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Abstract

Geometrical defects (e.g., pores and lack of fusion) induced during powder bed fusion (PBF) pose a great challenge to fatigue performance for
load-bearing structures. The random porosity may further cause uncertainty of fatigue behavior. Fatigue life and scattering bands are largely
determined by the maximum size of a geometrical defect. Therefore, the prediction of the upper bound size of geometrical defects is critical. This
work focuses on quantifying defect size and distribution to identify the extreme, life-limiting defect size that drives fatigue failure. A
comprehensive analysis of the geometrical defects in PBF parts is presented. A statistics of extremes-based method is presented to predict the
maximum defect. Defect size is measured using the Feret caliper (FC) diameter and then fitted to a cumulative distribution function (CDF) for
linear regression modeling. The maximum defect size is then extrapolated from the regression line for a given probability. It is shown that multiple
CDFs can be used for PBF defect size predictions, allowing for flexibility and optimization of prediction models. Furthermore, the FC diameter
metric is proposed as the standard defect size metric due to its equivalent representation of 3D and 2D defects.
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1. Introduction

Metal additive manufacturing (AM) has great potential asa  |Nomenclature
new industry standard for producing highly customizable metal
components efficiently, with little to no tooling expense, and  |Varea Murakami defect size parameter
with less material waste than traditional manufacturing |AM additive manufacturing
methods. Metal AM is revolutionary by allowing for on- |CT computed tomography
demand manufacturing and decentralized production [1], |CDF  cumulative distribution function
making custom parts more accessible and readily available to  |FC Feret caliper
consumers. It is thus of great interest to areas of industry that |[LOF  lack of fusion
can benefit from easier and more cost-effective production of |MLS  method of least squares
complex (often critical) components (e.g., aerospace, |PBF powder bed fusion
automotive, medical). There are limitations to this method, |PDF  probability density function

typically small production volumes and rates, and current metal
AM processes have drawbacks like limited available materials,
limited size of final parts, and lower surface quality [2].
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1.1. Geometrical defects

The main metal AM processes, e.g., laser-based powder bed
fusion (PBF) and directed energy deposition, use either a laser
or an electron beam as the energy (heat) source to fuse metal
particles or wires in a layer-by-layer progression on a metal
substrate [3]. The process parameters and chamber
environment and their variations affect the quality of the
solidified part, as shown in many studies of process parameter
effect on microstructure and properties of as-PBF parts (e.g.,
[4]). The geometrical flaws, including voids, cracks, warping,
pores, or surface craters, and unwanted surface roughness in or
on the as-printed part, are the most important quality factors.
Technically, a defect renders a part defective. Some
geometrical inhomogeneities are tolerable due to their
relatively small size. Thus, as Snow et al. note [5] the term
‘flaw’ is more appropriate as a general label for pores and
cracks. Since this paper focuses on critical flaws, the term
‘defect’ will be favored.

LPBF-induced geometrical defects can be grouped based on
their methods of formation. As summarized by Snow et al. [5]
these defects are 1) gas porosities, 2) melt pool instabilities
(keyhole pores), and 3) regions with LOF. Gas pores are
identified as nearly spherical voids within a printed part, and
typically are the smallest in size of all three defect groups.
These are introduced into the solidified metal either by the
release of trapped gas inside the virgin (i.e., unmelted) powder
stock or by gas bubbles enveloped by the melt pool. Melt pool
instabilities result in voids and pores due to vaporization loss.
At higher energy inputs, more molten metal from the melt pool
can evaporate. This occurs when high energy source (e.g.,
laser) power and slow scanning speed parameters are used or
when deceleration of the laser exposes the area of the powder
bed incident to the energy source for more time. This results in
a depression (keyhole) that collapses and creates voids at the
keyhole bottom. LOF can occur systematically and
stochastically, generally resulting in large, irregular voids,
often identified by partially melted powder inside voids.
Energy power and scanning parameters must be optimized to
ensure subsequent scanning passes completely fuse new layers
on top of previous layers. Even with optimized parameters,
random LOF defects can still occur due to the highly volatile
PBF process. Nearby unmelted powder can contaminate the
melt pool as a spatter particles or by being blown by inert
shielding gas, causing incomplete fusion.

