
Exploring a Research Agenda for Design
Knowledge Capture in Meetings

Liz Seero, Janet Burge
Mathematics and Computer Science

Colorado College
{l_seero, jburge}@coloradocollege.edu

Adriana Meza Soria, André van der Hoek
Informatics

University of California Irvine
{amezasor, andre}@uci.edu

Abstract—Meetings are a frequent part of life for a software
developer. Software design is often performed, discussed, and
reviewed in these meetings. This means that meetings may
contain important design information that could be captured
for later use. Meeting design tools may be a way to capture
design information as a byproduct of discussion that arises in
these meetings. In this paper, we identify a list of key meeting
support tool features that could support the capture and retrieval
of design information and compare these to features currently
offered in commercial meeting support tools.

Index Terms—software design, design meetings, design ratio-
nale, tools

I. INTRODUCTION

In software development, meetings are important for plan-
ning and decision-making, as well as information dissemi-
nation. Employees typically spend a third of their time in
meetings [1].

Consider this scenario, which describes the meetings held
for one of the projects developed by a major Healthcare In-
formation Systems company that was studied in [2]. Meetings
held for this project include Backlog Refinement (twice a
week), Architecture Committee meetings (twice a week), UI
Initiative meetings (bi-weekly), Sprint Planning (bi-weekly),
ad-hoc Sprint Work meetings, Daily Stand-ups, and Retro-
spectives. A key observation obtained from analyzing the
Architecture Committee meetings of this team, in particular,
was that the meetings were an important venue for information
dissemination. In fact, the lead architect confirmed researcher
observations that many attendees were present with the pri-
mary goal of staying informed. Other than notes taken as a
direct consequence of the task at hand, a lot of what was talked
about and absorbed by participants was entirely verbal.

The challenge of capturing information about design, par-
ticularly the decisions made and their rationale, is one that
has been studied for many years, yet no approaches or tools
have received significant adoption in industry. Meetings are
a potential source of this information, as design issues are
discussed and decisions made. With the shift to more remote
or hybrid work, accelerated by the global pandemic, there
has been an increase in development and adoption of meeting

This material is based upon work supported by the National Science
Foundation under grant CCF-2210813, 2210812.

support tools. This raises the question of how this might impact
the future of Design Rationale (DR) capture and use.

This paper contributes the following towards forming a
research agenda on capturing and accessing DR:

1) Providing a list of meeting features that can aid in
supporting design.

2) Identifying which of these features are currently sup-
ported by commercial meeting support tools.

We will conclude the paper with a discussion of these
features and plans for implementing our research agenda.

II. RELATED WORK

A. Design Rationale

Design Rationale has been an active area of research for
over 50 years, starting with Kunz and Rittel’s seminal work
on IBIS [3]. Rationale has been studied and applied to many
types of design, including Software [4], Human Computer
Interaction [5], and Engineering [6]. Much of the initial
work focused on notations and tools for the capture and
representation of argumentation-format rationale [7], [8], [9],
[10], [11], [12], [13], [14]. More recently, there has been work
that attempts to extract rationale from existing documents [15],
[16], [17], [18], [19], [20], [21]. One of the challenges with
retrospective capture of rationale is the possibility of large
amounts of information that requires processing before it can
be useful. Shipman and McCall recommended a process of
”incremental formalizing” where information was structured
as needed rather than all at once [22].

B. Software Design Meetings

How software developers engage in collaborative design
meetings has been a subject of extensive study. The focus
of these studies has been varied, ranging from analyzing the
sketches that software developers use as the anchor for their
discussions (e.g., [23], [24], [25], [26], [27]) and understanding
how they deal with uncertainty (e.g., [28], [29]) to the role
of novices and experts (e.g., [30], [31]) and problem solving
strategies (e.g., [32], [33]). There are also papers that are not
explicitly about design meetings but that use meetings as a
way to understand more about software development, such as
Lavalee, et al. [34].



