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Abstract 

Geometrical defects (e.g., pores and lack of fusion) induced during powder bed fusion (PBF) pose a great challenge to fatigue performance for 

load-bearing structures. The random porosity may further cause uncertainty of fatigue behavior. Fatigue life and scattering bands are largely 

determined by the maximum size of a geometrical defect. Therefore, the prediction of the upper bound size of geometrical defects is critical. This 

work focuses on quantifying defect size and distribution to identify the extreme, life-limiting defect size that drives fatigue failure. A 

comprehensive analysis of the geometrical defects in PBF parts is presented. A statistics of extremes-based method is presented to predict the 

maximum defect. Defect size is measured using the Feret caliper (FC) diameter and then fitted to a cumulative distribution function (CDF) for 

linear regression modeling. The maximum defect size is then extrapolated from the regression line for a given probability. It is shown that multiple 

CDFs can be used for PBF defect size predictions, allowing for flexibility and optimization of prediction models. Furthermore, the FC diameter 

metric is proposed as the standard defect size metric due to its equivalent representation of 3D and 2D defects. 
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1. Introduction 

Metal additive manufacturing (AM) has great potential as a 

new industry standard for producing highly customizable metal 

components efficiently, with little to no tooling expense, and 

with less material waste than traditional manufacturing 

methods. Metal AM is revolutionary by allowing for on-

demand manufacturing and decentralized production [1], 

making custom parts more accessible and readily available to 

consumers. It is thus of great interest to areas of industry that 

can benefit from easier and more cost-effective production of 

complex (often critical) components (e.g., aerospace, 

automotive, medical). There are limitations to this method, 

typically small production volumes and rates, and current metal 

AM processes have drawbacks like limited available materials, 

limited size of final parts, and lower surface quality [2]. 

 

 

Nomenclature 

√𝑎𝑟𝑒𝑎 Murakami defect size parameter 

AM        additive manufacturing  

CT computed tomography 

CDF cumulative distribution function 

FC Feret caliper  

LOF lack of fusion 

MLS method of least squares 

PBF powder bed fusion 

PDF       probability density function 
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1.1. Geometrical defects 

The main metal AM processes, e.g., laser-based powder bed 

fusion (PBF) and directed energy deposition, use either a laser 

or an electron beam as the energy (heat) source to fuse metal 

particles or wires in a layer-by-layer progression on a metal 

substrate [3]. The process parameters and chamber 

environment and their variations affect the quality of the 

solidified part, as shown in many studies of process parameter 

effect on microstructure and properties of as-PBF parts (e.g., 

[4]). The geometrical flaws, including voids, cracks, warping, 

pores, or surface craters, and unwanted surface roughness in or 

on the as-printed part, are the most important quality factors. 

Technically, a defect renders a part defective. Some 

geometrical inhomogeneities are tolerable due to their 

relatively small size. Thus, as Snow et al. note [5] the term 

‘flaw’ is more appropriate as a general label for pores and 

cracks. Since this paper focuses on critical flaws, the term 

‘defect’ will be favored. 

LPBF-induced geometrical defects can be grouped based on 

their methods of formation. As summarized by Snow et al. [5] 

these defects are 1) gas porosities, 2) melt pool instabilities 

(keyhole pores), and 3) regions with LOF. Gas pores are 

identified as nearly spherical voids within a printed part, and 

typically are the smallest in size of all three defect groups. 

These are introduced into the solidified metal either by the 

release of trapped gas inside the virgin (i.e., unmelted) powder 

stock or by gas bubbles enveloped by the melt pool. Melt pool 

instabilities result in voids and pores due to vaporization loss. 

At higher energy inputs, more molten metal from the melt pool 

can evaporate. This occurs when high energy source (e.g., 

laser) power and slow scanning speed parameters are used or 

when deceleration of the laser exposes the area of the powder 

bed incident to the energy source for more time. This results in 

a depression (keyhole) that collapses and creates voids at the 

keyhole bottom. LOF can occur systematically and 

stochastically, generally resulting in large, irregular voids, 

often identified by partially melted powder inside voids. 

Energy power and scanning parameters must be optimized to 

ensure subsequent scanning passes completely fuse new layers 

on top of previous layers. Even with optimized parameters, 

random LOF defects can still occur due to the highly volatile 

PBF process. Nearby unmelted powder can contaminate the 

melt pool as a spatter particles or by being blown by inert 

shielding gas, causing incomplete fusion. 