Residual stresses develop in response to non-uniform
heating and cooling [6] experienced by the solidified material
during PBF. This can result in distortion of the part from the
intended geometry and can weaken it through undesirable pre-
loading that can prove fatal when additional loading is added
[7]. Residual stresses also lead to defects, like cracks and
delamination in the part, reducing its quality [8].

1.2. Geometrical defect characterization

The quality of PBF parts can be quantitatively characterized
by measuring surface roughness, porosity, residual stress, and
microstructure of the as-built part. Surface roughness can be
mainly measured optically or with X-ray Computed

Tomography (CT), and both approaches have been applied to
studies of PBF parts. It is desirable to control these defects by
optimizing process parameters, as has been studied extensively
(e.g., [10]). Finding methods of predicting part quality is of
great interest (e.g., [11, 12]).

The size and shape of a defect define its morphology
(morph- from the Greek popen, or form). As discussed in the
preceding section, the formation mechanism of a defect can be
identified by its morphology. Thus, by characterizing defect
geometry and location within a component, manufacturers can
determine the root causes of any defect formation and tune their
process parameters accordingly.

Morphology studies of internal defects originally required
destructive methods (e.g., mechanical cutting) to investigate
samples. By taking slices or sections of a sample, a 2D
inspection area of the interior geometry can be observed by
optical methods (e.g., [13]). While this method is relatively
simple and easy for most investigators to perform, the nature of
the destructive method of inspection does not leave the part
intact for additional testing. This is not altogether unfavorable
if simultaneous studies can be performed on the same sliced
sample, e.g., microstructure formation and hardness. Yet, it still
restricts morphology analysis to 2D descriptions of defect size
and shape.

X-ray CT is a very popular non-destructive method of
detecting internal cracks and porosity and measuring defect
sizes [14]. While being very expensive and possibly time-
consuming, CT can resolve the entire population of internal
defects in each sample region and accurately portray not only
2D but also the 3D shape of defects with additional image
processing. This allows direct 3D quantification of defects (e.g.,
population, volume fraction, sphericity, spatial orientation). Of
course, the limiting size of defects that can be detected depends
on the maximum resolution available, which can be on the
order of tens of microns [15].

Juan et al. [16] presented a hybrid destructive and non-
destructive investigative method for characterizing metal
inclusions, first using scanning ultrasonic microscopy to detect
the location of large internal defects and then dissecting the
specimen to better observe the defects with scanning electron
microscopy. While this does help to reduce the risk of missing
or overlooking critical defects in a part, it lacks the advantage
of 3D defect characterization.

3D representations of defects can be used to quantify the
regularity or irregularity of defect shape. The measure of
sphericity is the ratio of sphere surface area to defect surface
area for a sphere with equal volume to the defect. Sphericity
close to 1 represents near-spherical defects while low
sphericity values denote irregular defects.

Equivalent diameter is a measure of 3D defect size, defined
as the diameter of a sphere of equal volume [16]. This may not
be suitable for elongated, irregular pores (e.g., LOF) since such
defects may misrepresent how detrimental long, crack-like
defects with relatively small areas can be to the fatigue
performance of PBF components [17].

For 2D observations of defects, Murakami’s +area
parameter [18] is a popular choice for representing defect size
(e.g., [11,19-22]), partly because it is used to predict the fatigue
limit of PBF components. This parameter is defined as the
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square root of the defect area normal to the direction of
maximum tensile loading. This gives a 1D (length)
measurement to represent the 2D (area) size of the defect. In
some cases, defects are grouped closely together, making it
difficult to assume the individual defects to be independent of
or unaffected by the group [23]. This is because the material
adjoining multiple defects may not offer any significant
support under loading if there is very little of it. There are also
times when defects are close enough to the part surface that the
area between the defect and the surface does not offer much
structural integrity. In these situations, an effective defect size
[24] can be taken to estimate the total area affected by the sub-
surface or interacting defects by drawing around the outer
borders of the affected region to completely envelop all defects
and/or the sub-surface defect area and the area immediately
separating it from the free surface. Naturally, this requires the
use of image analysis software, which is often included in
optical measurement systems.