C. Meeting Support Tools

Later in the paper we will discuss some commercially
available tools. In addition to these, there are also several tools
developed as research projects. Calo Meeting Assistant [35]
transcribes meetings and uses Machine Learning to perform
segmentation, tagging, and automatic action item detection.
It also performs meeting summarization. Talk Traces [36]
captures and visualizes meeting discussions. This includes
word cloud generation and topic visualization. Community
Click [37] transcribes meetings and uses custom clickers to
capture feedback from participants (agree, disagree, confused,
unsure, important). Organizers can use a clicker to tag parts
of the meeting (Main Idea, New Issue, etc.) while participants
can provide opinions (Agree, Disagree, etc.). Meeting Vis [38]
processes a meeting transcript to create a meeting summary.
It provides an interactive visualization that identifies speakers
and discussion topics. MemTable [39] is a tabletop interface
that allows those seated to collaborate during meetings. The
table records audio as well as any actions taken using the
table interface. KnoCap [40] was developed to support soft-
ware design meetings by incorporating a shared whiteboard
and allowing designers to capture segments of the meeting
transcription as “important design bits” so that they can be
accessed later.

III. SOFTWARE DESIGN MEETINGS

There are many different kinds of meetings that can occur
during software development, including stand-up meetings,
design critiques, problem-solving sessions, ticket triage, retro-
spectives, and many more. Not all of these may involve design.
Some may have design as a primary activity, others may have
design occur only occasionally. The types of meetings held can
often be company specific. When design occurs is different
in software development than in other disciplines because
in a way, it never ends [41]. Design can occur early in the
process (for example, user interface design sometimes is done
as part of requirements definition because it helps to clarify
how the system will work from a user perspective) as well
as very late in the process, as software updates performed
during maintenance to add new features and correct defects
will also require design. What is being designed varies as
well—there may be different needs when sketching out a user
interface design versus designing the software architecture.
The malleability of software means that design is much more
distributed across time than it would be in manufacturing,
where there is not the ability to modify a design after the
artifact has been built. At any point, decisions need to be made
as to how to solve various design issues.

Design can occur across meetings—both from consecutive
recurring meetings of the same type with the same team, or
across meetings of different types with potentially different
meeting attendees. Duffy and O’Rourke [42] referred to the
concept of “meeting streams”—meetings held across an or-
ganization involving different teams that contributed towards
developing a product. If these meetings do not include the
same personnel, it is possible, if not likely, that critical

information may not be successfully transmitted from meeting
to meeting.

Our first research contribution is to identify what kind of
functionality high-level meeting support tools need to offer in
order to support software design meetings, and specifically the
capture of design information. As a first step in this direction,
we looked at meeting support features in general, as obtained
through a combination of an analysis of features in existing
meeting tools (commercial, open source, and research) and our
own prior research history and experience. We started with
brainstorming a list of features and then added to them as
we performed a competitive analysis of existing tools. Table I
presents the resulting list of meeting support tool features.
We grouped these features by Meeting Stage, using the stages
identified by Bedingfield and Clarkson [43]:

• Inception (InC)—the initial creation and planning of the
meeting

• Initiation (Init)—attendee transition from activities they
were doing before the meeting into meeting participation

• Meeting Event (ME)—the meeting itself
• Leverage (L)—capturing information during and after the

meeting and using that information to achieve meeting
outcomes.

Initiation is likely to overlap with the start of the meeting,
while Leverage will occur both during- and post-meeting.

This full list of features is lengthy. We would like to focus
our research on those that more specifically support the capture
of design information using the following criteria:

1) Features needed to capture design artifacts, such as
sketches or diagrams;

2) Features needed to capture design deliberation and
decision-making;

3) Features needed to support collaboration with different
stakeholders to obtain design requirements; and

4) Features needed to connect meetings in cases where
design discussion is fragmented. Meetings are usually
bounded in time, which means design activities may be
need to occur across multiple meetings.

The subset of meeting features that fall into these categories
is highlighted in bold type in Table I.