Residual stresses develop in response to non-uniform 

heating and cooling [6] experienced by the solidified material 

during PBF. This can result in distortion of the part from the 

intended geometry and can weaken it through undesirable pre-

loading that can prove fatal when additional loading is added 

[7]. Residual stresses also lead to defects, like cracks and 

delamination in the part, reducing its quality [8]. 

1.2. Geometrical defect characterization 

The quality of PBF parts can be quantitatively characterized 

by measuring surface roughness, porosity, residual stress, and 

microstructure of the as-built part. Surface roughness can be 

mainly measured optically or with X-ray Computed 

Tomography (CT), and both approaches have been applied to 

studies of PBF parts. It is desirable to control these defects by 

optimizing process parameters, as has been studied extensively 

(e.g., [10]). Finding methods of predicting part quality is of 

great interest (e.g., [11, 12]). 

The size and shape of a defect define its morphology 

(morph- from the Greek μορφή, or form). As discussed in the 

preceding section, the formation mechanism of a defect can be 

identified by its morphology. Thus, by characterizing defect 

geometry and location within a component, manufacturers can 

determine the root causes of any defect formation and tune their 

process parameters accordingly. 

Morphology studies of internal defects originally required 

destructive methods (e.g., mechanical cutting) to investigate 

samples. By taking slices or sections of a sample, a 2D 

inspection area of the interior geometry can be observed by 

optical methods (e.g., [13]). While this method is relatively 

simple and easy for most investigators to perform, the nature of 

the destructive method of inspection does not leave the part 

intact for additional testing. This is not altogether unfavorable 

if simultaneous studies can be performed on the same sliced 

sample, e.g., microstructure formation and hardness. Yet, it still 

restricts morphology analysis to 2D descriptions of defect size 

and shape. 

X-ray CT is a very popular non-destructive method of 

detecting internal cracks and porosity and measuring defect 

sizes [14]. While being very expensive and possibly time-

consuming, CT can resolve the entire population of internal 

defects in each sample region and accurately portray not only 

2D but also the 3D shape of defects with additional image 

processing. This allows direct 3D quantification of defects (e.g., 

population, volume fraction, sphericity, spatial orientation). Of 

course, the limiting size of defects that can be detected depends 

on the maximum resolution available, which can be on the 

order of tens of microns [15]. 

Juan et al. [16] presented a hybrid destructive and non-

destructive investigative method for characterizing metal 

inclusions, first using scanning ultrasonic microscopy to detect 

the location of large internal defects and then dissecting the 

specimen to better observe the defects with scanning electron 

microscopy. While this does help to reduce the risk of missing 

or overlooking critical defects in a part, it lacks the advantage 

of 3D defect characterization. 

3D representations of defects can be used to quantify the 

regularity or irregularity of defect shape. The measure of 

sphericity is the ratio of sphere surface area to defect surface 

area for a sphere with equal volume to the defect. Sphericity 

close to 1 represents near-spherical defects while low 

sphericity values denote irregular defects. 

Equivalent diameter is a measure of 3D defect size, defined 

as the diameter of a sphere of equal volume [16]. This may not 

be suitable for elongated, irregular pores (e.g., LOF) since such 

defects may misrepresent how detrimental long, crack-like 

defects with relatively small areas can be to the fatigue 

performance of PBF components [17]. 

For 2D observations of defects, Murakami’s √𝑎𝑟𝑒𝑎 

parameter [18] is a popular choice for representing defect size 

(e.g., [11, 19-22]), partly because it is used to predict the fatigue 

limit of PBF components. This parameter is defined as the 
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square root of the defect area normal to the direction of 

maximum tensile loading. This gives a 1D (length) 

measurement to represent the 2D (area) size of the defect. In 

some cases, defects are grouped closely together, making it 

difficult to assume the individual defects to be independent of 

or unaffected by the group [23]. This is because the material 

adjoining multiple defects may not offer any significant 

support under loading if there is very little of it. There are also 

times when defects are close enough to the part surface that the 

area between the defect and the surface does not offer much 

structural integrity. In these situations, an effective defect size 

[24] can be taken to estimate the total area affected by the sub-

surface or interacting defects by drawing around the outer 

borders of the affected region to completely envelop all defects 

and/or the sub-surface defect area and the area immediately 

separating it from the free surface. Naturally, this requires the 

use of image analysis software, which is often included in 

optical measurement systems. 

