
to Spsan.

The first flaw in this explanation has already been presented in § 3.1.1. Indeed, we
have seen that the smallest value of X5 that we apply to shear the suspension is at
least 10 times larger than 7.. At ¥ys = 10Pa (second lowest value of applied shear
stress), we have: Yo = 20 x 7. Yet, a significant difference of viscosity between the
two suspensions still remains at large ¢, which raises doubt that adhesion could be the
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Ficure 10. Example of transient viscosity response as a function of the accumulated strain
during a shear reversal experiment for Sps40 (in blue) and Cpsa (in orange) with Xz = 10 Pa
and ¢ = (0.51. 7 = 0 corresponds to the moment when the flow is reversed. Insert: Zoom-in
to better visualise the minimum value of viscosity, Ty, reached during the transient when

T = Tmin-

main physical origin of the stronger shear-thinning for Cpgyp. For instance, at ¢ = (.51
and ¥Yys = 10Pa, i, = (110 + 5) Pa.s for Cpgyy while i, = (80 £ 5) Pa.s for Spsp
(See Fig.8), which gives a difference of the order of 30%. Nevertheless, we understand
that this argument about X3 and 7. alone is nsufficient to support the statement
that the adhesion is not mainly responsible for the more pronounced shear-thinning
for Cpgyp. It is indeed very difficult to estimate precisely when the adhesive forces can
be neglect only from .. To go further, we have conducted a series of shear-reversal
experiments on both types of suspension by following the procedure of Blanc et al. (2018).

A shear-reversal experiment may turn out to be very interesting. It is a very hasic
experiment (the suspension is simply sheared at a given ¥ys in a given direction before
the flow direction is reversed while X5 is kept constant), characterized by a very specific
transient response of 1 which has been observed in all shear reversal experiments (Gadala-
Maria & Acrivos 1980; Blanc ef al. 2011a) and in simulations (Ness & Sun 2016; Peters
et al. 2016). Figure 10 displays an example of the transient response of i for Spgyp (In
blue) and Cpgyy (in orange) at Xys = 10 Pa and ¢ = (.51. As can be observed, a step-
like drop of  occurs just after the shear reversal and the viscosity of the suspension
reaches a minimum value, fmen, at a strain v = Ymen (v = 0 corresponds to the moment
of reversal). This drop is then followed by a rebound of the viscosity which reaches the
steady value, n; = nonr, it had before the shear reversal, over an accumulated strain, -y,
roughly equal to 4z ~ 10. Interestingly, the numerical simulations from Ness & Sun (2016)
and Peters et al. (2016) have shown that the hydrodynamic and contact contribution to
the viscosity, denoted respectively 5 and 5©, are directly connected to the values of
7 and . More precisely, with 5, = n% + 5%, Peters et al. (2016) have numerically
shown in the case of a non-Brownian suspension made of (frictional or frictionless) beads
the following relations:

T = Mmin & H _ Thmin — 0.157,

T = 085/ T T T 08 m 4



16 E. d’Ambrosio, D. L. Koch and 5. Hormozi

Roughly, 57 ~ fmen/mo and 15 ~ (115 — mm) /0. We refer readers to the numerical work
of Peters et al. (2016) to better understand the physical origin of this result. In brief, the
particles in contact tend to separate when the shear is reversed. The microstructure of
the suspension is thus broken, which induces the drop of the viscosity. Progressively, the
microstructure of the suspension is then re-built (mirroring the microstructure before
the shear reversal since the low direction has been reversed), which induces the rebound
of i to its steady value.

In the present study, the transient viscosity induced by a shear reversal can be very
interesting bocause, if a stress-dependent particle aggregation occurs, then it should also
affoct the values of fyyn and the characteristic strains, . Notably, Gilbert (2021} has
studied the rheology of a non-Brownian frictional suspension composed of homemade soft
PDMS particles (Young modulus, Eppyrs = 1.8 M Pa << Epg ~ 3G Pa) suspended in
Span 80 (Newtonian liquid). By using the JKR theory (Johnson et al 1971), the author
has ohserved for this suspension that adhesion plays a role if ¥ya < 73 & 10 Fa. By doing
shear reversal experiments, he has then shown (see Figure 86-2 of Gilbert (2021)) that
r}f,_}fi{’r" e r}nz,_};}’r" and, that the characteristic deformation of the transient response
for a shear reversal, «;, was much larger than 10 (v ~ 50 for ¢ = 0.4 and Y5 =73 In

the case of his suspension).

Figure 11 displays the experimental measurements (colored symbols) of nmgn/mo
within the studied range of X5 for (a) Spgyn and (b) Cpsyn, and one can see it is not
similar to what has been observed by Gilbert (2021) for a non-Brownian suspension
made of adhesive beads. First, pLrs4 m poFS4 at a given Xys and a given ¢. Second,
Tmin 15 weakly dependent on ¥y for a given ¢ in the studied range of applied shear
stross. Thus, it is lkely that ¥ys »>> 74 for both suspensions in the present study and
that adhesion can then be neglected. We also want to underline that, based on eq.(3.4),
we can determine 5 = 5 — 6 for Spgyp concentrated at 45% from the experimental
data (roughly independent of ¥ya), which is in very good agreement with numerical
simulations from Gallier ef al. (2014) which shows 5 = 7., = 5 — 6 for a non-Brownian
viscous suspensions of (frictionless or frictional) spheres at ¢ = 0.45. ., is the high-
frequency dynamic viscosity (Van der Werff & De Kruf 1989).

Note that, in Fig.11, the experimental data for mnn of each suspension for X5 < 45 Pa
have been then fitted by a power law, based on eq.(3.1) where now K = Ky and
1 = Ny, to quantify these observations of fpyn. The fitting parameters Kiyn and npgen
resulting from this fit are presented in Figure 12. The upper limit for the shear stress
considered here for the fit ( ET5% = 45 Pa) 1s imposed due to the poor resolution of the
measurement of fmy when Xia > XT3, Thus, the apparent plateau of mymen observed
at large ¥ys has no physical meaning. It is an experimental artifact. Therefore, one can
clearly see in Fig.12 that gy for the suspensions Spgyp and Cpgyp are characterized
by the same rheology, as we observe that both Ky and ngyen are independent of
the considered suspension. Besides, Spgyp and Cpgyy are both characterized by a
Newtonian behavior when 1 = fmgn: 094 < ngyn = 1 for both suspensions, when
043 = ¢ = 051 and 5 £ Xys £ 100 Pa. Moreover, the nmen results indicate that
hydrodynamic interactions are not significantly affected by particle shape.

Figure 13 displays the experimental values of characteristic strains, ymin (open sym-
bols) and qp s (closed symbols) for the suspension made of PS spheres (blue) and the
one made of crushed particles (orange), as function of ¢ when Y3 = 10 Pa. While
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Ficure 11. Variation of the measured relative minimum value of the viscosity, fmn /1o, with
applied shear stress X2 for (a) the suspension made of spherical PS and (b) the one made of
crushed PS particles. The color code labels the solid volume fraction ¢ of the suspension in the
same way as in Figure 6. For each given ¢, the experimental measurements (colored symbols)
for X2 = 45 Pa are fitted by a power law (colored straight line) : X3 = K ® Y™~ with
F = X12/fmin. The parameters resulting from these fits are shown in Figure 12,
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Ficure 12. Variation of (a) the consistency factor, denoted K., and (b) the shear-thinning
index, denoted 1n,,,,. with the solid volume fraction ¢ for the suspension made of spherical PS
particles (blue disks) and the one made of crushed PS particles (orange squares), when 1 = Tmin
and Xz < 45FPa.

Vmin corresponds to the accumulated strain from the moment of shear reversal to when
1 = Tmin, 0.5 18 defined as the accumulated strain from the minimum state (5 = Bmn )
to the moment when the viscosity has recovered 50% of its reversal-induced deficit:

7(710.5) = Tman + 0.5 % (9 — TPmin) (3.5)

The uncertainties of the experimental measurements for the characteristic strains are
estimated at +5 x 1072, The experimental data are also compared with numerical (Pine
et al. 2005; Peters et al 2016) and experimental (Pine ef al. 2005) results from the

literature.