IV. EXISTING MEETING SUPPORT TOOLS

Our second research contribution is to examine if current
tools support the needs of software design meetings. To do
this, we looked at existing tools to see which ones implement
the critical features highlighted in the previous section.

Meeting support tools can be grouped into five main cate-
gories:

• Computer Mediated Communication tools—tools such as
Zoom and Microsoft Teams that combine video con-
ferencing and messaging to conduct virtual and hybrid
meetings.

• Automated Transcription/Summarization tools—tools that
transcribe and, in some cases, summarize meetings or
conversations.



TABLE I
MEETING TOOL FEATURES

Feature Definition Stage
Pre-Meeting Request Support for querying participants on what they would like to see discussed in

the meeting
InC

Create Agenda Create an agenda for the meeting that will be available to participants before
and during the meeting

InC

Pre-Set Meeting Tags Set up a common vocabulary for tags (such as topics) that participants can use.
This can involve re-use of existing tags or new ones

InC

Associate Tags with Meeting Agenda Assign tags to agenda items InC
Create Meeting Template [New or Previous Meeting] Create a template that can be used to create meetings in the future InC
Create Meeting from Template Use a meeting template to create a new meeting. This would include attendees

and tags
InC

Create Meeting Create a new meeting InC
Meeting Materials [Preparation and Reference] Associate documents with a meeting that are provided for attendees to read

prior to the meeting or to refer to during the meeting
InC

Link Meetings [Full Meeting; Selected snippets] Adding a reference to prior meetings on the same topic to the Meeting Materials
if participants are expected to be familiar with what was discussed earlier

InC

Link External Tools [Slack, Ticketing Systems, Google Docs,
. . . ]

Add a reference to external tools that contain information relevant to the meeting InC

Specify Meeting Host Indicate who will be the host (or hosts) while the meeting is occurring InC
Import Invitee List from Previous Meeting Create meeting attendees for a meeting from a previous meeting InC
Edit Participant List Add and delete attendees from the meeting InC
Invite and Notify Invite Participants and Notify attendees that the meeting has been scheduled InC
Mark attendance As participants join a meeting, their attendance is captured so that we know

who was actually at a meeting, rather than only who was invited
ME

Advance agenda The host can highlight agenda items as we move through the meeting ME
Off-Topic Timer The host can indicate when discussion has gone off-topic and a timer will be

displayed showing how long the discussion lasts
ME

Collaborative Notes Take notes during the meeting collaboratively with other attendees. And
attaching to other artifacts

ME

In-Meeting Review If an attendee joins a meeting late or needs to step out and rejoin they will still
have access to transcripts, snippets, etc. for the meeting in progress where they
can browse back to quickly review

ME

Whiteboard Sketching Meeting attendees can sketch on a shared whiteboard ME
Whiteboard Capture and Tagging Meeting attendees can capture whiteboard contents. Each capture needs to have

at least one tag
ME

Transcribe Meeting Automatically transcribe meeting discussion ME
Authenticate Access Determine if someone has visibility into meeting contents ME, L
Edit Meeting Access Add or remove meeting access for personnel ME, L
Capture Snippet Capture a meeting snippet. By default, this must include one tag. This will

capture the transcript and associated audio
ME, L

Edit Snippet A snippet can be edited to extend it if not everything was captured ME, L
Tagging [Discussion Status, Topics, Follow-up, Comments] Add an informative tag to a meeting artifact [Snippet or Whiteboard] ME, L
Link External Tools [Slack,ticketing, etc.] Link external tools that have relevant information to the system or that need to

be updated based on discussion
ME, L

Personal Notes Take notes during or after the meeting that are not shared with other attendees ME, L
Follow-up Request If an snippet or white-board capture is given a follow-up tag, the person tagged

will be notified via some messaging service (such as e-mail or Slack) when the
tag is made

ME, L

Access Prior Meeting [Snippets, Tags, Notes] People can access meetings to view what happened; add additional information
(tags, notes, etc.); and make personal notes on the meeting

