
Communication Optimization for Distributed
Execution of Graph Neural Networks
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Abstract—Graph Neural Networks (GNNs) have emerged as
a very powerful and popular machine learning model for nu-
merous application domains. Each stage of a GNN requires an
aggregation (sparse matrix-matrix multiplication) and a linear
operation (dense matrix-matrix multiplication). Numerous efforts
have addressed the development of distributed implementations
for GNNs. Although efficient algorithms for distributed matrix
multiplication are well known, the challenge here is the collective
optimization of sequences of distributed matrix-matrix multi-
plications required for GNN, where many degrees of freedom
also exist in the ordering of the component matrix-multiplication
operations.

This paper develops a new approach to distributed
GNN, ReDistribution of Matrices (RDM), centered around
communication-free distributed matrix-multiplication enabled by
matrix redistribution between GNN stages. While the approach
is applicable to the numerous algorithmic variants of GNN, the
experimental evaluation focuses on GCN (Graph Convolutional
Network), including both full-batch training as well as sampling-
based training using GraphSAINT. Experimental evaluation with
2-layer and 3-layer GCN, using 128 or 256 hidden features, across
eight sparse datasets, on a multi-GPU system with 8 GPUs shows
that RDM attains a geometric mean speedup between 2× and
3.7× over two state-of-the-art multi-GPU GCN implementations,
CAGNET and DGCL.

Index Terms—Graph Neural Networks, Distributed Algo-
rithms, Multi-GPU GNN, Performance Modeling

I. INTRODUCTION

Graphs contain structural information that relate entities

(nodes) through relationships (edges). These relationships of-

ten provide transitive information for a node by examining

the information at neighbors; e.g., nodes are likely to exhibit

similar characteristics to their neighbors in the graph. Graph

Neural Networks [1] have emerged as a prominent machine

learning methodology to exploit the information contained in a

graph. There has been an explosion of GNN research over the

last decade. Due to the increasing size of graphs processed by

GNNs, there is a considerable interest in developing distributed

implementations for GNNs [2]–[10].

GNN algorithms like Graph Convolution Networks

(GCN) [11], GraphSAGE [12], Graph Attention Networks

(GAT) [13], and many others, have a computational structure

where each layer of the GNN uses the graph structure to

aggregate neighbor information, followed by application of a

learnable neural network layer to the results of the aggregation.

The aggregation operation can be efficiently implemented as

an SpMM (Sparse-Dense Matrix Multiplication, where one

matrix is sparse and the other is dense) operation and neural

operation can be implemented as a GEMM (dense matrix-

matrix multiplication).

The execution time of the aggregation step via an SpMM

with a very large sparse matrix is generally much higher

than the dense matrix-matrix multiplication for the neural

operations [14]. This is largely because of the significantly

lower performance (GFLOPs) achievable on CPUs and GPUs

for SpMM with a very large sparse matrix (N × N , where

N is the number of graph vertices) versus dense matrix

multiplication (GEMM). Further (as elaborated later), with

existing distributed GNN implementations [2], [4], [8], inter-

node communication is needed for the graph-aggregation step

via the SpMM operation, while the subsequent GEMM oper-

ations for the neural operation are performed locally without

any inter-node communication. Therefore the optimization of

distributed SpMM has been a focus of several recent studies

[4], [8].

Current implementations of distributed GNN generally use

a vertex-partitioned approach to distributing the work of the

aggregation step, as well as the neural processing among

the nodes of a multi-node system. The vertex partitioning

approach requires communication of the input features and

intermediate activations across processor nodes, for graph

edges whose vertices are mapped to different processors.

In this paper, we develop a different approach to distributed

GNN — GNN-RDM, based on ReDistribution of Matrices.

We seek to perform communication-free matrix multiplication

for both the sparse (aggregation) and dense (neural) steps,

with appropriate redistribution of dense matrices among the

memories of the distributed system between matrix opera-

tions. A significant advantage of this approach is improved

scalability with increase in the number of GPUs. While

existing distributed GNN schemes generally incur increasing

communication volumes as the number of GPUs is increased,

the total volume of data movement with RDM is independent

of the number of GPUs.

Exploiting algebraic properties that allow the reordering

of the dense and sparse matrix multiplications at each GNN

layer to reduce the number of data redistribution steps, we

develop a systematic taxonomy for a design space of configu-

rations for the redistribution-based GNN. We further develop

a performance model that can be used to identify pareto-

optimal configurations with respect to data movement cost

and the operation counts for SpMM operations, allowing a

model-driven approach to selection of the best configuration
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TABLE I: Notations used in the paper.

Notation Definition
A Adjacency matrix for GCN with N vertices
PX Process with id X
P Total number of processes
Hin and H0 Input features to the GCN
Hout Final embedding calculated in GCN
Hi Output of layer i
fi Number of columns for matrix Hi

Wi Weight matrix for layer i

for a given set of GNN parameters (graph structure, input

embedding size, and sizes of intermediate neurons).

The space of algorithmic variants for GNN is very large,

with differences along many dimensions. This includes differ-

ences in the specific combining operation used (sum, min,

max, etc.) in aggregating data from neighbor vertices, the

normalization operation used, the batch size used etc. Another

difference among GNN variants is whether or not sampling on

the graph is performed when aggregating information from

neighbors, and if so how the sampling is done. The new

RDM approach to distributed GNN is broadly applicable

across the numerous variants of GNN used in applications

today, including both sampling-based GNNs and full-batch

GNNs.

In this paper, we demonstrate the impact of our work on two

significant GNN models: i) full-batch GCN, the primary mode

of training used for GNNs in metagenomics applications [15],

[16], and ii) GraphSaint GCN [17], which has demonstrated

that very high training accuracy can be achieved via graph-

sampling to create subgraphs for training.

The paper makes the following contributions:

• It develops a novel multi-GPU GNN implementation

based on data redistribution to minimize inter-node com-

munication.