These methods are not intended to precisely measure actual
defect size but rather estimate an effective crack length with
approximately the same impact. This was explained by
Murakami and Endo through their investigation comparing
artificial defect holes with specific diameters to non-
propagating cracks in steel specimens [25]. The level of
precision of the measured area depends on how closely drawn
the enveloping contour is to the actual boundaries of the defect.
As mentioned by Oberreiter et al., higher precision can be more
favorable for accurately depicting the actual defect area, which
comes at the price of more complicated and tedious creation of
the contours in image analysis software [21].

A possibly more accurate measurement of defect size is the
maximum Feret caliper (FC) diameter [26]. The FC diameter
measures the distance between two points across from each
other on the boundary of interest and was used by Nicoletto et
al. [14] in measuring the size of metallographically observed
casting defects. The distribution of defect sizes was used in
comparison to Murakami’s varea parameter to predict the
maximum defect size, resulting in much larger predictions, yet
well correlated, nonetheless. The predicted critical defect sizes
using the FC diameter description also yielded closer
approximations of the fatigue strength of cast AlSi7Mg. FC
diameter also offers the flexibility of measuring defect size in
2D and 3D, which is analogous to measuring the diameter of a
circumscribed circle or sphere.

1.3. Detrimental effect of geometrical defects

The effect of defects on the fatigue performance of PBF
parts is a prominent area of research (e.g., [3, 24, 27, 28]). As
seen with studies of high-strength steels, parts under dynamic
loading can fail over time due to the growth of internal
microcracks, which cause weakening to the point of fracture
[13] through a fatigue process.

In bending fatigue, the applied stresses are highest at the
surface of the specimen due to the stress gradient resulting from
the elongation of one half of the specimen and compression on
the opposing half. Any existing surface defects (e.g., surface
roughness) will act as stress concentrations, which, for large
enough stresses, will cause microcracks to propagate and

eventually lead to specimen fracture. This is a major problem
for as-built PBF materials, which inherently have high surface
roughness from unmelted particles on the part surface and
ridges from the staircase effect of the layer-by-layer building.
This lowers the fatigue life and fatigue strength of the part from
the ideal case of a smooth, unnotched specimen of the same
geometry and material [29].

In the tension-compression mode, the applied stress is
assumed to be uniform across the cross-section of the
specimen, and fatigue fracture sites occur at the largest stress
concentrations, irrespective of their depth from the surface
[13]. This makes internal defects just as harmful as surface
defects under this loading case.

It has been shown that post-processing surface finishing
procedures (e.g., [30]) can be used to remove as-built surface
roughness, which increases fatigue performance. Other post-
processing methods, like hot isostatic pressing and heat
treating, can increase the fatigue strength of PBF parts by
eliminating or reducing the size of internal defects and
relieving the part of residual stresses, respectively. However,
post-processing methods do not solve the root cause of inferior
fatigue performance. Post-processing is generally unfavorable
because of the added time and expense to the manufacturing
process. It is in the best interest of every manufacturer to
minimize post-processing for increased efficiency and reduced
cost. This involves refining AM processes to give optimal
results with less porosity.

In discussing geometrical defects in AM specimens,
Murakami et al. [29] explain that since individual specimens
contain different defects in size, number, and location, the
fatigue limit of a series of AM specimens is not constant (i.e.,
variable). The fatigue limit is the stress level below which
microcracks do not propagate [18]. This means that the
reliability of PBF components cannot be standardized with
average values but rather with ranges of fatigue performance.
The upper and lower bounds of fatigue strength of PBF
materials provide a realistic measure of component
performance that can be applied in engineering designs by
quantifying the limitations of their use.