One can observe that -myn decreases with ¢ for both suspensions and that

Tﬁf,f"” --- fri’;,f‘“ for a given ¢. A closer examination shows that "r,if,f‘“ 1s nearly

equal to TSFS"” at the highest volume fraction (¢ = 0.51) while it is smaller than '}',i’::‘”

min

at smaller volume fractions with the largest difference occuring ¢ = 0.43, the lowest
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Ficure 13. Characteristic strains min for the minimum viscosity {(open symbols) and o5 for
the partial recovery (filled symbol) as a function of volume fraction ¢. The graph on the right
is just a zoom-in of the left one. The experimental measurements (X2 = 10 Pa) from this
study are represented for the suspensions Spgyp (blue discs) and Cpgyn (orange square). From
the literature, Peters ef al. (2016) have performed several numerical simulations to study the
influence of the sliding friction coefficient p. and the relative roughness fir /d 00 Ymin and ~os.
Some of their results are also plotted (black symbols) on the graph for be/d = 1077 : (A) pa =0
;o) pe = 0.5 ; (V) ps = 1. Some experimental measurements («) from Pine et al. (2005) of the
critical strain 7. for which irreversibility occurs are also plotted, as well as the power law [—)
resulting from their numerical simulations : v, = 0145193,

wvolume fraction studied. Furthermore, one can note that the experimental data are well-
predicted by the simulations from Peters et al. (2016), conducted on a non-Brownian
suspension of frictional spheres, characterized by a combination of a sliding friction
coefficient, 0 < p; < 1, and a relative roughness height, h,./d = 1072,

Analogous to ~min, we observe that -z decreases when ¢ increases, which 1= in
good agreement with the literature. In addition, the experimental values for Spgyy at
¥ia = 10 Pa (filled blue discs) are well-captured by the numerical simulations from
Peters et al. (2016) (us = 0.5, hy/d = 1072). One can also note that ngsnn = "ri‘;“”
for a given ¢ even though both are still of the same order and follow the same trend.
This slight difference is interesting for two different reasons. First, as we have seen from
the work of Gilbert (2021), having 7§ £5% ~ 45554 (and -, ~ 10 as can be observed in
Fig.10) 1z consistent with the inference that adhesion forces do not play a predominant
role in the rheology of Cpgyp compared to Spgyp, within the applied range of Xya.
Second, Peters et al. (2016) have explained that the force network is reestablished over
a typical strain equal to ~yps during a shear reversal experiment. According to this
assertion, it would be a little harder for the particles in Cpgyp to rearrange during
the transient in order to rebuild the microstructure leading to contact forces (see the
works from Peters et al. (2016) for details on the physical mechanism). We think this is
related to the shape-induced rolling resistance and it could be interesting to study it by
numerical simulations, since shear reversal gives access to the separate hydrodynamic
and contact contributions to the stress. More generally, Peters et al. (2016) have studied
the influence of g, and h./a on the values of characteristic strains and we think it
could be interesting to quantify also the role played by pp, if any, in the transient of a
shear-reversal experiment.
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3.2.2. Variable sliding friction coefficient.

In the previous section, we have scen that adhesion cannot account for the shear-
thinning behavior of the two suspensions and that there 13 no evidence from shear
roversal experiments of stronger adhesion in Cpgyp than Spggp. In this section, we will
show that, unlike adhesion, a variable shding friction model allows us to explain the
shear-thinning behavior of the suspensions.

From the numerical works of Mar ef al (2014) and Gallier et al. (2014), it 1= well-
known that the jamming volume fraction, ¢y, is strongly dependant on the sliding friction
cocfficient, p;. Besides, as presented in the introduction of the present paper, the recent
literature (Chatté et al. 2018; Lobry et al. 2019; Arshad et al 2021; Le ef al. 2023)

relates the shear-thinning behavior of a non-Brownian frictional suspension to a decay of
pts when the normal force Fiy between particles (directly proportional to ¥ya) increases:

e
Hs = pg° % coth [#3“ (?2) ] with  py ST o (3.6)
L

We recall that ¥ is a critical value which characterizes the elasto-plastic transition of
asperities deformation (Lobry et al. 2019) and p$® is the constant value reached by p,
when ¥ys »>> Y. As for the power m, its value 1= directly related to the fact that the
model (Lobry et al. 2019) considers that the contact between two particles occurs at
only one or two asperities (mono-asperity contact) and that the particle asperities are
supposed to be close to hemispheres (for which m ~ 1/3, Brizmer ef al. 2007). Recent
AFM measurements performed on PS beads (d s 40um) suspended in an aqueous liquid
{Arshad et al. 2021) or in silicone oil (Le ef al. 2023) have given: p™ = 0.2, ¥, /= 10 Pa
and m == (.5, Figure 14(a) displays the variation of y; with X5 based on these values
(=)

Our main assumption is that eq.(3.6) can describe the variation of g, with ¥ys in both
suspensions. Besides the form of the function, we assume that the values of pZ®, X, and
m are also identical for both types of particles: spheres and crushed. We understand that
this statement is critical but several arguments tend to support it. We recall that shding
friction should depend on the local interaction of two surfaces. In the present study, the
same PS particles - in size and material - constitute the two studied suspensions and,
even though the erushing process does change the radi of curvature of particles in some
places, we assume that it does not significantly affect the topology of the asperities.
Thus, as considered from Petors et al. (2016) for spheres, we assume that the solid
contact between particles occurs through only a fow asperities even to the crushed
particles in Cpgyp. In this scenario, the value of m determined by Arshad et al. (2021)
and Le et al (2023) for PS spherical particles (m s 0.5) can be applied for the crushed
ones. Moreover, the values of uf® and ¥, determined for PS beads (p., =~ 0.2 and
X 72 10 Pa) by Arshad ef al. (2021) and Le et al. (2023), depending on the properties
of the solid particle material (Young's modulus E| Polsson’s ratio v, Yield strength ¥3)
and asperity height by, can also be kept same for the crushed PS particles. We want to
underline that the assumption that pSrs«(Xg) & pdrse(X9) is also consistent with
the results displayed in Fig.13 for the characteristic strain, vmyn. Indeed, Peters ef al
(2016) have shown the role played by p, on 54,, and the experimental data from the
present study tend to show that the values of pg are between 0 and 1 for the studied
suspensions and are very similar between the two.
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Ficure 14. (a) Variation of the sliding friction coefficient p. with Xz (see eq.(3.6)) as computed
by Brizmer et al. (2007) and Lobry ef al. (2019) {...) and the variation used to fit the experimental
data @, (X2} (——). The solid part of the curve corresponds to the experimentally studied range
of Xy3. (b) Jamming volume fraction ¢, as function of shear stress X,;. The experimental
measurements for Spgag (blue discs) and Cpsyp (orange squares) are fitted by the model obtained
by combining egs.(3.6) and (3.7), where p3® = 0.2, X; = 10Pa, m = 0.5 and d2 = 0.65. ¢
and XF are free parameters. The best fit gives: ¢ = 0.555 and X¥ = 2.3 in the case of Spsap.
For Cpsan, we determined: ¢ = 0.536 and XF = 1.8. The two vertical dashed red straight lines
on each graph delimit the range of X+ experimentally explored.