• It develops a systematic taxonomy and a design space

of configurations for distributed multi-GPU GNN, along

with an analytical performance model to identify pareto-

optimal configurations with respect to communication

overhead and sparse operation count.

• It presents an experimental study demonstrating the per-

formance benefits of new approach to distributed GNN

over existing frameworks, both for full-batch training as

well as training based on cluster-sampling.

II. BACKGROUND ON GNN

A GNN comprises of a number of layers, each with a train-

able linear neural operator, along with an aggregation operator

that combines feature vectors from neighboring vertices in the

graph. In this section, we first summarize the operations at a

GNN layer for the forward and backward propagation during

the training of the GNN, followed by a description of the 1D

distributed GNN approach of CAGNET [4]. We use the same

notation as Tripathy et al. [4].

We first discuss full-batch GCN (Graph Convolutional Net-

work, a specific GNN algorithm) training without sampling
as implemented in CAGNET. Later, we discuss GCN with

sampling in Sec. III-F.

Fig. 1: 1D scheme in CAGNET.

Forward Pass: Let A represent the adjacency matrix for the

connectivity graph. For layer l, let Hl−1 be the input, Hl the

output, and Wl the weight matrix. In the forward pass, there

are two main operations: aggregation and the linear layer. In

the aggregation operation, the transpose of adjacency matrix

A is multiplied with Hl−1 and the linear layer is applied to

the result. This is described in eq. (1). A non-linear function

is then applied to this output, as shown in eq. (2).

Zl = A�H l−1W l (1)

H l = σ(Zl) (2)

Backward Pass: The backward pass of a layer computes the

gradients. Let Gl be the gradient for H l. Based on the loss

value, the gradient is first computed for the last layer. The

backward pass at stage l receives Gl from stage l + 1, and

computes the gradient Y l for the weights W l and the gradient

Gl−1, as described in eqs. (3) and (4).

Gl−1 = AGl(W l)� � σ′(Zl−1) (3)

Y l = (H l−1)�AGl (4)

CAGNET Distributed GNN: Prior schemes [4], [8] have

implemented distributed GNN by dividing both the sparse

adjacency matrix and the dense activations across the nodes,

with inter-node communication of needed dense activations

at each stage of the GNN. The 1D scheme in CAGNET [4]

divides both A and activations into horizontal bands and each

process is responsible for storing its own tile as shown in

Figure 1. For the SpMM operation T = A� ∗ H l−1, each

process broadcasts its owned local data slice of H l−1 to other

nodes so that each node has access to all elements of H l−1 to

perform the computations for their local data slice of the output

T . The next operation, dense matrix multiplication (GEMM)

Zl = T ∗W l, does not require any communication since W l is

replicated among all the nodes. In the backward pass of GNN,

a similar order of SpMM (T = A ∗ Gl) and GEMM (U =
(H l−1)�T ) and Hadamard product Gl−1 = U � σ′(Zl−1)
are applied. If a hardware multicast is not available, the total

volume of data to be moved for a forward layer l broadcast is

(P − 1) ∗N ∗ fl−1 where H l−1 contains N ∗ fl−1 elements.

For a 2 layer GNN with fin input features, hidden layers with

fh neurons and fout output classes, the total volume of data

513



movement from the broadcast operations during the SpMM

operations will be (P −1)(fin+2fh+fout)N , which is linear

in terms of the number of processes P .

III. COMMUNICATION OPTIMIZATION FOR DISTRIBUTED

GNN

In this section we describe GNN-RDM, a new approach

to distributed GNN based on ReDistribution of Matrices. In

contrast to previously developed schemes for distributed GNN

[3], [4], [7], [10], [18], which utilize a uniform strategy at

each stage in the GNN, we perform a more comprehensive

analysis of the data access patterns and inter-dependencies

between stages and devise a distributed GNN approach that

is demonstrated to achieve higher performance and be more

scalable with increase in number of nodes than existing

distributed GNN schemes.

As further elaborated below, the overall optimization prob-

lem for distributed GNN involves the following decisions:

[Operator level] For a given SpMM or GEMM operation at

a GNN stage, there are many possible distributed execution

options, corresponding to different partition/distribution strate-

gies for the input and output dense matrices.

[Block level] For each GNN layer, there is flexibility in the

order of the SpMM and GEMM operations, because of the

associativity of chain matrix multiplication: the matrix chain

product ABC can be computed either as (AB)C or A(BC).
This choice affects both the total number of arithmetic opera-

tions, as well as the amount of inter-processor communication

required for distributed execution.

[Network level, intra-pass] The choice of orders of the

SpMM and GEMM operations at adjacent layers affects the

computational cost (number of floating-point operations) as

well as the communication cost.

[Network level, across forward/backward pass] There is

potential for reducing the total number of SpMM operations in

the backward pass by saving and reusing a post-SpMM matrix

in the forward pass, but this constrains the relative order of

GEMM and SpMM in the backward pass.

A. Communication-Free Matrix Multiplication

A key idea behind our approach is that distributed matrix

multiplication can be communication-free if one of the two

input matrices is replicated on all nodes of a distributed system

and the other input matrix is appropriately partitioned across

processors. This property is used to devise a distributed GNN

scheme where communication for the SpMM and GEMM

operations is avoided by suitably redistributing the input dense

matrix operand to a form that enables communication-free

matrix multiplication for both operations.

Fig. 2 shows how matrix multiplication can be performed

without communication when one of the input matrices is fully

replicated among nodes and the other input matrix is suitably

partitioned/distributed. Consider Out = M ∗ In, where M is

fully replicated among nodes, as shown in Figure 2a, which

is representative of the SpMM operation in GNN. Vertically

slicing In and Out in a compatible manner will enable

(a) GNN-SpMM: left input ma-
trix replicated (Out = M*In)

(b) GNN-GEMM: right input
matrix replicated (Out = In*M)

Fig. 2: Communication free distributed matrix multiplication

where one of the input matrices is replicated among nodes.

distributed matrix-multiplication without any inter-processor

communication. If either one of In or Out were horizontally

tiled, there would be a need to broadcast In or a reduc-

tion for Out, requiring a greater volume of data movement.

