ASEE 2022 ANNUAL CONFERENCE

[X(elle"(e Through DiverSity MINNEAPOI.:MII:NESOTA,‘jUNE 2;7;-2'97“, 20221 GASEE

Paper ID #37982

Mini-projects based Cybersecurity Modules for an Operating
System Course using xv6

Jansen Tan (Purdue University Northwest)
Divya Ravindra (Purdue University Northwest)

Quamar Niyaz

Quamar Niyaz received the B.S. and M.S. degrees in computer science and engineering from Aligarh Muslim University,
in 2009 and 2013, respectively, and the Ph.D. degree from The University of Toledo, in 2017. He has been an Assistant
Professor in computer engineering with the ECE Department, Purdue University Northwest, since 2017. He has published
papers in the areas of computer and networks security, applied machine learning, and cybersecurity education. His
research has been sponsored by the National Science Foundation.

Xiaoli Yang

Dr. Xiaoli (Lucy) Yang is currently the chair and professor of the Department of Computer Science and Engineering at
Fairfield University. Dr. Yang’s main research interests include virtual/augmented reality, , cybersecurity education,
machine learning applications, and software engineering. She has published more than 80 papers in journals and refereed
international conference proceedings, and one book by Springer. Dr. Yang has received grants from NSF-National Science
Foundation, Indiana Commission of Higher Education, Northwest Indiana Computational Grid Grant, and NSERC-
Natural Sciences and Engineering Research Council of Canada.

Sidike Paheding

Ahmad Y Javaid (Dr.)

Ahmad Y. Javaid received his B.Tech. (Hons.) Degree in Computer Engineering from Aligarh Muslim University, India in
2008. He received his Ph.D. degree from The University of Toledo in 2015 along with the prestigious University
Fellowship Award. Previously, he worked for two years as a Scientist Fellow in the Ministry of Science & Technology,
Government of India. He joined the EECS Department as an Assistant Professor in Fall 2015 and is the founding director
of the Paul A. Hotmer Cybersecurity and Teaming Research (CSTAR) lab. Currently, he is an Associate Professor in the
same department. His research expertise focuses on application of computational intelligence to various computing
domains including but not limited to education, cybersecurity, healthcare, human-machine teaming, and digital forensics.
His projects have been funded by various agencies including the NSF (National Science Foundation), AFRL (Air Force
Research Lab), NASA-JPL, Department of Energy, and the State of Ohio.

© American Society for Engineering Education, 2022

Mini-projects based Cybersecurity Modules for an Operating System Course
using xv6
Jansen Tan!, Divya Ravindra', Quamar Niyaz', Xiaoli Yang?, Ahmad Y Javaid®,
Sidike Paheding*
'ECE Department, Purdue University Northwest, Himmond, IN 46323

2CSE Department, Fairfield University, Fairfield, 06824, CT, USA

3EECS Department, The University of Toledo, Toledo, OH 43606
“Applied Computing, Michigan Technological University, Houghton, MI 49931

1. Introduction
Cybersecurity is critical nowadays with the increased reliance on computing systems and
technology. The cyberattacks in the past mostly damaged digital information leading to financial
or reputational loss, but now they are targeting physical infrastructure as well [1, 2, 3]. The
attackers attempt to exploit vulnerabilities at every level in the targeted computing systems, i.e.
hardware, software, and the system environment to compromise their security. An operating
system (OS) is an essential system software in multitasking computing systems that resides at the
low-level after hardware and manages system resources for applications running simultaneously
on top of it. The security of an OS is critical due to its installation on every computer unlike other
software, which may or may not be installed in a particular system. If any security flaw exists in
the OS, i1t will affect all the applications running on top of it and will make them vulnerable [4].
Although addressing security issues in OS development has been a key requirement for a long
time, still many vulnerabilities, such as memory exploits and privilege escalation, are discovered
over time. The reasons for the occurrence of these vulnerabilities are the complex OS code and its
support for concurrent trusted/non-trusted processes. Another significant issue is the lack of
discussion on security aspects when OS courses are taught in computer science (CS) and computer
engineering (CE) curriculum. The emphasis is given to process scheduling, memory management,
concurrency control, and I/O handling. The discussion on security is deferred for security courses,
which are offered at senior undergraduate or graduate level. This approach limits the practices of
secure system development that encourages inclusion of security measures at the inception stage
of system development. Therefore, it is important for CS/CE students that they should have an
exposure to OS-related security concepts while they are taking a course on it. Later on, they can
sharpen this knowledge in other security courses or in their professional work environment.