These methods are not intended to precisely measure actual 

defect size but rather estimate an effective crack length with 

approximately the same impact. This was explained by 

Murakami and Endo through their investigation comparing 

artificial defect holes with specific diameters to non-

propagating cracks in steel specimens [25]. The level of 

precision of the measured area depends on how closely drawn 

the enveloping contour is to the actual boundaries of the defect. 

As mentioned by Oberreiter et al., higher precision can be more 

favorable for accurately depicting the actual defect area, which 

comes at the price of more complicated and tedious creation of 

the contours in image analysis software [21]. 

A possibly more accurate measurement of defect size is the 

maximum Feret caliper (FC) diameter [26]. The FC diameter 

measures the distance between two points across from each 

other on the boundary of interest and was used by Nicoletto et 

al. [14] in measuring the size of metallographically observed 

casting defects. The distribution of defect sizes was used in 

comparison to Murakami’s √𝑎𝑟𝑒𝑎  parameter to predict the 

maximum defect size, resulting in much larger predictions, yet 

well correlated, nonetheless. The predicted critical defect sizes 

using the FC diameter description also yielded closer 

approximations of the fatigue strength of cast AlSi7Mg. FC 

diameter also offers the flexibility of measuring defect size in 

2D and 3D, which is analogous to measuring the diameter of a 

circumscribed circle or sphere. 

1.3. Detrimental effect of geometrical defects 

The effect of defects on the fatigue performance of PBF 

parts is a prominent area of research (e.g., [3, 24, 27, 28]). As 

seen with studies of high-strength steels, parts under dynamic 

loading can fail over time due to the growth of internal 

microcracks, which cause weakening to the point of fracture 

[13] through a fatigue process. 

In bending fatigue, the applied stresses are highest at the 

surface of the specimen due to the stress gradient resulting from 

the elongation of one half of the specimen and compression on 

the opposing half. Any existing surface defects (e.g., surface 

roughness) will act as stress concentrations, which, for large 

enough stresses, will cause microcracks to propagate and 

eventually lead to specimen fracture. This is a major problem 

for as-built PBF materials, which inherently have high surface 

roughness from unmelted particles on the part surface and 

ridges from the staircase effect of the layer-by-layer building. 

This lowers the fatigue life and fatigue strength of the part from 

the ideal case of a smooth, unnotched specimen of the same 

geometry and material [29]. 

In the tension-compression mode, the applied stress is 

assumed to be uniform across the cross-section of the 

specimen, and fatigue fracture sites occur at the largest stress 

concentrations, irrespective of their depth from the surface 

[13]. This makes internal defects just as harmful as surface 

defects under this loading case. 

It has been shown that post-processing surface finishing 

procedures (e.g., [30]) can be used to remove as-built surface 

roughness, which increases fatigue performance. Other post-

processing methods, like hot isostatic pressing and heat 

treating, can increase the fatigue strength of PBF parts by 

eliminating or reducing the size of internal defects and 

relieving the part of residual stresses, respectively. However, 

post-processing methods do not solve the root cause of inferior 

fatigue performance. Post-processing is generally unfavorable 

because of the added time and expense to the manufacturing 

process. It is in the best interest of every manufacturer to 

minimize post-processing for increased efficiency and reduced 

cost. This involves refining AM processes to give optimal 

results with less porosity. 

In discussing geometrical defects in AM specimens, 

Murakami et al. [29] explain that since individual specimens 

contain different defects in size, number, and location, the 

fatigue limit of a series of AM specimens is not constant (i.e., 

variable). The fatigue limit is the stress level below which 

microcracks do not propagate [18]. This means that the 

reliability of PBF components cannot be standardized with 

average values but rather with ranges of fatigue performance. 

The upper and lower bounds of fatigue strength of PBF 

materials provide a realistic measure of component 

performance that can be applied in engineering designs by 

quantifying the limitations of their use. 

The uncertainty in the size, quantity, and distribution of 

these defects is not known. There is also a lack of 

understanding of the compound effect of defect factors on the 

fatigue performance of PBF parts. Manufacturers must 

therefore establish a threshold acceptance level for each quality 

factor of a printed part. For geometrical defects, this means 

establishing quality control methods for keeping maximum 

defect sizes at an acceptable level. 

The objectives of this study are to 1) present a statistical 

methodology for predicting the maximum effective defect size 

in PBF material and 2) demonstrate the method through 

application to datasets of 2D and 3D defect sizes. 