ME, L

Group Messaging The host can message attendees ME, L
Meeting Summary Provide a summary of important points ME, L
Search Meetings [Time Frame, Topic, Person/Team Attending,
Person Speaking, Meeting Type, Meeting Series, Person Tagged,
Transcribed Text, Comment Text]

Search across the whole collection of meetings (or at least those the searcher
has access to

ME, L

Search Within Meeting [Topic, Person Speaking, Person
Tagged, Transcribed Text, Comment Text]

Search within a meeting, either one that is in-progress or viewed ME, L

Quick Text Search Search for a word or words occurring in a meeting transcript, tags, or notes ME, L
Go To Snippet Context If someone is viewing a meeting snippet, they can bring up the meeting

transcript to see the information in context
ME, L

Add Past Meeting Link A link to an snippet from a prior meeting can be added to a captured snippet
in the current one

ME, L

Add Future Meeting Link A link to an snippet from this meeting can be added to a future meeting, if that
meeting has already been created

ME, L



• Meeting Support Tools—tools used during meetings to
provide structure (i.e., agendas) and/or capture meeting
information.

• Project Management Tools—tools that provide some form
of meeting support in addition to broader project manage-
ment support such as scheduling and workflow.

• Collaborative Note-taking tools—tools such as Google
Docs that can be used to take notes during meetings but
also have wider applications.

There are many tools that can be, and are, used in meetings.
For the purpose of this evaluation, we looked at three criteria:

1) Tools should understand the concept of a meeting as an
event with a fixed duration.

2) Tools should provide value during the meeting event
itself (versus only providing a summary after).

3) Tools should offer features that make it easier to leverage
meeting results after the meeting is over and for people
not at a meeting to catch up on what happened.

As a result of this, we did not look at tools like Zoom or
Google Docs despite their frequent use in meetings.

We focused on commercially available tools (research tools
are discussed under related research). Our search for tools
was primarily opportunistic, with tools found through Google
search, although we also consulted a list of tools provided by
the Collaboration Superpowers Website [44]. The following
tools were analyzed:

• Butter (B) - Butter (https://www.butter.us) allows meet-
ings to be set up with an agenda. It captures recordings,
chat logs, and personal meeting notes and allows easy
access to all past meetings.

• Docket (D) - Docket (https://www.dockethq.com) sup-
ports agendas and action items. It also keeps track of
a recurring meeting history so users can review past
meetings. Unfortunately Docket is no longer available.

• Fellow.app (Fe) - Fellow (https://fellow.app) allows meet-
ing participants to work from a shared collaborative
agenda during a meeting. It includes a meeting timer and
supports action items and tagging.

• fireflies.ai (Fi) - fireflies (https://fireflies.ai) provides
meeting transcription. Participants can tag portions of the
meeting. It also supports action items.

• Hive Notes (Hi) - Hive Notes is a part of the larger
Hive project management platform (https://hive.com). It
supports note taking, an agenda, and action items.

• Hypercontext (Hy) - Hypercontext
(https://hypercontext.com) connects to an agenda to
create a meeting event. It supports an agenda and
collects action items during the meeting. At the end, a
meeting recap is sent to all participants.

• Lean Coffee (LC) - Lean Coffee
(https://www.leancoffeetable.com) sets up an agenda,
and supports progress through the agenda using the tool.
It also generates meeting minutes.

• Lucid Meeting (LM) - Lucid Meeting
(https://www.lucidmeetings.com) supports agendas

and action items. The facilitator does the note taking
but participants can add comments. Lucid supports
scheduling recurring meetings.

• Otter.ai (O) - Otter.ai (https://otter.ai) transcribes meet-
ings while they are occurring. Participants can highlight
parts of the meeting (transcripts or agenda items) and
save them as Meeting Gems. It also creates a meeting
summary.

• Parabol (P) - Parabol (https://www.parabol.co) focuses
on Agile, with templates available for common types of
meetings. Contains a meeting timer to keep things on
track and produces a meeting summary at the end of the
meeting.