Similarly, if M is the right (second) operand in the matrix

multiplication Out = In ∗M , with M being fully replicated

across processors, and In and Out being horizontally sliced

across processors, communication-free matrix multiplication

is feasible, as shown in Figure 2b.

B. Operation Order

Section II described the operations needed for the forward

and backward layers for GCN. Consider Equation (1). There

are two choices for computation of A�H l−1W l: either first

perform a sparse-dense matrix multiplication (SpMM) to form

a temporary T = A�H l−1, followed by the dense matrix

product TW l; or first perform the dense matrix multiplication

T = H l−1W l, followed by the SpMM ATT . The associativity

of matrix-chain multiplication ensures that the two orders of

computing the triple matrix-chain multiplication are equiva-

lent. Similarly, in the backward pass (Equation (3)), there are

two options: either first perform SpMM AGl, or dense matrix

multiplication G(W l)�. As discussed later, the total number of

arithmetic operations depends on the chosen execution order.

C. SpMM Reuse across Forward and Backward Pass

Another factor that we consider is the fact that some compu-

tational reuse is feasible across the collection of computations

for the forward and backward passes of a layer. Fig. 3 shows

that if AGl is first computed for the computation of Gl−1,

it can also be reused by choosing it as the first operation

in computing W l (shown shaded yellow). An alternative is

to reuse a saved intermediate ATH l−1 from the forward

pass (shaded blue). From the above observation of potential

reuses, we can conclude that if the dense matrix multiplication

is executed first in both forward and backward passes, an

additional sparse operation will be required for computing

gradient of W l.
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Fig. 3: Reuse between different GNN operations. A�H l−1 (or

(H l−1)�A) and AGl needs to computed twice. We can avoid

recomputation for one of them.

Fig. 4: Computation order and reuses. Path chosen for case 10

in Table IV is highlighted in red.

Figure 4 shows all possible computation orders and the data

reuses. Each node in the graph represents a matrix and each

edge represents a different computation order. Doted edges

represent the possible reuse between forward and backward

operators. The group of nodes on the left (with yellow back-

ground) represents the forward computations and the group

of nodes on the right represents the backward computations.

The operators with turquoise background (Y 1, Y 2, and G0)

represents the final output. For example, the edges Ta and Tb

represent the dense first and sparse first orderings (sec. III-D,

fig. 5) respectively, for the first forward layer. Z1 can then

computed from Ta or Tb as A1Ta or TbW
1 respectively. The

remaining computations can be done similarly. The red arrows

shows the dense-sparse-dense-sparse ordering (corresponds to

ID 10 in Table IV). Note that Td is required to compute Y 2 in

the backward pass. It can be either saved during the forward

pass or recomputed during the backward pass. The dotted red

arrow indicates that in the chosen path (represented by red

arrow), we saved Td during the forward pass so that it can be

reused during the backward pass.

D. Data Movement Cost

We can observe that in both the forward and backward

passes, the SpMM operations are of the form AG, where

the sparse matrix is the left operand. From Fig. 2, vertical

slicing of the input/output dense matrices would result in

communication-free execution. In contrast, the dense matrix

multiplication operations are always of the form HW , for

which horizontal slicing of the input/output dense matrices

is needed for communication-free distributed execution.

Thus, regardless of which one of A�H l−1 or H l−1Wl is

executed first in the forward pass in Equation (1), one of

SpMM or dense mat-mult uses the output of the other opera-

tion and they require their inputs to be distributed differently.

Thus, there will always be a need for redistribution of the

intermediate dense matrix. Since redistribution can be done by

an all-to-all personalized communication of the intermediate

result, the total data movement volume will be constant in

terms of the number of nodes.

Figures 5a and 5b illustrate the data partitioning and re-

distribution on a two node distributed-system (each dense

matrix is sliced into two parts) for both choices: perform

SpMM first or dense matrix-multiplication first. The number

of arithmetic operations, as well as the aggregate volume

of data movement, in a distributed system are shown above

each operation. For the SpMM operation in Fig. 5a, the

total number of FMA (Fused Multiply Add) operations is

nnz ∗ fl−1, where nnz is the number of nonzero elements

in the sparse matrix and fl−1 is the embedding size for the

input vectors at this stage, or the width (number of columns) in

the dense matrices. For the GEMM, the number of operations

is N ∗fl−1∗fl, where N is the number of vertices and fl is the

embedding size (the number of output neurons) at each graph

vertex for that layer. The redistribution of a vertically sliced

partition to a horizontally sliced partition (or vice-versa) will

require a total volume of inter-node data movement volume

of (P − 1)/P ∗ N ∗ f elements, where P is the number of

processors.

E. Handling Very Large Sparse Matrices

If the sparse matrix A is too large to fit in a single GPU’s

memory, it is partitioned and distributed among multiple

GPUs. Consider P GPUs to be viewed as a logical 2D grid of

size Pi × Pj . If there is sufficient aggregate GPU memory to

make RA replicas of A, they are organized in the following

manner: the sparse matrix A is divided into Pi = P/Pj row

panels and each GPU holds NiRA/P ×Tk tile of A. A group

of GPUs holding the entire A will also store a Ni×Nj/Ptile

of B and can communicate among themselves to computeC

tile of size Ni × Nj/P using the 1D algorithm described in

[4]. Since A matrix is replicated RA times, the data-movement

of this algorithm is (P/RA − 1) ∗ |B| since B is broadcast

P/RA−1 times. When RA = 1 this scheme will be identical to

1D scheme presented in CAGNET [4]; however, when RA >1

the data movement will be less than half of the RA = 1 case.