Lobry et al. (2019) have proposed the following phenomenclogical function dp ()
relating the jamming volume fraction to the sliding friction coefficient:

E—X'“ntnn[p.} _ E—ﬂx?ﬂ

"?f'm = ‘?-I;'ﬁ + {1?121 - {i’ﬁ) 1 — g—"XF/2 {3‘?}

#2 and ¢2, are specific values of ¢, when the particles cannot slide (u, T30, 0o

and when the suspension is frictionless (u; — 0), respectively. The expression contains a
fitting parameter XP. Fig.14(b) re-displays the variation of the jamming volume fraction,
@, with shear stress, ¥js (already shown in Fig.9). In this new figure, the experimental
data (represented as blue discs for Spgy; and orange squares for Cpgyp) are fitted by the
model described by eqs.(3.6) and (3.7). ¢2° and XP are left as free parameters while 2,
is set equal to 0.65, in good agreement with the literature when the frictionless (u, = 0)
regime is considered (Marl ef al. 2014; Gallier ef al. 2014, 2018; Singh et ol 2018; Le
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et al. 2023). We will sce later in the present paper (in § 3.2.4) that it is also iIn very good
agreoment with the rheclogy of Spsyp and Cpgyp sheared in the frictionless regime.

We observe that the experimental data are well-predicted by the model within the
experimentally explored range of shear stress (X2 € [5 — 100] Pa, colored solid lines in
Fig.14b). By coupling Figs.14(a) and (b), one can note that #55% = (0.593 + 0.009)
when p; = 0.5 (X132 ~ 80 Pa) and ¢55%° — (0.573 £ 0.006) when u; = 1 (X2 ~ 20 Pa)
for the suspension made of spheres, which is in quite good agreement with numerical
simulations from the literature. For instance, Peters et al (2016) and Gallier et al. (2018)
found @y, == 0.59 and ¢y, 7= 0.58, respectively, when g, = 0.5, The numerical simulations
of Mari et al. (2014) and the ones from Peters et al. (2016) predict ¢y = 0.58 and
i 7= 0.56 for gy, = 1, respectively.

Then, one can observe in Fig.14(b) that the variation of ¢y with Xys deduced from
the fit exhibits two plateaus (——), each located at extreme values of shear stress: the
first one when Xj3 < 107! Pa and the second one when X3 = 10° Pa. According to
oq.(3.6) (Lobry et al. 2019), the platean when Xya — +00 1s due to the saturation of pg
(plastic regime) when Xyo5/X,. == 1 (see Fig.14a). The other platean predicted by the
fit when ¥ia — 0 is explained by the weak influence of p; on the values of ¢y when
ps 18 larger than 1 or 2, as demonstrated by the numerical works of Man et al. (2014),
Poters et al. (2016) and Lobry ef al. (2019).

In Fig.14(b), the function ¢y (X2) deduced from the fit 18 then characterized by:

. dm _}fli_;: ¢m = (0.555 £ 0.005) for Spsqo and ¢ = (0.536 + 0.004) for Crsao.

. bm % #02 = (0.61 £ 0.01) for Spsan and Cpsao.

Note that the estimated values of ¢ and $2.2 for Spgsp are in very good agreement
with the literature (Fernandez et al. 2013; Marn ef al. 2014; Gallier et al. 2014; Peters
et al. 2016; Lobry et al. 2019; Le et al. 2023). Mari et al. (2014) and Lobry et al. (2019)
determined ¢y, s 0.56 and ¢y == 0.546 when p, — +oo, respectively, while Le et al
(2023) obtained ¢85 == (.55 by studying experimentally the same suspension as Spgyn.
Poters et al. (2016) found ¢y, = 0.61 when p, = 0.3 and Lobry et al. (2019) determined

Bm Eu—:'::} ‘ﬁ"?ﬁﬂ? = (.625. Regarding Cpgyp, one can observe that:
a0

* O lCrsw < O |Speew and ?—I’g:ﬂ lorsew & {i’EﬁEISPsm: as expected.

To sum up, we have observed by fitting the experimental data ¢ (X2) by eqs.(3.6)
and (3.7) that the shear thinning behavior of the two studied suspensions (Spgyp and
C'pgan) 18 induced by the same variable friction law, pg( Xys). The main difference between
the two 1= in ¢35, whose value 1= smaller in the case of globular/crushed PS particles
compared to the PS spheres. One can note that XP|q, 00 ~ XP|spgn ~ 2, which supports
the statement about the sliding friction being the same for the two types of particles.
Moreover, X P| g0, & 2.3 15 a value which is in good agreement with the literature (Lobry
et al. 2019; Arshad et al. 2021; Le et al. 2023).

3.2.3. Geometry-related rolling resistance.

A decade ago, Estrada et al. (2008) and Estrada ef al. (2011) have simulated rolling
regular polygons and shown that the stress was the same as disks (with the same ¢)
equipped with a rolling friction coefficient, p, (see schema in Fig.2). This would then
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mean that the geometric effect is a rolling resistance which, in the case of equivalent
disks, can be obtained with a u,.

More recently, in the frame of a study characterizing the shear-thickening behavior
of suspensions made of hard spheres (for which p; 15 kept constant), Singh et al
(2020) have numerically studied the role of torque-activated (or stress-activated) rolling
resistance, which can be simply induced by the "rough” particle shape of particles in
real-life suspensions. Note that adhesive surfaces can also induce a resistance to rolling
motion but we eliminated this physical origin in § 3.2.1. To this aim, the anthors
have simulated spherical particles with a rolling resistance characterized by a rolling
friction cocfficient, pe. Singh et al. (2020) have then studied the role played by different
combinations of p, and gy in determining the value of the jamming volume fraction,
dm. As shown in Figure 15 which displays their result, Singh et al. (2020) demonstrated
interestingly on the one hand that ¢y, depends weakly on g when p, 15 small enough
(typically, p, = 0.35). For instance, their results show that ¢q; decreases from 0.62 to
0.60 when g, increases from 10~2 (vanishing rolling resistance) to 10 (extremely strong
rolling resistance), and g, = 0.2 (see blue curve in Fig.15). Note that we determined
in the present work: ¢y = 0.61 & 0.01 when p, = 0.2 (see Fig.14), which 1= in very
good agreement with this observation. On the other hand, Singh et al (2020) have
predicted that ¢y, is strongly dependent of p, when ,ua = 0.5. For instance, within the
same range of rolling friction coefficient (g, € [107* — 10]), the authors showed that
@ decreases from 0.57 to 0.36 when p; = 10 (see purple curve in Fig.15). Typically,
this corresponds to the case where sliding is prevented and only rotation can ocecur
(pr << pg —+ oo). In the frame of the present study, this latter result from the
literature (Singh ef al. 2020) is very interesting since, based on the assumption that
ErlCrsaw = frlSpgan, it can explain the main observation obtained in the previous section:

* O lCrsw < Om|Speew and ?—I’g:ﬂ lorsew & {i’EﬁEISPsm'

To sum up, the rheology of the suspensions (Spgyp and for Cpgan) 15 solely determined

by pr (induced by the non-spherical particle shape) when ¢y, — &5 (s Faa=0, oo},

while it is nearly independent of shape when ¢y — 67 (. ZFhazeo, pee = 0.2) or
¢m —+ &% (u; — 0). Estrada et al. (2008) have indeed demonstrated in the frame of
a numerical study on granular material that the dominant mode of relative motion at
the contacts (sliding or rolling) is the one which minimizes the coefficient of internal
friction. This simply means that the particles prefer rolling if g, << pg; or sliding if
pfr =2 pg. The case where gy ~ pg 1= obviously more complex since it involves rolling
and sliding motion at the same time. Thus, by considering the most extreme case
where g, = 10 in Fig.15 (rolling mode) and having deduced the values of -:,1.':":"‘:l for each

type of suspension (see § 3.2.2), a value of the rolling friction mcfﬁcmnt p.r"‘ for each
suspcnsmn can be predicted from the rheological measurcmm:lts p,. |5M"":I =0.03+002

and pr |lopsay = 0.10 £ 0.01. Note that the uncertainty in pr for each suspension is
due to the uncertainty in the value of ¢7 related to the possible range of ap (see eq.(3.3)).