Table II indicates which features from those indicated in
bold in Table I are implemented by which tool. If a tool only
implements some aspects of a feature (such as only allowing
one or two types of tags rather than all the types indicated) we
are still counting the implementation. On the other hand, if a
tool claims to implement a feature but does so in a way that
does not meet the feature intent, such as integrating with Slack
but only to send meeting invitations and not to connect posts
with meetings, we did not mark it as implemented. We also
looked for features that were easily available in the tool. For
example, in some tools one can capture a whiteboard drawing
by sketching on a whiteboard that was screen-shared, using a
screen capture tool to create a picture, and then attaching the
picture as a file. We did not count that as a feature since it
involved using external tools that were not directly integrated.
Whiteboard sketching is a special case—none of the tools had
their own implementation but some implemented it through
integration with other tools—Miro (m) or Zoom (z).

V. DISCUSSION

Our first research contribution was the initial set of desirable
features shown in Table I. These features support either capture
or retrieval of design information. Tagging and linking are es-
pecially key, since they support an ”incremental formalization”
approach to rationale capture, as described by Shipman and
McCall [22]. Tagging can be used to highlight specific types of
information, such as the decisions, alternatives, and arguments
that comprise the design rationale. Linking supports capture
of design history, as the design evolves over time.

For our second contribution, we compared the features to
those implemented in commercial meeting support tools, as
shown in Table II.

Two of the features are supported by all the tools: Col-
laborative Notes and Access Prior Meetings. This is expected,
since these are features that support both the second criteria for
inclusion (providing value within the meeting) and the third
(providing features that make it easier to leverage meeting
results). Surprisingly, only half the tools studied provided
the ability to search across meetings. This means that those
looking for information would need to know which meeting
contained the relevant information.

The most common type of tagging supported was a follow-
up tag, where a meeting attendee was tagged as part of



TABLE II
MEETING FEATURES SUPPORTED

Feature B D Fe Fi Hi Hy LC LM O P
Pre-Set Meeting Tags • • • • •
Associate Tags with Agenda •
Link Meetings • • •
Link External Tools • • • • • • •
Collaborative Notes • • • • • • • • • •
White-board Sketching m, z z z z z z z
White-board capture and tagging
Capture Snippet • • •
Edit Snippet •
Tagging • • • • • • • •
Follow-up Request • • • • • • • •
Access Prior Meeting • • • • • • • • • •
Search Across Meetings • • • • •
Search Within Meeting • • • •
Quick Text Search • • • • •
Go to snippet Context • •
Add Past Meeting Link • • •
Add Future Meeting Link • •

an action item. This is why there is a one-to-one mapping
between tools that supported tagging (of any form) and
those that supported making follow-up requests. Offering an
expanded set of tags would support easier access to design
rationale. Fellow.app supports creating custom tags that can
be used to annotate meetings, which in turn can then be
used to tag things like decisions, alternatives, and arguments.
fireflies.ai uses ”topic trackers”—keywords set up by the
meeting administrator that can be automatically detected in
the transcript.

When done in person, design often involves whiteboard
sketching, such as when drawing user interface mock-ups or
creating modeling diagrams. No tools supported this them-
selves, only indirectly by integration with other tools.

The ability to capture snippets of design discussion was only
offered by a few tools that included transcription. Being able
to capture key portions of the discussion, with features like the
Otter.ai Meeting Gems that allow for participants to quickly
capture key parts of the discussion, makes it easier to find
useful information without having to read an entire transcript.
None of the tools allowed direct whiteboard capture. This is
a critical feature that is needed in order to accurately capture
the design history.

Only a few tools supported features that involve linking
meetings. Recurring meetings are very common across all
kinds of industries. Recurring meetings are one type of meet-
ing where information needs to be carried over. For example,
Docket explicitly provided support to link prior meeting notes
and action items so they would be discussed as part of the
agenda for the next occurrence of the meeting. We also
are interested in studying how information may go across
different types of meetings, such as in the meetings held by
the Healthcare Information Systems company described in our
scenario earlier in this paper or the Meeting Streams described
by Duffy and O’Rourke [42]. These meetings may not have
a large overlap of people. None of the tools studied explicitly
provided a way to link meetings that were not recurring.