2. Statistics of extremes methodology 

The prediction of extreme events has been studied in 

probability and statistics for many different applications. 

Extremes are rare events that are not often observed. It is a 

common problem in structural engineering to design buildings, 

bridges, and offshore structures to withstand extreme weather 
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events, such as large waves, strong wind gusts, flooding, and 

heavy snowfall. 

The aim of the statistical theory of extreme values, in 

application to porosity, is to analyze observed pores in a printed 

sample and to forecast further extremes [31] (e.g., a maximum 

pore size). This can be done either through metallographic 

(destructive) examination or non-destructive methods (e.g., 

CT). The upper bound can be estimated probabilistically by 

extrapolating from the available data. 

2.1. Random variables 

The possibility of measuring or recording data of a specific 

value is called an event. Depending on the process of interest, 

event data is recorded as either a discrete random variable or a 

continuous random variable. For discrete data, there are a finite 

number of events. A realization occurs when an event happens. 

Continuous random variables have infinite possibilities. The 

size of defects in PBF components is a continuous random 

variable. While there are limits to the possible defect sizes 

(defects cannot take up negative space or exceed the size of the 

actual component), there are a limitless number of possible 

sizes within these limits. Because of this, events of continuous 

random variables generally involve a range of possibilities 

since the possibility that one specific defect size is measured 

out of the infinite number of possibilities is close to zero. 

2.2. Probability density and cumulative distribution functions 

The probability density function (PDF) is a continuous 

description of how data from a given process is distributed over 

the corresponding range of possible values. This is analogous 

to a histogram plot of the data, which provides a discrete 

description. By fitting a PDF to available process data, the 

process behavior can be modeled analytically. To additionally 

model the probability, the cumulative distribution function 

(CDF) is needed. The CDF is the integral of the PDF. This is 

analogous to a cumulative frequency of a range of values. The 

range corresponds to the interval of integration over the PDF. 

As mentioned before, a range of values is considered for 

continuous random variables because the integration of a 

model PDF at one specific value will compute to zero. 

The PDF and CDF are used together to quantify the behavior 

of continuous random variables by first matching data to a PDF 

and then applying the corresponding CDF to find the 

probability of realizing certain values. Fig. 1 gives an example 

plot of the well-known normal distribution, which has a PDF 

shaped like a bell. The continuous random variable is x. The 

shape of the curve is governed by the mean and standard 

deviation parameters of x. The CDF is superimposed in the 

same graph. For example, the probability of realizing x≤4 is 

found as the area under the PDF curve from x=0 to x=4, or by 

solving the CDF for x=4. The probability of this event is 

relatively high since this encompasses a large area under the 

PDF. 

In application to predicting extreme events, the values at the 

left and right tails of a PDF are of interest. These regions 

correspond to the extreme minima and maxima of distribution, 

respectively. While a CDF can output the probability for a 

given range of values, the inverse of the CDF can be used to 

solve for the values, given a probability. In this way, a 

prediction can be made about extreme values corresponding to 

a set probability. 

 

Fig. 1. Example plot of the normal distribution (PDF 𝜑 and CDF 𝛷) with 

mean 3 and standard deviation 1. 

2.3. Statistical prediction methods for extreme values 

The Type I Gumbel (maximum extreme values) distribution, 

 

𝐹(𝑥) = exp [−exp (−
𝑥 − 𝜇

𝜎
)] , (1) 

 

is often used to predict extreme defect sizes [15, 16, 32], 

where 𝑥 is the defect size and 𝜇 and 𝜎 are shape parameters. 

This was popularized by Murakami [13] who initially applied 

statistics of extremes to nonmetallic inclusion defects observed 

by destructive sampling to predict √𝑎𝑟𝑒𝑎𝑚𝑎𝑥, the maximum 

2D inclusion size. The prediction method is graphically 

represented in Fig. 2 and is summarized as follows. 

Fig. 2. Graphical procedure for predicting the maximum defect size. 