3.2.4. Frictionless suspensions made with the same particles

We have briefly studied the rheclogy of the frictionless case (u; = 0) of the two
suspensions studied in the present paper, by dispersing the same PS particles present in
Spgap and Cpgyp In an aqueous solution, labelled AQ0, and shearing the suspensions
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Ficurge 15. The jamming volume fraction ¢y, as function of sliding friction coefficient, p,, and

rolling friction coefficient, pr, as computed by Singh et al. (2020). Their data can be obtained

at: https://acdc.alcf.anl.gov/mdf /detail/singh_rolling friction_prl_2020_vi.4/.

Bottom right: Variation of ¢wm with pe for g = 0.2 (blue) and p. = 10 {purple). The latter

allows one to predict the values of pr for Spsw and Cpsa [‘mm the experimental values of

ci=m|sps.m (light blue) and &7 |cpgy (Orange), respectively : p, |5F5.m = 0.03 = 0.02 and
|.:-,.,_g‘,:l =010+ 0.01.

in a vane tool geometry. The aqueous solution i= a mixture of delonized water with a
small amount (less than 3 wt%) of Triton-X-100 (surfactant, Sigma Aldrich) and Sodium
Iodide. We encourage the experimental reader to see the Supplementary material of
Madraki et al. (2020} for more details about this experimental procedure. Furthermore,
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FicurE 16. Inverse of the square root of the shear viscosity, 1/,/7s, against volume fraction, ¢,
for two different suspensions : the first made of the same spheres as in Spsa and the second
made of the same crushed particles as in Cpgyp. Here, the PS particles are dispersed in an
aquecus solution (np = n-? FPa.s). The two suspensions sheared at X5 = 1072 Pa in a vane
tool geometry are frictionless (u, = 0). A linear fit gives : ¢, =¢ 0.65 for both types of suspension.

the critical normal load fS (occurrence of the frictionlessfrictional transition) has been
measured by AFM measurements by Madrala et al. (2020} for PS beads (d = 140 pm)
in this aqueous solution AQ0. The authors found: f§ = (12 £ 4)uN, which gives:
cr{,;”’ 72 0.3 % f5 /(6ma?) ~ 40 Pa (Mari et al. 2014) for this type of suspension (PS beads
in AQD).

Figure 16 displays the experimental measurements of 7, (colored symbol) for spherical
PS particles (blue discs) and crushed PS particles (orange squares) in aqueous solution
AQO, when X3 = 10~? Pa (frictionless case: X3 << cri:.{r' ++ pg = 0). As expected, the
variation of the reduced viscosity 7z with the volume fraction ¢ follows a Maron-Pierce
law (colored solid straight lines in Fig 16, see eq.(3.3)) with ag = 1 (Peters et al. 2016;
Lobry et al 2019). The result of the linear fit of 1/, /7, as function of ¢ gives ¢m ~ 0.65
for both suspensions. Several observations can be underlined from this result:

e In the case of frictionless spherical particles, the value of 0.65 for the jamming
fraction is in very good agreement with the literature (Mari et al 2014; Gallier et al
2018; Singh et al. 2018) and this confirms that the suspension is frictionless.

e It confirms our previous choice to have assumed ¢ = 0.65 in order to fit the
experimental data for ¢y (Xa) of the suspensions Cpgyp and Spgan by egs. (3.6) and
(3.7).

e Finally, ¢2, = ¢m|crushed PS in AQD = ®m|spheres PS in ago = 0.65 is consistent with
the numerical results of Singh et all (2020) who found that ¢y, i1s independent of p.
when g, — 0.

In the second part of the present paper, we will describe how we can determine a value
of p, for each type of particles (spheres and crushed), based on image analysis. The
goal 15 to compare these new values with the ones predicted by the combination of the
numerical works of Singh et al (2020) based on shear rheology measurements coupled
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Wlth the experimental data %{Em} (sece in § 3.2.2 and § 3.2.3) that we recall here:
[Tha |5P5.m—ﬂ[]3:|:ﬂl:ﬂa.ndp = 0.10 £ 0.01.

ICPsm

4. Image analysis study

In this section, we will focus on the direct detm'm.i.natinn of the value of the rolling
friction coefficient, pi,, to be compared with the value, pf=, inferred from our rheclogical
measurements and the simulations of Singh et al. {Eﬂﬂ[]} I:suc Fig.15), p&=. Nevertheless,
we note that the treatment of a non-spherical particle by a single rolling friction coefficient
on a sphere 1s an approximation. It would not be exact for two reasons. One is that the
resistance to rolling of the non-spherical particle would be different at different parts
of the surface. The other is that the static rolling resistance one needs to overcome to
initiate rolling could be larger than the time averaged dynamic rolling resistance one
needs to balance to maintain rolling. This difference was minimized by Estrada et al
(2011) by considering a uniform polygon. We will want to determine how well either
of these rolling friction coefficients helps to describe a more irregular but still compact
particle rolling resistance.

4.1. Characterizing quantities of particle shape

To our knowledge, a precise measurement of g, between a pair of particles is much more
difficult than the measurement of g, which can be done by AFM measurements (Chatté
et al. 2018; Arshad et al. 2021; Le et al. 2023). It iz even more difficult for crushed particles
with irregular shapes which require even more statistics. It is common in granular media
to determine p, by letting a particle roll over a slope (Agarwal ef al. 2021). But the
determination of pe by this method can be very complicated or nearly impossible for
small particles or particles with a large deviation from spherical shape. Because of these
experimental limits, we have chosen here to use a novel method introduced by Agarwal
et al. (2021) and Tripathi et al (2021), based on image analysis of static grains to
calculate the rolling friction coefficient without considering any material properties of
the particle. The basic principle of this novel method is to approximate the projected
image of a given particle as a polygon that we can characterize by measuring:

- the aspect ratio, apgeie, defined as the ratio of the longest "height” (ie. the length
between the center of mass, G, and a side V;V;) of the polygon over the smallest one:
Aratio = hmu::f'hmm,

- the numbcr uf sides, ng,

- the internal angle of each vertex, ay,

- the length of each side, Ly,

- the eccentricity associated with each side, |E;|j'd
A qualitative schema of an irregular polygon is displayed in Figure 17 to help visnalise
the different characterizing qua.nt:ltlcs that we alm to measure. Regarding the vector
E;, we want to underline that e.;_.; = G'E;J As we will see later, the parameter e,
the horizontal component of & €g; can be negative or positive dcpcndmg on the rc]atwc
position of Eyy, G and V5. The eccentricity is then defined as the magnitude of & Ex].

4.1.1. Approrimation of particles projected area as an irregular conver polygon

Figure 18 shows 4 examples of 2D-approximations as irregular convex polygons for the
images of particles composing the suspensions Spgyp (a, ¢) and Cpgyy (b, d). The basic
images are taken with a microscope (examples of basic photos shown in Figure 3) with
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Ficure 17. Sketch of a crushed particle (blue area), considered as an irregular convex polygon
with a center of mass . The sides of the polygon/crushed particle are cutlined in a darker
blue. The vertices connecting each side are displayed as dark points. Ly; is the length of a
side connecting two successive vertices, ¥, and V;. The radius a; is the length of the segment
connecting & to the vertex V. hy; is the height of the centroid G above the segment V;V;. The
black point E,; is on the bisector of the segment ¥WV; and at the same height hy; from the
segment ViV as G. The eccentricity of the particle/polygon related to its side ¥V;V; is defined
as the ratio of the length of the vector &), denoted |e), to the projected diameter, d.

an approximate scale of 80 pixels per particle (projected) diameter. We recall that the
projected diameter, d (see Fig.5), for a crushed particle corresponds to the diameter of a
sphere having the same projected area as the non-spherical particle. Note that, from the
start, images with well-separated particles are captured, but if two or more particles are
not distinct enough (see Fig.3), they are simply not taken into account to compute pp.
Moreover, we want to emphasize that spherical particles, like the ones in Fig.18(a, c),
are also present in Cpgyp. In the end, the resulting characterising quantities of particles
presented above are determined for approximately 600 particles for each type of particle.