The uncertainty in the size, quantity, and distribution of
these defects is not known. There is also a lack of
understanding of the compound effect of defect factors on the
fatigue performance of PBF parts. Manufacturers must
therefore establish a threshold acceptance level for each quality
factor of a printed part. For geometrical defects, this means
establishing quality control methods for keeping maximum
defect sizes at an acceptable level.

The objectives of this study are to 1) present a statistical
methodology for predicting the maximum effective defect size
in PBF material and 2) demonstrate the method through
application to datasets of 2D and 3D defect sizes.

2. Statistics of extremes methodology

The prediction of extreme events has been studied in
probability and statistics for many different applications.
Extremes are rare events that are not often observed. It is a
common problem in structural engineering to design buildings,
bridges, and offshore structures to withstand extreme weather
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events, such as large waves, strong wind gusts, flooding, and
heavy snowfall.

The aim of the statistical theory of extreme values, in
application to porosity, is to analyze observed pores in a printed
sample and to forecast further extremes [31] (e.g., a maximum
pore size). This can be done either through metallographic
(destructive) examination or non-destructive methods (e.g.,
CT). The upper bound can be estimated probabilistically by
extrapolating from the available data.

2.1. Random variables

The possibility of measuring or recording data of a specific
value is called an event. Depending on the process of interest,
event data is recorded as either a discrete random variable or a
continuous random variable. For discrete data, there are a finite
number of events. A realization occurs when an event happens.

Continuous random variables have infinite possibilities. The
size of defects in PBF components is a continuous random
variable. While there are limits to the possible defect sizes
(defects cannot take up negative space or exceed the size of the
actual component), there are a limitless number of possible
sizes within these limits. Because of this, events of continuous
random variables generally involve a range of possibilities
since the possibility that one specific defect size is measured
out of the infinite number of possibilities is close to zero.

2.2. Probability density and cumulative distribution functions

The probability density function (PDF) is a continuous
description of how data from a given process is distributed over
the corresponding range of possible values. This is analogous
to a histogram plot of the data, which provides a discrete
description. By fitting a PDF to available process data, the
process behavior can be modeled analytically. To additionally
model the probability, the cumulative distribution function
(CDF) is needed. The CDF is the integral of the PDF. This is
analogous to a cumulative frequency of a range of values. The
range corresponds to the interval of integration over the PDF.
As mentioned before, a range of values is considered for
continuous random variables because the integration of a
model PDF at one specific value will compute to zero.

The PDF and CDF are used together to quantify the behavior
of continuous random variables by first matching data to a PDF
and then applying the corresponding CDF to find the
probability of realizing certain values. Fig. 1 gives an example
plot of the well-known normal distribution, which has a PDF
shaped like a bell. The continuous random variable is x. The
shape of the curve is governed by the mean and standard
deviation parameters of x. The CDF is superimposed in the
same graph. For example, the probability of realizing x<<4 is
found as the area under the PDF curve from x=0 to x=4, or by
solving the CDF for x=4. The probability of this event is
relatively high since this encompasses a large area under the
PDF.

In application to predicting extreme events, the values at the
left and right tails of a PDF are of interest. These regions
correspond to the extreme minima and maxima of distribution,
respectively. While a CDF can output the probability for a

given range of values, the inverse of the CDF can be used to
solve for the values, given a probability. In this way, a
prediction can be made about extreme values corresponding to
a set probability.
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Fig. 1. Example plot of the normal distribution (PDF ¢ and CDF @) with
mean 3 and standard deviation 1.

2.3. Statistical prediction methods for extreme values

The Type I Gumbel (maximum extreme values) distribution,
_ X
F(x) = exp [—exp (— . )]. €Y)

is often used to predict extreme defect sizes [15, 16, 32],
where x is the defect size and u and ¢ are shape parameters.
This was popularized by Murakami [13] who initially applied
statistics of extremes to nonmetallic inclusion defects observed
by destructive sampling to predict varea,,,,, the maximum
2D inclusion size. The prediction method is graphically
represented in Fig. 2 and is summarized as follows.
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Fig. 2. Graphical procedure for predicting the maximum defect size.