First, the defect sizes 𝑥𝑗  are ranked by 𝑗 = 1, 2, … , 𝑛 for 𝑛 

measured defects. Second, the reduced variate, 

 

𝑦𝑗 = −
𝑥𝑗 − 𝜇

𝜎
, (2) 

 

is substituted in Eq. 1. Solving for 𝑦𝑗 gives the expression for 

the inverse CDF as 
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𝑦𝑗 = − ln[− ln(𝐹𝑗)] , (3) 

 

where 𝐹𝑗  is the cumulative probability of 𝑥𝑗  being the true 

maximum defect based on the rank 𝑗, 
 

𝐹𝑗 =
𝑗

𝑛 + 1
. (4) 

 

As the rank increases, the likelihood of the defect being the 

largest in existence increases. Third, 𝑦𝑗  is plotted against 𝑥𝑗 

and linear regression (e.g., method of least squares, MLS) is 

applied. With the fitted line, a maximum defect size 

corresponding to a given probability (e.g., 𝐹𝑚𝑎𝑥 = 0.999) can 

be extrapolated. 

While Murakami’s prediction method is well documented, 

it has become outdated as non-destructive characterization 

methods are becoming more popular than destructive methods. 

Furthermore, with the ability to characterize defect 

morphology in 3D there are multiple additional metrics to 

describe defect size. Researchers have also had success with 

other CDFs besides the Gumbel distribution in predicting 

defect size (e.g., [16, 22]). Therefore, a standard generalized 

methodology is proposed in the following section to 

accommodate different defect characterization and CDF model 

approaches. The proposed methodology is applied to predict 

the maximum defect size in PBF by giving step-by-step 

instructions. 

3. Statistics of extremes for predicting the upper bound size 

of geometrical defects 

3.1. Sample preparation 

At least one material sample is needed for obtaining data on 

geometrical defects. Sufficient porosity must be measured to 

have an accurate representation of the total population of 

defects. Depending on the volume of the PBF samples and the 

sizes and quantity of defects, multiple samples may be 

required. Since the resulting porosity distribution depends on 

the process parameters used, defects from different material 

samples should not be considered in the same dataset unless 

those samples were made under identical conditions. 

3.2. Defect characterization 

The size of PBF defects should be quantified using the Feret 

caliper (FC) diameter metric to record the maximum dimension 

of defects (in either 2D or 3D inspection). Unless defects are 

connected, only individual defects should be measured, since 

multiple defects in close proximity do not necessarily represent 

the actual size of defects generated by the given PBF 

parameters. Multiple intersecting defects are measured as one 

single equivalent defect by measuring the diameter of the circle 

that circumscribes the intersecting defects. Additionally, 

sufficient data must be accumulated to capture the overall trend 

in the population distribution. It is recommended (at least for 

metallographic examinations) that defects on the order of 

hundreds be measured, based on a separate investigation on 

defect size distribution dependence on dataset size (see Fig. 3). 

 

Fig. 3. Comparison of histograms of 50 randomly sampled and 100 randomly 

sampled PBF defect sizes from a total dataset of 769 defects measured 

metallographically by FC diameter. The largest defect measured 1526 μm. 

3.3. Data preprocessing 

The porosity data should be sorted in ascending size order, 

assigning each defect value a rank 𝑗, as described in section 2.3. 

A histogram of the data should be plotted to check the size 

distribution is right-skewed. The cumulative probability of 

each defect being the largest in existence is then calculated 

using Eq. 4.  

3.4. Linear regression 

A CDF (e.g., Gumbel, Exponential, Lognormal, Weibull, 

Generalized Extreme Values) must be chosen for linearly 

modeling the cumulative probabilities as a function of defect 

size. A reduced variate is used in place of the input variable and 

associated parameters (see Eq. 2). The inverse of the chosen 

CDF is used to solve for the reduced variate corresponding to 

each defect’s cumulative probability. Then the reduced variates 

can be plotted against their corresponding defect sizes. 
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The resulting plot has a linear behavior. A regression line 

can then be applied using the method of least squares (MLS) 

and quantified by goodness-of-fit metrics (e.g., correlation 

coefficient). For the given probability of 99.9%, the maximum 

defect size can then be predicted by extrapolating from the 

regression line at the corresponding value of the reduced (see 

Fig. 2).  This predicts that the resulting defect size has a 

probability of 99.9% of being the maximum. 

It is important to note that depending on the CDF chosen, 

there may be parameters that have to be iterated to give the best 

regression. For example, the Weibull CDF, 

 

𝑭(𝒙) = 𝟏 − 𝒆−(
𝒙
𝜶)

𝜸

, (𝟓) 

 

has two parameters, 𝛼, and 𝛾, with a reduced variate 𝑦 = 𝛼 𝛾⁄  

and an inverse CDF 

 

𝒚 = [− 𝐥𝐧(𝟏 − 𝑭)]
𝟏
𝜸⁄ . (𝟔) 

 

An initial guess for 𝛾 gives an initial linear regression, which 

can then be tuned by iterating 𝛾 to obtain the best linear fit. 