The image analysis process is described in appendix B. The data for the physical
particles are compared with results for 10000 “reference” numerical spheres with similar
diameters as the real particles, 1.e., in the range 70 £ 2a < 90 pz. This comparison allows
us to examine the effect of the image resolution on the properties of the particles, which
in all cases are approximated as polygons.

4.1.2. Image analysis results on characteristic quantities of particles shape

Once the coordinates (Vi z, Viy) of each vertex V; for a given polygon/particle are
known, all the characteristic physical quantities for a captured polygon/particle (see
schema in Fig.17) can be determined. Particularly, the area Ay and the location (zg,
ye) of the center of mass G of each particle/polygon are determined as follows :

n,—1 n,—1

1 N |
AP‘ = § Z dﬂt{v'h VJ} = E Z [HIIVLH - I’G,Im,y] {4.1}
=0 1=0
1 mne—1
16 = [Wz,f + VIJH&E{E’E,V}J] (4.2)
64, —
1 mne—1
e = §a, > [”’ir,s + Vir,f]'iﬂt{%"})] (4.3)
=0
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Ficure 18. Examples of 2D-approximation by an irregular convex polygon for particles
composing the suspensions Spsag (a,c) and Cpgyp (byd). The sides of a polygon are colored in
blue while the vertices are marked as black dots. The center of mass G of the polygon/particle
iz also located and orange straight lines connecting the centroid G to each wvertex are
displayed. The red pixels delimit the contour detected by the segmentation process. Scale :
"diameter” of particle ~ 80 pzx.

with j =i+ 1, except if i = n; — 1 then 7 =0.

In addition to the size distribution already shown in Fig.5 where we observed that
crushed and spherical particles have roughly the same size (d ~ 40 pu,,, with a slight
larger degree of polydispersity for the erushed ones), Figure 19 displays the distribution
of the values of characteristic physical quantities determined for the "reference”™ perfectly
smooth spheres (in green), the real spherical particles in Spss (in blue) and the real
crushed ones in Cpsy (in orange). One can ohserve that the particles from Spsyo (in
blue) are mainly spheres since the differences from the reference data (in green) are small:

- thﬂaspectraﬁnnfpalﬁclesinSpgmisc]naetulfnf:gn‘“ ﬂ].ﬂwithﬂ]‘%ufnf&f:’ﬁ
1.1)

- the number of segments per polygon and the length of sides are comparable between
the spheres from Spssp and the “reference” perfectly smooth spheres ((nfrFsec) -~
(nfef) 25 35 and (Lg/d)P5%0 ~ (L fd)T ~ 1071)

- the angles are nearly the same ({o;) 759 ~ (o)™ = 170°)
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Ficure 19. Distribution of the values of (a) polygonal aspect ratio drawe = hyy- Jhay s (bB)
number of segment per particle n,, (c) internal angle o, at each vertex V;, (d) relative length
Li;/d and (e) eccentricity |E.._;|J|"d measured across all the particles for the suspensions Speyn
(blue) ad Crsan {Dra.ng;e} For aratic and ne, the statistics include roughly N ~ 600 particles
for each type of suspension while, for oy, Ly /d aud |&25|/d, the computation is done for all the
vertices V; of all the polygons: {n.) x N ~ 2 x 10* data for each susp-en.-?.lml Insert in (c) and
(d): logarithmic y-scale is used to highlight the largest values of Ly; /d and |E._1.|I.-’n'. respectively.
The data from real suspensions are compared with the results (in green) obtained by doing the
same image analysis process on a numerical image of perfectly smooth spheres that we use as
reference.
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- the eccentricity for the beads of Spgyp i1s very small {{|e:;|,fd}5”"“ < 107! including
00% of (|&|/d)SPse < 5.1072).
The comparison of the "reference™ spheres and the spherieal particles of the suspension
Spsap on oy, Ly; and |§;|f& allows us to characterize the slight deviation from perfect
spheres, which i1s much less than the deviation of erushed particles from spherical shapes.

At first glance, one can observe that the global shape of crushed particles does not
deviate much from a sphere. Especially, Fig.19(a) shows that apg < 1.5 for crushed
particles, with two-thirds of afu’;f;” = 1.2. Besides, the crushed particles from Cpgyg and
the spheres from Spgyp are both globally approximated as polygons notably having:

- the same number of sides since (nSFs%) ~ (piFsa} o 35

- the same global angle since 150° < a; < 180 for ~ 88% of af”‘” and ~ 96% of

Spzan
o .

- the same average length of polygon sides ({(Lyy/d)°P54) ~ ((Ly/d)5754e) ~ 0.1).
Moreover, the mean normalized eccentricity {{|E;|j'd}c”‘”) remains globally small.
For instance, approximately 60% of the sides of polygon for crushed particles are
characterized by a ratio {|F:;|,fd} < 5 x 1072 while it is 80% for the spheres of Spsp.
Approximately 85% of the ratios |e:;|fd are less than 10~ for crushed particles, while
05% are less than 10~! for the spheres of Spgap.

However, significant differences between the two types of particles are brought out at
the same time by Figs. 19(a), (c) and (e¢). On these three specific graphs, we observe as
expected that the crushed particles from Cpgyp are indeed characterized by:

(1) an aspect ratio apgee = 1.2 for one-third of the particles

(11) a larger portion of “small” than in the case of particles from Spgag (~ 15%
of a7 < 1557 against < 4% of ay "E),

(iii) a larger portion of high eccentricity (~ 30% of {|E;|fd}c”9‘“ = 6 % 10~? against
< 10% of (|&g]/d)5r=+).

To sum up, all these observations show in fact that the shape of crushed particles in
C'pggn do not deviate globally from a sphere. However, a small but non-negligible number
of their sides are very different from spherical ares, likely at least enough to induce the
rheological differences between Cpgyp and Spgyp observed in § 3.1. More precisely, these
different measurements conducted to characterize the shape of particles tend to show that
the rheological differences between Cpgyy and Spgyp, if related to the particles shape,
are mainly due to the three following quantities: apgeyq, oy and {|E}|j'd} We will see in
the next section how these are all connected to each other and to u,.

4.2, Determination of the rolling friction coefficient.
4.2.1. Theoretical approach

Studies of granular media by Wensrich & Katterfeld (2012), Wensrich et al. (2014),
Agarwal et al. (2021) and Tripathi ef al. (2021) have shown that an order of magnitude
of p, for usage in DEM simulations can often be obtained by measuring the ratio of
the average contact eccentricity (e) to the projected particle diameter d: p, == iﬁ:'-. This
ratio is plotted in Fig.19(e) for the two studied suspensions in the present paper. We
have measured {|&;)|/d) 75 ~ 5 x 1072 and {|&|/d)“"s* ~ 10~'. Interestingly, one
can observe that these values are in quite good agreement with the values previously
predicted by the combination of the works of Singh et al. (2020) and the determination

of dm(Z12): pe™ |50, =~ 003 +0.02 and pf™|o,_ . ~ 0.10 £ 0.01, which confirms
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Ficurge 20. Schema based on the first sketch drawn in Fig.17 of a partial crushed particle (blue
area), considered as an irregular convex polygon with a center of mass . Here, the vertices
Vi and V; are the two vertices considered initially in direct contact with another particle. The

forces F_;- and ﬁ are the tangential and normal forces applied at G, respectively. The force E
is the projection of F_;- on the tangent passing by G of the circle of center V; and radius a;. In
other words, _f_;- is the component of F_;- which makes the polygon roll from left to right around
V; by applying a torque k.. Similarly, _fT».- is the component of Fv which offers a resistance
for the polygon to roll around V; by applying a torque IF,, . In this scenario, it is important
to understand that the particle motion is from left to right and the particle can only roll {no
sliding). In fact, a normal contact force opposing ﬁ and a sliding friction force opposing F‘T
are acting at the contact point V; to prevent it from sliding or moving vertically, but they are
not represented here for simplicity. The angle #;; corresponds to the angle between the vectors
ﬁ; and ﬁ

the empirical proposition that the eccentricity can be used to estimate p,. However, a
drawback of this method to calculate p, is that it is limited to particles whose shape
does not deviate strongly from a sphere. For instance, it cannot be applied to regular
polygonal particles (Estrada et al. 2011) for which we can expect obviously a higher
rolling resistance than spheres despite the fact that their eccentricities are 0. Thus, we
will follow and build upon the more fundamental approach of Estrada et al. (2011), in
which pr 15 derived based on the torque required for rolling which in turn 1= related to
the particle shape parameters.