First, the defect sizes x; are ranked by j = 1,2, ...,n forn
measured defects. Second, the reduced variate,

yi=— ’ (2)

is substituted in Eq. 1. Solving for y; gives the expression for
the inverse CDF as
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y; = = In[=In(F)], 3)

where F; is the cumulative probability of x; being the true
maximum defect based on the rank j,

F=——0. 4)

As the rank increases, the likelihood of the defect being the
largest in existence increases. Third, y; is plotted against x;
and linear regression (e.g., method of least squares, MLS) is
applied. With the fitted line, a maximum defect size
corresponding to a given probability (e.g., Fqr = 0.999) can
be extrapolated.

While Murakami’s prediction method is well documented,
it has become outdated as non-destructive characterization
methods are becoming more popular than destructive methods.
Furthermore, with the ability to characterize defect
morphology in 3D there are multiple additional metrics to
describe defect size. Researchers have also had success with
other CDFs besides the Gumbel distribution in predicting
defect size (e.g., [16, 22]). Therefore, a standard generalized
methodology is proposed in the following section to
accommodate different defect characterization and CDF model
approaches. The proposed methodology is applied to predict
the maximum defect size in PBF by giving step-by-step
instructions.

3. Statistics of extremes for predicting the upper bound size
of geometrical defects

3.1. Sample preparation

At least one material sample is needed for obtaining data on
geometrical defects. Sufficient porosity must be measured to
have an accurate representation of the total population of
defects. Depending on the volume of the PBF samples and the
sizes and quantity of defects, multiple samples may be
required. Since the resulting porosity distribution depends on
the process parameters used, defects from different material
samples should not be considered in the same dataset unless
those samples were made under identical conditions.

3.2. Defect characterization

The size of PBF defects should be quantified using the Feret
caliper (FC) diameter metric to record the maximum dimension
of defects (in either 2D or 3D inspection). Unless defects are
connected, only individual defects should be measured, since
multiple defects in close proximity do not necessarily represent
the actual size of defects generated by the given PBF
parameters. Multiple intersecting defects are measured as one
single equivalent defect by measuring the diameter of the circle
that circumscribes the intersecting defects. Additionally,
sufficient data must be accumulated to capture the overall trend
in the population distribution. It is recommended (at least for
metallographic examinations) that defects on the order of

hundreds be measured, based on a separate investigation on
defect size distribution dependence on dataset size (see Fig. 3).
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Fig. 3. Comparison of histograms of 50 randomly sampled and 100 randomly
sampled PBF defect sizes from a total dataset of 769 defects measured
metallographically by FC diameter. The largest defect measured 1526 pm.

3.3. Data preprocessing

The porosity data should be sorted in ascending size order,
assigning each defect value a rank j, as described in section 2.3.
A histogram of the data should be plotted to check the size
distribution is right-skewed. The cumulative probability of
each defect being the largest in existence is then calculated
using Eq. 4.

3.4. Linear regression

A CDF (e.g., Gumbel, Exponential, Lognormal, Weibull,
Generalized Extreme Values) must be chosen for linearly
modeling the cumulative probabilities as a function of defect
size. A reduced variate is used in place of the input variable and
associated parameters (see Eq. 2). The inverse of the chosen
CDF is used to solve for the reduced variate corresponding to
each defect’s cumulative probability. Then the reduced variates
can be plotted against their corresponding defect sizes.
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The resulting plot has a linear behavior. A regression line
can then be applied using the method of least squares (MLS)
and quantified by goodness-of-fit metrics (e.g., correlation
coefficient). For the given probability of 99.9%, the maximum
defect size can then be predicted by extrapolating from the
regression line at the corresponding value of the reduced (see
Fig. 2). This predicts that the resulting defect size has a
probability of 99.9% of being the maximum.

It is important to note that depending on the CDF chosen,
there may be parameters that have to be iterated to give the best
regression. For example, the Weibull CDF,

F(x)=1- e_(g)y, (5)

has two parameters, «, and y, with a reduced variate y = a/y
and an inverse CDF

y=[-In(1-F)]'". (6)

An initial guess for y gives an initial linear regression, which
can then be tuned by iterating y to obtain the best linear fit.