Many pedagogical OSs have been developed to teach OS courses through hands-on lab
exercises. Several universities have developed lab assignments using them for OS design concepts.
However, little efforts have been made towards the development of security-related labs in the OS
courses. Although few independent projects have been found that will be discussed in the related
works section, they do not offer proper documentation or their implementation is quite naive
compared to production-level OS. To bridge this gap, we develop mini-project based modules for
security concepts that instructors can adopt in their OS courses. These modules are built for xv6 —
a modern pedagogical OS [5] and they focus on security along with the OS development. The
concepts covered in these modules include authorization, access control, and address space layout
randomization.

Towards this, the outline of the rest of the paper is as follows. The methodology of the project
is discussed in Section 2. Section 3 provides an overview of each module. Section 4 compares the
implementation of our developed modules to similar functions in other OSs. Related work is

discussed in Section 5. Finally, the paper is concluded with an insight for future work in Section
6.

2. Methodology

The project modules have been designed for undergraduate CS/CE students who are enrolled in
an OS course or have taken it. The students must have a background in C programming and
familiarity with the commands in Unix-like systems. These modules are designed in a way that
they could be completed within the course of a semester following the documentation created for
each module. We chose xv6 as the platform on which these project modules are based for a number
of reasons. Xv6 is publicly available open-source instructional OS to build and modify, which
avoids issues with cost and licensing. It is lightweight and the source code only occupies half a
megabyte of storage. In addition, xv6 compilation takes at most a few seconds on modern
machines, and running it on an emulator (e.g. QEMU) is smooth as well. It enjoys a long history
of refinement since its inception in 2006. For example, the source code in the current version (i.e.
xv6-riscv) is organized more cleanly than the previous version [6]. In the older version, all the
source files are located in the project’s root directory. In the latest version, files are organized into
three sub-directories: kernel, user, and mkfs. The documentation for xv6 is also publicly
available in the form an accompanying book.

Compared to other pedagogical candidate OSs such as Minix [7], Xinu [8], and Unix V6 [9],
xv6 is the preferred choice for developing these project modules. The other platforms may have
advantages similar to that of xv6, but do not share all of the advantages of xv6. For example,
Minix, today is developed to be a production-quality OS used in real systems. The modern version
of Minix, called Minix 3, has become much larger in storage and grown in complexity compared
to earlier versions, thus making it tedious for pedagogical purposes. Earlier versions of Minix,
while retaining their pedagogical intent, are suffering from old age that make building and booting
earlier Minix a confusing and unreliable process compared to xv6 [10, 11]. Although there is a
recent project that simplifies the Minix boot procedure, it does so in a “quick-and-dirty” way [12].
Xinu does not have a freely available accompanying book, which makes it less attractive to use.
Early versions of Unix, such as V6, are very old and hard to build with recent build tools. They
are also not properly organized, somewhat complex, and the accompanying documentation in the
educational context is less user-friendly than that of xv6. Table 1 summarizes the comparison of

these candidate platforms.
Table 1: Comparison of candidate pedagogical OSs

Candidate OS | Feature complexity | Build process complexity | Documentation

xv6 Low Low Good

Minix 1, 2 Low High Good

Minix 3 High High Good

Early Unix Low High Poor

Xinu Low Low/High Not publicly accessible

The modules that we selected for the development have been adopted from the security topics
discussed in a popular OS textbook — Operating Systems: Three Easy Pieces [4]. For
implementation, attempts have been made to follow modern operating systems standards as best
as possible while keeping pedagogical appropriateness. To do so, various resources were

referenced including Unix and Linux manual (man) pages to get an idea of current
implementations of a few systems such as the header file pwd. h.