Since the data movement for SpMM and RA are inversely

related, choosing largest possible RA replication factor forA

would give the least data movement for this scheme. If we

assume the size of the memory per node is M , total size of

input features and activation is Hall =
∑

Hi, and the size

of the sparse adjacency matrix is G, then each process can

use M − Hall of it’s memory to store the adjacency matrix.

Therefore adjacency matrix can be replicated RA = P M−Hall

G

times. Therefore, the largest possible value of RA is P M−Hall

G
.

Note that since there are P processes, adjacency matrix can

be replicated at most P times; so, when this number is larger
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(a) SpMM First (b) GEMM First

Fig. 5: Comparison between SpMM or GEMM being the first operation in the first layer

of the GNN computation for a 2 node system.

Fig. 6: SpMM on a 4-node sys-

tem with 2-way row-panel par-

titioning of the sparse adjacency

matrix A.

(a) Horizontal to vertical

(b) Vertical to horizontal

Fig. 7: Redistribution logic.

than P we are going to use RA = P or in other words we

will fully replicate adjacency matrix.

Fig. 6 shows an example where Pj = RA = 2 and P = 4.

Matrix A is divided into 2 row-panels on a 4 node system.

Each of the row panels of A is replicated among 4/2=2 nodes

(top row-panel is stored in P0 and P1; bottom row-panel in

P2 and P3). Each node computes a distinct slice of the output

dense matrix of size N/2 × f/2. In order to compute the

owned output slice, each node will need all partitions of the

dense input array in the same vertical slice. For example, P1

will need the input partitions owned by itself and P3. The

needed data is communicated by broadcasting each input dense

matrix partition to all processors owning partitions in the same

vertical slice, i.e., between P0 and P2; and between P1 and

P3.

F. Sampling in GNN

So far we have discussed full-batch, full-graph training, the

mode of GNN primarily used in some application domains

such as metagenomics [15], [16], and also demonstrated to

be very effective in other applications. However, the use of

sampling is very common, in order to address the neighbor-
hood explosion problem. In sampling based GNN methods,

the halo of the batch or k-hop neighborhood information uses

only a sampled subset of the connected vertices, instead of

all of them. A very effective approach to sampling is graph-

sampling to create independently processed subgraphs, e.g.,

GraphSaint GCN [17], which has demonstrated that very high

training accuracy can be achieved. We demonstrate the use

of our RDM-based distributed GNN with such a sampling

approach. For other kinds of sampling approaches that do

not create independent sub-graphs, a masked SpMM kernel

can be performed on the sampled neighbors of each vertex.

This method would be similar to our proposed GCN-RDM

scheme by passing along the sampled neighbor information

to all processes and replacing SpMM routine with masked

SpMM. Furthermore, a random generated seed can be passed

to all processes and each process can generate it’s sparse

mask individually, reducing the communication overhead for

the sampling mask.

IV. PERFORMANCE MODELING

A. Cost Model of a Layer

In Section III-B we described the impact on performance

of the relative order of SpMM and GEMM operations in

the forward and backward passes. This section discusses the

modeling of communication and computation cost. Figure 5

(a) and (b) show the SpMM-first and the GEMM-first ordering

in the forward pass; analysis of the backward layer is similar.
1) Forward Pass: In Equation (1), let W l represent a matrix

with dimensions fl−1 ∗fl, N represent the number of vertices

in the network and nnz represent the number of edges. The

extent of A is N ∗ N , H l−1 is N ∗ fl−1 and Zl is N ∗ fl.
The number of operations in the forward pass are described

in Table II. The number of operations in the GEMM does

not depend on the order, but the number of operations in

the SpMM depends on calculation order. If fl > fl−1, an

SpMM-first strategy yields lower communication volume and

computation for SpMM; if fl < fl−1 the GEMM-first strategy

leads to fewer operations in SpMM and lower communication
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TABLE II: Number of operations in the forward pass.

SpMM first GEMM first
SpMM Ops nnz ∗ fl−1 nnz ∗ fl
GEMM Ops N ∗ fl−1 ∗ fl N ∗ fl−1 ∗ fl

Comm. (P − 1)/P ∗N ∗ fl−1 (P − 1)/P ∗N ∗ fl
Comm.
(RA < P )

(RA − 1)/RA ∗N ∗ fl−1

+(P/RA − 1) ∗N ∗ fl−1

(RA − 1)/RA ∗N ∗ fl
+(P/RA − 1) ∗N ∗ fl

TABLE III: #Ops. in backward pass (non-memoized).

SpMM first GEMM first
SpMM Ops nnz ∗ fl nnz ∗ fl−1

SpMM Ops
(N.M.) nnz ∗ fl nnz ∗ fl−1

+ min(nnz ∗ fl, nnz ∗ fl−1)
GEMM Ops 2 ∗N ∗ fl−1 ∗ fl 2 ∗N ∗ fl−1 ∗ fl
Comm. (P − 1)/P ∗N ∗ fl (P − 1)/P ∗N ∗ fl−1

Comm.
(N.M.) (P − 1)/P ∗N ∗ fl (P − 1)/P ∗N ∗ fl−1

+2*min(nnz ∗ fl, nnz ∗ fl−1)
Comm.
(RA < P )

(RA − 1)/RA ∗N ∗ fl−1

+(P/RA − 1) ∗N ∗ fl−1
(RA − 1)/RA ∗N ∗ fl

Comm.
(RA < P )
(N.M.)

(RA − 1)/RA ∗N ∗ fl−1

+(P/RA − 1) ∗N ∗ fl−1

(RA − 1)/RA ∗N ∗ fl
+(P/RA − 1) ∗N ∗ fl
+2*min(nnz ∗ fl, nnz ∗ fl−1)

volume. The number of operations and communication volume

of the nonlinear function in Equation (2) does not dependent

on the execution order.

After the last forward layer, the loss function is computed.

The loss function typically needs all the embeddings for a

single vertex to be in the same process node. Thus, an extra

redistribution is needed if the final embedding HL is vertically

tiled. Therefore, the cost of the last redistribution is (P −
1)/P ∗N .