Fig. 4. Schematic of the sample preparation process.
4. Application to 2D and 3D defect data

The proposed methodology was applied to 2 separate
experimental datasets of geometrical defects made by PBF. The
first dataset is provided by the authors, containing 769 2D
defects measured from a 316L stainless steel sample. The
sample was printed to a height of 14 mm with the largest face
(68 x 78 mm?2) parallel to the substrate. Fig. 4 shows a
schematic of the metrology preparation process. The SS-316L
sample was sectioned using wire-electrical discharge
machining to expose 28 inspection surfaces. Each inspection
surface was then mechanically polished for observation by
optical microscopy.

The second dataset was provided by researchers from the
National Center for Additive Manufacturing Excellence
(NCAME) of Auburn University who applied machine learning
to classify 3D PBF defects obtained by CT [33]. The dataset
consists of defect sizes measured using the major axis of a fitted
ellipse (equivalent to the FC diameter). Details about the
process parameters and porosity statistics for both datasets are
given in Table 1.

The Gumbel and Weibull CDFs were both applied to predict
the maximum defect size for each distribution of defects (see
Egs. 1 and 5). Fig. 5 compares the resulting predictions, which
results in two important observations. First, both the Gumbel

Table 1. Process parameters and porosity statistics.

Defect Class 2D 3D

Material SS-316L Ti6Al4V

Porosity Statistics

Dataset Size 769 464
Max (pm) 1525.9 96.6
Min (pm) 26.2 10.1
PBF Process Parameters

Power (W) 250 336
Speed (mm/s) 800 780
Layer Height (um) 50 40

Hatch Distance (pum) 70 120
Energy Density (J/mm®)  89.3 89.7

and Weibull CDFs can model the trend in the defect size
distribution. This attests to the flexibility of the proposed
method, showing that multiple functions can be used for
probabilistic modeling. By testing different CDFs on the same
data, an optimal model can be selected. In this case, comparing
the predictions shows that the Gumbel CDF under-predicts the
maximum defect size for both 2D and 3D defect distributions
while the Weibull CDF gives realistic predictions in both cases.
Thus, the flexibility of the proposed method enables
optimization of the size prediction model.

The second important observation is the robustness of the
FC diameter size metric, which can be used for both 2D and 3D
defects. The popular varea parameter metric is limited to 2D
defect characterization. Furthermore, the more detailed
characterizations of 3D defects have made it difficult to select
a standard metric for quantifying defect size due to the many
approaches explored in literature. The FC diameter metric is
the ideal standard size metric simply due to its realistic and
equivalent representation of defect size in both 2D and 3D
cases.

5. Conclusions

Random porosity is a common geometrical defect in powder
bed fusion (PBF) components. Understanding how to quantify
the size and distribution of geometrical defects is key for
assessing part quality and improving printing processes. In this
study, a statistics of extremes-based method of predicting the
maximum defect size is proposed. This method can be applied
for both metallographic examinations as well as X-ray
computed tomography inspections of porosity in PBF parts.
Defect size is measured using the Feret caliper (FC) diameter
and then fitted to a cumulative distribution function (CDF) for
linear regression modeling. The maximum defect size is then
extrapolated from the regression line for a given probability.

Future studies of defect size prediction should go further to
consider the optimization of CDF selection for different
process parameters and defect populations. Furthermore, the
FC diameter metric should be accepted as the standard defect
size metric in AM metrology methods due to its equivalent
representation of 3D and 2D defects.
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Fig. 4. Predicted maximum defect sizes at 99.9% probability using Gumbel
and Weibull CDFs. a) Gumbel prediction for 3D defect distribution, b)
Gumbel prediction for 2D defect distribution, ¢) Weibull prediction
(parameter y=1.2) for 3D defect distribution, d) Weibull prediction (parameter
v=1) for 2D defect distribution.
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