3. Overview of Modules

We developed three modules as mini-projects for adoption in an OS course. These modules include
the implementation of authentication, file access control, and address space randomization. Each
module is accompanied by proper documentation that details how it can be implemented. The
documentation provides background on the covered topic to create a sense of direction and then a
goal to provide an expectation on the output. The module documentation does not attempt to detail
how to manage other aspects of the project, such as installation, debugging, and low-level OS
mechanics. However, these are certainly critical aspects of the modules. Therefore, these details
are placed in an appendix aside from the module documentation. Each module documentation
references relevant sections of the appendix whenever appropriate. A Github repository!
containing branches of riscv-branch of xv6-riscv repository has been created. These branches
named as auth-student, access-control-student, and aslr-student contain skeleton
code for students’ implementation of these modules. Implementation of each module is discussed
as follows:

3.1 Authentication module

This module allows students to implement a password-based user authentication system into xv6.
The module guides the implementation such that students will be aware of current OS standards
regarding password-based user authentication, and follow the standards throughout the
implementation. In this module, a student will implement the user account abstraction into xv6.
The implementation conforms to POSIX specification for the pwd . h header file. The student will
create the struct passwd structure and some of the pwd . h functions specified by POSIX, such
as getpwent(). Then, a useradd program will be created. For simplicity, this program will
combine functionality of useradd and passwd programs in the Linux system. The student will
then implement process ownership into xv6. The kernel’s process control structure struct proc
is modified to include uid and gid fields and various kernel functions and system calls are
implemented to interact with the new fields. The student will then create a simple whoami program
that can be used to test the overall authentication implementation. The student will then create the
login program. The login program synthesizes the functions created in the previous steps. The user
account abstraction is used to authenticate against given credentials. After successful
authentication, the current process is set to be owned by the user, and then the process executes
the shell. The student will then modify the init process to start the login program on boot instead
of the shell program.

The auth-student branch contains skeleton code to facilitate the writing process. A header
file for user account abstraction is provided at user/pwd.h. The header file contains all needed
function prototypes and an empty declaration of the struct passwd structure. The
corresponding file user/pwd. c is also provided containing all needed function declarations and
comments guiding the writing process. The programs user/useradd.c, user/whoami.c, and

1 https://github.com/jansenmtan/xv6-riscv

user/login.c are provided containing all necessary directives, function declarations, and
comments. A test program is provided at user/pwdtests.c to test the functionality of the
module.

3.2 Access Control Module
This module allows students to implement Unix-style access control into xv6. This section is
identical to the corresponding section in the authentication module. The kernel’s process control
structure struct proc is modified to include uid and gid fields; and various kernel functions
and system calls are created to interact with the fields. The student will then implement file
ownership. Inode structures are modified to include the uid and gid ownership bits. To allow the
ownership bits to be changed, the chown kernel function and chown program are created. The
student will then implement access control lists. Inode structures are modified to include Unix-like
permission bits. The student will then implement

access authorization. An access kernel function is | rmpeline |MAXVA trampoline |MAXVA
created to verify that a given file is either readable, | trapframe trapframe
writable, or executable. Various kernel functions heap
that interact with files are modified to enforce heap
access authorization. The student will implement ctack
default ownership and mode for newly created stack guard page
files. guard page | stackoffsetd [|

The access-control-student branch e data
contains skeleton code to facilitate the writing
process. Comments are placed in various kernel ot text
programs, such as at kernel/file.c, ot offeet |
kernel/proc.c, and kernel/sysfile.c. 0x ’ 0x00
Permission bit masks are added into the header file (a) (b)

at kernel/fcntl.h. An octal conversion Figure 1: Memory address layout with disabled ASLR (a)
. and enabled ASLR (b).

specifier is also written into the user/printf.c

program to help with printing permission bits.

3.3 Memory randomization module

This module allows students to implement a basic version of Address Space Layout
Randomization (ASLR) technique into xv6. In this module, a student will create a random number
generator. The student will then modify the executable file loader. Two memory segments within
a process will be modified. The program text segment will be modified to have a random offset
from the beginning of the virtual address space. The stack segment will be modified to have a
random offset from the end of the program text and data segments. The changes made to the user
address layout can be seen in Figure 1 (b) and compared to the unchanged layout in Figure 1 (a).
The student will then implement configuration that allows ASLR to be configured on or off.

The aslr-student branch contains skeleton code to facilitate the writing process. Comments
are placed in a few kernel programs and follow the process written in the ASLR module
documentation. A program aslrtest.c is provided at user directory, which allows checking
for layout randomization at runtime.

4. Validation of Developed Modules
Our implementation of these modules has been tested to produce behavior similar to that on
corresponding production grade systems, such as Linux.