VI. CONCLUSIONS AND FUTURE WORK

The shift towards hybrid and remote work has increased our
reliance on software tools for meeting support. This has also
made it possible to capture more information electronically,
either by recording discussions or through richer representa-
tions of meeting notes and discussion boards. This means that
we may now have the ability to capture and access information
such as design rationale much more easily.

Here we presented an initial set of meeting tool features that
can better support the capture and access of design information
and an evaluation of current commercial meetings support
tools as a first step in a larger research agenda, outlined here:

1) Validate these criteria with industry software designers.
We expect to see more criteria emerge as we start to
work with our target users.

2) Study additional meetings to determine where informa-
tion needs lie.

3) Build and evaluate prototype tools for design informa-
tion capture and retrieval in and from meetings. We
are planning on extending KnoCap [40], a research
prototype that supports a shared white-board and capture
of meeting snippets.

The capture and use of design knowledge, and in particular
rationale, has been a known challenge for many years. The
primary obstacle has been concerns over cost and effort
required. With new tools and new ways of collaboration, some
of these obstacles may be beginning to fall away.

ACKNOWLEDGMENT

We would like to thank our anonymous industrial partners.



REFERENCES

[1] M. Finnegan, “For developers, too many meetings, too little ’focus’
time,” Aug. 2022. https://www.computerworld.com/article/3669911/for-
developers-too-many-meetings-too-little-focus-time.html.

[2] A. M. Soria, A. van der Hoek, and J. Burge, “Recurring distributed
software maintenance meetings: toward an initial understanding,” in
Proceedings of the 15th International Conference on Cooperative and
Human Aspects of Software Engineering, (Pittsburgh Pennsylvania),
pp. 21–25, ACM, May 2022.

[3] W. Kunz and H. W. Rittel, “Issues as Elements of Information Systems
(Working Paper 131),” Center for Planning and Development Research,
Berkeley, USA, 1970.

[4] J. E. Burge, J. M. Carroll, R. McCall, and I. Mistrik, Rationale-
Based Software Engineering. Berlin: Springer Publishing Company,
Incorporated, 2008.

[5] T. P. Moran and J. M. Carroll, eds., Design rationale: concepts,
techniques, and use. Computers, cognition, and work, Mahwah, N.J:
L. Erlbaum Associates, 1996.

[6] J. Lee, “Design rationale systems: understanding the issues,” IEEE
Expert, vol. 12, pp. 78–85, May 1997.

[7] E. J. Conklin and K. B. Yakemovic, “A Process-Oriented Approach to
Design Rationale,” Human-Computer Interaction, vol. 6, pp. 357–391,
Sept. 1991.

[8] G. Fischer, A. Lemke, R. McCall, and A. Morch, “Making Argumenta-
tion Serve Design,” Human-Computer Interaction, vol. 6, pp. 393–419,
Sept. 1991.

[9] J. Lee, “Extending the Potts and Bruns model for recording design
rationale,” in [1991 Proceedings] 13th International Conference on
Software Engineering, (Austin, TX, USA), pp. 114–125, IEEE Comput.
Soc. Press, 1991.

[10] C. Potts and G. Bruns, “Recording the reasons for design decisions,”
in Proceedings. [1989] 11th International Conference on Software
Engineering, (Singapore), pp. 418–427, IEEE Comput. Soc. Press, 1988.

[11] M. Klein, “DRCS: An Integrated System for Capture of Designs and
Their Rationale,” in AI in Design, pp. 393–412, 1992.

[12] A. MacLean, R. Young, V. Bellotti, and T. Moran, “Questions, Options,
and Criteria: Elements of Design Space Analysis,” Human-Computer
Interaction, vol. 6, pp. 201–250, Sept. 1991.