Fig. 4. Schematic of the sample preparation process. 

4. Application to 2D and 3D defect data 

The proposed methodology was applied to 2 separate 

experimental datasets of geometrical defects made by PBF. The 

first dataset is provided by the authors, containing 769 2D 

defects measured from a 316L stainless steel sample. The 

sample was printed to a height of 14 mm with the largest face 

(68 × 78 mm2) parallel to the substrate. Fig. 4 shows a 

schematic of the metrology preparation process. The SS-316L 

sample was sectioned using wire-electrical discharge 

machining to expose 28 inspection surfaces. Each inspection 

surface was then mechanically polished for observation by 

optical microscopy. 

The second dataset was provided by researchers from the 

National Center for Additive Manufacturing Excellence 

(NCAME) of Auburn University who applied machine learning 

to classify 3D PBF defects obtained by CT [33]. The dataset 

consists of defect sizes measured using the major axis of a fitted 

ellipse (equivalent to the FC diameter). Details about the 

process parameters and porosity statistics for both datasets are 

given in Table 1. 

The Gumbel and Weibull CDFs were both applied to predict 

the maximum defect size for each distribution of defects (see 

Eqs. 1 and 5). Fig. 5 compares the resulting predictions, which 

results in two important observations. First, both the Gumbel  

Table 1. Process parameters and porosity statistics. 

Defect Class 2D 3D 

 Material SS-316L Ti6Al4V 

Porosity Statistics   

 Dataset Size 769 464 

 Max (μm) 1525.9 96.6 

 Min (μm) 26.2 10.1 

PBF Process Parameters   

 Power (W) 250 336 

 Speed (mm/s) 800 780 

 Layer Height (μm) 50 40 

 Hatch Distance (μm) 70 120 

 Energy Density (J/mm3) 89.3 89.7 

 

and Weibull CDFs can model the trend in the defect size 

distribution. This attests to the flexibility of the proposed 

method, showing that multiple functions can be used for 

probabilistic modeling. By testing different CDFs on the same 

data, an optimal model can be selected. In this case, comparing 

the predictions shows that the Gumbel CDF under-predicts the 

maximum defect size for both 2D and 3D defect distributions 

while the Weibull CDF gives realistic predictions in both cases. 

Thus, the flexibility of the proposed method enables 

optimization of the size prediction model.  

The second important observation is the robustness of the 

FC diameter size metric, which can be used for both 2D and 3D 

defects. The popular √𝑎𝑟𝑒𝑎 parameter metric is limited to 2D 

defect characterization. Furthermore, the more detailed 

characterizations of 3D defects have made it difficult to select 

a standard metric for quantifying defect size due to the many 

approaches explored in literature. The FC diameter metric is 

the ideal standard size metric simply due to its realistic and 

equivalent representation of defect size in both 2D and 3D 

cases. 

5. Conclusions 

Random porosity is a common geometrical defect in powder 

bed fusion (PBF) components. Understanding how to quantify 

the size and distribution of geometrical defects is key for 

assessing part quality and improving printing processes. In this 

study, a statistics of extremes-based method of predicting the 

maximum defect size is proposed. This method can be applied 

for both metallographic examinations as well as X-ray 

computed tomography inspections of porosity in PBF parts. 

Defect size is measured using the Feret caliper (FC) diameter 

and then fitted to a cumulative distribution function (CDF) for 

linear regression modeling. The maximum defect size is then 

extrapolated from the regression line for a given probability.  

Future studies of defect size prediction should go further to 

consider the optimization of CDF selection for different 

process parameters and defect populations. Furthermore, the 

FC diameter metric should be accepted as the standard defect 

size metric in AM metrology methods due to its equivalent 

representation of 3D and 2D defects. 
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Fig. 4. Predicted maximum defect sizes at 99.9% probability using Gumbel 

and Weibull CDFs. a) Gumbel prediction for 3D defect distribution, b) 

Gumbel prediction for 2D defect distribution, c) Weibull prediction 

(parameter γ=1.2) for 3D defect distribution, d) Weibull prediction (parameter 

γ=1) for 2D defect distribution. 
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