4.1 Authentication module

Ubuntu 20.04.2 LTS ubuntu-vm ttyl Jbuntu 20.04.2 LTS ubuntu-vm ttyl Ubuntu 20.04.2 LTS ubuntu-vm ttyl

ubuntu-vm log vm login: user

tu-vm login: user

rd:
to Ubuntu 20.04.2 LTS (GNU/Linu

(b)

xv6 kernel is booting

xv6 kernel is booting xv6 kernel is booting

hart 1 starting

hart 2 starting

init: starting login

Enter credentials to login:
Username: [

hart 1 starting
hart 2 starting
init: starting login

hart 1 starting

hart 2 starting

init: starting login

Enter credentials to login:
Username: root

Password: root

Welcome back root!

) |

(d) (e) (H

Figure 2: Comparison of authentication process between Linux and our implementation in xvo6.

Enter credentials to login:
Username: root
Password: root]]

In various Linux distributions, the authentication process usually happens as demonstrated in
Figure 2. The init system starts the login interface, which is the first interactive interface the user
encounters after booting the system. The login interface prompts the user to enter their login
credentials, as shown in Figure 2 (a). After the user inputs their credentials as shown in Figure 2
(b), the authentication process starts. Upon successful authentication, the user is able to interact
with the machine in a meaningful way. The form of interaction varies depending on the computing
environment. For example, on a machine with a desktop environment, the user is able to interact
with the desktop. On a machine with no desktop environment, typically, the user is able to input
commands into a shell, as depicted in Figure 2 (c). In our implementation, the authentication
process is as follows. After booting xv6, the user first encounters the login prompt shown in Figure
2 (d). If there are no users present in the user account database, then login prompts the user to
create the first user (i.e., the root user) and calls useradd to do so. Otherwise, login prompts the
user to enter their login credentials, as shown in Figure 2 (e). Upon successful authentication, the
user is able to input commands into the shell as depicted in Figure 2 (f).

4.2 Access control module

In most Unix-like operating systems, access control is managed with a number of file permission
bits and file ownership [13]. Access control in Unix-like operating systems has a precedence
feature. This feature gives precedence to the more relevant group of bits in the file permission bits.
For example, a file marked as 177 would not be writable by the owner, although every other user

in the system would be able to write to the file, precedence checks start with the owner. In Unix-
like operating systems, there are two types for access control validation, one for regular files and
other for directories. Regular files must have access control enforced as such:

e Only files marked as readable should be able to have their contents read or copied.

e Only files marked as writable should be able to have their contents be modified.

e Only files marked as executable should be able to be executed.
Directories must have access control enforced as such:

¢ Only directories marked as readable should be able to have files within it listed and copied

to other directories.
e Only directories marked as writable and executable should be able to have files added or
removed from within it.

e Only directories marked as executable should be able to be traversed.
In our implementation of the access control module, files may read, write, or execute by the users
if one of the following conditions are met:

e The root user always has access
The read bit for either owner, group, or others is set then the file can be read.
The write bit for either owner, group or others is set then the file can be modified.

e The execute bit for either owner, group, or others is set then the file can be executed.
The permissions for the files can be modified either by the owner of the file or root through chmod
command. Set-user-ID capabilities have been partially implemented in our access control module.
Figure 3 shows our implementation of access control module.

hn$ $ whoami
$ whoami root
root UID: ©. GID: ©.

UID: ©. GID: ©. $ echo only for root > root.txt
$ echo only for root > root.txtj$ chmod 600 root.txt

(a) The root user creates a file called root. txt (b) Permissions are modified so that only root can read the file.
$ login Username: john
Enter credentials to login: Password: abcd
Username: john Welcome back john!

$ cat root.txt
cat: cannot open root. txt

Password: abcd
Welcome back john!

(c) Another user logs in to the system. (d) The other user cannot read the file.