Figure 20 displays a simple sketch of a crushed particle approximated here as an
irregular convex polygon with center of mass G and number of sides ng, rolling from the
left to the right around one of its vertices (the one named V; on the schematic in Fig.20)
as a result of a tangential force F_}T applied at the centroid G. We consider the conditions
such that the irregular convex polygon/particle can only roll (p; =>> pr, Estrada ef al

2008). As shown in Fig.20, a normal force ﬁ applied at G offers a resistance to the
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particle’s rolling, and rotation occurs only if:
Ppr -2 PFN {44}

I'g,. 1s the torque which tends to make the particle roll, and is defined as: I'r,. = a;x ||_f_}T -
I'f,, is the rolling resistance torque and is defined as: I'n, = a; x || f |l. The forces fr
and E are the parts of the applied forees F_}T and P_'N}, respectively, which contribute to
the corresponding torques, and are defined as (see Fig.20):

fr=Prxcosby & fy=Fyxsinfy (4.5)

The angle #;; corresponds to the angle formed by the vectors G_'[”-; and P_'N} when the
polygon/particle rolls around its vertex V; from left to right. By coupling egs.(4.4) and
(4.5), we obtain the following condition for the particle to roll around V; from left to
right:

Fr = Fy x tanfly (4.6)

Obviously, the value of #;; evolves during the rotation of the particle and, as a result, so
does the force required tu make the particle roll. Figure 21 displays a qualitative sketch
of the horizontal foree FT that must be applied at the center of mass G as function of
the rotation angle ¢, in order to make an irregular polygon/crushed particle (composed
of 5 sides) roll over its entire perimeter. One can then observe that the resistance for the
particle to roll around one of its vertices is locally maximum at the start of the rotation
around the given vertex.

According to the literature (Estrada ef al. 2008, 2011; Singh et al. 2020), the rolling
friction law between two grains of radil a) and as defines the maximum torque trans-
mitted by the contact from the rolling friction coefficient pr as: I'oy" = pelFy, with
[ = a1 + as. By assuming that a given particle rolls around its vertex V; on a mirror
particle in the studied suspensions Spgyp and Cpgyp (consistent with suspensions roughly
monodisperse and argre ~ 1), we have | = 2a; which then leads to: IToi" /oy = 2peFiv.
Thus, the applied tangential force Fr to roll a sphere equivalent to a crushed particle
would have to be greater or equal to I'mny/ay (see Fig.2). Thanks to this equation and

eq.(4.6), the static ml].ing friction coefficient associated with the vertex V; when the
partm]c rolls in a given direction (here from left to right), denoted .u”T can be then
described as (see Fig.20):

pd, = (1/2)tandf;  with 8} = max[fy) (4.7)

EG is defined as the maximum possible value reached by #;; when the particle rolls around
a vm'tmc V; in a given direction. As shown in Figs. 20 and 21, this occurs when the side
ViV; of the polygon is in contact with the mirror particle. Mnrmver, we want to point
out that, through the parameter HS, the static rolling friction coefficient related to it,
p¥., depends in fact on the length L; of the segment ViV;, the parameter &;; and the
height he; (see Fig.20) since:

{Lq HE} + E;j

» (4.8)

ta.nﬂg =

It is important to note that the value of e 1s directly related to the vector e:; = G_}Eq,
and can be positive or negative depending on the relative x-position of Ey;, G and V;
(see Fig 20) and the rolling direction:

- It GE}; points in the direction opposite to rolling, then ey < 0.
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Ficure 21. Qualitative sketch of the variation of the ratio Fr/Fx based on eq.(4.6) for an
irregular convex polyegon with 5 sides which rolls over its entire perimeter. Each colored peak
labels the rotation of the given pentagon around one of its vertices. Each peak can have a different
height because the pentagon is irregular. The height of one peak corresponds to the confizuration
where the contact with the second particle is “flat” (for instance, when V; and V) are both in
contact with a second particle in Fig.20), for which &; = 5‘5 Note that this corresponds to
the position where the rolling resistance around the corresponding vertex is maximum. Then,
after each colored peak, Fr/Fy = 0 over an angle, Ay, with Ag,; = 7 — (o + Hﬁ] This is
hecause ﬁ no longer induces a rolling resistance once G has been “vertically™ a.]igued_fith
the vertex/center of rotation (f; = 0). Thus, it is no longer necessary to apply a force Fr to
continue rolling around the vertex in the same direction until the next vertex becomes the new
contact point/center of rotation of the particle.

_ If GE,, is the rolling direction, then ey, > 0.
Another example which shows the importance of the relative x-position of these three
points (Eyy, & and Vj) is that if G was located to the right of V; in Fig.20 (with the
particle rolling from left to right), then, p¥, = 0 (as qualitatively shown in Fig.21) since
the force Fiy applied on G no longer induces a resistance torque. We observe that the
rolling resistance is larger when:

- the length of the side Ly; 1s large

- and/or ey increases the value of (Ly;/2) + ey

- and/or the height hy; is small.
These observations from eq.(4.8) are actually quite intuitive. For instance, in the simple
case of a regular (ey; = 0) 2D-polygon with 4 sides, we can easily imagine that it is
harder to roll a cube {ta.uti'f"_f = 1) compared to a long rectangle laying on its small side
{on the width, t'.a.]:ll."i“:jr —+ 0). On the other hand, the long rectangle on its long side will

be much harder to roll (p¥ == 1 when HF_-; — 907).

As observed in Fig.21, the irregular shape of 2D-polygons/crushed particles implies
that the static rolling friction coefficient pr s associated with a given irregular convex
polygon/crushed particle is inhomogeneous in angular space. We have therefore chosen
to define gz of a given particle as equal to the maximum value of ;.::_—'fa:

Hre = Max [.F“r'ra] Vi, j) € [u? g — 1] (4.9)

with :
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-ifi<m,—1, then j=(i+1)

-ifi=mn;—1, then j=10
The idea hehind this choice follows the argument made by Estrada et al. (2008). We
consider an irregular polygon laid on its side VV, on a plane inclined with an angle
fy;. In order to make the polygon roll down the inclined plane (i.e. to change its side in
contact with the inclined plane), the angle of the slope must be larger than a critical
value: B = EC By rolling (without inertia), if the new critical angle #5 i (associated
with the new 511:113 ViV in contact with the plane) is lower than the previous one (i.e.
Eg} then rolling continues. However, if a subsequent segment of the polygon has a
higher value of critical angle, the p-ulygan stops rolling. In determining p,, s, we also
consider the masximum resistance between the two possible directions of rotation.

Thus, the static rolling resistance is related to the torque required to initiate rolling
{assuming the particle stopped rolling at its most resistant angle). But it is important
to understand that another rolling resistance can be related to the work required to
maintain rolling at a constant angular welocity. Both should be important in different
parts of a sheared suspension (and at different times at the same location). Analogous
to Estrada et al. (2011), this second rolling resistance can be determined by calculating
the total work required to roll a non-spherical particle over its entire perimeter, Fy, and
then balancing it with the total work of an equivalent sphere (of same perimeter Fy
as the first one) with a resistance for rolling motion (Le. a work balance instead of a
torque balanee). The resistance to rolling motion induced by the particle shape would be
then characterized by a dynamic friction coefficient, piy g, instead of the static one, py ..
In Fig.21, it would be then determined from the total (colored) area under the curve
Fr/Fy, instead of the maximum peak, and one can expect that gy g € pr .. We describe
the method of caleulating iy g4 analogous to Estrada et al. (2011) in Appendix C, finally
defined as:

1 mne—1
Hrd = E_PP Z '5'9'; (4.10)
J=0
with:
- 5y;=ﬂj_hfj i.{l]-;-ﬂ:a”l'Lz +h-1 5
- else 6y = 0.