2) Backward Pass: Ignoring the Hadamard product in

Equation (3), the analysis of SpMM-first and GEMM-first

schemes for the backward pass are almost identical to the

forward pass. Let the dimensions of Gl be N ∗ fl and Gl−1

be N ∗ fl−1. The GEMM cost will be same for both orders;

however, if A�H l−1 is not memoized in the forward pass and

the GEMM is executed first in the backward pass, an additional

SpMM of A�H l−1 or AGl is required. Table III summarizes

the total cost of SpMM, GEMM and communication.

3) Inter Layer Communication:: This is affected by the

order of multiplication. Figures 5a and 5b show how changing

the multiplication order changes the data distribution of H l−1

and H l among nodes. If the consecutive layers l and l + 1
perform SpMM-first (or GEMM-first), they will require an

additional redistribution of (P − 1)/P ∗N ∗ fl elements.

Figure 7a shows how data is redistributed from horizontal to

vertical partitioning. Initially, P0 and P1 contain a horizontal

slice of the data. Each processor then divides the data it owns

into P vertical chunks (the divide step). In the next step, each

processor redistributes the data. For example, P0 sends its

second vertical chuck to P1, and P1 sends its first vertical

chuck to P0. After the redistribution, each process contains the

data corresponding to the entire vertical chunk it should own;

however, the data is split across multiple chunks. In the final

step, each processor merges its chunks (Merge step). Vertical

to Horizontal redistribution also uses a similar approach and

is shown in Figure 7b.

4) Row Tiling for Adjacency Matrix A: The details of an

algorithm for RA < P is described in Section III-E. B and C

are divided into P/RA ×RA tiles in this scenario. If SpMM

is performed first in a layer, the volume of data movement for

redistribution will be (RA − 1)/RA ∗N ∗ fl−1 because each

1×RA group need to redistribute their C tile of size N/RA×
fl−1 among themselves to convert vertical slicing to horizontal

slicing, required for GEMM. Similarly if GEMM is performed

first, converting horizontal slicing to (P/RA)×RA slices will

require a volume of data movement of (RA − 1)/RA ∗N ∗ fl
. Tables II and III show the summary for cases for RA <
P . Moreover, the data movement within the SpMM operation

will be (P/RA − 1)NF , as described in Section III-E, where

F = fl−1 if SpMM is performed first and F = fl if GEMM

is performed first.

B. Redistribution Model

In this section we investigate which order of SpMMs and

GEMMs can yield the best performance.

If the CAGNET scheme [4] for a two layer GNN network is

used for GNN-RDM, it can result in three data redistributions.

As mentioned earlier, the order of operations affects the cost

and a different choice can yield a scheme with lower inter-

layer communication.

For a 2-layer GNN, there are 4 choices for the ordering of

SpMM and GEMM for the two layers. As mentioned in Sec-

tion IV-A, the cost of the GEMM operation does not change

depending on multiplication order. In Table IV, the total cost

of SpMM and communication are modeled. The second and

third column describes whether SpMM (S) or GEMM (D) is

executed first in the forward pass in layer 1 and 2, respectively.

Similarly, column 4 and 5 describes whether SpMM (S) or

GEMM (D) is executed first in the backward pass in layer

2 and 1, respectively. Since the nnz factor for each SpMM

and the (P − 1)/P ∗ N factor for each communication do

not change with the choice of order of execution, they are not

shown in the table. The entries in the table can be computed

using the equations described in Section IV-A in O(L × 2L)
time where L is the number of layers. Since the number of

layers is typically at most 4 in GNN applications, the cost of

computing this table is negligible in comparison to the time for

performing the training using an optimized order. Even though

there are 16 different configurations for a 2-layer network, as

shown in th enext section, only very few of them are Pareto

optimal configurations in terms of communication and sparse

operations. Therefore, after trying out each pareto-optimal

configuration in the first few epochs, we can dynamically

determine the fastest configuration and use that configuration

for the remaining epochs.

V. EXPERIMENTAL EVALUATION

We now present our empirical evaluation of RDM. We

compare RDM against two other state-of-the-art distributed

GNN systems, CAGNET [4] and DGCL [8] for full-batch

training. We further evaluate RDM on GraphSaint [17], which

uses a graph sampling approach that generates a number of

sampled sub-graphs that are used for training. We compare

RDM on GraphSAINT against the DGL implementation of
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TABLE IV: Communication and computation cost: 2-layer

GNN.

ID Forward
Pass

Backward
Pass Communication Sparse Ops

0 S S S S fin + 4fh + 2fout fin + 2fh + fout
1 S D S S fin + 2fh + 4fout fin + fh + 2fout
2 D S S S 4fh + 2fout 3fh + fout
3 D D S S 4fh + 4fout 2fh + 2fout
4 S S S D 2fin + 2fh + 2fout 2fin + fh + fout
5 S D S D 2fin + 4fout 2fin + 2fout

6 D S S D
fin + 2fh + 2fout
+2min(fin, fh)

fin + 2fh + fout
+min(fin, fh)

7 D D S D
fin + 2fh + 4fout
+2min(fin, fh)

fin + fh + 2fout
+min(fin, fh)

8 S S D S fin + 4fh fin + 3fh

9 S D D S
fin + 2fh + 2fout
+2min(fh, fout)

fin + 2fh + fout
+min(fh, fout)

10 D S D S 4fh 4fh

11 D D D S
4fh + 2fout
+2min(fh, fout)

3fh + fout
+min(fh, fout)

12 S S D D 2fin + 4fh 2fin + 2fh

13 S D D D
fin + 2fh + 2fout
+2min(fh, fout)

2fin + fh + fout
+min(fh, fout)

14 D S D D
fin + 4fh
+2min(fin, fh)

fin + 3fh
+min(fin, fh)

15 D D D D
fin + 4fh + 3fout
+2min(fh, fout)
+2min(fin, fh)

4fh + 3fout
+min(fh, fout)
+min(fin, fh)

GraphSAINT. DGL could not be compared for distributed full-

batch training since it is not supported. Similarly, we could

not evaluate GraphSAINT sampling with CAGNET or DGCL

because the only supported scheme is full-batch training.