[13] R. J. McCall, “PHI: a conceptual foundation for design hypermedia,”
Design Studies, vol. 12, pp. 30–41, Jan. 1991.

[14] J. E. Burge and D. C. Brown, “Software Engineering Using RATionale,”
Journal of Systems and Software, vol. 81, pp. 395–413, Mar. 2008.

[15] Y. Liang, Y. Liu, C. K. Kwong, and W. B. Lee, “Learning the “Whys”:
Discovering design rationale using text mining — An algorithm per-
spective,” Computer-Aided Design, vol. 44, pp. 916–930, Oct. 2012.

[16] C. López, V. Codocedo, H. Astudillo, and L. M. Cysneiros, “Bridging
the gap between software architecture rationale formalisms and actual
architecture documents: An ontology-driven approach,” Science of Com-
puter Programming, vol. 77, pp. 66–80, Jan. 2012.

[17] B. Rogers, J. Gung, Y. Qiao, and J. E. Burge, “Exploring techniques
for rationale extraction from existing documents,” in 2012 34th Interna-
tional Conference on Software Engineering (ICSE), (Zurich), pp. 1313–
1316, IEEE, June 2012.

[18] F. Mao, R. E. Mercer, and L. Xiao, “Extracting Imperatives from
Wikipedia Article for Deletion Discussions,” 2014.

[19] R. Alkadhi, M. Nonnenmacher, E. Guzman, and B. Bruegge, “How do
developers discuss rationale?,” in 2018 IEEE 25th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER),
(Campobasso), pp. 357–369, IEEE, Mar. 2018.

[20] Z. Kurtanović and W. Maalej, “On user rationale in software engineer-
ing,” Requirements Engineering, vol. 23, pp. 357–379, Sept. 2018.

[21] M. Lester and J. E. Burge, “Identifying Design Rationale Using Ant
Colony Optimization,” in Design Computing and Cognition ’18 (J. S.
Gero, ed.), pp. 537–554, Cham: Springer International Publishing, 2019.

[22] F. M. Shipman and R. J. McCall, “Incremental formalization with
the hyper-object substrate,” ACM Transactions on Information Systems,
vol. 17, pp. 199–227, Apr. 1999.

[23] N. Mangano, T. D. LaToza, M. Petre, and A. van der Hoek, “How
Software Designers Interact with Sketches at the Whiteboard,” IEEE
Transactions on Software Engineering, vol. 41, no. 2, pp. 135–156, 2015.
Conference Name: IEEE Transactions on Software Engineering.

[24] D. Socha and J. Tenenberg, “Sketching Software in the Wild,” in
35th International Conference on Software Engineering, pp. 1237–1240,
2013. ISSN: 1558-1225.

[25] J. M. Atlee and M. W. Godfrey, “Studying Professional Software De-
signers and their Use of Abstraction,” in Studying Professional Software
Design Workshop, 2010.

[26] S. Baltes and S. Diehl, “Sketches and Diagrams in Practice,” in 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2014, pp. 530–541, 2014.

[27] U. Dekel and J. D. Herbsleb, “Notation and Representation in Collabo-
rative Object-Oriented Design: an Observational Study,” ACM SIGPLAN
Notices, vol. 42, no. 10, pp. 261–280, 2007.

[28] L. J. Ball, B. Onarheim, and B. T. Christensen, “Design Requirements,
Epistemic Uncertainty and Solution Development Strategies in Software
Design,” Design Studies, vol. 31, no. 6, pp. 567–589, 2010.

[29] B. Matthews, “Designing Assumptions,” in Software Designers in Ac-
tion: A Human-Centric Look at Design Work (M. Petre and A. van der
Hoek, eds.), pp. 249–266, Chapman and Hall/CRC, 2013.

[30] M. Petre, “Insights from Expert Software Design Practice,” in 7th Joint
Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering,
ESEC/FSE ’09, pp. 233–242, 2009.