Figure 3: Implementation of access control module in xv6

4.3 ASLR Module

Most modern operating systems implement some sort of address space randomization to defend
against memory exploits. In Linux, ALSR currently encompasses the following features:
randomization of the executable memory segments, brk() managed heap, mmap() managed
memory, the user stack, and more [14, 15]. In addition, Linux provides support for global ASLR

configuration and per-
process ASLR
configuration [16]. In our
xv6 implementation, the
offsets of the program text
segment and user stack are
randomized, as illustrated
in Figure 1(a). ASLR
configuration is supported
globally through
modifying a variable in
source code. In a 64-bit

Linux system, the effective Figure 4: The bufof2 program reads shellcode into a vulnerable buffer to spawn a
new shell. To succeed, the location of the buffer in memory must be at 0x4F80.

ntr f mem ject
centropy ot memory ObJ ec' S In this demonstration, with our ASLR enabled, the attack takes 19 attempts to
ranges from 19.5 to 39 bits ,cceed.

[16]. In particular, the

executable and main stack have 27 and 35 bits of entropy, respectively [17]. Our implementation
of the ASLR module only contains 4 bits of entropy for both the executable and main stack objects.
In Figure 4, our ASLR implementation is shown to mitigate a buffer overflow attack. In one of the
trials, ASLR mitigates an attack for 19 attempts before failing.

5. Related Works

There are various projects, labs, and assignments created with the intention of teaching operating
systems and security concepts through xv6. Many of these assignments are given in the course
work at various universities and focus on topics related to OS design such as system calls, process
scheduling, memory mapping, semaphore, network stacks, and interaction between computer
architecture and OS [18, 19, 20, 21]. A few independent projects implement security modules
similar to our modules. These projects focus mostly on the implementation and do not have robust
documentation that details how to implement the features. In [22], a project is implemented for
authentication and access control into the x86 version of xv6. The authentication work includes
being able to log in to accounts stored in the user account database. However, there is no ability to
add new users to the user account database through a user program. Modifying the user account
database must be done by editing the etc-passwd file. The access control work includes the
implementation of the chmod and chown system calls. However, access control is enforced only
through one userland program: access. This access control implementation is appropriate for
demonstration, but may not be convincing to undergraduate students; any user can run cat to print
out the contents of any file containing sensitive information, such as the user account database,
onto the terminal. In [23], ASLR is implemented into xv6-riscv that uses a Park-Miller random
number generator to provide offsets for the program text memory segment and the stack memory
segment. The heap is positioned after the stack with no random offset. ASLR is configured globally
through the file /randomize_va_space. This project also implements support for the dynamic
symbol table and relocations in an ELF. A similar independent project implements ASLR into
xv6-riscv, among other features [24]. It implements virtual memory areas (VMASs) into xv6 and

uses them to facilitate ASLR. A combination of kernel ticks and various mathematical operations
such as exclusive-or-ing, bit shifting, and squaring are used to provide offsets for each VMA. The
creation of VMASs and a heap VMA allow the kernel functions that modify the heap, growproc()
and sys_sbrk() to support ASLR through simple changes. However, the introduction of VMAs
into the kernel does necessitate changes to other functions in the kernel which assume a particular
address layout, such as copyin() and copyout(). ASLR was intended to be an easy-to-
implement fix that provided a larger benefit, so avoiding the implementation of VMAs in our work
may be justified.

6. Conclusion and Future Works

We discussed the implementation of mini-project based OS modules that focus on security, and
attempt to take advantage of the speed and simplicity offered by modern tools. These modules are
designed to be completed within a few weeks each and used in an undergraduate course. We use
xv6 as a platform for these modules. Among the modules created are the authentication, access
control, and address space layout randomization (ASLR) module. We have created our own
implementations for each module. We compared the details and functionalities of our
implementations with production grade OSs, such as Linux. The behavior of our implementations
has been found to be relatively similar to that of systems such as Linux, although they differ in the
depth of execution. At the time of writing, these modules have not been deployed for use in a real
course, undergraduate or otherwise. We have plan to evaluate these modules in an undergraduate
level OS course in Fall’22 and Spring’23. Various details will emerge from practical use and
experience. Our reference implementations also have a few limitations that will be released in the
future updates of the modules along with the students’ feedback.

References

1. Ralph Langner, "Stuxnet: Dissecting a cyberwarfare weapon." IEEE Security & Privacy Vol.
9, No. 3, pp 49-51, 2011.

2. Colonial Pipeline ransomware attack, Available online:
https://en.wikipedia.org/wiki/Colonial_Pipeline_ransomware_attack, Accessed Feb 15, 2022.