In fact, one can note that py 4 1s directly related to the averaged particle dilatancy, which
is in agreement with the work of Estrada ef al. (2011).

4.2.2. Image analysis results for the rolling friction coefficient

Figure 22 displays the measured distribution of (a) the maximum static rolling friction
coefficient, pr. and (b) the dynamic friction coefficient gy, g, based on eqs.(4.9) and
(4.10), respectively. Before discussing these graphs, we want to point out that the
measurements on the “reference” perfectly smooth spheres (in green in Fig.22) give a
maximum resolution (ie. lower limit for the values) on the order of 10! for p,, and
10-2 for fird.

Fig.22{a) displays the measured distribution of the static rolling friction coefficient,
firs. We observe that the values of p, associated with the crushed particles (in
orange) are globally larger and more broadly distributed than the ones associated
with the spheres from Spggp (in blue). This result i= quite intuitive since, for a given
particle, we consider only the maximum value of p}/, to determine pr .. As it is unlikely
that the spherical part of a crushed particle is taken into account following this, the
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Ficure 22, Distribution of (a) the static rolling friction coefficient, pr and (b) the dynamic
rolling friction coefficient, pir g, both determined by image analysis for the reference perfectly
smooth spheres (in green), the spherical particles composing Spgyp (in blue) and the crushed
particles from C'pggq (in orange).

difference from spheres is then emphasized. One can even note that the wvalues of
porse glichtly differ from the ones determined for perfectly smooth spheres (in green
ianig.‘Eﬂ}, which could come from real deformations of spheres composing Spgyn. The
averaged value of p, for each suspension is measured to be: Hr:|spge & 0.13 and
Fr.s|Cpeg = 0.2, Thus, on the one hand, we have pfjs‘":' < pE;’S"D. On the other hand, it

is actually quite satisfactory that pﬁ: = pir s for the two studied suspensions (we recall

that we determined pi™ |s,00 & 0.03 = 0.02 and g™ |cpay = 0.10 £ 0.01), since the
static rolling friction coefficient, piy s, should characterize the maximum rolling resistance.

Figure 22(b) displays the measured distribution of the dynamic rolling friction
coefficient, pirgq, associated with the crushed particles of Cpsan (in orange) and the
spheres of Spsap (in blue). As expected, the values of 4 are smaller than the values of
fir s for each studied suspension, and we still observe that pf.':ﬁs"'“ is globally smaller and

less distributed than pf;'“”. We found the following averaged values: f5ls,..,, = 0.02
and iy g|cpeg &= 0.03. Here, one can note that prg < pf: for each studied suspension.

Finally, the results of this study show that the globular /crushed PS particle geometry
itself i= enough to induce the rheological differences ohserved between Cpgyp and Spgan.
To go further, it is quite satisfactory that prq < pﬁ: = pirs for the two studied
suspensions. We think that the experimental method described in the present paper to
characterize the resistance to rolling motion induced by particle shape can be considered
as another step to estimate the rolling friction coefficient for usage in DEM simulations,
since it gives a framework for the value of p, for real suspensions made of non-spherical
particles. We recall that, in agreement with the works of Agarwal ef al (2021) and
Tripathi et al. (2021) in dry granular media, a more accurate estimation can be obtained
by considering the particle eccentricity defined by e/d. However, two limits of this ratio
exist: it cannot be considered for particles with a regular polygon shape (e = 0) or a
shape that deviates too much from a sphere. Therfore, the novelty of the present work
is then to give a way of estimating a framework of p,, particularly its upper (static) and
lower (dynamic) bounds.
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5. Concluding remarks

In this paper, two different but similar monodisperse suspensions have been sheared in
a parallel plate rheometer in order to study their rheological behaviors and characterize
their differences. More precisely, the main goal of the present paper was to study
the influence of particle shape on the rheology of non-Brownian viscous frictional
suspensions. Indeed, the rheology of suspensions composed of spherical particles has
been extensively studied in the literature. However, understanding of the rheological
behavior of more complex suspensions composed of particles with irregular shape,
which are more common in nature, remains more elusive. We have made two different
suspensions composed of the same solid polystyrene particles, separately dispersed in
the same suspending Newtonian liquid. The only difference between the two lies in the
shape of the particles present in each suspension: spheres in the first one, and crushed
PS particles in the second one.

We have then characterized the rheological behavior of these different types of
suspension by studying the variation of the jamming volume fraction with shear stress.
Our main result shows that the suspension made of crushed particle 15 more viscous
than the suspension made of spheres at small shear stress while the viscosity of the
two suspensions becomes equivalent at large shear stress. This results in a stronger
shear-thinning behavior for the suspension made of crushed particles. This ohservation
is notably reflected by a jamming volume fraction smaller at low shear stress for crushed
particles while it is of the same order of magnitude as that for spheres when shear stress

INCTEASeS,

To go further, we have tried to understand the physical mechanism behind this
observation, obviously induced by the different particle shapes. The literature pointed
out the influence of rolling resistance but two different origins could be related to it and
have been proposed: changes of adhesive force strength with particles’ local curvature
and rolling resistance induced by locally normal contact forces acting at a non-spherical
particle surface.

We have put forward two arguments which tend to demonstrate that adhesion is
not important for the present rheological measurements. The first one has been to
show that the applied shear stress in the present study is much larger than the yield
stross of suspensions (spheres and crushed). The second (and main) argument has been
based on conducting shear reversal experiments and measuring the minimum value of
viscosity, min, and characteristic strains. The measurements of the same ngn In the two
types of suspensions and characteristic strains typical for non-adhesive particles was in
contradiction with what could be expected if adhesive forces had played a significant role.

The second explanation relates the shear-thinning behavior of both suspensions to
a variable sliding friction, pg, while the larger viscosity at low shear stress for the
non-spherical particles 1z assumed to be related to the particle shape. The recent
numerical work of Singh et al (2020) has shown that the rolling resistance of solid
particles plays a predominant role determining the jamming volume fraction, ¢y, when
the sliding friction coefficient is large (p, = 0.5), but has almost no effect when u, 1=
small. A quick comparison on the suspensions made of PS spheres and crushed particles
in the frictionless case (PS particles in an aqueous solution) has shown no rheological
differences, which is consistent with the absence of impact of p, when g, — 0. We have
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shown that it is possible to fit the variation of the jamming volume fraction with shear
stross for hoth types of suspensions by the same variable sliding friction model (Lobry
et al. 2019), simply by predicting a smaller value of the jamming volume fraction for
crushed particles when the shear stress tends to 0 (ie. sliding friction coefficient grows
“mfinite”). The obtained value of ¢35 (for which the predominant relative motion is
rolling) from the fit (Lobry et al. 2019) coupled with the simulations of Singh et al
(2020) allowed us to obtain values of the apparent rolling friction coefficient for both

types of suspension: pi™ = 0.03 £ 0.02 and pf™ = 0.10 + 0.01 for spheres and crushed
particles, respectively.

The last part of the present paper has been focused on an experimental estimation of
the rolling friction coefficient for both types of particles studied in the present paper.
Faced with the difficulty of performing a direct experimental measurement for such
small non-spherical particles, we decided to use an image analysis process consisting of
approximating particles as irregular convex 2D-polygons to measure the characterizing
shape parameters such as aspect ratio, internal angle and eccentricity, and finally
calculate the values of the static rolling friction coefficient associated with each side
of each polygon, p¥. The static rolling friction coefficient of each particle, p,, has
been then defined as the maximum value of all i, characterizing each particle. On the
other hand, we have also determined the value of the dynamic friction coefficient, pr g4,
from the work needed to roll the particle over a distance equal to its own perimeter,
analogous to Estrada et al. (2011). Therefore, jir 4 can be then seen as an averaged value
to characterize the shape-induced resistance of a particle to rolling motion based on
the whole particle shape. Besides the fact that the particle geometry of the two studied
suspension is enough to explain the rheological differences between the two, we have
notably shown that the calculation of these two coefficient values (pr s and prg) gives a
framework to estimate the value of g for usage in numerical simulations.