A. Experimental Setup

We used the CAGNET [4] framework for implementing

RDM. We adopted the Graph Convolution Network (GCN)

model [11] and reused the graph normalization code in

CAGNET.

TABLE V: Datasets used in evaluation.

Dataset Vertices Edges Feature size Labels
OGB-Arxiv 169,343 1,166,243 128 40
OGB-MAG 1,939,743 21,111,007 128 349
OGB-Products 2,449,029 61,859,140 100 47
Reddit 232,965 114,848,857 602 41
Web-Google 875,713 5,105,039 256 100
Com-Orkut 3,072,441 117,185,083 128 100
CAMI Airways 1,000,000 22,901,745 256 25
CAMI Oral 1,000,000 20,734,972 256 32

a) Datasets: We used eight publicly available graph

datasets for evaluation, with characteristics listed in Table V.

OGB-Arxiv, OGB-MAG and OGB-Products are datasets from

the Open Graph Benchmark suite [19]. OGB-Arxiv is a

citation network graph of Computer Science arXiv papers.

OGB-Products represents an Amazon product co-purchasing

network. OGB-MAG is a heterograph with multiple types of

nodes and edges, containing a subset of the information from

Microsoft Academic Graph. For this study we use the paper-

cites-paper relation to generate the graph for use with GNN.

Reddit is a social network graph of the Reddit forum [12].

Web-Google [20] is a web graph where each node represents

a web page, and each edge is a hyperlink between web pages.

TABLE VI: Pareto-optimal configurations (IDs from Table IV)

for the datasets in Table V.

fin fh fout Candidates IDs
OGB-Arxiv 128 128 40 5
OGB-MAG 128 128 349 10
OGB-Products 100 128 47 5
Reddit 602 128 41 2, 3 and 10
Web-Google 256 128 100 2, 3 and 10
Com-Orkut 128 128 100 5 and 10
CAMI Airways 256 128 25 2, 3, and 10
CAMI Oral 256 128 32 2, 3, and 10

Com-Orkut [21] is an online social network where each node

represents a user and edges represent the friendship between

users. Since node features and labels are not provided for

Web-Google and Com-Orkut datasets, we generated random

values to evaluate runtime. Table V shows the details of these

datasets.

We also included two metagenomic graph datasets in our

evaluation. Recently, it has been shown that GNNs can be

used to classify sequences in metagenomics [15], [16], [22].

GNN-based classification techniques use connectivity infor-

mation between input metagenomic sequences to construct an

overlap graph [22]. In the overlap graph, each sequence acts

as a node and two nodes are connected by an edge if they have

an overlapping region. Then node classification is performed

using graph neural network in a semi-supervised setting. The

tetra nucleotide content, i.e., the frequencies of all four-length

sequences, is used as input node features.

We used two publicly available long read datasets from

the 2nd CAMI Toy Human Microbiome Project dataset: Oral

cavity and Airways.

To generate the overlap graph, we took the fastq file

containing all sequences in a dataset, aligned them pairwise

with minimap2 [23], and excluded self-aligned sequences with

the flag -X.

.

b) System Details: We evaluated RDM on a system with

two 32-core AMD EPYC 7513 CPUs and 8 NVIDIA RTX

A6000 GPUs. Each GPU has 48 GB GDDR6 memory. We

used PyTorch v1.9.0 as the deep learning framework, and

CUDA version 11.1. We used the built-in distributed APIs of

PyTorch to perform inter-device communication and NCCL

v2.7.8 as the communication backend.

c) GNN Implementation Details: We implemented 2-

layer and 3-layer GCN networks for the RDM scheme us-

ing the CAGNET infrastructure [4]. We experimented with

two choices for the hidden layer dimension - 128 and 256.

For each RDM evaluation, the analytical model described in

Sec. .sec:perf-model was used to identify all pareto optimal

configurations with respect to the computational and commu-

nication costs. The pareto optimal configurations were exe-

cuted and the best among those reported. For the 2-layer case

for 128 hidden features, the pareto optimal configurations for

the datasets are shown in Table VI. The The Adam optimizer

was used to train all models (RDM, CAGNET, DGL). The

learning rate was set to 0.01 for all full-batch experiments. In

our experiments of Section V-C, the learning rate was set to
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Fig. 8: Training throughput (epochs per second): 2-Layer GCN; hidden-size=128; X-axis: #GPUs.
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Fig. 9: Training throughput (epochs per second): 2-Layer GCN; hidden-size=256; X-axis: #GPUs.
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Fig. 10: Training throughput (epochs per second): 3-Layer GCN; hidden-size=128; X-axis: #GPUs.
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Fig. 11: Training throughput (epochs per second): 3-Layer GCN; hidden-size=256; X-axis: #GPUs.

0.001 for GraphSAINT-RDM on the Metagenomics datasets

to enhance training stability. Each model was trained for

100 epochs, and the arithmetic mean for achieved throughput

(epochs per second) is reported.

B. Throughput Comparison: Full-Batch GNN

We first compare the training throughput of GNN-RDM

against CAGNET and DGCL. The reported throughput for

GNN-RDM are based on the best of the model pre-

dicted SpMM and GEMM candidate orders. Among multiple

CAGNET algorithms, we compare against the 1.5D algorithm

since it was shown to be the algorithm with the best throughput

by the authors. Fig. 8-11 present throughput data for the 8

datasets on 2/4/8 GPUs, for 2/3 GNN layers and 128/256

hidden features. All three implementations compute identical

outputs, with small differences due to reordering of floating

point operations across the schemes.