[31] V. Popovich and B. Kraal, “Expertise in Software Design: Novice and
Expert Models,” in Presented at Studying Professional Design Workshop,
2010.

[32] H. Christiaans and R. A. Almendra, “Accessing decision-making in
software design,” Design Studies, vol. 31, pp. 641–662, Nov. 2010.

[33] A. Tang, A. Aleti, J. Burge, and H. van Vliet, “What Makes Software
Design Effective?,” Design Studies, vol. 31, no. 6, pp. 614–640, 2010.

[34] M. Lavallee and P. N. Robillard, “Why Good Developers Write Bad
Code: An Observational Case Study of the Impacts of Organizational
Factors on Software Quality,” in 2015 IEEE/ACM 37th IEEE Interna-
tional Conference on Software Engineering, (Florence, Italy), pp. 677–
687, IEEE, May 2015.

[35] G. Tur, A. Stolcke, L. Voss, S. Peters, D. Hakkani-Tur, J. Dowding,
B. Favre, R. Fernandez, M. Frampton, M. Frandsen, C. Frederick-
son, M. Graciarena, D. Kintzing, K. Leveque, S. Mason, J. Niekrasz,
M. Purver, K. Riedhammer, E. Shriberg, J. Tien, D. Vergyri, and F. Yang,
“The CALO Meeting Assistant System,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 18, no. 6, pp. 1601–1611, 2010.
Conference Name: IEEE Transactions on Audio, Speech, and Language
Processing.

[36] S. Chandrasegaran, C. Bryan, H. Shidara, T.-Y. Chuang, and K.-L. Ma,
“TalkTraces: Real-Time Capture and Visualization of Verbal Content in
Meetings,” in Proceedings of the 2019 CHI Conference on Human Fac-
tors in Computing Systems, pp. 1–14, New York, NY, USA: Association
for Computing Machinery, May 2019.

[37] M. Jasim, P. Khaloo, S. Wadhwa, A. X. Zhang, A. Sarvghad, and
N. Mahyar, “CommunityClick: Capturing and Reporting Community
Feedback from Town Halls to Improve Inclusivity,” Proceedings of the
ACM on Human-Computer Interaction, vol. 4, pp. 1–32, Jan. 2021.

[38] Y. Shi, C. Bryan, S. Bhamidipati, Y. Zhao, Y. Zhang, and K.-L. Ma,
“MeetingVis: Visual Narratives to Assist in Recalling Meeting Context
and Content,” IEEE Transactions on Visualization and Computer Graph-
ics, vol. 24, pp. 1918–1929, June 2018.

[39] S. Hunter, P. Maes, S. Scott, and H. Kaufman, “MemTable: an integrated
system for capture and recall of shared histories in group workspaces,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, (Vancouver BC Canada), pp. 3305–3314, ACM, May 2011.

[40] A. M. Soria, “KNOCAP: capturing and delivering important design
bits in whiteboard design meetings,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering: Companion
Proceedings, (Seoul South Korea), pp. 194–197, ACM, June 2020.

[41] D. Socha and S. Walter, “Is Designing Software Different From De-
signing Other Things?*,” Int. J. Engineering Education, vol. 22, no. 3,
pp. 540–550, 2006.

[42] M. Duffy and B. O’Rourke, “The Agency of Meetings Collectively in an
Organizational Setting,” in The Gothenburg Meeting Science Symposium,
(Gothenburg, Sweden), pp. 1–20, 2017.

[43] C. S. Bedingfield and P. J. Clarkson, “Design Meetings: Towards an
Understanding of the Stages and Activities that Influence Success,”
Proceedings of the Design Society: DESIGN Conference, vol. 1, pp. 501–
510, May 2020.

[44] “Tools for remote teams.” https://www.collaborationsuperpowers.com/tools/.


	Introduction
	Related Work
	Design Rationale
	Software Design Meetings
	Meeting Support Tools

	Software Design Meetings
	Existing Meeting Support Tools
	discussion
	Conclusions and Future Work
	References