3. Lee Mathews, Florida Water Plant Hackers Exploited Old Software and Poor Password Habits,
Available online: https:/www.forbes.com/sites/leemathews/2021/02/15/florida-water-plant-
hackers-exploited-old-software-and-poor-password-habits/?sh=188bc59e334e, Accessed Feb
15, 2022.

4. R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau, Operating Systems: Three Easy Pieces, 1st
ed. Arpaci-Dusseau Books, August 2018 [Online]. Available: www.ostep.org, Accessed Feb
13, 2022.

5. R. Cox, F. Kaashoek, and R. Morris. (2020, Aug.) xv6: a simple, Unix-like teaching operating
system. Massachusetts Institute of Technology. Available:
https://pdos.csail.mit.edu/6.828/2020/xv6/book-riscv-rev1.pdf, Last Accessed: Feb 13, 2022.

6. xv6-riscv, Available online: https://github.com/mit-pdos/xv6-riscv, Accessed Feb 15, 2022,

7. Andrew S. Tanenbaum, Minix3 (Online). Available: https://www.minix3.org/, Accessed Feb
13, 2022.

8. D. Comer, Xinu. [Online]. Available: https://xinu.cs.purdue.edu/#textbook, Accessed Feb 13,
2022.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Sixth Edition Unix source code, Version 6. [Online]. Available: https://minnie.tuhs.org/cgi-
bin/utree.pl?file=V6, Accessed Feb 13, 2022.

J. Thyme, (2004, Jun.) Minix on Qemu Step-by-step. [Online]. Available:
https://minix1.woodhull.com/fag/gemumx.html, Accessed Feb 13, 2022.

M. Spivey, Installing Minix 2 on VirtualBox. University of Oxford. [Online]. Available:
https://spivey.oriel.ox.ac.uk/corner/Installing Minix 2 on VirtualBox, Accessed Feb 13,
2022.

D. Given, Minix QD [Online]. Available: https://github.com/davidgiven/minix2, Accessed
Feb 13, 2022.

A. Prakash, Linux File Permissions and Ownership Explained with Examples [Online].
Auvailable: https://linuxhandbook.com/linux-file-permissions/, Accessed Feb 13, 2022.

PaX team, ASLR [Online]. Available: https://pax.grsecurity.net/docs/aslr.txt, Accessed Feb
13, 2022.

Stein, ASLR [Online]. Available: https://isopenbsdsecu.re/mitigations/aslr/, Accessed Feb 13,
2022.

A. van de Ven, Patch 0/6 virtual address space randomization [Online]. Available:
https://lwn.net/Articles/120966/, Accessed Feb 13, 2022.

H. Marco-Gisbert and I. Ripoll Ripoll, “Address Space Layout Randomization Next
Generation,” MDPI Applied Sciences, vol. 9, no. 14, 2019.

P. Gonarkar, D. Arole, and P. Gondachwar, “Pedagogical tools for system software and
operating system courses using xv6 kernel,” B.Tech. Comp. Eng. project, College of
Engineering Pune, May 2014. Available:
http://foss.coep.org.in/fosslab/projects/xv6_new_assignments _project.pdf. Accessed Feb 13,
2022.

F. Kaashoek and R. Morris. (2020) 6.S081 / Fall 2020. Course schedule for 6.S081. Available:
https://pdos.csail.mit.edu/6.828/2020/schedule.html, Accessed Feb 13, 2022.

X. Wang, L. Nelson, and N. Durand. (2019) Labs - CSEP 551. Laboratory assignments for
CSEP 551. Available: https://courses.cs.washington.edu/courses/csep551/19au/labs/,
Accessed Feb 13, 2022.

D. Mishra, “Gemos: Bridging the gap between architecture and operating system in computer
system education,” in Proceedings of the Workshop on Computer Architecture Education,
WCAE’19. New York, NY, USA, 2019.

C. T. K. Koster, J. Wiglz, D. Wrecker, and B. S. B. Matthews “Authorization for xv6 OS
Project,” 2015. Available: https://github.com/CKost/Authorization, Accessed Feb 13, 2022.
J. Bui and N. Prasad. xv6 ASLR Project. Available: https://github.com/TypingKoala/xv6-
riscv-aslr, Accessed Feb 13, 2022.

Johnmwu. xv6-aslr. Available: https://github.com/johnmwu/xv6-aslr, Accessed Feb 13, 2022.