Compared to CAGNET, RDM achieves higher training

throughput for all of the datasets across all GPU configurations

(for a few cases CAGNET results could not be obtained since

it ran out of memory). Overall, RDM’s achieved throughput is

significantly higher than DGCL, especially on 8 GPUs. For a

couple of the benchmarks (OGB-Products and Reddit) DGCL

is faster than RDM on 2 GPUs, but RDM is faster than DGCL

on 4 and 8 GPUs. RDM exhibits much better scalability as

the number of GPUs is increased because the total volume of

inter-GPU communication remains constant, while the volume

of data movement increases with the number of GPUs for

CAGNET and DGCL.

Table VII summarizes the performance data in Fig. 8-11

as the geometric mean of speedup achieved by RDM over

CAGNET and DGCL over all datasets. The speedup over

CAGNET is at least 2× for all cases - 2, 4, or 8 GPUs, 2-

layer or 3-layer network, 128 or 256 hidden features. When

compared with DGCL, RDM performance is generally worse

on 2 GPUs, but over 2× (between 2.1× and 2.54×) better on

CAGNET RDM Comm
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Fig. 12: Communication in CAGNET and RDM for 8 GPUs.

4 GPUs and over 3× (between 3.13× and 3.74×) better on 8

GPUs.

TABLE VII: Geometric mean of speedup of RDM over

CAGNET and DGCL across the 8 datasets.

GPUs Layers Features Speedup vs.
CAGNET

Speedup vs.
DGCL

2
2

128 2.29 0.91
256 2.36 0.92

3
128 2.49 1.02
256 2.48 0.84

4
2

128 2.38 2.30
256 2.54 2.17

3
128 2.62 2.54
256 2.68 2.10

8
2

128 2.04 3.13
256 2.56 3.74

3
128 2.00 3.27
256 2.65 3.63

Communication Time: For the eight datasets, Figure 12

shows a breakdown of total epoch time into the time spent on

computation versus communication by CAGNET and RDM,

for the 2-layer GCN with 128 hidden features. The total time
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spent in communication (the gray region in the bars) is lower

for RDM, often by a significant amount. For some cases,

the compute time (red or green region) for RDM is lower

than CAGNET but higher in some. This is in part due to the

difference in total number of operations for different order of

SpMM/GEMM, and in part due to the different width of the

dense-matrix slices processed by RDM and CAGNET - the

lower slice size for RDM can result in reduced data reuse

and lower compute throughput. The ratio of epoch times and

communication times between CAGNET and RDM for all

four networks (2/3 layers and 128/256 hidden features) are

presented in Table IX. RDM is consistently faster per-epoch,

largely due to the significantly lower communication overhead.

TABLE VIII: Assessment of analytical model for optimal

SpMM/GEMM order: 2-layer GCN with 128 hidden features.

Dataset #GPUs Pareto optimal Non-pareto optimal
2 30 36-50
4 22 25-38OGB-Arxiv
8 22 25-42
2 126 147-335
4 85 103-221OGB-MAG
8 76 97-226
2 859 756-969
4 622 422-692OGB-Products
8 402 482-662
2 384-418 1309-1864
4 157-168 775-985Reddit
8 138-186 344-489
2 135-180 200-250
4 95-139 145-198Web-Google
8 90-125 126-181
2 772-909 846-1045
4 445-626 510-757Com-Orkut
8 473-525 546-677
2 182-203 241-337
4 119-138 147-241CAMI-Airways
8 116-137 113-235
2 174-193 226-320
4 117-134 137-236CAMI-Oral
8 114-143 124-224

Model Validation: We assessed the effectiveness of our ana-

lytical modeling for ordering of SpMM/GEMM operations by

performing runs with all possible orderings of SpMM/GEMM.

Table VIII lists the measured epoch time for the Pareto

optimal configurations from the analytical model, as well as all

non-Pareto-optimal configurations. With very few exceptions

(e.g., OGB-Products on 2 and 4 GPUs), the model-predicted

configuration(s) had better performance, sometimes with very

significant differences (e.g., Reddit).

C. Evaluation with Cluster Sampling

The experiments above use RDM in full-batch GCN training

(i.e., the entire set of vertices is processed together, rather than

in small batches). In this section, we evaluate a redistribution-

based GNN implementation for the cluster sampling approach

of GraphSAINT [17], a recent GNN approach that uses

sampling to generate independent subgraphs for training and

has been shown to exhibit high accuracy. Each subgraph is

parallelized using our RDM scheme.

We also extend a DGL implementation of GraphSAINT

to use Distributed Data Parallelism (DDP) to run a

batch/subgraph on each GPU (G) in parallel. Since subgraphs

are run in a fully distributed manner, DDP can be expected to

exhibit good scalability. However, when using DDP, the results

of each of the G distributed forward and backward passes

are reduced and the model weights are updated using the

optimizer. If there are S subgraphs (i.e., batches) and G GPUs,

there will be S/G weight updates. Therefore, DDP increases

the effective batch size, which can have a negative effect

on the rate of model convergence. In contrast, GraphSAINT-

RDM computes the forward and backward pass for a single

subgraph using distributed GPU resources. This allows the

model weights to be updated after each subgraph, independent

of the number of GPUs being used.

Figure 13 shows plots of test accuracy as a function of

training time for the GraphSAINT-DGL implementation using

DDP, the RDM based GraphSAINT, and the full batch GCN

RDM implementation, for execution on 8 GPUs, using a

2-layer GNN with 128 hidden features. Trends are similar

with use of 256 hidden features and 3-layer networks; details

are omitted due to space limitations. Of the 8 datasets we

experimented, two do not have training datasets associated

with them (Com-Orkut, Web-Google) and are therefore not

presented here. For the metagenomics datasets, it is not com-

mon practice to use sampling because of loss of accuracy from

sampling. As expected, we observe that with the CAMI Oral

and CAMI Airways dataset, full-batch training (GCN-RDM)

achieves significantly higher accuracy than GraphSAINT-

RDM or GraphSaint-DGL. For the other datasets all three

schemes achieve comparable test accuracy, but for OGB-

Products and Reddit, GraphSAINT-RDM and GraphSAINT-

DGL converge much faster than GCN-RDM.