Interestingly, a very good agreement with the recent works of Agarwal ef al. (2021)
and Tripathi et al. (2021) has been found and we confirmed that the eccentricity, defined
as the ratio e/d, gives a very good estimation of the value of rolling resistance for usage
in DEM simulations, as long as the particles shape does not deviate too much from a
sphere, and that e # 0.

To go further, the next step would be to find a way to directly measure the rolling
friction cocfficient of the particles (as is done by AFM measurements for p,), instead of
deducing it by an image analysis process. Other difficulties encountered here concern the
irregular shape of crushed particles, and the diversity of irregular shapes, which might
invalidate the 2D-approximation imvoked here and make it harder to characterize the
rolling resistance for irregular crushed particles. Being aware of this, we think it could be
interesting to compare the numerical results of Singh ef al. (2020) with more regularly
defined shapes like cubic particles or other regular polygonal particles (for which e = 0).
Small hard fibers (apgye = 2) could also be an interesting shape. One can note that the
angularity explored through the crushed particles in the present study remains close to
spheres (o; — 1807). Studying cubes or rectangular shapes may be then interesting to
explore smaller internal angles domains (e; — 907). It would have the second advantage
of increasing the value of pr. Indeed, Singh ef al. (2020) have shown that the influence
of iy on ¢y, is very large when 3 x 1072 < . < 3. Cubes present this dual advantage of
having a well-defined shape and an expected higher friction coefficient: pp s expected to
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be between 0.1 (dynamic) and 0.5 (static), for which Singh ef al. (2020) have predicted
a much lower jamming fraction, 0.44 < &7 < 0.53. Thus, determining ¢} would show
whether static or dynamic is more important. A rectangular shape (apgg0 = 2), it offers
two very different side lengths and allows one to study further the influence of the

angular dependency of p,.
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Appendix A. Process to crush the polystyrene particles

Compression molding by a series of successive loading phases has been conducted
in order to crush the spherical polystyrene particles. A sample of roughly 2 — dml of
PS beads were put between two steel plates and compressed by a load equivalent to
approsccimately 80 x 10% kg (80 tons) for roughly 10 minutes. The particles of the given
sample were then qualitatively observed under a microscope in order to check their
appearance. The process was then repeated if the appearance of the particles was judged
not satisfactory. Eventually, the loading operation on a given sample was repeated
between 5 and 10 times.

Appendix B. The image analysis process

The image processing is performed as follows. Each image taken with a microscope 1s
binarized with a local threshold whose value T'(x, y) 15 calculated individually for each
pixel (z,y). T(z,y) 15 a weighted sum (cross-correlation with a Gaussian window) of a
501 x 501 pr? neighbourhood of the pixel (z,y) (see OpenCV : cv2.adaptiveThreshold /
website : https://docs.opencv.org/2.4/index . html). A rough delimitation of each
particle in the picture is thus detected. However, the pixels belonging to the interior
of a particle, whose grey level can be similar to the background, can be incorrectly
identified as not being part of the particle. As a result, the interior of particles is " filled”
(see OpenCV @ cv2 fHoodFill) in order to correct it. The projected particles and their
well-defined contours (red pixels in Fig.18) are then detected through a watershed
segmentation process (Vincent & Soille 1991, see OpenCV @ cv2.watershed). Finally, the
contour of each particle 15 approximated as an irregular convex envelope (see OpenCV
: ev2.approxPolyDP, colored in blue in Fig.18) for which the (x,y)-coordinates of each
wvertex Vi (black dot except G in Fig.18) are known (0 £ i £ ny — 1, with n; the number
of sides of the polygon).
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Fioure 23. Sketch analogous to Fig.20 of a partial crushed particle, considered as an irregular
convex polygon with a center of mass . Two sides of the polygon/crushed particle, V;V; and
V;Vi, are outlined in dark blue. Tangential and normal forces, Fr and ﬁ (not represented
here to avoid overloading the schema) respectively, are applied on the center of mass G of the
particle as it is shown in Fig.20 to create a rolling motion from left to right around V5. Under
these conditions, V; is the other vertex (with V) considered initially in direct contact with the
mirrored particle, while Vi is the one which will be in contact at the end of the rotation around V5.
The initial (prime) location of each point is displayed with a black point and annotated {’}, while
the final (second) position is displayed with a transparent dot and annotated (). Analogous to
Fig.20, o corresponds to the internal angle of the polygon/particle at V; (ay = ViViVi), 8y
and #;, are the angles between the segments fy; and GV;, and hye and GV;, respectively. by
and fi;i are the heights of & from the segment ViV and V; Ve, respectively. The eccentricity for
the sides V,V; and V;V}, corresponds to the lengths |e_.;|l.-’d and |€E,|I.-’d, respectively. The angle
¥ (resp. ¢") is the dilatancy angle when the particle rolls from the left to the right (resp. from
the right to the left) around V;.

Appendix C. Theoretical approach to determine the dynamic rolling
friction coefficient
Let us consider that the center of mass & travels left to right over a horizontal distance
which is given by: T = 8z’ + 61" (see Fig.23). Under these conditions, the work required
to displace the crushed particle over this given distance can be calculated as:

_}.
W|, = Fy.5d = Fy x 8y, (C1)

7o is the vertical vector displacement of the centroid G for which the force Fyy exerts a
rolling resistance, and its norm is equal to dy’ = a; — hyy. On the other hand, the work
needed to displace a disk, characterized by a dynamic rolling friction coefficient gy 4, over
a distance equal to T is:

Wa = Fr.58 = 2ura Fy x (62 + 62") (C2)
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Assuming equal work, Wi|; = Wy, we arrive at the following mapping for the dynamic
friction coefficient associated with the rotation from left to right around Vi:

1 dy!
r _ _ i
F‘l‘,dlj = 9 [IEI‘;- + EIEFl (C 3}

where 153;;. = ay — hyg, 451; =Ly/2+ ey and 5;;’ = Ly/2+ eg (with ey and e positive
or negative). Note that, in the case for which the particle rolls around V; from the right
to the left, pir g is defined as:

1 Sy’
woyo__ - 1
F'r,dlj‘ =79 [EI} + EI;rl (C4)

where dyj = a; — hyx. Obviously, if the polygon is regular (Lyy = Ly, 65 = e = 0,
hi; = hyk), then prg = pp 4ly = py 4l; and we arrive at the following mapping between
pir,g and the dilatancy angle (¢ = =47 Vj e [0 n,—1]), already found by Estrada
et al. (2011):

pra= (/) tany  with =g

Tig

In our case, the polygons are irregular and thus the required work to roll around one
wvertex i1s not the same for all the vertices of a particle, as 1s shown qualitatively in Figure
21 (the volume of each colored peak is different). Unlike the stafic friction coefficient,
fir s, for which we have considered the maximum resistant torque to rolling motion, we
define iy g by considering the whole particle. The sum of the work for rolling over all
vertices Wp|; (or W'|;) corresponds to the total work needed to displace a given particle
over a distance equal to its perimeter Py, and the value of the dynamic friction coeflicient
fir g associated with the given particle can then be determined by the following equation:

(C5)

mn.—1 mn,—1

1
Hrd = Z F':',dl;l' ~9p. Z *5!{; (C6)
=0 P oj=n

where:

- Ey;. =iy — h{j i.{l]-|_ < J”l'L?j 4 h’iﬂj!

- else dy, = 0.
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