Our experimental results highlight that RDM can also be

used effectively in cluster-sampling GNN schemes. However,

there exist datasets where a sampling-based approach is infe-

rior to full-batch training, where GCN-RDM is very effective.

Whether full-batch training or sampling-based training is more

effective for a dataset (higher test accuracy or comparable

test accuracy but faster convergence), the RDM approach

developed in this paper is very effective for both scenarios

for distributed multi-GPU execution.

D. Space Requirement

The space requirement for GNN-RDM for 8 GPUs is shown

in Table X, for different values of RA. There is an inverse

relationship between the amount of memory used and the

amount of inter-node data communication as described in

section III-E. The case of RA = P corresponds to full

replication of the graph across all GPUs, while the other

extreme of RA = 1 corresponds to CAGNET. The maximum

possible value for RA is chosen based on the available GPU

memory.
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TABLE IX: Ratio of CAGNET’s Epoch time and Communication time over RDM’s times.

Dataset 2-Layer Hidden:128 2-Layer Hidden:256 3-Layer Hidden:128 3-Layer Hidden:256
Epoch Comm Epoch Comm Epoch Comm Epoch Comm

OGB-Arxiv 1.98 1.87 2.92 2.70 1.97 1.82 1.93 1.54
OGB-MAG 3.15 4.60 2.72 3.26 2.82 3.94 3.20 3.99

OGB-Products 1.35 2.31 2.21 3.74 1.06 1.64 1.76 1.83
Reddit 2.24 2.37 2.76 2.54 1.63 2.52 2.33 2.91

Web-Google 3.47 3.71 3.09 2.77 3.02 3.02 2.65 2.21
Com-Orkut 1.48 2.79 1.80 2.14 1.35 2.16 2.00 2.40

CAMI-Airways 1.74 2.83 2.71 4.48 2.25 4.44 2.87 4.10
CAMI-Oral 1.68 2.64 2.68 4.13 2.24 4.05 2.91 4.00
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Fig. 13: Test accuracy versus time for GCN-RDM, GraphSAINT-RDM, and GraphSAINT-DGL: 2-layers, 128 hidden features,

8 GPUs (Time in seconds).

TABLE X: Space requirement for CAGNET and RDM. RA

defines how many replicas of the adjacency matrix A are

stored. Data is for per-GPU space requirement in MBytes,

for distributed GCN on 8 GPUs.

GNN-RDMDataset CAGNET
RA = 2 RA = 4 RA = 8

OGB-Arxiv 26MB 28MB 32MB 39MB
OGB-MAG 618MB 650MB 713MB 840MB
OGB-Products 430MB 522MB 708MB 1.1GB
Reddit 262MB 434MB 779MB 1.5 GB
Web-Google 220MB 227MB 243MB 273MB
Com-Orkut 723MB 898MB 1.3GB 2GB
CAMI Airways 239MB 273MB 342MB 479MB
CAMI Oral 239MB 270MB 332MB 457MB

VI. RELATED WORK

Numerous efforts have addressed distributed GNNs on

CPUs and/or GPUs. PyTorch Geometric (PyG) and Deep

Graph Library (DGL) [24] are two widely used GNN training

frameworks. PyG is compatible with PyTorch and supports

training on CPU, single GPU and multiple GPUs. DGL is

compatible with PyTorch, MXNet and TensorFlow. DistDGL

[10] is the module integrated in DGL to support distributed

model training.

We found the DGL-based implementation of GraphSAINT

to be faster than PyG and so we used the former in our

evaluation.

CAGNET [4] implements a number of SpMM algorithms,

corresponding to 1D, 1.5D, 2D, and 3D schemes for dis-

tributed full-batch GNN training. DGCL [8] is a commu-

nication library that targets high-throughput full-batch GNN

training. DGCL supports partition-based training and makes

trade-offs between graph replication and communication in

the distributed setting. It also leverages high-performance links

such as NVLink to accelerate training. DistGNN [2] improves

upon DGL for full-batch distributed training for GNNs on

CPU clusters. DistGNN uses a minimum vertex-cut strategy

to partition graphs, and optimizes memory management and

cache reuse. The LIBXSMM library [25] is used in DistGNN

to implement loop reordering and vectorization to provide

high instruction-level parallelism. ROC [3] is a framework for

partition-based distributed GNN training. ROC first trains a
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cost model to decide the optimal graph partitioning strategy to

reduce communication time between devices and uses dynamic

programming to optimize GPU memory usage. In this paper,

we have performed comparisons with two state-of-the-art full-

batch distributed GNN frameworks for GPUs: CAGNET and

DGCL.

A number of efforts have sought to optimize distributed

GNN using different forms of sampling. NEXTDOOR [5] is

an efficient sampling algorithm that speeds up sampling time

on GPUs by load balancing and caching of edges. They also

provide an API for different types of sampling.

The 2PGraph [6] system uses METIS to reorder the graph

to reduce the communication cost. It also proposes a fast

sampling algorithm to improve the sampling time similar to

Jangda et al. [5].

P3 [7] develops a distributed GNN approach that samples

the sparse graph and computes aggregated results in the first

layer by distributing input features so that each node has

feature sets of a distinct group of vertices.

The RDM-based approach is also applicable for other forms

of sampling besides GraphSAINT, but it is beyond the scope

of this paper.

VII. CONCLUSION

This paper presents a new approach to communication-

efficient implementation of distributed multi-GPU GNNs

based on the redistribution of dense matrices between row-

wise and column-wise partitions, along with communication-

free sparse and dense matrix multiplication. Experimental eval-

uation demonstrates performance improvement over state-of-

the-art publicly available multi-GPU GNN implementations.
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